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Abstract—In this paper, we propose a novel detector for single- universal technique for jointly compensating for the linea
channel long-haul coherent optical communications, terme¢ and nonlinear impairments. Hence, DBP is often used to
Stochastic digital backpropagation (SDBP), which takes into ac- papchmark schemes proposed in the literature [4]-[16]. The

count noise from the optical amplifiers in addition to handling d timality of DBP h d int h
deterministic linear and nonlinear impairments. We discus assumed optimaity o as spurred Intense researc

the design approach behind this detector, which is based on in low-complexity variations, including iterative symmiet
the maximum a posteriori (MAP) principle. As closed-form SSFM [3], [7], noniterative asymmetric SSFM [2], weighted

expressions of the MAP detector are not tractable for coheret  DBP [4], perturbation DBP [5], [8], and filtered DBP [9], [16]

optical transmission, we employ the framework of Bayesian e ropystness of DBP has also been studied extensively for
graphical models, which allows a numerical evaluation of tie - .
various scenarios in [10]-[15].

proposed detector. Through simulations, we observe that by ) - ) .
accounting for nonlinear signal-noise interactions, we adeve  While DBP has received a great deal of attention, it only

a significant improvement in system reach with SDBP over deals with deterministic linear and nonlinear impairments
digital backpropagation (DBP) for systems with periodic iine and inherently does not consider noise. It is known that
optical dispersion compensation. In uncompensated links ith e transmission performance of a fiber-optical system will

high symbol rates, the performance difference in terms of sstem . . L .
reach for SDBP over DBP is small. In the absence of noise, the ultimately be limited by non-deterministic nonlinear eff,

proposed detector is equivalent to the well-known DBP deteer. ~ SUch asnonlinear signal-noise interactiofNSNI) between
the transmitted signal and the amplified spontaneous emissi

(ASE) noise [17]-[19]. The impact of NSNI has been studied
extensively through numerical simulations and througheexp
iments [20], [21]. In these works, ASE noise is loaded at the
receiver as a single additive white Gaussian noise (AWGN)
) ) rocess. This system is then compared with a system where
ECENT estimates suggest that there will be a _te”'foﬁjoise is distributed [20] and ASE noise is added as a single
I'\increase in the internet traffic by 2022 [1]. This evehwGN at the transmitter [21]. Both these studies revealed
increasing demand for data traffic continuously pushes they there is a significant penalty due to NSNI for dispersion
need for more effective and efficient optical transmissioRanaged links and the severity of the NSNI is dependent on
techniques. However, high-rate transmission poses devgfa symbol rate and modulation formats used in the system.
technical challenges to the system designer. In particthar none of the DBP methods mentioned above account for NSNI,
transceiver algorithms must cope with increased susagtib 55 it is often argued that one cannot compensate for NSNI
to linear and nonlinear fiber impairments. o in DSP due to the non-deterministic nature of ASE noise
The two main impairments in the fiber-optic link arg31) Tq deal with stochastic disturbances, Bayesian dietec
chromatic dispersion (CD) and the nonlinear Kerr effeCfygory can be used to formulate maximum a posteriori (MAP)
Compensation for CD can be performed in the optical domaifetectors, which are provably optimal in terms of error prob
e.g., using inline dispersion-compensating fiber (DCF)lweri 4pility. MAP detectors have been proposed for the discrete
Bragg gratings (FBG), or in the electrical domain throughemoryless channel [22] assuming perfect CD compensation
digital signal processing (DSP). Compensation of the CR, jnjine optical dispersion compensators, and utilizilgak-
in combination with the nonlinear Kerr effect can be dongy, taple detector that can mitigate data pattern dependent
in DSP through the inversion of the Manakov model (afonjinear impairments [23]. A low-complexity Viterbi deter
the nonlinear Schrodinger equation for a single polammgti ig 5 ggested as an alternative or complementing DBP for com-
using the split-step Fourier method (SSFM) with appropriahaiing fiber nonlinearities [24]. However, for computatibn
inverted channel parameters. The resulting algorithm lie¢ta reasons, this detector is suitable for systems with very low
digital backpropagation (DBP) [2], [3], which in spite Ofdispersion, hence limiting its applicability.
the high computational complexity, has been proposed as gy this paper, we propose a near-MAP detector for single-
The authors are associated with the FORCE Research Ceriealihers channel long-haul coherent optical communications that com-
University of Technology, 41296 Gothenburg Swedemail: {vnaga, henkw, pensates not only for deterministic linear and nonlinefaot$
pontus.johannisson, agrell}@chalmers.se. but also takes the ASE noise into account. As a consequence,

This research was supported by the Swedish Research C¢uRyilunder . ] ,
grant 2010 — 4236. The simulations were performed in part on resourcengNI is accounted for, which allows us to (I) get closer to the

provided by the Swedish National Infrastructure for Cormmut(SNIC) at fundamental performance limits of the fiber-optical chdnne
C3SE.
Part of this work was presented in 39th European conferemdexshibition 1The extension of the proposed detector to wavelengthidivisultiplexed
on optical communication in London, UK, Sep. 2013. system is out of the scope of the current contribution andissiclered for
future work.

Index Terms—Digital backpropagation, factor graphs, near-
MAP detector, nonlinear compensation, optical communicadbns.

I. INTRODUCTION



and (i) identify regimes where DBP is suboptimal. Since DBRector consisting of data from the andy polarizations. The
can be interpreted as a special case of the proposed né&@mnsmitted signal, denoted by (¢,¢; 1) = ZkK:lg[k]g(t —
MAP detector, we call the proposed methsidchastic digital £T'), is up-converted and transmitted over a DM or NDM link.

backpropagation (SDBPYOur specific contributions are: The equivalent complex baseband received signal is denoted
« Developing a novel detector that accounts for NSNI by r(t) or the equivalent vector representationThe overall
explicitly dealing with ASE noise; goal of the receiver is to optimally recoverfrom r. While

« Identifying regimes where DBP is suboptimal; and different optimality criteria can be considered, we wiliraio
« A novel receiver design based on factor graphs (FG&pinimize the error probability, leading to a MAP receiver, i

wherein the variables are waveforms. which the estimate of is
Th.e remainder of .this paper is structur.ed as f_oIIows. In 8 = arg max p(s|r), (1)
Section I, we describe the model for a fiber-optical trans- scQi

mission system, including both dispersion-managed (DM) ayhere p(s|r) is the a posteriori distribution of given the
non-dispersion-managed (NDM) links. The derivation of thgscejved signat.

