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Stochastic Digital Backpropagation
Naga V. Irukulapati,Student Member, IEEE, Henk Wymeersch,Member, IEEE,

Pontus Johannisson, Erik Agrell,Senior Member, IEEE

Abstract—In this paper, we propose a novel detector for single-
channel long-haul coherent optical communications, termed
stochastic digital backpropagation (SDBP), which takes into ac-
count noise from the optical amplifiers in addition to handling
deterministic linear and nonlinear impairments. We discuss
the design approach behind this detector, which is based on
the maximum a posteriori (MAP) principle. As closed-form
expressions of the MAP detector are not tractable for coherent
optical transmission, we employ the framework of Bayesian
graphical models, which allows a numerical evaluation of the
proposed detector. Through simulations, we observe that by
accounting for nonlinear signal–noise interactions, we achieve
a significant improvement in system reach with SDBP over
digital backpropagation (DBP) for systems with periodic inline
optical dispersion compensation. In uncompensated links with
high symbol rates, the performance difference in terms of system
reach for SDBP over DBP is small. In the absence of noise, the
proposed detector is equivalent to the well-known DBP detector.

Index Terms—Digital backpropagation, factor graphs, near-
MAP detector, nonlinear compensation, optical communications.

I. I NTRODUCTION

RECENT estimates suggest that there will be a ten-fold
increase in the internet traffic by 2022 [1]. This ever

increasing demand for data traffic continuously pushes the
need for more effective and efficient optical transmission
techniques. However, high-rate transmission poses several
technical challenges to the system designer. In particular, the
transceiver algorithms must cope with increased susceptibility
to linear and nonlinear fiber impairments.

The two main impairments in the fiber-optic link are
chromatic dispersion (CD) and the nonlinear Kerr effect.
Compensation for CD can be performed in the optical domain,
e.g., using inline dispersion-compensating fiber (DCF) or fiber
Bragg gratings (FBG), or in the electrical domain through
digital signal processing (DSP). Compensation of the CD
in combination with the nonlinear Kerr effect can be done
in DSP through the inversion of the Manakov model (or
the nonlinear Schrödinger equation for a single polarization)
using the split-step Fourier method (SSFM) with appropriate
inverted channel parameters. The resulting algorithm is called
digital backpropagation (DBP) [2], [3], which in spite of
the high computational complexity, has been proposed as a
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universal technique for jointly compensating for the linear
and nonlinear impairments. Hence, DBP is often used to
benchmark schemes proposed in the literature [4]–[16]. The
assumed optimality of DBP has spurred intense research
in low-complexity variations, including iterative symmetric
SSFM [3], [7], noniterative asymmetric SSFM [2], weighted
DBP [4], perturbation DBP [5], [8], and filtered DBP [9], [16].
The robustness of DBP has also been studied extensively for
various scenarios in [10]–[15].

While DBP has received a great deal of attention, it only
deals with deterministic linear and nonlinear impairments
and inherently does not consider noise. It is known that
the transmission performance of a fiber-optical system will
ultimately be limited by non-deterministic nonlinear effects,
such asnonlinear signal–noise interaction(NSNI) between
the transmitted signal and the amplified spontaneous emission
(ASE) noise [17]–[19]. The impact of NSNI has been studied
extensively through numerical simulations and through exper-
iments [20], [21]. In these works, ASE noise is loaded at the
receiver as a single additive white Gaussian noise (AWGN)
process. This system is then compared with a system where
noise is distributed [20] and ASE noise is added as a single
AWGN at the transmitter [21]. Both these studies revealed
that there is a significant penalty due to NSNI for dispersion-
managed links and the severity of the NSNI is dependent on
the symbol rate and modulation formats used in the system.
None of the DBP methods mentioned above account for NSNI,
as it is often argued that one cannot compensate for NSNI
in DSP due to the non-deterministic nature of ASE noise
[21]. To deal with stochastic disturbances, Bayesian detection
theory can be used to formulate maximum a posteriori (MAP)
detectors, which are provably optimal in terms of error prob-
ability. MAP detectors have been proposed for the discrete
memoryless channel [22] assuming perfect CD compensation
by inline optical dispersion compensators, and utilizing alook-
up table detector that can mitigate data pattern dependent
nonlinear impairments [23]. A low-complexity Viterbi detector
is suggested as an alternative or complementing DBP for com-
bating fiber nonlinearities [24]. However, for computational
reasons, this detector is suitable for systems with very low
dispersion, hence limiting its applicability.

In this paper, we propose a near-MAP detector for single-
channel1 long-haul coherent optical communications that com-
pensates not only for deterministic linear and nonlinear effects
but also takes the ASE noise into account. As a consequence,
NSNI is accounted for, which allows us to (i) get closer to the
fundamental performance limits of the fiber-optical channel

1The extension of the proposed detector to wavelength-division multiplexed
system is out of the scope of the current contribution and is considered for
future work.
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and (ii) identify regimes where DBP is suboptimal. Since DBP
can be interpreted as a special case of the proposed near-
MAP detector, we call the proposed methodstochastic digital
backpropagation (SDBP). Our specific contributions are:

• Developing a novel detector that accounts for NSNI by
explicitly dealing with ASE noise;

• Identifying regimes where DBP is suboptimal; and
• A novel receiver design based on factor graphs (FGs),

wherein the variables are waveforms.

The remainder of this paper is structured as follows. In
Section II, we describe the model for a fiber-optical trans-
mission system, including both dispersion-managed (DM) and
non-dispersion-managed (NDM) links. The derivation of the
MAP detector will be described in Section III, also containing
a brief overview of the theory of FGs and message passing.
The implementation of the near-MAP detector is described
in Section IV. In Section V, interpretation of SDBP and
connection to DBP is given for a simplified model. Simulation
results and discussions are presented in Section VI, followed
by conclusions in Section VII.

Notation: Lower case bold letters (e.g.,x) are used for
vector representation of the continuous-time signals and under-
lined lower case bold letters (e.g.,y) for a vector of discrete-
time symbols. Note that even though both these classes of
signals are represented by vectors, they are quite distinct. The
sequencey denotes the data that is spaced a symbol period
apart andx is the oversampled continuous-time optical signal
x(t) (or any equivalent representation in a suitable basis).
With a slight abuse of notation,x(t) is used to represent
a vector of dual-polarization single-wavelength continuous-
time signal andx is used to represent samples ofx(t),
where the data for each polarization is appropriately combined.
Hermitian conjugation of the vectorv is denoted byvH. A
multivariate Gaussian probability density function (PDF)of a
variabler with meanz and covariance matrixΣ is denoted
by N (r; z,Σ). The indicator function with propositionP is
given by1(P) and the Dirac delta function is denoted byδ(·).

II. SYSTEM MODEL

A. High-Level Description

The system model, shown in Fig. 1(a), comprises a dual-
polarization transmitter, a pulse shaper, a fiber-optical link
with N spans, and a receiver with a compensation algorithm
followed by a decision unit. Each span of the fiber-optic link
consists of a standard single-mode fiber (SMF) followed by
an optional dispersion-compensating module (DCM) for DM
links.2 In this work, we have considered either a DCF or an
FBG as a DCM. In between fiber spans, there are erbium-
doped fiber amplifiers (EDFAs).

