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Impact of Transceiver Power Consumption on the
Energy Efficiency of Zero-Forcing Detector In
Massive MIMO Systems

Saif Khan Mohammed

Abstract—We consider the impact of transceiver power con- resource[[4],[[5], [[6]. Large antenna arrays at the BS helps
sumption on the energy efficiency (EE) of the Zero Forcing in realizing beamforming gains which significantly impreve
(ZF) detector in the uplink of massive MIMO systems, where the energy efficiency (EE). The spectral efficiency energy

a base station (BS) withM antennas communicates coherently ffici tradeoff of ive MIMO t h Y
with K single antenna user terminals (UTs). We consider the einciency tradeott o massive systems has recently

problem of maximizing the EE with respect to (M, K) for a fixed been studied in_[7]. However, inl[7] only the power consumed
sum spectral efficiency. Through analysis we study the impac by the power amplifiers (PA) at the user terminals (UT) has

of system parameters on the optimal EE. System parameters peen considered. With largel the total power consumed by

consists of the average channel gain to the users and the pawe e 1y RF receivers at the BS becomes significant and must
consumption parameters (PCPs) (e.g., power consumed by &ac therefore be taken into consideratiod [8]. [ [8] the EE of

RF antenna/receiver at BS). When the average user channel iga . . . .
is high or else the BS/UT design is power inefficient, our angsis massive MIMO systems is maximized w.iit/ but the impact

reveals that it is optimal to have a few BS antennas and a singl of power consumption parameters (e.g., per antenna power

user, i.e., non-massive MIMO regime. Similarly, when the chnnel  consumption at BS/UT) on the optimall and the optimal

gain is small or else the BS/UT design is power efficient, it is ; ;
optimal of have a larger (M, K), i.e., massive MIMO regime. EE has not been studied analytically.

Tight analytical bounds on the optimal EE are proposed for
both these regimes. The impact of the system parameters oneh
optimal EE is studied and several interesting insights are cawn.

The impact of transceiver power consumption on the EE
of MIMO systems has been recently considered_in [9]] [10],
[11], [12]. In [9] it is shown that the EE of uplink MIMO
systems can be optimized by selectively turning off antenna
at the UT. In [10], the authors optimize the EE of downlink
massive MIMO systems with respect to (w.r.t.) the number
of BS antennas. It is shown that the EE is a quasi-concave
function of the number of BS antennas. InJ[11] downlink

In recent years there has been a surge of interest QRssive MIMO systems are considered, and for a fizéd
energy efficient “green communication” systems, primarilfe EE is maximized w.r.t. the total power radiated from the
arising out of environmental and cost concerns due to th& and the number of UTs. However, results [in [9].1[20],
every increasing power consumption of cellular systems [¥[1] are based on numerical simulations and therefore they
Fifth generation cellular communication systems (5G) affovide little insight on the effect of system parameterg.(e

expected to significantly improve the total system capaasty ce|| size, power consumed by each RF receiver antenna) on
well as energy efficiency compared to 4G systeims [2]. Mog{e optimized EE.

of this improvement is expected to be achieved through, i)
network densification (i.e., more base station nodes per uniln [12], the authors consider the downlink of a multiuser
area), ii) increased system bandwidth (e.g. usage of mmwa¥MO system, and for the ZF precoder they analytically
spectrum) and iii) massive MIMQ_[2][[3]. In this paper, weoptimize the EE separately w.rd/, K and the total power
are interested in studying the energy efficiency of massivadiated from the BS. They show the very interesting result
MIMO based cellular systems. Massive MIMO Systems/ Largbat massive MIMO must be used to increase EE only when
MIMO Systems/ Large Scale Antenna Systems collectivelpterference suppressing multiuser precoding schemes, (e.
refer to a communication system where a base station (B&), MMSE) are used. They however do not analytically
with M antennas (several tens to hundred) communicaharacterize the effect of changing system parametersen th
coherently withK users (few tens) on the same time-frequenaggptimal EE. Also, no analytical condition (in terms of the

_ . . system parameters) has been proposed to decide as to when
lnuseip e Je, 20 2016 et Jne 19 2010004, 2014 the system must operate in the massive MIMO regime and
approving it for publication was Prof. Tony Q. S. Quek. when not.
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when a ZF receivBris used for multiuser detection at the BSto study the impact of changing system parameters on the
The system paramet€¥ consists of the average channel gaioptimal EE. We believe that this is the first paper to repochsu

to the users, and the power consumption parameters (PCasjn-depth analysis of the impact of system parametersen th
(e.g., power consumed by each RF antenna/receiver at Bftimal EE of uplink multiuser MIMO systems employing ZF
power consumed by the transmitter circuitry at each UT, powsnultiuser detection.

consumed for ZF multiuser detection/channel estimatighet
BS). The system model is discussed in Sedfibn Il, whereas the
power consumption model and the proposed EE maximization
problem is presented in Sectignllll. In Section] IV, we find Consider the uplink of a multi-user massive MIMO sys-
analytical conditions or{R, ©) such that the optimal EE is tem where a BS having/ antennas communicates wifki
achieved by having very few BS antennas and a single usétgle antenna user terminals (UTs). Lt be the complex
(i.e., non-massive MIMO regime). For a givéik, ©) these information symbol transmitted from theth user. The signal

conditions are met when either power inefficient hardwaféceived at then-th BS antenna is then given by

Il. SYSTEM MODEL

design is used at the BS and UTs, or when the cell size K
is s_ufﬂmently small. In the non-massive MIMO_reglme, th_e Ym = Z Pl + M , m=1,2,--- M (1)
optimal EE is observed to decrease linearly with increasing 1

value of the PCPs. : . . . .
wheren,,, is the additive white complex circular symmetric

Our analysis and simulations reveal that with fixgdand . . ) .
increasing cell size/reduction in the value of PCPs, theragit Gaussian noise (AWGN) at the:-th receiver, having zero
! mean and variance? = NyB. Here B is the channel

M starts increasing. The optimal number of users is mOore _ width (Hz), andV, W/Hz is the power spectral density

than one, but is limited by the number of channel uses pg the AWGN. Herehy,n — vGogem € C denotes the

coherence |r_1terval._ Thl_s is ref_erred to as the_r_nasswe MI.McompIex channel gain between theh UT and them-th BS
regime and is studied in Sectigd V. We specifically consider
. N antenna. Alsogg.m,k = 1,2,--- ,K,m = 1,2,--- | M are

those scenarios where the number of users is limited to. a 2 . . .
) i D i.i.d. CNV(0,1) (circular symmetric complex Gaussian having
few tens, since the channel rank is anyways limited by the . ;
. ; : Zéro mean and unit variance). FurthefG. > 0 models the
amount of physical scattering. We also consider only thoSé . . : .
. . - eometric attenuation and shadow fading, and is assumed to
channels which have a coherence interval sufficiently large . -
€ constant over many coherence intervals and known a priori

compared to thé& channel uses required for acquiring chann . : : o
estimates. In the massive MIMO regime, our analysis of tEO the B The model in 1) is also applicable to wide-band