MAP detector will be described in Section I, also contaupi

a brief overview of the theory of FGs and message passing.

The implementation of the near-MAP detector is describd¥ Signal Propagation in Optical Fibers

in Section IV. In Section V, interpretation of SDBP and For the receiver to determi@ﬂr), an accurate propagation
connection to DBP is given for a Slmpllfled model. Simulatioﬂ]ode| is required_ The propagation of ||ght in an Optica| fibe
results and discussions are presented in Section VI, felowjs modeled by the Manakov model (with loss included) as [25,

by conclusions in Section VII. eq. (2.3.45)]
Notation: Lower case bold letters (e.gx) are used for
vector representation of the continuous-time signals amty ~~ 9v(t,2) B2 9°v(t,2)
lined lower case bold letters (e.g:) for a vector of discrete- 9. T2 o
time symbols. Note that even though both these classes of (vt 2)v (L, 2)v(t, z) — %V(t,Z), 2)

signals are represented by vectors, they are quite disfihet
sequencey denotes the data that is spaced a symbol peri@d]erev is the electric field for the polarization-multiplexed
apart andx is the oversampled continuous-time optical sign4PM) signal andvv = |v||? is the signal power summed
x(t) (or any equivalent representation in a suitable basi§ver the two polarizations. The fiber nonlinearity coefiitties
With a slight abuse of notationk(t) is used to representdenoted byy, « is the power attenuation coefficiert is the
a vector of dual-polarization single-wavelength continsto group velocity dispersion, and is the propagation distance.
time signal andx is used to represent samples =ft), We note that (2) has been obtained by averaging over the fast
where the data for each polarization is appropriately comi polarization rotations, making the analysis applicablélders
Hermitian conjugation of the vector is denoted byv™. A with low polarization mode dispersion (PMD). Hence, PMD
multivariate Gaussian probability density function (Pf)a is ignored in the rest of the paper, except in Sec. VI-C, where
variabler with meanz and covariance matri is denoted the influence of PMD on DBP and SDBP is analyzed.
by N(r;z,3). The indicator function with propositiof® is The Manakov model (2) generally does not have an analytic
given by 1(P) and the Dirac delta function is denoted &y). ~ solution, except for specific cases. Numerical approaches
as thesplit-step Fourier methodSSFM) [25, eq. (2.4.10)], are
Il. SYSTEM MODEL typically needed to describe the signal evolution in disjver
and nonlinear media. The Manakov equation (2) can be solved
using a symmetric SSFM [3], [25] or an asymmetric SSFM [2].
The system model, shown in Fig. 1(a), comprises a dugly derive the near-MAP detector, we choose the asymmetric
polarization transmitter, a pulse shaper, a fiber-optit# | SSFM as it is easy to comprehend the principles behind the
with N spans, and a receiver with a compensation a'@”“’ﬁoposed detector using this appro4¢h the SSFM approach,
followed by a decision unit. Each span of the fiber-optic linghe fiper span of lengthh € {Lswmr, Locm} is split into
consists of a standard single-mode fiber (SMF) followed by; e {Mgye, Mpew} segments, where the length of each
an optional dispersion-compensating module (DCM) for DMegmentA > is chosen small enough that the nonlinear (Kerr
links2 In this work, we have considered either a DCF or @Ronlinearity) and linear (chromatic dispersion) effecas de
FBG as a DCM. In between fiber spans, there are erbiumpdeled as acting independently. In Fig. 1(b), the asynimetr
doped fiber amplifiers (EDFAS). SSFM view of the fiber (SMF/DCF) for spanc {1,..., N}
A sequence of’ symbolss = [s[1],s[2],--- ,s[K]]€ & s shown. Focusing on the segmente {1,..., M} of span
is transmitted at a symbol ratg'T” with a pulse shaping filter ,, and introducing,,, , = (m — 1)Az + (n — 1)L, the input
g(t), where Q is the set of possible symbols in the four-

dimensional constellation. Eack{k] is a complex length-2  3the notationt; ; refers to the input of the first segment of the first span
of the fiber, to be clarified later in the paper.
2The system shown in Fig. 1(a) should be considered as an éxaaspthe 4As will be seen in later sections, principles suggested is gaper do
principles presented in later sections of this paper canpipdeal directly to not change even if we had considered a symmetric SSFM. Howeve
systems with different configurations (e.g., comprising=&FA after both the the simulations symmetric SSFM is used, as it performs bett¢he same
SMF and the DCM). Alternative configurations will be presehin Sec. VI computational complexity [25, Ch. 2].

A. High-Level Description
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Fig. 1. (@) A fiber link with N spans where each span consists of an SMF, a DCM (for DM lirsks),an EDFA. The transmitter consists
of a pulse shaper and the receiver consists of a compensdgorithm (DBP/SDBP) and a decision block. (b) Approximatedel for the
fiber (SMF/DCF) using SSFM with nonlinear and linear segmewheren(w, Az) = exp(jBaw?Az/2) and A = exp (—alAz/2). (c) EDFA
with gain G = exp(aL) and noise.

signal will be denoted bw(¢,¢,, ) and the output signal by at the end of the DCM (or the SMF for the NDM link),
v(t,¢m+1.). The nonlinear effect is then given by ZMon = Vm+t1n Whenm = M. At the end of each span,

Uty ) = V(E o) DAV bmn)[PD2), (@) TN = Vinsn While atthe end of the finkeasy = r-

wherey € {~sur, 7ocm} is the fiber nonlinear coefficient per
segment, withysyr andypcm denoting nonlinearity coefficient

in the SMF and DCM, respectively. The linear effect is l1l. MAP DETECTION
described by
V(t lirn) = AU (t, b n) x B (£, A2), (4 Based on the transmission system in Fig. 1, our aim is