A sequence ofK symbolss = [s[1], s[2], · · · , s[K]]∈ ΩK

is transmitted at a symbol rate1/T with a pulse shaping filter
g(t), where Ω is the set of possible symbols in the four-
dimensional constellation. Eachs[k] is a complex length-2

2The system shown in Fig. 1(a) should be considered as an example, as the
principles presented in later sections of this paper can be applied directly to
systems with different configurations (e.g., comprising anEDFA after both the
SMF and the DCM). Alternative configurations will be presented in Sec. VI

vector consisting of data from thex andy polarizations. The
transmitted signal, denoted by3 v(t, ℓ1,1) =

∑K
k=1 s[k]g(t −

kT ), is up-converted and transmitted over a DM or NDM link.
The equivalent complex baseband received signal is denoted
by r(t) or the equivalent vector representationr. The overall
goal of the receiver is to optimally recovers from r. While
different optimality criteria can be considered, we will aim to
minimize the error probability, leading to a MAP receiver, in
which the estimate ofs is

ŝ = arg max
s∈ΩK

p(s|r), (1)

where p(s|r) is the a posteriori distribution ofs given the
received signalr.

B. Signal Propagation in Optical Fibers

For the receiver to determinep(s|r), an accurate propagation
model is required. The propagation of light in an optical fiber
is modeled by the Manakov model (with loss included) as [25,
eq. (2.3.45)]

∂v(t, z)

∂z
= −j β2

2

∂2v(t, z)

∂t2
+

jγ(v(t, z)Hv(t, z))v(t, z)− α

2
v(t, z), (2)

wherev is the electric field for the polarization-multiplexed
(PM) signal andvHv = ‖v‖2 is the signal power summed
over the two polarizations. The fiber nonlinearity coefficient is
denoted byγ, α is the power attenuation coefficient,β2 is the
group velocity dispersion, andz is the propagation distance.
We note that (2) has been obtained by averaging over the fast
polarization rotations, making the analysis applicable tofibers
with low polarization mode dispersion (PMD). Hence, PMD
is ignored in the rest of the paper, except in Sec. VI-C, where
the influence of PMD on DBP and SDBP is analyzed.

The Manakov model (2) generally does not have an analytic
solution, except for specific cases. Numerical approaches,such
as thesplit-step Fourier method(SSFM) [25, eq. (2.4.10)], are
typically needed to describe the signal evolution in dispersive
and nonlinear media. The Manakov equation (2) can be solved
using a symmetric SSFM [3], [25] or an asymmetric SSFM [2].
To derive the near-MAP detector, we choose the asymmetric
SSFM as it is easy to comprehend the principles behind the
proposed detector using this approach.4 In the SSFM approach,
the fiber span of lengthL ∈ {LSMF, LDCM} is split into
M ∈ {MSMF,MDCM} segments, where the length of each
segment∆z is chosen small enough that the nonlinear (Kerr
nonlinearity) and linear (chromatic dispersion) effects can be
modeled as acting independently. In Fig. 1(b), the asymmetric
SSFM view of the fiber (SMF/DCF) for spann ∈ {1, . . . , N}
is shown. Focusing on the segmentm ∈ {1, . . . ,M} of span
n, and introducingℓm,n = (m− 1)∆z + (n− 1)L, the input

3The notationℓ1,1 refers to the input of the first segment of the first span
of the fiber, to be clarified later in the paper.

4As will be seen in later sections, principles suggested in this paper do
not change even if we had considered a symmetric SSFM. However, in
the simulations symmetric SSFM is used, as it performs better at the same
computational complexity [25, Ch. 2].
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Fig. 1. (a) A fiber link with N spans where each span consists of an SMF, a DCM (for DM links),and an EDFA. The transmitter consists
of a pulse shaper and the receiver consists of a compensationalgorithm (DBP/SDBP) and a decision block. (b) Approximatemodel for the
fiber (SMF/DCF) using SSFM with nonlinear and linear segments, whereh̃(ω,∆z) = exp(jβ2ω

2∆z/2) andA = exp (−α∆z/2). (c) EDFA
with gainG = exp(αL) and noise.

signal will be denoted byv(t, ℓm,n) and the output signal by
v(t, ℓm+1,n). The nonlinear effect is then given by

u(t, ℓm,n) = v(t, ℓm,n) exp(jγ‖v(t, ℓm,n)‖2∆z), (3)

whereγ ∈ {γSMF, γDCM} is the fiber nonlinear coefficient per
segment, withγSMF andγDCM denoting nonlinearity coefficient
in the SMF and DCM, respectively. The linear effect is
described by

v (t, ℓm+1,n) = Au (t, ℓm,n) ∗ h (t,∆z) , (4)

whereA , exp(−α∆z/2), α ∈ {αSMF, αDCM} is the power
attenuation coefficient per segment, and∗ denotes convo-
lution. The CD impulse response is given byh(t, z) =
exp(−jt2/(2β2z))/

√
j2πβ2z [26] with corresponding fre-

quency responsẽh(ω, z) = exp(jβ2ω
2z/2), where β2 ∈

{β2,SMF, β2,DCM} is the group velocity dispersion per segment.
Since a fiber is a lossy medium, periodic amplification of the

signal is needed. Fig. 1(c) shows the operation of the optical
amplifier, consisting of gain and addition of white Gaussian
noise (AWGN). We assume that each EDFA compensates for
the attenuation in the preceding fiber span and adds circular
white complex Gaussian ASE noisewn(t) in each span, with
power spectral densityGFnhνopt/2 in each polarization [27,
eq. (8.1.15)] andhνopt is the photon energy. Each EDFA
is assumed to have a bandwidthB. The required gain to
compensate for the attenuation in each span isG = exp(αL).
The noise figure [27, eq. (8.1.19)] of the EDFA isFn =
2nsp(1 − G−1), in which nsp is the spontaneous emission
factor. The signal before and after the EDFA of spann will be
denoted byz(t, ℓM,n) andr(t, ℓM,n), respectively. The vector
representation of the continuous-time signals can also be seen
in Fig. 1. For example, the vector representation of the signals
v(t, ℓm,n), z(t, ℓM,n), andr(t) is denoted byvm,n, zM,n, and
r, respectively. When the fiber and EDFA are concatenated,

at the end of the DCM (or the SMF for the NDM link),
zM,n = vm+1,n when m = M . At the end of each span,
rM,n6=N = v1,n+1, while at the end of the linkrM,N = r.

III. MAP D ETECTION

Based on the transmission system in Fig. 1, our aim is
to determinep(s|r) through the marginalization of a joint
distribution p(s,H, r), whereH encapsulates the hidden (or
unobserved) variables in the system.

We utilize FGs and the sum-product algorithm (SPA) to
efficiently perform this marginalization process [28]. Fora
detailed description of FGs, the reader is referred to [29],
[30]. For our purposes, it suffices to mention that an FG is
generated based on a factorization of a joint distribution and
that the SPA is a message passing algorithm on the FG, with
the aim of computing marginal posterior distributions.