EE suggests that for a fixel and fixed power consumptionC%annels where OFDM is “S‘?d'
. s L Let the average power radiated from each UTpheWatt
parameters, the optimal EE decreases with increasingizell s

Interestingly, due to varyingM, K), this decrease is found to (W). We consider a channel coherence tlmejbfseconds,
be sianif . . and therefore the number of channel uses in each coherence
e significantly less than the decrease in EE whef) K) is

fixed. A similar phenomenon is observed when the cell siz'urétzgvaflor'si :irichc':hgnﬁzr kcr)wfos\rl]lidczhearte?hcs g‘éer\_/rarl]is's is
is fixed, but the PCPs decrease proportionately (e.g., due 0 v d q h 9 h simult ? o ‘f K
technology scaling). Numerical results presented in SaBl usually done through simufianeous ransmission ot known

are observed to support the analytical results derivedherot pilot/training sequences of length< T from each UT. These
sections sequences are chosen to be orthogonal to each other and also

. i . .. satisfy the average transmit power constrainpofDue to the
The important new contributions of this paper are, i) wi fy 9 P b

; . . SR Fequirement of orthogonality between the pilot sequences w
propose a simple analytical condition to decide if the syste ust haver > K. The pilot sequences can be represented by

shquld o_perate in .the massive M.lMO Or non-massive M_IM e K x T matrix ,/7p,® whosek-th row is the pilot sequence
regime, ii) we derive tight analytical bounds on the optlmq ansmitted from thes-th UT. Further ®&7 — I1. Then, the

EE in the non-massive MIMO regime, iii) we derive tight . . AU

analytical bounds for the optimal gEE in th)e massive MI?\/I(SeceNed pilot matrix is given by

regime under the constraint that the maximum number of users Y, = V7p.H® + N, 2)
is limited in such a way that the power consumed for ZF

multiuser detection and channel estimation is smaller than WhereH is the multiusetM x K channel gain matrix with the
sum power consumed by the BS RF receiver/antennas and&hannel gain between theth UT and them-th BS antenna

transmitter circuitry at thél UTs, iv) we analyze these boundd-€., hk,m as its(m, k)-th entry. N, is the AWGN at the BS
receive antennas, with i.i.d\NV (0, NyB) entries. Sinceb is

1Among the low complexity receivers, we consider the ZF remedue to known at th? BS, usind’, it then finds the m_m'mum mean
its better ability to cancel multi-user interference as paned to the maximum squared estimate (MMSE) of the channel gain matrix as

ratio combining (MRC) receiver_[7], specially wheR is large. Due to this ~ /TDu H
reason, the ZF receiver is expected to have a higher EE teaMRC receiver H = W Yp . (3)
[12]. It is also known that for sufficiently larg#// K, the MMSE and the ZF 0 TPu

receiver have similar performance in terms of the transimitgyr requirement

for the UTs to achieve a given fixed sum rakeg]7]. Due to similar detection 2We consider a simple model where the attenuation of eachsusignal
complexity, the MMSE and the ZF receivers are therefore eegeto have is the same. This is done so as to study the effects of trarescpbwer
similar EE, as has been shown recently [in][12] assuming gedkeannel consumption on the EE in a standalone manner. Incorporadiffgrent
knowledge. attenuation factors makes it difficult to analyze and drasibasights.
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During the data phase, the BS performs multiuser detectionLemma 1: For any(M, K, 7, R,T) such thatM > K and
using the Zero-Forcing (ZF) receiver based on the chanriet> 7 > K > 1, it follows th

estimateH. Let y = (y1,---,ym)” represent the vector B _
of received symbols at the BS, with,, being the symbol (K +7) (21“17?) - 1) 1
received at then-th BS antinna. Then, froni(1) it follows Yo < (M — K) + K + 1 @
= = e T
thaty = Hx + n .Wherex = (@, ’xi{) Is the vectTor Proof. Starting with the expression of, in (6) we have
of symbols transmitted by each UT amd= (ni,--- ,na) .
is the vector of noise samples at the BS antennasz}.die (K +7) (2m7 — 1)
the ZF 2stimate of the symbol transmitted from théh UT. o 2 (M — K (1 + 1+ v)
Thenx = (71, -+ ,Zk)T is given by
R . A 47(M — K)
X = H'y (4) Vo= 8

- .
(K + 7)2 (2K<1*%> - 1)
where H' 2 (HYH)-'H is the pseudo-inverse ofi , , L
()" denotes the matrix Hermitian operator). In this papeySing the fact/1 +v < 143 in (8) we get[(Y) which finishes
for the ZF detector it is assumed thay > K + 18 In the proof. u

[7] an achievable spectral efficiency (in bits/s/Hz) for thie

multiuser detector with MMSE channel estimates is given by power CONSUMPTION MODEL AND THE OPTIMALEE

In the following we model the power consumed at the

2
R = K (1 - %) log, (1+ ;éM_ IQ(GCIJ)\’;/];OB) 1) , i.e. UTs and at the BS. The average power consumed by each
( (]J\;T)(K;p;‘/ oB) + user's transmitter can be modeledsas = ap, + p; where
= _Z T = A% > 1 models the efficiency of the power amplifileand
R K(1-7) 1og2(1+(K+T)%+1) a y p plif

pe is the power consumed by the other signal processing
, wherey, 2 ch“. (5) circuits inside the transmitter (e.g., oscillator, digi@-analog
NoB converter, filters)[[12],[T13],[[14] [ T15].
The energy efficiency depends on the total system powerAt the BS, letp, (in Watt) be the average power consumed
consumption, which includes the power radiated by the UTis. each BS receiver antenna unit (e.g., per-antenna RF and
We would like to subsequently derive an expression for thfiseband hardware). The average power consumed at the BS

energy efficiency as a function oM, K, R, 7) and the system for flecoding each user's coded information stream is madele
parameters. Hence, we need to express the power radiate

by each UT as a function ofM, K, R,7) and the system as pyee (in Watt)@ From Table[ll it is clear that the total
parameters. Towards this end, solving forin (8) we gaf ~ number of complex operations to be computed (per coherence
interval) for channel estimation and ZF multiuser detectio

K47 (21«1#7%) B 1) N is 2MKT + 4MK? + (8K3/3)). Let Cy Joule (J) denote

e = 27(M — K) the energy required to compute a single complex operation.
. 2 - As these many operations are computed/inseconds, the
<£ (2_1«17%7 _ 1)) 2T -1 (6) average power consumed for channel estimation and muitiuse
2r(M - K) (M - K) detection is therefore given by
The following lemma gives a useful upper bound-an Prwd = 2MKCoB + 4MK2@ + 8K3 Co 9)
e T. 3T,