N _ to determinep(s|r) through the marginalization of a joint
where A = exp(—aAz/2), o € {asur, apcw} is the power distribution p(s, 7, r), where? encapsulates the hidden (or
attenuation coefficient per segment, arddenotes convo- ynobserved) variables in the system.

lution. The CD impulse response is given byt z) = We utilize FGs and the sum .
. . . J -product algorithm (SPA) to
2
exp(—jt*/(2622))/Vj2mfaz [26] ,W'th2 corresponding fre- eficiently perform this marginalization process [28]. Fer
quency responsti(w,2) = exp(jfaw”2/2), where B2 €  gepailed description of FGs, the reader is referred to [29],
{B2,swr, B2,0cu} is the group velocity dispersion per Segment3n1. For our purposes, it suffices to mention that an FG is
_Since a fiber is a lossy medium, periodic amplification of thgenerated based on a factorization of a joint distributiod a
signal is needed. Fig. 1(c) shows the operation of the dptigaat the SPA is a message passing algorithm on the FG, with

noise (AWGN). We assume that each EDFA compensates for

the attenuation in the preceding fiber span and adds circular
white complex Gaussian ASE noise, (¢) in each span, with

power spectral density F, hiopt/2 in each polarization [27, o Eactorization of the Joint Distribution
eq. (8.1.15)] andhvyy is the photon energy. Each EDFA

is assumed to have a bandwidfh The required gain t0  \ye introduce as hidden variables the internal states of our
compensate for the attenuation in each spafi is exp(«al). transmission system (Fig. 1)

The noise figure [27, eq. (8.1.19)] of the EDFA I5, =

2nsp(1 — G71), in which ngp, is the spontaneous emission  H = {{Vin, Wn,n}1<m<Ms ZMns TMEN F1<n<Ns

factor. The signal before and after the EDFA of spawill be
denoted byz(t, ar,,) andr(t, {as,,,), respectively. The vector
representation of the continuous-time signals can alsebga s
in Fig. 1. For example, the vector representation of theadgn

v(t, ém,n)’_z(tv Ern), andr(t_) is denoted by, n, Zaprn, @NA - 5oy, system forms a Markov chain, so that the probability ofcaitput
r, respectively. When the fiber and EDFA are concatenateglen all previous inputs will just depend on the input to therent block.

where we note that the observatiogy ;y = r is not part ofH.
Harnessing conditional independefhamong these internal



states, the joint distributiop(s, #, r) is factorized as Q. (a1) Q. (q2)
N f((ha Q2) Y

(S, {{Vm,ns Wm,n f1<m<M, ZMn, LM n#N F1<n<N,T) ﬁQl (a1) ﬁQz (q2)
N
= p(s) p(vi1ls) H P(CrMnlZan) P(Zan|Unin) - Fig. 3. Factor graph for a case where we have two variajlgsy> and a
el factor f(q1,qz2) associated with those variables.

M M-1
H P(Umn|Vin,n) H P(Vitin|Umn) -

m=2 m=1 as [29]

p(U1n(rarn—120) p(ara|v). (5)

Q) o /f(qh%)(ﬁqz (qz2) daz (10)
According to this factorization, an FG is drafvas shown
in Fig. 2 for the system model of Fig. 1(a). To keep the FG ﬁQz (q2) /f(qth)ﬁQ] (q1) dqu, (11)
framework compact, we defink/ in Fig. 2 to be the sum of
the number of segments needed for SMF and DCM in the cagskere the integral should be replaced with a summation when
of compensated link§The FG in Fig. 2 contains the factorsthe relevant variables are discrete, ands used to normalize
the messages. Note that the two messages are computed in

Ta s p(easnlzann) = Nran; \/EZM’"’ %), ©6) parallel. To compute the marginal posterior of a variabég, s
JB 1 P(Vimt1n[Umn) = 6(Vinyin — At +h), (7)) q;, we multiply leftward (also called backward) and rightward
fo : p(m,n|Vin,n) (also called forward) messages [29]

= §(um,n — Vm,n exp(j7A2|vm,n|2))7 (8) P((h) x ﬁql ((h)(ﬁql (Ch)- (12)
foip(vils) =d(vi1 —sx*g), 9)

As we are ultimately interested (s|r), we mainly compute
where (6) is due to the fact thah, ,, is obtained by scaling leftward messages in the FG in Fig. 2.

zy.» With /G and adding Gaussian noise of zero mean andNote that many of the factors in (5) correspond to functions
covariance matr& 3. The pulse shape is representedgbin  of the form f(qi, q2) = 6(q2 — é(q1)), where¢ is bijective.

(9) and the transmitted signal is representedvify, ¢, ;) = This knowledge can be exploited to simplify the message
ZkK:lg[k]g(t — kT), where T is the symbol period. With computation in (10) as

a slight abuse of notation in (9), we sei; to equal the - -
convolution ofs andg. WQi(dr) o /5(012 — é(a1)) Q. (az) daz
= . (d(a)). (13)
Note that (13) can also be expressed as

B. Message Passing: Theory B
Tau (@ (a2) = Ta.(a2)- (14)

On the generated FG, we can now perform message pass§ig discrete variableSye additionally have thafl , (q2) =
according to the SPA. In SPA, messages passed over an egggl (¢~(q2)) (in which case we have thaf(qi,qs) =
are a function of the corresponding variable. We will denot}{e(q2 = é(q1))).
a message associated with edge/varigplevaluated ig by  The specific problem considered here requires additional

rq(a) (or pu(q) when the variable is clear from the context)eonsiderations not present in conventional FGs. In pdeticu
The direction of the message will be represented by arrowge point out the following.

‘7 q(q) and 7/ g (q). We note that messages can be normalized
without affecting the normalized marginal. These nornealiz
messages can be interpreted as distributions: probatribiss
functions and probability density functions for discreteda can be represented with high-dimensional vectors, it is

continuous variables, respectively. not trivial to represent the messages associated with these
Considering a generic functiof(q:, q2) with a correspond- variables, or to compute the messages according to the

ing vertex in an FG as shown in Fig. 3, and incoming messages gspa.