A. Factorization of the Joint Distribution

We introduce as hidden variables the internal states of our
transmission system (Fig. 1)

H = {{vm,n,um,n}1≤m≤M , zM,n, rM,n6=N}1≤n≤N ,

where we note that the observationrM,N = r is not part ofH.
Harnessing conditional independence5 among these internal

5Our system forms a Markov chain, so that the probability of anoutput
given all previous inputs will just depend on the input to thecurrent block.
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states, the joint distributionp(s,H, r) is factorized as

p(s, {{vm,n,um,n}1≤m≤M , zM,n, rM,n6=N}1≤n≤N , r)

= p(s) p(v1,1|s)
N
∏

n=1

p(rM,n|zM,n) p(zM,n|uM,n) · · ·

M
∏

m=2

p(um,n|vm,n)

M−1
∏

m=1

p(vm+1,n|um,n) · · ·

p(u1,n|rM,n−16=0) p(u1,1|v1,1). (5)

According to this factorization, an FG is drawn6 as shown
in Fig. 2 for the system model of Fig. 1(a). To keep the FG
framework compact, we defineM in Fig. 2 to be the sum of
the number of segments needed for SMF and DCM in the case
of compensated links.7 The FG in Fig. 2 contains the factors

fA : p(rM,n|zM,n) = N (rM,n;
√
GzM,n,Σ), (6)

fB : p(vm+1,n|um,n) = δ(vm+1,n −Aum,n ∗ h), (7)

fC : p(um,n|vm,n)

= δ(um,n − vm,n exp(jγ∆z|vm,n|2)), (8)

fD : p(v1,1|s) = δ(v1,1 − s ∗ g), (9)

where (6) is due to the fact thatrM,n is obtained by scaling
zM,n with

√
G and adding Gaussian noise of zero mean and

covariance matrix8 Σ. The pulse shape is represented byg in
(9) and the transmitted signal is represented byv(t, ℓ1,1) =
∑K

k=1 s[k]g(t − kT ), whereT is the symbol period. With
a slight abuse of notation in (9), we setv1,1 to equal the
convolution ofs andg.

B. Message Passing: Theory

On the generated FG, we can now perform message passing
according to the SPA. In SPA, messages passed over an edge
are a function of the corresponding variable. We will denote
a message associated with edge/variableQ, evaluated inq by
µQ(q) (or µ(q) when the variable is clear from the context).
The direction of the message will be represented by arrows:←−µ Q(q) and−→µ Q(q). We note that messages can be normalized
without affecting the normalized marginal. These normalized
messages can be interpreted as distributions: probabilitymass
functions and probability density functions for discrete and
continuous variables, respectively.

Considering a generic functionf(q1,q2) with a correspond-
ing vertex in an FG as shown in Fig. 3, and incoming messages←−µ Q2

(q2) and−→µ Q1
(q1), the outgoing messages are computed

6A vertex (drawn as a square) is created for every factor and anedge (drawn
as a line) for every variable. A certain edge is attached to a certain node when
the corresponding variable appears in the corresponding factor.

7When M = MSMF + MDCM, there areMSMF SMF segments in the
FG of Fig. 2, followed byMDCM DCM segments. For uncompensated links,
MDCM = 0.

8Note that the dimension ofΣ is determined by the length of the vector
representation of the corresponding waveforms. The entries in Σ are deter-
mined by the basis used in the vector representation of the continuous-time
signals (e.g., when we sample at a rateB, we find thatΣ = GFnhνoptB/2I).

f(q1,q2)

←−µ Q1
(q1)

−→µ Q1
(q1)

←−µ Q2
(q2)

−→µ Q2
(q2)

Fig. 3. Factor graph for a case where we have two variablesq1,q2 and a
factor f(q1,q2) associated with those variables.

as [29]

←−µQ1
(q1) ∝

∫

f(q1,q2)
←−µQ2

(q2) dq2 (10)

−→µQ2
(q2) ∝

∫

f(q1,q2)
−→µQ1

(q1) dq1, (11)

where the integral should be replaced with a summation when
the relevant variables are discrete, and∝ is used to normalize
the messages. Note that the two messages are computed in
parallel. To compute the marginal posterior of a variable, say
q1, we multiply leftward (also called backward) and rightward
(also called forward) messages [29]

p(q1) ∝ −→µ Q1
(q1)
←−µ Q1

(q1). (12)

As we are ultimately interested inp(s|r), we mainly compute
leftward messages in the FG in Fig. 2.

Note that many of the factors in (5) correspond to functions
of the formf(q1,q2) = δ(q2 − φ(q1)), whereφ is bijective.
This knowledge can be exploited to simplify the message
computation in (10) as

←−µQ1
(q1) ∝

∫

δ(q2 − φ(q1))
←−µQ2

(q2) dq2

=←−µ Q2
(φ(q1)). (13)

Note that (13) can also be expressed as

←−µQ1
(φ−1(q2)) =

←−µQ2
(q2). (14)

For discrete variables,9 we additionally have that−→µQ2
(q2) =−→µ Q1

(φ−1(q2)) (in which case we have thatf(q1,q2) =1(q2 = φ(q1))).
The specific problem considered here requires additional

considerations not present in conventional FGs. In particular,
we point out the following.

• Variables correspond to waveforms:To the best of our
knowledge, this is the first application of FG where the
variables themselves are entire waveforms. While these
can be represented with high-dimensional vectors, it is
not trivial to represent the messages associated with these
variables, or to compute the messages according to the
SPA.

• Type: Variables also have an inherent domain or type.
For example when a variable is nonnegative, we write
type(Qk) = {qk | qk ≥ 0}. In the case of signals, type
can also cover temporal and spectral characteristics. For
example, when a signal is bandlimited to[−B,B], we can
write type(Qk) = {qk | FT(qk) = 0, ∀f /∈ [−B,B]},
where FT is the Fourier transform. Messages only need
to be evaluated within the type, e.g.,q1 ∈ type(Q1) for

9For continuous variables, the forward message,−→µ Q2
(q2) requires addi-

tional care to account for the Jacobian.
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Fig. 2. Factor graph for the system model in Fig. 1(a) wherefA corresponds to the EDFA block,fB corresponds to the CD block (for either an SMF or
for a DCF depending onm), fC corresponds to nonlinear block (either for SMF or DCM depending on m), fD corresponds to the pulse shape andfE
represents prior knowledge about the symbols. We denote thevariables in capitals (e.g.,Vm,n) to distinguish from their realizations (e.g.,vm,n).

(10). However, it is sometimes convenient to evaluate
a message in a larger domain, whereby the resulting
message can be projected onto the type and renormalized.
For example, as will be seen in the next section, the
knowledge thatv1,1 has a known structure (of the form
s ∗ g) is not utilized while computing the message for
v1,1; rather we letv1,1 be of any type.

C. Message Passing in SDBP

Using (10) and (13) and the factors for each of the blocks
as given in (6)–(9), the messages for each of the blocks of the
model of Fig. 1 can be derived.

• Message for the EDFA block:Given the message←−µ (rM,n), the message←−µ (zM,n) can be computed by
applying (10) and (6):

←−µ (zM,n) ∝
∫

N (rM,n;
√
GzM,n,Σ)

×←−µ (rM,n) drM,n. (15)

Observe that in general,←−µ (zM,n) has no closed-form
expression.

• Message for the dispersion (linear) block:We compute
the message←−µ (um,n) at the input of the linear block
given the message←−µ (vm+1,n) at the output of the linear
block. We recall thatvm+1,n = zM,n when m = M ,
that is, at the end of the last segment, and therefore←−µ (vm+1,n) = ←−µ (zM,n) for m = M . To compute the
message←−µ (um,n), we use (13)–(14) withq1 = um,n

andq2 = vm+1,n to get

←−µUm,n
(um,n) =

←−µVm+1,n
(φ(um,n)), (16)

←−µUm,n
(φ−1(vm+1,n)) =

←−µVm+1,n
(vm+1,n), (17)

where φ(um,n) = Aum,n ∗ h. Hence, the outgoing
message is obtained by applying a transformation to the
variable of the incoming message. The form (17) has an
operational meaning: if the inverse filterφ−1(·) is applied
to the signalvm+1,n, then the resulting signalum,n will
have the same probability density asvm+1,n.