3A ZF detector is generally defined fa > K. Due to the lack of closed
form expressions for the exact ergodic sum-rate of ZF recgiin a massive
multi-user MIMO channel, we use a lower bound to the sum-{(a$eproposed
in [[7]). However this lower bound on the sum-ratedisvhen M/ = K. Due
to this reason, in this paper we only consider the case whére K. Since,
M = K + 1 offers more degrees of freedom thafi = K and therefore a
larger array gain, it is expected that for the same sum-hateequired power
to be radiated (also the power consumed by the PAs) from trewbluld be
less whenM = K +1 as compared to whei/ = K. On the other hand due
to an extra BS antenna in thef = K + 1 scenario, the power consumption h ; -
at the BS is expected to increase slightly. Due to this tcttieve therefore of the PCPs. However, for marny pr_act_pal scenarios, thiargaiment of the
expect that the total EE does not vary much between thesedsasos, i.e., "219° of values for the PCPs is insignificant.
M=KandM =K + 1. A_s_ln other papers [9]1/ 1101/ [21]! [_12], we also assume trhﬁ power

4From [3), we know that the achievable sum rdieis a function of amplifiers (PAs) in the UTs operate in the linear region ofirtiteansfer
(vu, M, K, 7, T). This then implies that, for a fixe/, K, 7, T') and a given characteristic curve, i.e., where doubling the' rad|atquu§proportlonately
desired sum raté?, the required power to radiated from each UT must be oubles the (_:onsumed power as wel]. Numerlgal results iticddUllsuggest
function of (R, M, K, , T). Towards finding this functian, we note that from ij?}a%c\g%ggrgcﬁ : r[grzqeonrit:‘gqratlrl\)é ;vlzttrr])u(t:rrlgggtne% ;z::glmb\?ﬁaiwgtnﬁ;ferthe
(). we get the following quadratic equationa, M€ a1y T a2 Yu a3 = 0. when compared to that of systems whénd, K) is fixed.

5The proposed upper bound en, in Lemmall has been used to prove
several important results later in the paper (Theofdm 2,ofém[3 and
Theoren#). The bound in Lemnha 1 is sufficiently tight in ortieat these
important results hold. A tighter bound in Lemfda 1 (compdcetthe proposed
bound) will not change the key insights already conveyedhlegeé Theorems.
The results in these Theorems hold und&, T") and the PCPs satisfying
certain conditions. For a fixedR, T'), further tightening of the bound in
Lemma[l can lead to these results being valid for a broadgerah values

Here a; = T(M — K), a2 = (K + 1) (2 Ko=) 1) , a3 = “With fixed R and varyingK, it is expected that the per-user information
ﬁ ) ] i rate (R/K) and therefore,.. will vary. However, in this paper we assunfie
2 T — 12- Out of the two roots of this quadratic equation, one roofg be not very large, so that the variationzig,.. is relatively small compared
is positive and the other is negative. Singg > 0, v, must be positive and to the value ofp;. Sincepg.. and p; impact the PCPs only through their

therefore we only consider the positive root, which is gisn(g). sum, varyingK impacts the PCPs negligibly wheR is not very large.
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TABLE |
NUMBER OF COMPLEXVALUED OPERATIONS REQUIRED FOR CHANNEL ESTIMATION ANCZF MULTIUSER DETECTION
| | Computation | No. of operations | Description
A Channel estimation phase thannel uses)| 2M Kt + 4MK? A.1+A.2
+ (8K3/3)
A.l Computing the channel estimakd 2M KT Multiplication of a M x 7 matrix
with a7 x K matrix (see[(B) and [16])
A.2 Computing the pseudo-inverse H, i.e.,
—~ ~ o~ —1 ~ -
At 2 <HHH> aY AMK? + (8K3/3) A21+A22+A23
A.2.1 ComputingA = HEH 2M K2 Multiplication of a K x M matrix with a
M x K matrix
A.2.2 ComputingB = AT 8K3/3 Inversion of aK x K matrix, see([15]
A23 ComputingHT = BHH 2M K? Multiplication of a K x K matrix with a
K x M matrix
B Data phase®T — 7 channel uses) 2MK(T — ) Multiplication of a K x M matrix with a
ZF multiuser detection M x 1 vector in every channel use (séé (4))
C Channel estimation + ZF multiuser detectign 2M KT + 4M K2 A+B
+ (8K3/3)

where the last step follows frori_({13). Using the expression

Let p; model the fixed power consumption (e.g. controfPr GeP/(NoB) from (14) into [18) we get

layer operations, backhaul) which is independent\dfand R — oK K §K2@
K. Then the total system power consumed (in Watt) is given(. (M, K, 7, R, ©) Y+ pat (pd t3 T)
by

20
Power consumed at BS +M (pr + 2Kpo + 4K T )(17)

P = Kpi + (Kpice + Mpr + pmud) +ps where @ 2 (a,pT,pd,ps,po,T , and we use the notation
= K(apu +pt +Pdec) + Mpr+ pmua +ps- (10) ¢, (M, K, 7, R, ©) to explicitly highlight the dependence of
C.ron(M,K,7,R,0).
In this paper, we are interested in maximizing the EE
C.r(M,K,r,R,0) as a function of(M, K,r) for a given
(R,©). Our aim is to study the impact dp;., p4, ps, po) ON

Note thatp, andpg.. contribute toP only through their sum
and therefore for brevity of notation, let

Pd = Pt + paec , and therefore

P = K(apy+pa) + Mpr + pmua +ps.  (11) the optimal EE. For a give(?, ©), the optimal EEC? (R, ©)
. . is gi b '
Using the expression far,,.q from (9) we further get 'S given f/ 1
5 Co ——— = min . (18)
P = aKp, + ps + K(pd + 8K ) 2+(R,0) ke Cp(M, K, 7, R,0)
3T, : 1<K<7<T
200 M>K
+M(pr +2KCoB + 4K Tc) (12) For a given(R, ©) let the optimal(M, K, T) be denoted by
The EE (bits/Joule) is given by ) ) .
Naf = RB/P_ (13) ( zf(Rv 6) ) zf(Ra 6) » T (Ra 6)) =
1
Multiplying @2) by G./(NyB) on both sides and using the arg min - —— - (19)
fact thaty, = Ge¢p./(NoB) (see [b)) we get (Tgfi’gff:p‘ Gy (M, K, R, ©)
a.p N M>K
NCB = aKqy, + ps + K(pd + gKQp—I?) Note that varying the normalized PCPs can model scenarios
0

5 0 where the power consumed by the various hardware compo-
+M(Pr + 2Kpo + 4K T) (14) nents (e.g., RF receiver at the BS, UT transmitter circpitry
channel decoder at BS, baseband processors) changes due
to technology scaling. Since all the normalized PCPs are
proportional to the channel gaifi. (see [[Ib)), the effect of

where the normalized PCPs are give by

A Gepr A Gepa A Geps A G.Co

Pr=NB P~ NB T NB' T N, (15 Varying cell size can also be studied. We firstly show that,
Also. let the normalized EE be aiven b irrespective of the fixed value dfR,T,«), the optimal EE
' A No 9 R y decreases with increasif@,., p4, ps, Po)-
Gy = 77sz—C = G.P/(NoB) (16) Theorem 1: Consider®, 2 (0, Pry s Pdy s Psis POy, T) @Nd