% q.(a2) and 7 q, (a1), the outgoing messages are computed , Type: Variables also have an inherent domain or type.

For example when a variable is nonnegative, we write

type(Qr) = {ax | ar > 0}. In the case of signals, type

can also cover temporal and spectral characteristics. For

« Variables correspond to waveform3o the best of our
knowledge, this is the first application of FG where the
variables themselves are entire waveforms. While these

6A vertex (drawn as a square) is created for every factor aratiga (drawn
as a line) for every variable. A certain edge is attached tertitni node when

the corresponding variable appears in the correspondictgrfa example, when a signal is bandlimitedteB, B], we can
“When M = Mswg + Mpcw, there areMsyr SMF segments in the write t k) = v | FT(qx) =0, V —B, B},
FG of Fig. 2, followed byMpcy DCM segments. For uncompensated links, ype(Q ) {q | (q ) ’ f gé [ ’ ]}

where FT is the Fourier transform. Messages only need
Mpem = 0.

8Note that the dimension aE is determined by the length of the vector to be evaluated within the type, e.gy € type(Q,) for
representation of the corresponding waveforms. The eninéZ are deter-
mined by the basis used in the vector representation of théntmus-time 9For continuous variables, the forward messaﬁegz (g2) requires addi-
signals (e.g., when we sample at a r&tewe find thats¥ = GF,, hvoptB/2I).  tional care to account for the Jacobian.
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Fig. 2. Factor graph for the system model in Fig. 1(a) whitecorresponds to the EDFA blockg corresponds to the CD block (for either an SMF or
for a DCF depending omn), fc corresponds to nonlinear block (either for SMF or DCM depegcn m), fp corresponds to the pulse shape afyl
represents prior knowledge about the symbols. We denoteattigbles in capitals (€.9Vm,») to distinguish from their realizations (€.0¢m,n).

(10). However, it is sometimes convenient to evaluate andqs = u,,,, in (13)—(14) to get
a message in a larger domain, whereby the resulting

— . 2
message can be projected onto the type and renormalized. d’(‘;mm) = Vin.n eXp(JYAZ[Vim.n[), ) (18)
For example, as will be seen in the next section, the ¢ (Wnyn) = Wi €XP(—JYAZ[ WU, 0 |?), (19)
knowledge thatv; ; has a known structure (of the form v (0 (W) = U, (W), (20)

s * g) Is not utilized while computing the message for

vy,1; rather we letv ; be of any type. where (19) follows becausgu, .|* = [vin,n|”. Hence,

we apply the inverse nonlinearity to a signal, .,
yielding a signalv,,, ,, with the same probability density.
Recursive application of the rules above Iead(sﬁt()vl_rl).
Sincev; ; ands are related by a one-to-one mapping, deter-
mining p(s|r) can equivalently be accomplished by determin-
ing p(v1.1|r). This requiresz (v1,1) and 77 (v1.1). The latter

Using (10) and (13) and the factors for each of the blockgessage is computed by applying (11) and (9) to get
as given in (6)—(9), the messages for each of the blocks of the

C. Message Passing in SDBP

model of Fig. 1 can be derived. T (via) < Y H(s)p(vials)
o Message for the EDFA blockGiven the message . QI
<_
1L (rM’")’ the messa:qqﬁ(zM,n) can be computed by _ Z Z I(s = 5,)0(vi1 — 5 *g)
applying (10) and (6): e
— |
n N(@rn; VGZasn, T
o) o [N o5 G ) =3 v - s v 8. @1)
X %(I‘]\,{_’n) dI‘]\,{_’n. (15) k=1
Observe that in generafﬁ(zz\,f_,n) has no closed-form where we have utilized the fact that
expression. 1 |
« Message for the dispersion (linear) blockle compute H(s) = G Z I(s = sy), (22)
the messagéﬁ(um,n) at the input of the linear block k=1
given the messag@ (vi11,,) at the output of the linear in whichs, = [s,[1],s,[2], - -- , s, [K]] is a unique realization

b|00|§- We recall thatv,,11,n = zam,, Whenm = M, of the K transmitted symbols. In other words, the message
Eﬂat is, at the<_end of the last segment, and therefofg(s) is a sum of indicator functions of all possib|&|¥
1 (Vint1,n) = 1 (2ar,0) for m = M. TQ compute the combinations with$2| being the number of possible symbols
messagey (um,,), we use (13)—(14) withys = umn  in the constellation.
andqz = vy 41,5 10 get Finally, the multiplication of 77 (vy1) with ‘% (vi1) is
%Um,n(um,n) _ %vmﬂ,n(sﬁ(um,n)), (16) ?ccompliihed by evglu_atmg e_ach d|s_t||vq;1 =8, *gin the_

« 1 s unction  (v1,1). This immediately yields the corresponding
P00 (07 (V1)) = 0V Vmsin), (A7) g 1),
where ¢(u,, ) = Au,,, * h. Hence, the outgoing There are some challenges in implementing a receiver as
message is obtained by applying a transformation to teeéggested above.
variable of the incoming message. The form (17) has ane RepresentatianA common problem in the application

operational meaning: if the inverse filtér ' (-) is applied of the SPA is the representation of messages. When

to the signalv,,+1 ,, then the resulting signai,, ,, will variables are discrete, messages can be represented by

have the same probability density @s,+1 . vectors tabulating the value of the message for each
« Message for the nonlinear blocBased on the function possible value of the variable. When variables are con-

defined in (8) for the nonlinear operator, we find the mes-  tinuous, approximate representations may be required, in-
sage‘ﬁ(vmm) from <ﬁ(umm) by substitutingy; = v cluding grid approximations, parametric approximations,



and nonparametric approximations [28]. In our case, the
problem is further exacerbated by the high-dimensional
nature of the variables, as they correspond to vector
representations of waveforms.