• Message for the nonlinear block:Based on the function
defined in (8) for the nonlinear operator, we find the mes-
sage←−µ (vm,n) from←−µ (um,n) by substitutingq1 = vm,n

andq2 = um,n in (13)–(14) to get

φ(vm,n) = vm,n exp(jγ∆z|vm,n|2), (18)

φ−1(um,n) = um,n exp(−jγ∆z|um,n|2), (19)
←−µ Vm,n

(φ−1(um,n)) =
←−µUm,n

(um,n), (20)

where (19) follows because|um,n|2 = |vm,n|2. Hence,
we apply the inverse nonlinearity to a signalum,n,
yielding a signalvm,n with the same probability density.

Recursive application of the rules above leads to←−µ (v1,1).
Sincev1,1 ands are related by a one-to-one mapping, deter-
mining p(s|r) can equivalently be accomplished by determin-
ing p(v1,1|r). This requires←−µ (v1,1) and−→µ (v1,1). The latter
message is computed by applying (11) and (9) to get

−→µ (v1,1) ∝
∑

s

−→µ (s)p(v1,1|s)

=
∑

s

|Ω|K
∑

k=1

1(s = sk)δ(v1,1 − s ∗ g)

=

|Ω|K
∑

k=1

δ(v1,1 − sk ∗ g), (21)

where we have utilized the fact that

−→µ (s) =
1

|Ω|K
|Ω|K
∑

k=1

1(s = sk), (22)

in which sk = [sk[1], sk[2], · · · , sk[K]] is a unique realization
of the K transmitted symbols. In other words, the message−→µ (s) is a sum of indicator functions of all possible|Ω|K
combinations with|Ω| being the number of possible symbols
in the constellation.

Finally, the multiplication of−→µ (v1,1) with ←−µ (v1,1) is
accomplished by evaluating each distinctv1,1 = sk ∗ g in the
function←−µ (v1,1). This immediately yields the corresponding
p(sk|r).

There are some challenges in implementing a receiver as
suggested above.

• Representation: A common problem in the application
of the SPA is the representation of messages. When
variables are discrete, messages can be represented by
vectors tabulating the value of the message for each
possible value of the variable. When variables are con-
tinuous, approximate representations may be required, in-
cluding grid approximations, parametric approximations,
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and nonparametric approximations [28]. In our case, the
problem is further exacerbated by the high-dimensional
nature of the variables, as they correspond to vector
representations of waveforms.

• Computation: Even with a practical representation, the
integral (15) is generally not tractable. Secondly, when
the input message in (17), (20) falls within the chosen
representation, the output message may not be repre-
sentable. Moreover, the forward message−→µ (v1,1) is a
sum of |Ω|K combinations, which is highly complex for
reasonable values ofK.

Both of these issues will be dealt with in the following
section.

IV. N EAR-MAP DETECTORIMPLEMENTATION

In this section, we discuss an implementation of the receiver
outlined in the previous section. The representation problem
will be tackled using a particle representation (PR) [28, Ch. 3],
which may be seen as a high-dimensional variation of a parti-
cle filter [31]. The same PR will allow us to evaluate integrals
of the form (15) and also to maintain a coherent representation
to compute (17), (20). The exponential complexity related to
the forward message−→µ (v1,1) will be treated using a matched
filter approach. Combining these techniques (PR and matched
filter) leads to a receiver that bears a remarkable similarity
to the well-known digital back propagation receiver (for a
discussion, see Section V).

A. Particle Representations

Given a PDFpX(x), a PR, denoted byPR{pX}, is a list of
values10 {x(k)}Np

k=1, with the property that for any integrable
function f(x)

1

Np

Np
∑

k=1

f(x(k))→
∫

f(x)pX(x)dx, Np → +∞. (23)

One way to obtain a PR is to drawNp i.i.d. samples from
pX(x), though many other methods exist [28, Ch. 3]. A PR
can be interpreted as follows: in the context of (23),pX(x) can
be approximated aspX(x) ≈ 1/Np

∑Np

k=1 δ(x−x(k)). In other
words, aPR{pX} can be considered as a uniform probability
mass function, so thatX is considered to be a uniform discrete
random variable that takes on values in the set{x(k)}Np

k=1.

With this PR, the messages for each of the blocks of our
system model can be written, as detailed below.

• Message for EDFA block:Given message←−µ (rM,n) ≈
1/Np

∑Np

k=1 δ(rM,n − r
(k)
M,n), the message for←−µ (zM,n)

10Variations exist where the values are weighted as obtained by importance
sampling. We do not apply weighting in this context.

is computed as11

←−µ (zM,n) =
1

Np

∫

N (rM,n;
√
GzM,n,Σ)

×
Np
∑

k=1

δ(rM,n − r
(k)
M,n) drM,n

=
1

Np

Np
∑

k=1

N (r
(k)
M,n;

√
GzM,n,Σ), (24)

which can be interpreted as a Gaussian mixture in
zM,n, comprisingNp mixture components with means
r
(k)
M,n/

√
G and equal covarianceΣ/G. A PR of this mix-

ture can be obtained by drawing one sample from each
mixture component,z(k)M,n ∼ N (zM,n; r

(k)
M,n/

√
G,Σ/G),

and thus

PR{←−µ ZM,n
} = {z(1)M,n, · · · , z

(Np)
M,n }. (25)

As mentioned in Section III-B, variables have an inherent
type. When type(ZM,n) is such that it is bandlimited to
a bandwidthW , the noise samples should be added with
a variance proportional tomin(W,B).

• Message for the dispersion (linear) block:Starting from
PR{←−µ Vm+1,n

} = {v(k)
m+1,n}

Np

k=1, our aim is to de-
termine PR{←−µUm,n

}. From Sec. II,zM,n = vm+1,n

when m = M , so PR{←−µ ZM,n
} = PR{←−µ vM+1,n

}.
Following (16)–(17), the messages←−µVm+1,n

(vm+1,n)
and←−µUm,n

(um,n) are related through a transformation
of the arguments. Following the probability mass function
interpretation of PRs,PR{←−µUm,n

} = {u(k)
m,n}Np

k=1 in
whichu(k)

m,n = φ−1(v(k)
m+1,n), whereφ−1(·) is the inverse

filter of Ah(t,∆z). For computational efficiency, the
message passing can be performed in the frequency do-
main, by introducing additional variables corresponding
to the Fourier transforms ofu(k)

m,n and v
(k)
m+1,n. These

additional variables lead to additional factors and edges
in the FG, as depicted in Fig. 4. The additional factors
are of the formp(ũm,n|um,n) = δ(ũm,n − FFT(um,n)),
p(ũm+1,n|ũm,n) = δ(ũm+1,n − ũm,nAh̃(ω,∆z)), and
p(vm+1,n|ũm+1,n) = δ(vm+1,n − IFFT(ũm+1,n)). As
FFT(·) and IFFT(·) are bijective operators on vectors,
the PRs are simply transformations of the particles:

PR{←−µ Ũm+1,n
} = {FFT(v(k)

m+1,n)}
Np

k=1, (26)

PR{←−µ Ũm,n
} = {A−1h̃−1(ω,∆z)ũ

(k)
m+1,n}

Np

k=1,

(27)

PR{←−µUm,n
} = {IFFT(ũ(k)

m,n)}
Np

k=1. (28)

• Message for the nonlinear block:To get the message
PR{←−µ Vm,n

} from PR{←−µUm,n
} = {u(k)

m,n}Np

k=1, prob-
ability mass function interpretation of the PRs is used.
We thus find thatPR{←−µVm,n

} = {v(k)
m,n}Np

k=1, where

v
(k)
m,n = u

(k)
m,n exp(−jγ∆z|u(k)

m,n|2). In other words, we
de-rotate each of theNp sampled waveformsu(k)

m,n, where

11Note that forn = N , the PR is initialized withNp copies of the received
signalr.
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um,n

um,n

ũm,n ũm+1,n vm+1,n

vm+1,n

←−µ (um,n)

←−µ (um,n)

←−µ (ũm,n)
←−µ (ũm+1,n) ←−µ (vm+1,n)

←−µ (vm+1,n)
p(vm+1,n|um,n)

p(ũm,n|um,n) p(ũm+1,n|ũm,n) p(vm+1,n|ũm+1,n)

Fig. 4. Factor graph corresponding to the linear block of Fig. 1(b) with p(ũm,n|um,n) = δ(ũm,n − FFT(um,n)), p(ũm+1,n|ũm,n) = δ(ũm+1,n −
ũm,n.Ah̃(ω,∆z)), andp(vm+1,n|ũm+1,n) = δ(vm+1,n − IFFT(ũm+1,n)).

the rotation per waveform is proportional to the instanta-
neous power of the respective time-domain samples.

• Posterior computation:The messagePR{←−µV1,1
} can

be computed once the messages for all the segments
and spans are found. Multiplication of−→µ (v1,1) and←−µ (v1,1) is required to compute the marginal distribution
p(v1,1|r). The message−→µ (v1,1) is a probability mass
function over a high-dimensional random variable, and←−µ (v1,1) is available only in particle format. As the
probability that any of the particles coincides with any of
the values where−→µ (v1,1) has mass is zero almost surely,←−µ (v1,1) need to be smoothened to obtain a PDF that
can be evaluated for anyv1,1 where−→µ (v1,1) has mass.
Smoothing can be done, for example, using a Gaussian
process [32] or through kernel density estimation [33],
[34, Ch. 6]. Following this smoothing process,p(v1,1|r)
can be evaluated for anyv1,1 of the formv1,1 = sk ∗ g.
This immediately yields the correspondingp(sk|r) and
using this posterior distribution, the optimization is done
according to ŝ = argmaxs

k
p(sk|r). Note that this

process still faces the exponential complexity problem,
as there are|Ω|K combinations ofv1,1 to consider. The
posterior computation employed in this paper is described
in the next section.

B. Symbol-by-Symbol Detector

The high computational complexity of the sequence-based
MAP detector described above can be avoided by considering
a symbol-by-symbol detector. We assumePR{←−µV1,1

} asNp

outputs from a virtual channel, where each of the outputs is
equal tos ∗ g, affected by zero-mean additive noise with an
unknown distribution. In order to maximize the signal-to-noise
ratio, we employ a filter matched to the pulse shape (MF)
followed by a sampler [35, Ch. 4], [36, Ch. 10], which can be
implemented as follows. Each particlev(k)

1,1 from PR{←−µ V1,1
}

is passed through the MF and sampled at the symbol rate
at the optimal sampling times.12 For each symbols[n], Np

samples are collected into a vector{r(k)MF[n]}
Np

k=1, where
rMF[n] is the MF output, for thenth symbol slot. We note
that now eachr(k)MF[n] is of the same dimensionality ass[n]
(i.e., two-dimensional real for single-polarization transmission

12As in [2]–[5], we assume perfect clock synchronization.

and four-dimensional real for dual-polarization transmission).
Note that now{r(k)MF[n]}

Np

k=1 can be considered as a PR of
p(rMF[n]|s[n]), where the MF output for thenth symbol
slot rMF[n] is of the form rMF[n] = s[n] + n[n]. Here
n[n] is a (two- or four-dimensional) random variable, which
is approximated as Gaussian with mean zero and empirical
covariance matrix

Σ[n] =
1

Np

Np
∑

k=1

(r
(k)
MF[n]− µ[n])(r

(k)
MF[n]− µ[n])T, (29)

in whichµ[n] = 1/Np

∑

k r
(k)
MF[n]. Finally, under the assump-

tion of uniform a priorip(s[n])

p(s[n]|r) ≈

exp

(

−1

2
(s[n]− µ[n])TΣ[n]−1(s[n]− µ[n])

)

. (30)

The complexity of the above symbol-by-symbol detector
scales asK × |Ω| instead of|Ω|K for the optimal sequence
detector, and it thus amenable to an implementation. Addi-
tional performance gains may be reaped by performing joint
detection over successive symbols, at a cost in terms of
complexity.

C. Remarks
• Connection to DBP:When there is no noise in the

transmission system, PRs collapse to (high-dimensional)
points, since noise samples in (24)–(25) will have vari-
ance zero. The proposed near-MAP detector is equivalent
to the conventional DBP method. Due to this relation, we
coin our method stochastic DBP.

• Interaction with decoder: The marginal posteriors
p(s[n]|r) can be used to make decisions on the transmit-
ted symbols. They can also be used as soft information to
send to a soft demodulator and a soft decoder [37]. This
makes SDBP more suitable than DBP when soft decoding
is employed.

• Weakly nonlinear regime: When the nonlinearity is
negligible, the transmission system can be transformed
to a concatenation of an all-pass filter, an attenuator, and
an AWGN source. The optimal receiver in that case is
well known and comprises an inverse all-pass filter and
an MF, followed by symbol rate sampling. Both DBP
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and SDBP implement this MF. Moreover, the covariance
matricesΣ[n] in (29) will be scaled diagonal matrices.
When the nonlinearity increases, these covariance matri-
ces will exhibit nondiagonal components, giving SDBP
an advantage over DBP.

• Strongly nonlinear regime: When the nonlinearity is
strong, the Gaussian assumptions made in (30) no longer
holds. There are two ways to handle this situation. One
way is to smoothPR{←−µ V1,1

} through a kernel density
estimator [33], [34, Ch. 6], [38]. A second, easier way,
is to passPR{←−µ V1,1

} through an MF followed by a
sampler and then perform the smoothing on the symbol-
rate samples using kernel density estimation. This allows
p(s[n]|r) of (30) to take on any shape.13

V. I LLUSTRATION OF SDBPFOR A SIMPLIFIED MODEL

To illustrate the operation of SDBP and its relation to DBP,
we consider a simple system, comprising one SMF followed
by an FBG and an EDFA, shown in Fig. 5. The top row
of waveforms depicts the waveforms corresponding to the
intermediate statesx, y, z as well as the received waveform
r. Note that they is affected by dispersion and nonlinearity
and that the compound effect is only partially compensated in
z. The bottom row shows theNp particles associated with
each of these hidden waveforms, depicted in gray and the
DBP waveform is shown in thick blue lines. In SDBP, the
uncertainty is propagated starting from the received waveform
r, backwards all the way to the transmitted sequences. The
Np waveforms are propagated through the inverse of each of
the blocks in the forward system. As an example, in Fig. 5 we
start with the known received waveformr (which exhibits no
uncertainty) and pass it through the inverse of the EDFA block.
Since the EDFA block adds AWGN noise, the waveforms
representing the uncertainty inz are generated fromr by
adding suitable AWGN processes. The process is continued
in the next block and the effects of the FBG are undone to get
the uncertainty of the hidden waveformy. In the same way, by
passingNp waveforms through the inverse SSFM description
of SMF, we get theNp waveforms associated withx.