A
@2 = (a, Pray Pdas Psay POss T) If Pro > Pris Pds > Pd1y Pss >
8The division of the PCP$p, p4,ps, CoB) by NoB is motivated by p,, and pg, > po,, wWith at least one of these being a strict
the fact that studies have shown that the power consumptiofand- inequality it follows that
limited transceiver circuits is typically proportional &y B (the constant ' * (R.© * (R.© (20)
of proportionality depends on technology and design pararsie[20],[21]. sz( ) 1) > <Zf( ,O2).
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Proof. Refer to AppendiXx_A. B PA power consumption (i.e., exploiting array gain to reduce
We divide our analysis of the optimal EE into two partsthe required radiated power), will result in a much more
depending upon whether the normalized PCPs are “largatrease in the power consumed by the BS (due to more
or “small” for a given(R,T,«). In this paper, for a given RF receivers), as compared to the saving in the PA power
(R,T,«) the PCPs are said to be “large” if the optimatonsumption. Therefore even for this scenario it is optimal
(MZ¢(R,©), K;(R,0)) = (2,1), and is said to be “small’ to have (M, K) = (2,1). These observations have been

otherwis confirmed through numerical simulations (see Eig. 1 in ®ecti
VD). m
IV. LARGE (p, pd, ps, po): NON-MASSIVE MIMO REGIME The next theorem proposes tight bounds on the optimal EE.

In this section we study those scenarios where the normal- _ ) _
ized PCPs take large values (e.g., small cells and/or higlepo Theorem 3: Let the unnormalized optimal EE be denoted
consuming hardware). The following theorem shows that &Y

these scenarios it is optimal to operate in a single-useremod A Ge .,
with few antennas at the BS (i.e., non-massive MIMO regime). ns(R,©) = Fg@f(R, 0). (22)
Theorem 2: If (R, ©) satisfy If (R,0) satisfy [21) andl’ > 1 then

«Q a(l+ [\/TJ) __ B
r + 2p0) > 21— (IVTI/T) — 1 2 .
(pr + 2p0) = 1+ VT T Vel ( ) 56(R’ 0) < n(R,0) < e(R,0) , where
21 B
1) e(R,0) 2 R o (23)
andT > 1, thenM;(R,0) = 2, K};(R,0) = 1. 2pr +patps HACB+ TR
Proof. Refer to AppendixB. [ | _
Remark 1: From Theorenil2 it is clear that for a given Proof. Refer to AppendiXx C. u

(R, T, ) the optimal(M (R, ©), K7 ;(R,0)) = (2,1) when Remark 2: With large values of the PCPs (either small cell
(pr+2p0) is “sufficiently large (i.e., greater than the value insize or inefficient RF design) it is clear that the total syste
the R.H.S. of[(2l1)). The inequality il (P1) is very importantpower consumed will be dominated by the power consumed
since it gives us the insight that it is optimal to operatehia t in the two BS receivers and the UT transmitter circuitry,,i.e
non-massive MIMO regime when the PCPs are sufficient] ~ (2p, + pa + ps + Pmud). Since (py, p4, ps, Co) are
large for the given R, T, «). The normalized PCPs are largendependent of. it follows that with increasind., the EE
either when the cell size is small (i.e., larg&) or when becomes increasingly insensitive to variationsGaX This
(pr,pa,ps, Co) are large (e.g., due to power inefficient RFeonclusion is supported by Theoréin 3 as both the tight upper
design). When cell size is small, path loss is less and thexefand lower bounds in[{23) are independent®f (see also
less power is required to be radiated by the UT, which resufsg. [ in Sectior’Ml). SinceP =~ (2p, + pa + Ps + Pmud)
in the total power consumption being dominated by the powfar large values of the PCPs, it follows that the EE decreases
consumption of sources other than the PA. Due to small pdihearly with increasingp.., p4, ps, Co) (see Fig[R in Section
loss, array gain is not really required since the receivgdadi [VI). |
power at the BS antenna is already sufficiently high to suppor Remark 3: Both Theoreni2 anfl]3 are valid wheéR®, ©)
the given information rate. Hence, EE is maximized by usingatisfy the condition in[{21). We firstly note that the R.H.S.
the least number of BS antennas and the least numbergdthe condition in[(21) is exactly times the proposed upper
uTs bound to, in Lemmall with(M =2, K = 1,7 = [VT)).
Similarly with increasingp,, p4, ps, Co) and fixed channel From [49) in AppendikB and step (c) ¢f(55) in Appendix C it
gain G., the power consumed by the PA becomes smagd clear that the proof of Theorernbs 2 did 3 uses the proposed
when compared to the power consumed by the other systapper bound toy, in Lemmall with(M = 2, K = 1,7 =
components. In such a scenario increasigto reduce the |/T|). From the proofs it follows that tightening the upper
bound in Lemmd]1l will lead to a corresponding relaxation

9 In Section[1V it is shown that with “sufficiently large” valaeof the e ; ; . ;
normalized PCPs (for a give(R, T, v)), it is optimal to havdewBS antennas of the condition in [IZI]')’ .e., the R.H.S. of the condition in

communicating with a single UT. Therefore the large PCPmegis also (21) will decrease. In the proof of Lemnia 1 we have used
referred to as the “non-massive MIMO” regime (i.e., few BSeanas and the boundy/1+v < 1+ (v/2) for any v > 0. This bound

few UTs). In Sectiorl Y it is shown that with “sufficiently sniialalues of ; ; ; ;
the normalized PCPs (for a give(R, T, v)), it is optimal to have a large becomes increasingly tighter as— 0. For typical values of

number of BS antennas communicating with many UTs. Theseioe small (12, 7") we see thav is very small i.e., the bound in Lemma
PCP regime is also referred to as the “massive MIMO” regime, (& large is tight, and therefore the corresponding relaxation ef th
number of antennas at the BS and many UTSs).
1%For any real numbes, |z refers to the greatest integer smaller than or
equal tox. 12e would expect a similar result even for the scenario whegechannel
11Based on the discussion above, we believe that the optimalK) for  gains to the users are different. When the cell size is sriiedl path loss to
a general ZF precoder with/ > K would be M = K = 1. However, the all the users is less and therefore none of them need the B$ gain to
importance of Theorerl 2 lies not in showing the exact valuthefoptimal —achieve their target spectral efficiencies. Since BS argy i anyways not
(M, K), but in the fact that the optimdlM, K') are small compared to their required, M should be kept small since it would otherwise increase the BS
typical values in a massive MIMO scenario. power consumption.
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condition in [21) is insignificadﬂ B it follows that K,,..(©) > 10. Further, for alll < K <
Ko (0) and anyM we have

V. SMALL (p, pd, ps, Po): MASSIVE MIMO REGIME

IN

(Mpr + Kpd) ) i'e'l
(Mp, + Kpa). (26)