« Computation Even with a practical representation, the
integral (15) is generally not tractable. Secondly, when
the input message in (17), (20) falls within the chosen
representation, the output message may not be repre-

sentable. Moreover, the forward messaﬁévu) is a
sum of |Q|% combinations, which is highly complex for
reasonable values df .

Both of these issues will be dealt with in the following

section.

IV. NEAR-MAP DETECTORIMPLEMENTATION

In this section, we discuss an implementation of the receive

outlined in the previous section. The representation bl
will be tackled using a particle representation (PR) [28, &h

is computed ds

1
%(ZM,’IL) = F /N(rM,n; \/@Z]u,n, E)
p
Np
X Zd(rM,n — I‘g\?n) dI‘]\,{_’n
k=1

Np

- >NV D) @)
which can be interpreted as a Gaussian mixture in
Znp,n, COMprisingV, mixture components with means
rg\’}?n/\/@ and equal covarianc/G. A PR of this mix-
ture can be obtained by drawing one sample from each
mixture componentzx}),n ~ N(zM,n;rEC}),n/\/@, 3/G),
and thus

PR{Tz,,} = {2\ 250} (25)

As mentioned in Section IlI-B, variables have an inherent
type. When typéZ,,,,,) is such that it is bandlimited to

a bandwidthi?/, the noise samples should be added with
a variance proportional tmin(W, B).

which may be seen as a high-dimensional variation of a parti-, Message for the dispersion (linear) blocgtarting from

cle filter [31]. The same PR will allow us to evaluate integral
of the form (15) and also to maintain a coherent represemtati

to compute (17), (20). The exponential complexity related t

the forward messagﬁ(vm) will be treated using a matched

PR{%v,,..} = (v, . }or,, our aim is to de-
termine PR{%iu,, . }. From Sec. I,zaxrn = Vimtin
when m = M, so PR{%z,,} = PR{%v,\...}-

Following (16)—(17), the messagegv,, ., . (Vim+1,n)

filter approach. Combining these techniques (PR and matched and 7y, (u,,.,) are related through a transformation

filter) leads to a receiver that bears a remarkable simjlarit
to the well-known digital back propagation receiver (for a

discussion, see Section V).

A. Particle Representations

Given a PDFpx (z), a PR, denoted bPR{px }, is a list of
valued® {z(M}~» with the property that for any integrable
function f(z)

NP
Niz fa®)y = / f(@)px (z)dz, N, = +oo. (23)

P p=1

One way to obtain a PR is to draw, i.i.d. samples from

px (z), though many other methods exist [28, Ch. 3]. A PR

can be interpreted as follows: in the context of (28)(x) can
be approximated gsx (z) ~ 1/N, S-h*, §(z—=z(*)). In other

words, aPR{px} can be considered as a uniform probability
mass function, so thaY is considered to be a uniform discrete

random variable that takes on values in the {set)} " .

of the arguments. Following the probability mass function
interpretation of PRSPR{%iu,.,} = {uth}rr, in
whichul?), = ¢—1(vf,’f)+1,n), whereg~1(-) is the inverse
filter of Ah(t,Az). For computational efficiency, the
message passing can be performed in the frequency do-
main, by introducing additional variables corresponding
to the Fourier transforms oﬁﬂi)n and vf,’film. These
additional variables lead to additional factors and edges
in the FG, as depicted in Fig. 4. The additional factors
are of the formp(Qm, n|um.n) = 0(Am.n — FFT(um n)),

P 1| Umn) = 6(Ami1n — UpmnAh(w,Az)), and
p(vm+1,n|ﬁm+1,n) = 5(Vm+1,n — |FFT(ﬁm+17n)) As
FFT(-) and IFFT:) are bijective operators on vectors,
the PRs are simply transformations of the particles:

PR{¥rg, ., .} = {FFTv ) e, (26)
14— ~(k N.
PR{fig, }={A"h " (w,A0)al), 1o,
27)

PR{% ..} = {IFFT(a®) )} . (28)

o Message for the nonlinear blockio get the message

With this PR, the messages for each of the blocks of our pR{%7y 1} from PR{%iy, 1} = {u'¥, f:f_pl' prob-

system model can be written, as detailed below.

o Message for EDFA blockGiven messagéﬁ(rMm) ~
1N, S 8(rasm — rg\'}?n), the message fofi (zar .,

10variations exist where the values are weighted as obtaigéthportance
sampling. We do not apply weighting in this context.

ability mass function interpretation of the PRs is used.
We thus find thatPR{%iv, ,} = {vith}r?,, where

v, = ul®, exp(—jyAzlul¥),[2). In other words, we
de-rotate each of th&), sampled waveformaﬁ,’i,)n, where

Note that forn = N, the PR is initialized withV,, copies of the received
signalr.



%(um,n) ( | ) <E(Vn%-i-l,n)
Wn P\Vm+1,n|Um,n T
~ ~
g ~
~ ~
- ~
— ~
- ~
(=~ =
<ﬁ(llm,n) ~ 2 (um,n) ~ ~ 2 (um+1,n) ~ <E(Vm+1,n)
U p(um’n|um,n) W p(um+17ﬂ|um7ﬂ) Ui 1n p(vm+1,n|um+1,n) Vintin

Fig. 4. Factor graph corresponding to the linear block of. Bigp) with p(Qm,n|um,n) = §(@m,n — FFT(um,n)), P(Qm+1,n|0m,n) = 6(Am+1,n —

ﬁm,n-AB(W7 AZ)): andp(vm+l,n‘ﬁm+l,n) = 5(V7n+1,n - IFFT(ﬁm+1,n))-

the rotation per waveform is proportional to the instantaand four-dimensional real for dual-polarization transius).

neous power of the respective time-domain samples. Note that now{gl(\’/f)F[n]}kj\[:’)1 can be considered as a PR of
« Posterior computation:;The messagePR{frv,,} can p(ryp[n]|s[n]), where the MF output for theith symbol

be computed once the messages for all the segmesitst ry;r[n] is of the formryr[n] = s[n] + n[n]. Here

and spans are found. Multiplication Off (vy;) and n[n] is a (two- or four-dimensional) random variable, which