VI. N UMERICAL SIMULATIONS AND DISCUSSIONS

DBP and the proposed SDBP detector withNp = 500 parti-
cles14 are applied to a system with SMF and inline dispersion
compensation done either with DCFs or with FBGs.15 The
parameters used for the SMF and DCF are given in Table
I. We set number of symbols transmitted in one block to
K = 2048. The span length used for SMF isLSMF = 80
km and the length for the DCF,LDCF, is calculated such
thatDSMFLSMF +DDCFLDCF = 0, whereD is the dispersion

13A non-exhaustive simulation analysis indicated that the use of kernel
density estimation did not yield significant performance gains.

14The system has been simulated with more than 500 particles, but no
significant improvement was seen in the results. The number of particles can
be reduced to some extent without performance loss, but thisoptimization is
not performed in this paper. More details are given in Sec. VI-D1.

15We note that similar results hold for a setup when there are additional
EDFA’s between SMF and DCM, where the DCM can be either a DCF oran
FBG.

TABLE I
CHANNEL PARAMETERS

SMF DCF

D (ps/nm/km) 16 –120
γ (1/W/km) 1.3 5.2
α (dB/km) 0.2 0.6

parameter of the fiber. FBG with an insertion loss of 3 dB
and perfect dispersion compensation for the preceding SMF
is used. The EDFA noise figure is 5 dB. A root raised cosine
pulse in the time domain is used with a roll-off factor of 0.25
and truncation length of 16 symbol periods. The simulations
are performed for dual-polarization transmission with either
16-QAM or QPSK as modulation format. The receiver is
assumed to have perfect knowledge of the polarization state,
as well as the carrier phase and the symbol timing. ASE noise
with bandwidth equal to the used sampling frequency, which
is twice the baud rate, is added in each span. The symbol error
rate (SER) is used as a performance metric.

The SSFM is simulated with a segment length [39] of∆ =
(ǫLNL

2
D)

1/3, whereǫ = 10−4, LN = 1/(γP ) is the nonlinear
length,LD = T 22πc/(|D|λ2) is the dispersion length,λ is
the wavelength,c is the speed of the light, andP is the input
power to each fiber span. The number of segments per span
is M = ⌈L/∆⌉, where⌈p⌉ is the smallest integer not less
than p. We used the same segment length in the backward
and forward system.

A. SER and Reach Analysis

Fig. 6(a) shows the SER as a function of the input power
for two different symbol rates (14 and 28 Gbaud) for a link
with FBG dispersion management (calledFBG link from here
on) for DBP and SDBP. We observe that SDBP performs
significantly better than DBP for both symbol rates. Using
SDBP, a different optimal power is obtained and also for a
given input power, lower SER is obtained in the nonlinear
regime. This means using SDBP, the system is more tolerant
to nonlinear effects and therefore we can have a longer reach.

In Fig. 6(b), we show the SER for a system with NDM link.
We see that for both symbol rates, SDBP outperforms DBP to
some extent, and the gains are smaller for the higher symbol
rate. This indicates that for systems without inline dispersion
compensation, the loss of performance when using DBP is
smaller. The results presented in this paper corroborate the
result from [21] by quantifying the gains in handling NSNI
for both DM and NDM links.

In Fig. 7, we plot the SER as a function of the system reach
for PM 16-QAM and PM QPSK and for different symbol rates.
Each point in this plot is for an optimal input power, i.e.,
for different configurations, the input power corresponding to
the lowest SER is selected. In Fig. 7(a), for PM 16-QAM
with FBG16 at 7 Gbaud, we see that there is around 17%
increase in the system reach for SDBP compared to DBP. This
gain remains more or less the same up to 28 Gbaud and then

16Results are not shown explicitly for the system with PM 16-QAM and
DCF as DCM, as the results were similar to the system with FBG as DCM.
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Pulse Shaper SMF FBG EDFA

Fig. 5. A simplified system model with the unknown symbol sequences passing forward through different blocks of the channel with
N = 1 spans, and the received waveformr. The top row depicts the waveforms corresponding to the hidden statesx,y,z as well as the
received waveformr. In the bottom row, collections of waveforms representing the uncertainty of the hidden states are shown in gray and
the DBP waveform is shown in thick blue lines.
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Fig. 6. SER as a function of input power for DBP (dashed, blue)
and SDBP (solid, black) for PM 16-QAM at 14 and 28 Gbaud for
the (a) FBG link (b) NDM link.
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Fig. 7. SER as a function of system reach for DBP (dashed, blue) and
SDBP (solid, black) for different symbol rates for (a) PM 16-QAM
and FBG (b) PM QPSK and DCF.
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decreases slightly at 56 Gbaud (at a SER of10−2, we see
17% increase for 14 and 28 Gbaud, and 13% at 56 Gbaud). In
Fig. 7(b), the system reach for PM QPSK is presented where
DCF is used as a DCM. By comparing Fig. 7(a) and Fig. 7(b),
we observe that for a given symbol rate, the gains of SDBP
over DBP are higher for PM 16-QAM compared to PM QPSK.

The gains of SDBP can be explained as follows. The larger
the deviation of the particle clouds, given by{r(k)MF[n]}

Np

k=1

(PR{←−µ V1,1
} passed through an MF and a sampler), from a

circular symmetric Gaussian, the higher are the expected gains
in SDBP compared to DBP. For a DM link, we have observed
that the particle clouds are less circularly Gaussian and hence
SDBP performs better than DBP.

B. Estimated Distributions

PDFs associated with the PRs{r(k)MF[n]}
Np

k=1 for different
n, for 28 Gbaud, 44 spans of 80 km SMF each, 16-QAM,
and FBG link are provided in Fig. 8. In blue, we show
the PDF obtained on histograms using 5000 particles, while
in red, we show the Gaussian approximation, determined
from the computed sample mean and covariance. It can be
seen that a multivariate Gaussian distribution is often a good
approximation. It can also be seen in Fig. 8(b) that for some
symbols (e.g., at constellation point3+j), the histogram-based
and Gaussian PDFs do not fit, which means that some other
distribution than multivariate Gaussian is needed to achieve
the optimal performance. Finally, we note that the figure is not
symmetric, due to the effect of the preceding and succeeding
symbols, as well as the specific noise realization.