Pmud
In this section, we study the impact of the normalized PC'?EI(2KpO n 4K2@) n K3%
on the optimal EE when these parameters take small values T 3T
(e.g., large cell size and/or low power consuming hardware) :
Numerical simulations reveal that the optim(@d/, K, ) are Proot: Refer to AppendixD. "
large when the normalized PCPs take small values. This
why we refer to this scenario as the massive MIMO regim
In reality, physical channels have finite dimensionalit¥][1

IN

. Remark 4: In Lemmal2 it is interesting to note that only a
Jﬁper limit on K is sufficient and that no condition is needed
%n M. The condition (C.1) depends on the ratio between the
. . . N PCPs, which does not depend Gp. Similarly, any change in
[%8] (foreg., d“e.t.o '”S““'C'er.“ scattermg). with f|_n|tertén- technology (e.g., device scaling) will have an almost smil
sional channels it is not possible to spatially multiple>aege impact on all the PCPs, and therefore the condition in (C.1)

number of users, and therefore in this paper we consider Sg€q, o ted to still hold. The satisfiability of condition. (G
narios where the maximum number of supported users is IRBnerefore robust to changir@, and technology
B :

few tens. With a few tens of users it turns out that with currren The condition (C.2) in[(25) is not required to ShoWl(26).

techpology the power consumed for channel estimation a|3|dwever we keep (C.2) since it is valid in practical scergrio
multiuser detection is smaller than the sum power consumg§

by the M RF antenna receivers at the BS, the transmittgr d also bgcause it will be useful later in deriving tight bdsi
g . n the optimal EE. |

circuitry in the K UTs and the/ channel decoders in the BS, With current technology, the conditions [125) are gerberal

i.e., Pmud < (Mp, + Kpq). As an example, let us consider a Ith cu 9 ” geng

massive MIMO system witt' = 20 users and\// > 20. With zig?:eli, ar:?hg]eivgg%el(d:’zmgé@ysl n f O]:egw‘]gelﬂz' Asian
B = 200 KHz, Cy = 1 x 102 Joule,p, = py = 0.01 W, pie, = » Co = 1 X Pr =

T = 2me, e avep, ) = (204 M) X10°2 W and {0 e Th contion (6.2)15 i Sata.
Prud = (1.07+0.88M)x 1072 W, i.e.,(Mp,+Kpa) > Pmud ' ' ' '

irrespectiveof the value of M
In Sectior[ V-4, for a giver® we will propose a constraint g Analysis of [T9) for® satisfying [25) andl < K <

on the maximum possible number of users, in order that (0) - -

Pmud < (Mp,. + Kpg). Conditions will also be proposed _ _ N

for the PCPs in order that the maximum possible number ofFrom [19) it follows that the optimal EE under the additional

allowed users is larger than ten. Through numerical exasnpgonstraintk’ < K,,,,..(©) is given by

it will be shown that with current technology, these corutis A

are usually met. Thereafter, in Sectign V-B we will analyzé-;(R,0) = (.5 (M (R,0), KJ;(R,0),7"(R,0), R, ©)

the optimal EE under this realistic constraint on the maximu ( " (R,0),K"(R,0),7" (R @))

possible number of users. A A ’

1
ar min . 27
g(M,K,‘r)EZS| CZf(Ma Ka TaRa 9) ( )
A. Maximum number of usel’,,..(©), such thatp,,,.a < 1<K <Kmaz(0),

(Mp, + Kpy) for all 1 < K < K,,4,(0) and anyM Ksr<t, M=K
Lemma 2: Let
Koz (9) 2 min(

Unlike section1V, for small values of the normalized PCPs
T pr 3pa it appears difficult to solvg the. optimizatio_n .problem in
T3 2—p0)- (24) @7) exactly. From numerical simulations it is observed
that for small values of the normalized PCPs, the optimal

Then for any® satisfying the following conditions (M,K,r) are large (this observation is like a converse to
T pr 3pa Theorem[R). With largg M, K, 7), from the expression for
min (Z’ 3 2—) 10 , (C.1) C.r(M,K,7,R,0) in (1) it is expected that the relative
o 2P0 ) difference in the EE due to increasing/decreasing K, 7)
% > 5. (€2 (25 byone, ie.|C.r (MK, 7 RO) = Cf(M+£1KE1r+

1,R,0)|/¢.r(M,K,7,R,©) is small. Therefore for small

13From [8) in the proof of LemmA]1 it follows that fqiM = 2, K = (p“ Pd; RS’ po) a 900(_1 apprQX|mat|0n to the, optlmal EE, can
—fr be obtained by relaxing the integer constraint(dn, K, 7) in
1,7 = [VT]), we havev = 4L\/TJ/<(1 + [VT))? (2 A== - 1)) (27) (in Fig.[1 of Sectioh VI, the curves marked with’*and
With typical values of R = 8 bps/Hz, B = 200 KHz, T, = 2 ms, i.e.,, ¢y
T = BT. = 400 we haves — 5.3 % 10—%. The difference between fhe O’ are close together whe@W/, K) are large). Let us denote
upper bound and the exact value ¢fl +v (i.e., 1 +v/2 — /T +v) is
roughly of the order ofl0=". This implies that with(R = 8, T = 400), the 15power amplifiers used in UTs generally have a power efficiagreater
condition in [21) can be relaxed by reducing the R.H.S[o}) @Imost by a than 5 percent, i.e.« < 20 in most practical scenarios. The fixed power
factor of (1 +10~7). consumptionps is generally of the order of W. Even if we consider a worst
14with B = 200 KHz, typical values for(p., p4,ps) are in the range case scenario withps = 0.1 W and G, = 1012 (120 dB path loss), we
0.01 — 1.0 W [15], and that forCy are less than a nano Joule [19]. getps/a=6.28 > 1/2.
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the EE obtained with this relaxation iy ;(R, ©), where (28). This models situations wheKg, is fixed, but due to
A technology scaling all the normalized PCPs decrease by the
Cf(R,0) = (5 (M;(R,0),K;(R,0),7(R,0),R,0) same factor. This makes sense since all the sources of power

M .(R,©),K' (R,0),7(R,0 ) _ con§umption are inherentlly dependent on the same undgrlyin
( = )} E g J ) fabrication technology. Since all the normalized PCPs are
arg  min 1 . (28) Proportional toG. (see [I5)), fixed ratio between the PCPs
(MK rerd| Cp(M,K,7,R,0) could also model situations where the fabrication techgwlo
fgfgp"j‘}@(f}g remains same but the cell size increases (which redGcgs

. he fixed ratios between the normalized PCPs is denoted b
From LemmaR we know that under the conditions [in] (25-5 c y
A Ps Ds A o 0