%7 (v1,1) is required to compute the marginal distributionis approximated as Gaussian with mean zero and empirical

p(vi1lr). The messagél (v 1) is a probability mass covariance matrix

function over a high-dimensional random variable, and

<_

w(v1,1) is available only in particle format. As the
probability that any of the particles coincides with any of
the values Whera(vm) has mass is zero almost surely,

NP
Sln] = < S (elik ] — ) (ki) — )T, (29)

P =1

. k .
7 (v1.1) need to be smoothened to obtain a PDF th#t Which p[n] = 1/N, 3, r{ik[n]. Finally, under the assump-
can be evaluated for any, ; where 77 (v1.1) has mass. tion of uniform a priorip(s[n])

Smoothing can be done, for example, using a Gaussian
process [32] or through kernel density estimation [33], p

[34, Ch. 6]. Following this smoothing procegsgyv 1|r)
can be evaluated for any; ; of the formv; ; = s, * g.

(s[n]fr) ~

exp (3 (s0n] = ulal) Eln] 5] - i) ) . GO

This immediately yields the correspondipgs,|r) and The complexity of the above symbol-by-symbol detector
using this posterior distribution, the optimization is éonscales ask x || instead of|Q|¥ for the optimal sequence

according 108 = argmaxs, p(sy|r). Note that this getector, and it thus amenable to an implementation. Addi-
process still faces the exponential complexity problenfonal performance gains may be reaped by performing joint

as there aréQ2|™ combinations ofv; ; to consider. The getection over successive symbols, at a cost in terms of
posterior computation employed in this paper is describgdmplexity.

in the next section.

B. Symbol-by-Symbol Detector

C. Remarks
« Connection to DBP:When there is no noise in the

The high computational complexity of the sequence-based transmission system, PRs collapse to (high-dimensional)
MAP detector described above can be avoided by considering Points, since noise samples in (24)—(25) will have vari-

a symbol-by-symbol detector. We assumﬁ{ﬁvm} ash,

outputs from a virtual channel, where each of the outputs is
equal tos x g, affected by zero-mean additive noise with an

unknown distribution. In order to maximize the signal-toige

ratio, we employ a filter matched to the pulse shape (MF)
followed by a sampler [35, Ch. 4], [36, Ch. 10], which can be

implemented as follows. Each partidé’fl) from PR{%VM}

is passed through the MF and sampled at the symbol rate

at the optimal sampling timé$. For each symbok[n], N,
samples are collected into a vecthl(\fH,[n]}kN:”l, where
ryr|n] is the MF output, for thenth symbol slot. We note
that now each_vl(\/’f)F[n] is of the same dimensionality as$n]
(i.e., two-dimensional real for single-polarization tsamssion

125 in [2]-[5], we assume perfect clock synchronization.

ance zero. The proposed near-MAP detector is equivalent
to the conventional DBP method. Due to this relation, we
coin our method stochastic DBP.

Interaction with decoder: The marginal posteriors
p(s[n]|r) can be used to make decisions on the transmit-
ted symbols. They can also be used as soft information to
send to a soft demodulator and a soft decoder [37]. This
makes SDBP more suitable than DBP when soft decoding
is employed.

Weakly nonlinear regime: When the nonlinearity is
negligible, the transmission system can be transformed
to a concatenation of an all-pass filter, an attenuator, and
an AWGN source. The optimal receiver in that case is
well known and comprises an inverse all-pass filter and
an MF, followed by symbol rate sampling. Both DBP



TABLE |

and SDBP implement this MF. Moreover, the covariance CHANNEL PARAMETERS
matricesX[n] in (29) will be scaled diagonal matrices.
When the nonlinearity increases, these covariance matri- | | SMF | DCF |
ces will exhibit nondiagonal components, giving SDBP D (psinm/km)[ 16 | -120
an advantage over DBP. ~ (L/W/km) 13 | 52

« Strongly nonlinear regime: When the nonlinearity is o (dB/km) 02 | 06

strong, the Gaussian assumptions made in (30) no longer
holds. There are two ways to handle this situation. One
way is to smoothPR{fzv, ,} through a kernel density parameter of the fiber. FBG with an insertion loss of 3 dB
estimator [33], [34, Ch. 6], [38]. A second, easier wayand perfect dispersion compensation for the preceding SMF
is to passPR{frv,,} through an MF followed by a is used. The EDFA noise figure is 5 dB. A root raised cosine
sampler and then perform the smoothing on the symbgjuise in the time domain is used with a roll-off factor of 0.25
rate samples using kernel density estimation. This allogd truncation length of 16 symbol periods. The simulations
p(s[n]|r) of (30) to take on any shapé. are performed for dual-polarization transmission wittheit
16-QAM or QPSK as modulation format. The receiver is
V. ILLUSTRATION OF SDBPFOR A SIMPLIFIED MODEL assumed to have perfect knowledge of the polarization,state

To illustrate the operation of SDBP and its relation to DBFS well as the carrier phase and the symbol timing. ASE noise

we consider a simple system, comprising one SMF folIowéQ’i'th _bangwigth (;equal t_o tf(ljz ust_ed sarrr:pling fr_?ﬂuencybvxihich
by an FBG and an EDFA, shown in Fig. 5. The top roW’ twice the baud rate, is added in each span. The symbol error

of waveforms depicts the waveforms corresponding to thate (SER) is _use_d as a performance metric.

intermediate stateg, y, z as well as the received waveform TheQS;S/I;M IS S'mU|ated_XV'th a segment !ength [39]_&”(:

r. Note that they is affected by dispersion and nonlinearit%ELNLD) ’ Wh(;l’ee =10 . Ly =1/(yP) is the nonlinear
and that the compound effect is only partially compensaledlﬁngth'LD =T 2”0/(|D|/\ ) is the d_|sper5|on_lengtm IS

z. The bottom row shows théV, particles associated with the wavelengthc_|s the speed of the light, andl is the input
each of these hidden waveforms, depicted in gray and HWer to each fiber span. The number of §egments Per span
DBP waveform is shown in thick blue lines. In SDBP, théS M = [L/A], where[p] is the smallest mfteger not less
uncertainty is propagated starting from the received wavef thanp. We used the same segment length in the backward
r, backwards all the way to the transmitted sequencéhe and forward system.