C. Influence of PMD on DBP and SDBP

In SDBP, ASE is the only non-deterministic impairment that
is currently compensated for. However, other non-deterministic
impairments, in particular PMD, may deteriorate the perfor-
mance of both DBP and SDBP. This deterioration becomes
significant when the total differential group delay (DGD) of
the system approaches the symbol period [40], [41]. It was
reported in [40] that the power penalty is small for realistic
transmission distances and data rates, as the residual PMD
can be compensated for in a post-DBP linear equalizer. To
quantify the performance degradation of DBP and SDBP in
the presence of PMD, we performed a simulation by including
generalized wave-plates in each span between the SMF and
the FBG. The wave-plate introduces a random polarization
change and DGD. This PMD simulation is according to the
hinge model [42], which assumes that PMD is introduced
between each span of SMF. As a part of this, each span
introduces independent phase rotations, but the amount of
DGD between each span will be assumed to be constant and
given byτ = ∆τ

√

8N/3π [43] whereτ is the total DGD and
∆τ is the DGD in each wave-plate. Note that when∆τ = 0,
there is no PMD and the system reverts to the one in previous
sections.

A full integration of PMD compensation with SDBP would
constitute an entire research project in itself. Instead, two
simple strategies are considered in the simulations: one where
no PMD compensation is performed, and one where the

(a)

(b)

Fig. 8. PDF contours of particle representations,{r
(k)
MF[n]}

Np

k=1 for
differentn, given a specific history for each symbol, for SMF of 80
km, 16-QAM modulation, FBG link at power of (a) 28 Gbaud, 42
spans at 0 dBm and (b) 28 Gbaud, 42 spans at 5 dBm.
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Fig. 9. SER as a function ofτ/Ts, the normalized DGD of the link, for 28
Gbaud, 42 spans of SMF with 80 km each, PM 16-QAM, and an FBG link.
Dashed blue and solid black curves correspond to DBP and SDBPrespectively.
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receiver is assumed to operate under perfect knowledge17 of
the rotation matrices and the amount of DGD. In the latter
case, the PMD is compensated after (S)DBP.

In Fig. 9, the SER as a function of normalized total DGD
is presented for a link with 28 Gbaud, 42 spans of 80 km
SMF, FBG as DCM, and 16-QAM. For each DGD value,
the system is simulated with 40 realizations and an average
SER is obtained in each case. Each point in this curve is
simulated for the optimal power corresponding to that DGD
value. Diamonds and squares represent scenarios where the
PMD is compensated and not compensated for, respectively.
Performance deterioration can be seen for both DBP and
SDBP with increasing∆τ but SDBP maintains a performance
gain over DBP which decreases as DGD value increases.

D. Complexity Analysis of SDBP

As pointed out earlier, the objective of this paper is not
to develop a low-complexity detector suitable for immediate
implementation, but rather to show that DBP is not optimal
and to derive an optimal detector for a single-channel fiber-
optical link. For the sake of completeness, in this section we
quantify the complexity of SDBP.

The complexity of SDBP scales as(Np×N×M×CDBP,M+
Cdec), whereCDBP,M is the complexity of the DBP algorithm
per segment of a fiber span, andCdec is the complexity
associated with detection, including computation of (29)–(30).
It is readily verified thatCdec scales asK × Np + K × |Ω|.
The complexity of SDBP can be reduced by reducingNp, M ,
CDBP,M. Below, we present the performance as a function of
Np andM .

1) Performance as a function of number of particles:
In Fig. 10, the SER as a function of number of particles,
Np, is shown for 28 Gbaud, 42 spans of 80 km SMF, FBG
link, and 16-QAM at input power of−1 dBm. DBP is also
shown for reference. One can see that whenNp < 10,
DBP performs better than SDBP as 10 particles are not
sufficient to accurately represent the statistical distribution
of the signal. WhenNp > 100, the performance is almost
constant irrespective of the increase in the number of particles.
The number of particles needed to approximate the PDFs
capturing the uncertainty of variables will vary dependingon
the chosen set of parameters and hence Fig. 10 will be different
for another set of parameters. However, we made sure that for
the scenarios considered,Np = 500 was more than sufficient,
while no further optimization ofNp was performed.

2) Performance as a function of number of segments per
span of SMF:In Fig. 11, the SER as a function of the number
of segments per span,M , in DBP and SDBP is shown for
28 Gbaud, 42 spans of 80 km each SMF, 16-QAM, and an
FBG link. For these parameters, SDBP and DBP have their
optimal input powers at 1 and−2 dBm respectively. In the
forward simulation using SSFM,M was set to 50, which is
significantly larger than⌈L/∆⌉. It can be seen thatM can be
reduced in SDBP without sacrificing the gains obtained over
DBP.

17Several algorithms such as the constant modulus algorithm [44] exist to
compensate for PMD.
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Fig. 10. SER as a function of number of particles,Np, for 28 Gbaud, 42
spans of 80 km SMF, FBG link, and 16-QAM at an input power of−1 dBm.

0 10 20 30 40 50
10

−3

10
−2

10
−1

10
0

M

S
E
R

Fig. 11. SER as a function of number of segments per span,M , in DBP
(dashed blue) and SDBP (solid black) for 28 Gbaud, 42 spans of80 km each
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VII. C ONCLUSIONS

In this paper, we derived a MAP detector and provided
an implementation of a near-MAP detector that compensates
for not only deterministic linear and nonlinear effects but
also accounts for the noise from the optical amplifiers. We
have shown that by taking signal statistics of the end-to-end
fiber channel into account, SDBP, the proposed near-MAP
detector, can outperform DBP. Through simulations, we show
that for uncompensated links, SDBP and DBP exhibit similar
performance. For dispersion-managed links, SDBP shows a
significant increase in the system reach compared to DBP.

ACKNOWLEDGMENT

The authors would like to thank Dr. L. Beygi, Dr. D. Sen,
Prof. M. Karlsson, D. Marsella, and other members of FORCE
for their helpful comments and many helpful discussions.



12

REFERENCES

[1] Cisco, “VNI forecast highlights.” [Online]. Avail-
able: http://www.cisco.com/web/solutions/sp/vni/vni forecast high-
lights/index.htm

[2] E. M. Ip and J. M. Kahn, “Fiber impairment compensation using
coherent detection and digital signal processing,”J. Lightw. Technol.,
vol. 28, no. 4, pp. 502–519, Feb. 2010.

[3] X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, andG. Li,
“Electronic post-compensation of WDM transmission impairments us-
ing coherent detection and digital signal processing,”Optics Express,
vol. 16, no. 2, pp. 880–888, Jan. 2008.

[4] D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and
A. D. Ellis, “Compensation of intra-channel nonlinear fibreimpairments
using simplified digital back-propagation algorithm,”Optics Express,
vol. 19, no. 10, pp. 9453–9460, May 2011.

[5] T. Hoshida, L. Dou, W. Yan, L. Li, and Z. Tao, “Advanced andfeasible
signal processing algorithm for nonlinear mitigation,” inProc. Optical
Fiber Communication Conference (OFC), 2013, p. OTh3C.3.

[6] T. Koike-Akino, C. Duan, K. Parsons, K. Kojima, T. Yoshida, T. Sugi-
hara, and T. Mizuochi, “High-order statistical equalizer for nonlinearity
compensation in dispersion-managed coherent optical communications,”
Optics Express, vol. 20, no. 14, p. 15769, Jun. 2012.

[7] E. Ip, E. Mateo, and T. Wang, “Reduced-complexity nonlinear com-
pensation based on equivalent-span digital backpropagation,” in Inter-
national Conference on Optical Internet (COIN), 2012, pp. 28–29.

[8] W. Yan, Z. Tao, L. Dou, and L. Li, “Low complexity digital perturbation
back-propagation,” inProc. European Conference on Optical Commu-
nication (ECOC), 2011, p. Tu.3.A.2.