Prud < (Mpy + Kpg) for all 1 < K < Kynae(O©). Further, g & Pi_ba saps b ap CoB g
from the conditions in[(25) we havE < K,,..(0) < T/4, pr Dr pr Pr Pr Dr

which implies the availability of abundant channel reseurdn this section we consider a fixdd, R, T, 3,6, i) satisfying
for acquiring accurate channel estimates. We would thezefo

expect that with© satisfying the conditions if{25) and< min <Z 1 %) 10 (33)
K < Kpaz(9), ;.f(R’ ©) would be close to the optimal EE 47 3p" 2u
of an ideal system where we assumg,q = 0 and perfect e
channel estimates. For a givéR, ©) the EE of such an ideal and p, sat|sfy|gg
system depends only o/, K, R, ©) and is given by pr > % (D.1)
1 1 aK R 3o 9 4R
(esi(M,K,R,©) ~ R |(M-K) (2K a 1) pr > (4(1 +p)2R? (3Kmam(®))> (0-2)
« 2(R
CMp Kb @9 p < gt 03) (34)
, . where
Here we have used the fact that for a fixgd, M, K) with A z N N
perfect CSI (i.e.7 — 00, T — oo with K < 7 < T) , it is g(x):\/ ot _ 1 (2 @ log(2) — 2 + 1) , ©20.(39)

possible to increase in such a manner that we have [7]
(2R/K —1)

The condition in [(3Y) is valid in many practical scenarios.
. B As an example, withR = 8 bps/Hz,p, = ps = 0.01 W,
P T O gy SO B0 ), — 01 W, B = 200 KHz, T. = 2 ms,a = 2 and
Ksr<T Co = 1072 J, we haveK,,..(0©) = 16.6 and the condition
While evaluating the limit above, we have used the R.H.S. of (34) is satisfied if and only i0.1 < p, < 2.66 x 103
(6) as the expression for, and takenr = +/ KT. The optimal which corresponds t@. lying between—97 dB and —141

EE of such an ideal system is given by dB. Note that sincek,,,.(0) > 10 and g?(x)/x is strictly
monotonically increasing with > 0, it follows that the R.H.S.
(]\/[ési(Rvg)? Kési(RaG)) of (D.3) is greater than the R.H.S. of (D.2). The importance
A ) 1 of the conditions in[(33) and_(84) stems from the fact that
= arg (MII?)I?RQ | m under thes_e conditions. our analysis §uggests that it isnapti
1SK%4K>%$(@) to operate in the massive MIMO regime (see Thedrém 6, and

Lemmalb in AppendixJF).

Cesi(M.4i(R,0©), K/ ,;(R,©),R,©). (31)  The following lemma shows that (D.2) ii{(34) is equivalent
In the following, in Theorenil4 we show that for small vaIueEc,Ogz f< 3?“?“ ﬁ@)f/ﬁlnwh_ere?maz(@) depends only o and

¢ 3 ¢+ (R,0) L Th h il is defined in the following lemma. - N
of (pr,pa, ps: po)s § < 7 mey < 1. Through numerical | emma 3: Any © satisfies [Z5) if and only if it satisfies
simulations it has been observed that the lower bound isgighyyoth [33) and (D.1) of{34). Further ariyz, ©) satisfies (D.2)
than3/8. This is even true whe)M, K, 7) are restricted to of (37) if and only if R < 3Romas(©)/4, where
be integers (see Fid 1). This bound is important becazﬁe ©) A

Xmam

@71) can be solved exactly (see Theor€im 8 in Appendi = o®) Kmas(©) wherec(6) uniquely satisfies

¢ (R,0©) 2

cst

) and analytical expressions can be deriveddfgr(R,©).  9(c(©)) _ (1 +ﬁ) —Kmaw(@)pr_ (36)
We later study the variation of’,(R,0) and the optimal c(©) «
(M, K) for the ideal system w.r.t. varyin@.., p4, ps, po) but Proof. Refer to AppendiXE. n

fixed (R, T, ). Since (. ;(R,©) tightly bounds(’(R,©)  The following theorem derives tight bounds oty (R, ©)
we expect that the variation iq;(R,©) (and therefore iy terms of¢’ (R, ©). '

cst

7y (R, ©)) with varying (p, pa, ps, po) is similar to that of  Theorem 4: For any given (R, ©) satisfying both the
esi (R, ©). This is verified through exhaustive simulations. congitions in [38) and(34) we have
In this section, we specifically consider situations whéaee t o (reo
normalized PCPs decrease in such a way that the ratio between 3 < N o (37)

them remains constant, i.e., they still satisfy the condgiin 8 ¢ (R,@)
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Proof: The bounds in[{37) follow directly from Lemma&$ 7and therefore the condition for Theoréin 1 is satisfied. Hence

and[® in AppendixIEd B from Theorenlll we have’,(R,01) > (7;(R,©2), which
The following corollary to Theorerl4 proposes bounds den implies[(4D) sinc& . is constant. |

;f (R, ©) for any R > 0 with © required to satisfy{(33) and The following lemma will be useful later.

only condition (D.1) of [(34). Lemma 4: With decreasing, and fixed(«, R, T, 3,0, i),
Corollary 1: [Corollary to Theoreni 4] 2'(R, ©) decreases strictly monotonically.

For R > 0 and® satisfying [38) and (D.1) of (34), we have  proof: Follows from the expression af(z’(R, ©)) in (59),
3 4 and the facts that, ij(x) is strictly monotonically increasing
3 (ém—(gR, @) < ¢y (R, @) < (i (R, @) (38) with z > 0, and ii) pa/p, = 3 is constant. [
The following Theorem shows that for a fixed
r(a7R,T7pT,pd7ps7Co) and varying G., the unnormalized
optimal EE of the ideal system i.ey..(R,©) decreases

Proof. The upper bound in[{38) follows from the uppe
bound in Lemmal8, which only requir€sto satisfy [38). The

lower bound in[3B) follows from step (d) of {I78) in Lemmastrictly monotonically with decreasing channel g&ia when
2. Note that steps (@) through (d) 6f178) requideto only G, is sufficiently small. Numerical simulations reveal a
satisfy [33) and (D.1) of(34). B Similar behaviour forn (R,©) = G.(;(R,0)/No (see
It can also be shown that for anyR,©) satisfying Fig.[I in Sectiori V). . #
(33) and [3#%), a near-optimal solution to the optimal EE

;f(R,G) is obtained by choosingyl — M’_,(4R/3,0), K — Theorem 5: Consider a constantw, R, T, pr, pd, ps, Co)

K i(4R/3,0),7 = Kma:(©), i.€. satisfying [38) and’. satisfying
Cp(R,©) > Cop( ML (AR/3,0), KL, (4R/3,6) o o NoBa
‘ pr 20
» Kmoz(©), R, 6) G > NoB 3o 2( 4R )
(& g 3
> 3L(4R/3,0). (39) pr \ 10+ 87 R \3K,.0.(0)
NoB «@
Theoreni % implies that a lot of insights about the variation Ge < pL (ESED RQQ(R)- (41)

in ¢;¢(R,©) with changing(p:, pa,ps, Co,G.), can be in-
ferred by studying the corresponding variation(fn, (R, ©). A _
Therefore, in the following we study the impact of varying Let 7.;(R.©) = Gc(.;(R,0)/Ny be the unnormalized

(Prspds Ps, Co, Ge) on ¢, (R, O). optimal EE of the ideal system. Thérﬁlcgéijf’@ > 0.
The following Corollary to Theoremil1 shows that whemproof Refer to AppendiX F-C. [

(pr,pa, ps, Co) scale proportionately (e.g., technology scal- The following theorem shows that with constant
ing), then for a fixed (G.,a,R,T) the unnormalized (o, R,T,B,6,) and (R,©) satisfying [38) and[(34), the

optimal EE 17,(R,©) increasesstrictly with decreasing optimal (A7, K) for the ideal system increases monotonically
(prypd, s, Co) irrespective of whether we are in the massivgii, decreasing,..