N, waveforms are propagated through the inverse of each of

the blocks in the forward system. As an example, in Fig. 5 W SER and Reach Analysis

start with the known received waveform(which exhibits no  Fig. 6(a) shows the SER as a function of the input power
uncertainty) and pass it through the inverse of the EDFAlblocfor two different symbol rates (14 and 28 Gbaud) for a link
Since the EDFA block adds AWGN noise, the waveformgith FBG dispersion management (callEBG link from here
representing the uncertainty i are generated front by on) for DBP and SDBP. We observe that SDBP performs
adding suitable AWGN processes. The process is continusignificantly better than DBP for both symbol rates. Using
in the next block and the effects of the FBG are undone to g8&DBP, a different optimal power is obtained and also for a
the uncertainty of the hidden wavefoynIn the same way, by given input power, lower SER is obtained in the nonlinear
passing/V,, waveforms through the inverse SSFM descriptioregime. This means using SDBP, the system is more tolerant

of SMF, we get theV, waveforms associated with. to nonlinear effects and therefore we can have a longer reach
In Fig. 6(b), we show the SER for a system with NDM link.
V1. NUMERICAL SIMULATIONS AND DISCUSSIONS We see that for both symbol rates, SDBP outperforms DBP to

DBP and the proposed SDBP detector with — 500 parti- some e>_<te_nt, _and the gains are smalle_r for the_h|gh_er_ symbol
2 . . . . . rate. This indicates that for systems without inline disjr
cled* are applied to a system with SMF and inline dlspersmcnom ensation. the loss of performance when using DBP is

compensation done either with DCFs or with FBGsThe b ' P 9

parameters used for the SMF and DCF are given in Tabﬁg]a"er' The results pres.en.ted in this_ Paper corr_oborae th
I. We set number of symbols transmitted in one block tresult from [21] by quantifying the gains in handling NSNI

for both DM and NDM links.
fm _an2c§)4tileTI2?1 Stﬁal?orlet%getthgde for i?\glﬁslgfed_ sioch In Fig. 7, we plot the SER as a function of the system reach
that Deuwel. +gD 0 wr?ngéD s the dispersion 1©" PM 16-QAM and PM QPSK and for different symbol rates.
SMFZSME 7 ZDCRDCE = T P Each point in this plot is for an optimal input power, i.e.,
13A non-exhaustive simulation analysis indicated that the ab kernel for different Conflguratlons, the mp_Ut power COI’I’GSpOIgﬂlIO
density estimation did not yield significant performancénga the lowest SER is selected. In Fig. 7(a), for PM 16-QAM
14The system has been simulated with more than 500 particléspd \ith FBG® at 7 Gbaud, we see that there is around 17%
significant improvement was seen in the results. The numbparticles can . . .
be reduced to some extent without performance loss, bubiitimization is |ngrease Il‘.l the system reach for SDBP compared to DBP. This
not performed in this paper. More details are given in SeeD¥I gain remains more or less the same up to 28 Gbaud and then

15We note that similar results hold for a setup when there aditiadal
EDFAs between SMF and DCM, where the DCM can be either a DC&nor  16Results are not shown explicitly for the system with PM 16MpAnd
FBG. DCF as DCM, as the results were similar to the system with FB®&M.



Pulse

FBG EDFA >

Fig. 5. A simplified system model with the unknown symbol sequegageassing forward through different blocks of the channehwit
N =1 spans, and the received wavefoimThe top row depicts the waveforms corresponding to thedridstatesk,y,z as well as the

received wavefornr. In the bottom row, collections of waveforms representing tincertainty of the hidden states are shown in gray and
the DBP waveform is shown in thick blue lines.
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Fig. 6. SER as a function of input power for DBP (dashed, blugjig. 7. SER as a function of system reach for DBP (dashed, blue) and
and SDBP (solid, black) for PM 16-QAM at 14 and 28 Gbaud foBDBP (solid, black) for different symbol rates for (a) PM Q&M
the (a) FBG link (b) NDM link. and FBG (b) PM QPSK and DCF.
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decreases slightly at 56 Gbaud (at a SER10f2, we see
17% increase for 14 and 28 Gbaud, and 13% at 56 Gbaud). In
Fig. 7(b), the system reach for PM QPSK is presented where
DCF is used as a DCM. By comparing Fig. 7(a) and Fig. 7(b),
we observe that for a given symbol rate, the gains of SDBP
over DBP are higher for PM 16-QAM compared to PM QPSK.

The gains of SDBP can be explained as follows. The larger
the deviation of the particle clouds, given t{y_‘f\/’f)F[n] e
(PR{%VM} passed through an MF and a sampler), from a
circular symmetric Gaussian, the higher are the expectied ga
in SDBP compared to DBP. For a DM link, we have observed
that the particle clouds are less circularly Gaussian amddne
SDBP performs better than DBP.

B. Estimated Distributions

PDFs associated with the PF{@I(\’?F[n]}iV; for different
n, for 28 Gbaud, 44 spans of 80 km SMF each, 16-QAM,
and FBG link are provided in Fig. 8. In blue, we show
the PDF obtained on histograms using 5000 particles, while
in red, we show the Gaussian approximation, determined
from the computed sample mean and covariance. It can be
seen that a multivariate Gaussian distribution is often edgo
approximation. It can also be seen in Fig. 8(b) that for some
symbols (e.g., at constellation poBiw j), the histogram-based
and Gaussian PDFs do not fit, which means that some other
distribution than multivariate Gaussian is needed to aehie
the optimal performance. Finally, we note that the figureas n
symmetric, due to the effect of the preceding and succeeding
symbols, as well as the specific noise realization.