[9] L. B. Du and A. J. Lowery, “Improved single channel backpropagation
for intra-channel fiber nonlinearity compensation in long-haul optical
communication systems,”Optics Express, vol. 18, no. 16, pp. 17 075–
17 088, Aug. 2010.

[10] A. Ghazisaeidi and L. A. Rusch, “On the efficiency of digital back-
propagation for mitigating SOA-induced nonlinear impairments,” J.
Lightw. Technol., vol. 29, no. 21, pp. 3331–3339, Nov. 2011.

[11] D. Rafique, J. Zhao, and A. D. Ellis, “Impact of dispersion map man-
agement on the performance of back-propagation for nonlinear WDM
transmissions,” inOptoElectronics and Communications Conference
(OECC), 2010, pp. 760–761.

[12] D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey,
P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a
digital coherent receiver,”IEEE Journal of Selected Topics in Quantum
Electronics, vol. 16, no. 5, pp. 1217–1226, Sep. 2010.

[13] D. Rafique and A. D. Ellis, “Impact of longitudinal powerbudget in
coherent transmission systems employing digital back-propagation,” in
Proc. European Conference on Optical Communication (ECOC), 2011,
p. We.10.P1.54.

[14] A. Dochhan, R. Rath, C. Hebebrand, J. Leibrich, and W. Rosenkranz,
“Evaluation of digital back-propagation performance dependent on step-
size and ADC sampling rate for coherent NRZ- and RZ-DQPSK experi-
mental data,” inProc. European Conference on Optical Communication
(ECOC), 2011, p. We.10.P1.79.

[15] G. Gao, X. Chen, and W. Shieh, “Limitation of fiber nonlinearity
compensation using digital back propagation in the presence of PMD,”
in Proc. Optical Fiber Communication Conference (OFC), 2012, p.
OM3A.5.

[16] Y. Gao, J. H. Ke, J. C. Cartledge, K. P. Zhong, and S. S.-H.Yam,
“Implication of parameter values on low-pass filter assisted digital back
propagation for DP 16-QAM,”IEEE Photon. Technol. Lett., vol. 25,
no. 10, pp. 917–920, May 2013.

[17] R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel,
“Capacity limits of optical fiber networks,”J. Lightw. Technol., vol. 28,
no. 4, pp. 662–701, 2010.

[18] L. Beygi, N. V. Irukulapati, E. Agrell, P. Johannisson,M. Karlsson,
H. Wymeersch, P. Serena, and A. Bononi, “On nonlinearly-induced noise
in single-channel optical links with digital backpropagation,” Optics
Express, vol. 21, no. 22, pp. 26 376–26 386, Oct. 2013.

[19] L. B. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov,
and A. J. Lowery, “Digital fiber nonlinearity compensation:toward 1-

Tb/s transport,”IEEE Signal Processing Magazine, vol. 31, no. 2, pp.
46–56, Mar. 2014.

[20] A. Bononi, P. Serena, and N. Rossi, “Nonlinear signal-noise interactions
in dispersion-managed links with various modulation formats,” Optical
Fiber Technology, vol. 16, no. 2, pp. 73–85, Mar. 2010.

[21] D. Foursa, O. Sinkin, A. Lucero, J.-X. Cai, G. Mohs, and A. Pilipet-
skii, “Nonlinear interaction between signal and amplified spontaneous
emission in coherent systems,” inProc. Optical Fiber Communication
Conference (OFC), 2013, p. JTh2A.35.

[22] N. Jiang, Y. Gong, J. Karout, H. Wymeersch, P. Johannisson, M. Karls-
son, E. Agrell, and P. Andrekson, “Stochastic backpropagation for
coherent optical communications,” inProc. European Conference on
Optical Communication (ECOC), 2011, p. We.10.P1.81.

[23] Y. Cai, “MAP detection for linear and nonlinear ISI mitigation in long-
haul coherent detection systems,” inIEEE Photonics Society Summer
Topicals, vol. 1, Jul. 2010, pp. 42–43.

[24] D. Marsella, M. Secondini, and E. Forestieri, “Maximumlikelihood
sequence detection for mitigating nonlinear effects,”J. Lightw. Technol.,
vol. 32, no. 5, pp. 908–916, Mar. 2014.

[25] G. P. Agrawal,Nonlinear Fiber Optics, 4th ed. Academic Press, 2006.
[26] S. J. Savory, “Digital filters for coherent optical receivers,” Optics

Express, vol. 16, no. 2, pp. 804–817, Jan. 2008.
[27] G. P. Agrawal,Fiber-Optic Communications Systems, 3rd ed. Wiley,

2002.
[28] H. Wymeersch,Iterative Receiver Design. Cambridge University Press,

2007.
[29] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and

the sum-product algorithm,”IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, 2001.

[30] H.-A. Loeliger, “An introduction to factor graphs,”IEEE Signal Process.
Mag., vol. 21, no. 1, pp. 28–41, 2004.

[31] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, 2002.

[32] C. E. Rasmussen,Gaussian Processes for Machine Learning. MIT
Press, 2006.

[33] S. J. Sheather, “Density estimation,”Statistical Science, vol. 19, no. 4,
pp. 588–597, Nov. 2004.

[34] T. Hastie, R. Tibshirani, and J. Friedman,The Elements of Statistical
Learning, 2nd ed. Springer, 2009.

[35] S. Haykin,Communication Systems, 4th ed. Wiley, 2001.
[36] A. Lapidoth, A Foundation in Digital Communication. Cambridge

University Press, 2009.
[37] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit

error-correcting coding and decoding: Turbo-codes,” inInternational
Conference on Communications (ICC), vol. 2, 1993, pp. 1064–1070.

[38] A. S. Tan, H. Wymeersch, P. Johannisson, E. Agrell, P. Andrekson,
and M. Karlsson, “An ML-based detector for optical communication in
the presence of nonlinear phase noise,” inInternational Conference on
Communications (ICC), Jun. 2011, pp. 1–5.

[39] Q. Zhang and M. I. Hayee, “Symmetrized split-step Fourier scheme
to control global simulation accuracy in fiber-optic communication
systems,”J. Lightw. Technol., vol. 26, no. 2, pp. 302–316, 2008.

[40] E. Ip, “Nonlinear compensation using backpropagationfor polarization-
multiplexed transmission,”J. Lightw. Technol., vol. 28, no. 6, pp. 939–
951, Mar. 2010.

[41] G. Gao, X. Chen, and W. Shieh, “Influence of PMD on fiber nonlinearity
compensation using digital back propagation.”Optics Express, vol. 20,
no. 13, pp. 14 406–14 418, Jun. 2012.

[42] H. Kogelnik, P. J. Winzer, L. E. Nelson, R. M. Jopson, M. Boroditsky,
and M. Brodsky, “First-order PMD outage for the hinge model,” IEEE
Photon. Technol. Lett., vol. 17, no. 6, pp. 1208–1210, Jun. 2005.

[43] M. Karlsson, “Probability density functions of the differential group
delay in optical fiber communication systems,”J. Lightw. Technol.,
vol. 19, no. 3, pp. 324–331, Mar. 2001.

[44] P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and
P. A. Andrekson, “Modified constant modulus algorithm for polarization-
switched QPSK.”Optics Express, vol. 19, no. 8, pp. 7734–41, Apr. 2011.