MIMO or the non-massive MIMO regime. A similar result can Theorem 6: For a constanta, R, T, 8,5, ;1) and (R, ©)

A
be shown to hold also foy ; (R, ©) = Gc(l (R, ©)/No. satisfying the conditions in[(33) and {34) it follows that
Corollary 2: [Corollary to Theorenifjl both K ,(R,©) and M/_,(R, ©) increase monotonically with

Consider a constan{a, R, T, G, 3,0,p) and a vary- gecreasing
. A A m
ing p,. Let ©1 = (o, pry,pdr:Ps15p0,,T) and ©2 = Proof. Refer to AppendiXE-D. [ |
(0 Pras Pda s Psas 0oy T)- I pry > pry then Remark 5: The results of Corollarf]2, Theorefd 5 and
n:;(R,©1) > ni;(R,02) (40) Theoren(b is discussed in the following. In all these results

(o, R,T) is fixed. We firstly consider the scenario where
(pr, pa, ps, Co) is fixed andG, is decreasing (i.e., increasing
5 it toll that q cell size). Starting with a sufficiently largé’., we know
(8,0, ), it follows that pa, > pay, ps, > ps, NP0, > Pors from TheoreniR that the optim&h/, K) = (2,1) (i.e., non-

16 emmdY holds for anyR, ©) satisfying the conditions if.(33) and {34). massive MIMO regime). Wlth dec_reasw@c _It IS e_XpECted
The proof of Lemm&l7 uses the proposed upper bound.oin Lemmall. that the UT would be required to increase its radiated power
(Tg)gg;e_ninéz C))f(the :;per b7undﬂi]r_1 Lem(rjﬁti_i 1 can helpliﬂtfflaxiﬂgdﬂ;ig)n linearly so as to achieve a constaRt This increase will

1) in sinced = ps/pr, this condition is equivalent tps > «/2). . . -
To be precise, for a givemx the conditionps > «/2 can be relaxed to increase the power consumed b_y the PA in the UT until the
ps > ea/2 for some0 < e < 1. However, for many practical scenariqs, POWer consumed by the PA dominates the total system power
is anyways greater than/2 (see footnotel5), and therefore the relaxation consumption. Therefore, with further decreaseGnthe EE

ps > ea/2 is not of much significance in these scenarios. More detailedq : : : : : : :
discussion can be found in the proof of Lemia 7 in Appeddix F. il start decreasing linearly witliz., i.e. a20 dB increase in

17t is to be noted that proportional scaling of the unnormaiz2cPs Path loss will reduce the EE by a factor of roughi§o.
(Pr, pa; ps, CoB) with fixed (R, o, Ge, T) is a special case of independent  Tg reduce the amount of loss in EE, the system must
scaling of the normalized parametdys., p4, ps, po) considered in Theorem . d h ired b
[ Since we discuss this important special case in detaibati@{¥, Corollary mcr_ease(M, K) so as to re uce the require power tO. e
[ has not been placed immediately after Theofém 1 in Selibn | radiated by the UTs, by exploiting array and multiplexing

wheren? (R, ©) is given by [2P).
Proof. With p,, strictly greater thanp,., and constant
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gaindd However (M, K) must be increased in a controlledper-user information rat&/K will increase, which is in turn
manner since the power consumed at the BS would also expected to increase; = pgec + p: (Since the complexity of
crease with increasing\/, K'). Numerical simulations suggesteach user's channel decoder at the BS will increase due to
that increasing M, K') indeed reduces the amount of loss ihe increased per-user information rate). If this increase;

EE when compared to fixedM, K) = (2,1) scenario (see is significant, then it could nullify the expected increage i
Fig.[d of Sectiof ). This increase i/, K) with decreasing the optimal EE due to increasing channel gain. Note that this
G. (and therefore decreasitig,, p4, ps, po)) is also suggested increase ip,.. does not happen for sufficiently larg&, since

by Theoreni 6. The following heuristic argument suggests ththe optimalK = 1 and therefore the per-user information rate
in the massive MIMO regime, by increasidg «x 1/v/G. (K is fixed (see Theoref 2). For smal| irrespective of the value
fixed) the EE decreases at most by dB for every20 dB of G. this variation inp.. is expected to be small compared to
reduction in channel gain. Whefi. reduces by20 dB, M the value ofpy, since the variation in the per-user information
increases byl0 dB, and therefore array gain increasesliy rate is small.

dB. This implies that the UTs need to increase their radiatedFor large R and largeG. the optimal K could be small,
power only by20 — 10 = 10 dB to maintain the samé&. leading to a very high channel decoder complexity at the
Also, an increase i/ by a factor of10 increases the powerBS (e.g.,R = 50 and an optimalK,(R,©) = 2 would
consumption in the BS at most by a factor idf. Hence the result in a per-user information rate 86 bps/Hz). In such
total power consumption increases by a factor of at m0st scenarios one would prefer to have a high€rinstead of

From the above discussion it is clear that by increasiribe optimal K7;(R,0) (e.g., with K = 16 the per-user
(M, K) with decreasing=. the EE can be made to reducénformation rate reduces fror#5 bps/Hz t050/16 = 3.125
slowly compared to a linear decrease with fiXdd = 2, K = bps/Hz). Reducing the per-user information rate would help
1). However, does the optimal EE decrease or can we varnyreducingpg.. significantly. However, with a sub-optimal
(M, K) in such a way that it actually increases with decreasing > K;;(R,©) the EE could decrease. In the following
G.? Theorenib suggests that the optimal EE always decreatesrem we show that by choosing a lardér the decrease
with decreasingr.. This conclusion is indeed verified throughin EE ¢/ ;(R,©)/( (K, R, ©) is upper bounded by the ratio
exhaustive numerical simulations (see fi. 1 in Sedfidn VI)2K/ K/ (R, ©). Here(.,(K, R,©) is the optimal EE for a

The other scenario is whet@. is fixed and(p,, p4, ps, Co) fixed K. |
decrease proportionately with a constant ratio betweemthe Theorem 7: Consider a(R,©) such thatO satisfies [(33)
With decreasing(p,,pa, ps, Co) and fixed information rate, and K/ ;(R,0) < 3K,,..(0)/4. Let the optimal EE with a
the power consumed by the BS and the transmitter circuitfixed K be given by
in the_ UT decreases vyhereas thg power co_nsumed by .the PA C,;,«(K, R,©) A max  Cp(M,K,7,R,0). (42)
remains unchanged sind&, G.) is fixed. With decreasing ' (M,7)eR?|
(pr,pa, ps, Co) and fixed (M, K) = (2,1) the total system M> K, Ksr<T
power consumption would be increasingly dominated by thehen for anyK satisfying%K{zsi(R, 0) < K < Knaz(9),
power consumed by the PA at the UT. Since the powge decrease in the EE (due to a suboptimal choicesdf
consumed by the PA is fixed and it dominates the totghtisfies
power consumption, it can be concluded that the EE with ¢L;(R,0) < 2K
fixed (M, K) = (2,1) would increase slowly and approach 2 (K.R,0) K' ,(R,0)
a limit with decreasingp,, p4,ps, Co). Can we increase the .