C. Influence of PMD on DBP and SDBP

In SDBP, ASE is the only non-deterministic impairment that (b)
is currently compensated for. However, other non-detestiin . . N
Fig. 8. PDF contours of particle representatiofsy,[n]},”, for

Impalrmefn:)s,tlhn g;g‘cmi{ Spg/g:’: rrl]_ﬁy ddet?rlqrattg theb l:)erfodlfferentn, given a specific history for each symbol, for SMF of 80
mance of bo an : IS aeterioralion bECOMfs 16-QAM modulation, FBG link at power of (a) 28 Gbaud, 42

significant when the total differential group delay (DGD) ofpans at 0 dBm and (b) 28 Gbaud, 42 spans at 5 dBm.
the system approaches the symbol period [40], [41]. It was

reported in [40] that the power penalty is small for realisti 1 :
transmission distances and data rates, as the residual P!
can be compensated for in a post-DBP linear equalizer.
quantify the performance degradation of DBP and SDBP
the presence of PMD, we performed a simulation by includin
generalized wave-plates in each span between the SMF ¢
the FBG. The wave-plate introduces a random polarizatic
change and DGD. This PMD simulation is according to tkmm
hinge model [42], which assumes that PMD is introduce
between each span of SMF. As a part of this, each sp
introduces independent phase rotations, but the amount
DGD between each span will be assumed to be constant ¢
given byt = Ar,/8N/3x [43] wherer is the total DGD and
At is the DGD in each wave-plate. Note that wham = 0, :
there is no PMD and the system reverts to the one in previo 10
sections.

A full integration of PMD compensation with SDBP would
constitute an entire research project in itself. Insteah t rig 9 SER as a function af /7%, the normalized DGD of the link, for 28
simple strategies are considered in the simulations: orexevhGbaud, 42 spans of SMF with 80 km each, PM 16-QAM, and an FBIG lin
no PMD compensation is performed, and one where tlp@shed blue and solid black curves correspond to DBP and Sexjfectively.

(k)

i i

i i

0 0.1 0.2 0.3 0.4 0.5 0.6
T/ Ty
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receiver is assumed to operate under perfect knowlédufe 10" ' ; '
the rotation matrices and the amount of DGD. In the latte
case, the PMD is compensated after (S)DBP.

In Fig. 9, the SER as a function of normalized total DGLC
is presented for a link with 28 Gbaud, 42 spans of 80 kr
SMF, FBG as DCM, and 16-QAM. For each DGD value
the system is simulated with 40 realizations and an averaé 1072
SER is obtained in each case. Each point in this curve ™
simulated for the optimal power corresponding to that DGI
value. Diamonds and squares represent scenarios where
PMD is compensated and not compensated for, respective
Performance deterioration can be seen for both DBP ai
SDBP with increasing\7 but SDBP maintains a performance 16°
gain over DBP which decreases as DGD value increases. 10° 10t 10 106°

Np

D. Complexity Analysis of SDBP , _ ,
] ) o ) ) Fig. 10. SER as a function of number of particlés,, for 28 Gbaud, 42
As pointed out earlier, the objective of this paper is nabans of 80 km SMF, FBG link, and 16-QAM at an input power-df dBm.

to develop a low-complexity detector suitable for immeeliat
implementation, but rather to show that DBP is not optime 10’
and to derive an optimal detector for a single-channel fibe
optical link. For the sake of completeness, in this secti@en w
quantify the complexity of SDBP.

The complexity of SDBP scales 87, x N x M x Cpgpm—+ 1
Cdec), WhereCpgpu is the complexity of the DBP algorithm
per segment of a fiber span, arlde; is the complexity o
associated with detection, including computation of (299). &
It is readily verified thatCqec scales ask’ x N, + K x [Q].
The complexity of SDBP can be reduced by reducvig A, 10
Cosr M. Below, we present the performance as a function ¢
N, and M.

1) Performance as a function of number of particles:
In Fig. 10, the SER as a function of number of particles 143 ‘ . ‘ ‘
N,, is shown for 28 Gbaud, 42 spans of 80 km SMF, FB( 0 10 20 30 40 50
link, and 16-QAM at input power of-1 dBm. DBP is also M
shown for reference. One can see that wh€p < 10, Fig. 11. SER as a function of number of segments per spanin DBP
DBP performs better than SDBP as 10 particles are ngashed blue) and SDBP (solid black) for 28 Gbaud, 42 spaB® éin each
sufficient to accurately represent the statistical distitn (?g'nﬁ' (ielgrpé'\s")' and FBG link at input powers of2 dBm (circles) and 1
of the signal. WhenN, > 100, the performance is almost a '
constant irrespective of the increase in the number ofgesti
The number of particles needed to approximate the PDFs
capturing the uncertainty of variables will vary dependmyg
the chosen set of parameters and hence Fig. 10 will be differe In this paper, we derived a MAP detector and provided
for another set of parameters. However, we made sure that &or implementation of a near-MAP detector that compensates
the scenarios considered,, = 500 was more than sufficient, for not only deterministic linear and nonlinear effects but
while no further optimization ofV,, was performed. also accounts for the noise from the optical amplifiers. We

2) Performance as a function of number of segments pesive shown that by taking signal statistics of the end-ib-en
span of SMF:In Fig. 11, the SER as a function of the numbeifiber channel into account, SDBP, the proposed near-MAP
of segments per spad/, in DBP and SDBP is shown for detector, can outperform DBP. Through simulations, we show
28 Gbaud, 42 spans of 80 km each SMF, 16-QAM, and @mat for uncompensated links, SDBP and DBP exhibit similar
FBG link. For these parameters, SDBP and DBP have theigrformance. For dispersion-managed links, SDBP shows a
optimal input powers at 1 and2 dBm respectively. In the significant increase in the system reach compared to DBP.
forward simulation using SSFM}/ was set to 50, which is
significantly larger thad /A]. It can be seen that/ can be
reduced in SDBP without sacrificing the gains obtained over

DBP. The authors would like to thank Dr. L. Beygi, Dr. D. Sen,
17several algorithms such as the constant modulus algori#héxist to Prof. M Karlsson, D. Marsella, and other mempers Of.FORCE
compensate for PMD. for their helpful comments and many helpful discussions.
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