EE at a much faster rate by varyifd/, K') with reducing Proof. Refer to AppendiX E=E. u
(Prs pd; ps; Co)?

The answer is affirmative, With decreasiqg, p4, ps, Co).
(M, K) should be increased in a controlled manner such thatFor all the numerical results in this section, we have
both (Mp, + Kpg+pmud) anda K p, decrease, so that the EEtaken Ny = 107294 W/Hz, T. = 2 ms, andB = 200
increases. This is indeed possible. Coroll@ry 2 shows that tKHz. In Fig. I we consider a fixeh, = pgs = 0.01
optimal EE increases strictly with decreasifig, p4, ps, Co). W, p, = 01 W, Cg = 107° J, = 2 and R = 8
Theorem[6 also suggests that the optimi&f, K') must be bps/Hz. For these parameter values, we §gt,.(©) = 16.
increased with decreasing,, p4, ps, Co)- B We study the variation in the unnormalized optimal EE

Remark 6: From Remarkb we know that with increasing;; (R, ©) = G.(};(R,0)/Ny as a function of decreasing
channel gairG. and fixed(«, R, T', py, pa, 0s, Co), the optimal channel gainG.. From the figure it is observed that for large
K decreases. However, with decreasiigand fixedR the G. > —100 dB, (M};(R,0), KZ;(R,0)) = (2,1) (i.e,

o _ non-massive MIMO regime) as shown by Theorem 2. From

With near perfect CSI (sincé < K’g;%ﬁ@)ff{;”' the total power yhe analytical condition in[{21) of Theoref 2, we get that
consumeq by the< PA§ isaKpy wQKWGLC (see[(3D)), where (M*,(R,0), K*,(R,0)) = (2 1) for G. > —97 dB, which
(M — K) in the denominator models the array gain due to the éxtfa— K) 27 A T ¢ .
degrees of freedom. For a fix¢d/, K), it is clear that the power consumed agrees well with the observation from the f'gure' We also
by the PAs increases dyG. with decreasingG.. However if we increase note from the figure that for largé. the optimal EE remains
both M and K with decreasing’c in such a way thatM — K) increases, gzlmost constant with changir@,.. This supports the analytical
then it is clear that the total power consumed by Hid°As would increase at observation from Theorefd 3. Refer to Rem&rk 1 and Remark

a rate slower than /G, since K (27/K — 1) decreases monotonically with | ) i
increasingK (fixed R). [@ for more discussion and insights.

1

IN

(43)

VI. SIMULATION RESULTS
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Fig. 1. Unnormalized optimal EE;f(Rﬁ)) versus channel gait. fora Fig. 2. Unnormalized optimal EEn;f(R, ©) versus p, for a fixed
fixed (o, R, T, pr,pa,ps,Co, B,Tc). « = 2, R = 8 bps/Hz,p, = py3 = (a,R,T,8,6,1u,B,Tc,Gc). « = 2, R = 8 bps/Hz,8 = 1, § = 10,
0.0l W, ps = 0.1 W, Cgp = 1079 J, B = 200 KHz and T, = 2 ms. p = 0.02, B =200 KHz, G = 10719 (-100 dB) andT. = 2 ms.

n; (R, ©) = n;’f(R7®) since K7 (R, ©) < Kmaz(©) = 16 for the

range of values considered f6#..

the channel gain decreases froni00 dB to —130 dB, the

, A . optimal EE with fixed(M, K) = (2,1) decreases by a factor
MW}t{h futrth;ar Qecreas_,e i, it is obs?r\(;eg th?:] tggéomgma}llo_f about 39, whereas the optimal EE with varyingV/, K)

( J ) S arfs |ncc;eta5|ng,thas sugges eMIM}(/) & mF ' tr&'fgcreases by roughytimes. For a fixed M, K, R) it is clear
regime 1s reterred 1o as the massive regime. or r}ﬁat a30 dB decrease irG. (from —100 to —130 dB) will

:ﬁn?;f)f }\z/agjes (;{CC ccgadsreﬁ_m tlhe Ilr?utrteh Wzgtt?ser\ﬁncrease the power consumed by the PAs by a factor of roughly
a Zf( , ©) < Kmas(©) which implies that the additiona 103. In contrast, for the case of varying//, K), using the

constraintk” < Kmaz(®) does not have any impact 27)optimal values of M, K) from the figure, we observe that at

and thereforey? (R, 0) = n;(R,0) = GeC/s(R,0)/No. G, = _100 dB aKp, ~ 0.041 W, whereas a€, — —130 dB
We_ also pl_ot the unnorm_allzed optimal EE obtained by I Kp, ~ 0.051 W, i.e., the total power consumed by the PAs
laxing the integer constraints o/, K, 7), and observe that jycreases by only about25 times. Additionally, the power
154(R,0) = n/4(R,0) =~ 1,;(R,0) £ G.(;(R,©)/Ny radiated by each UT in fact decreases marginally fif2
when (M, K) are sufficiently large, i.e., the relaxation is tighiy at G. = —100 dB to about0.017 W at G. = —130 dB.
as argued in the text following (7). We also pigt,(R,©) = Thus, varying(M, K) in the massive MIMO regime helps
Gy (R,0)/Ny where(l,; (R, ©) is the optimal EE of the to reduce the dynamic range requirement for the PAs in the
ideal system withK < K,,,,(©) and integer constraints UTs which would help in improving PA linearity. Even in
on (M, K). From Theorenil4 it follows that for-141 dB the non-massive MIMO regime i.e., whe®, > —100 dB,
< G < —96 dB, the ration’ (R, ©)/n,, (R, ©) is bounded we could keep the power radiated from the UT to be fixed
betweenl and3/8. From numerical simulations we find thatat 0.02 W and still achieve near-optimal EE (since in the
this is true even Whe(‘lM, K, T) are restricted to be integers.non-massive MIMO regime, the power consumed by the PA
In Fig.[ n; (R, ©) =~ n’,;(R,0) for —141 dB < G, < —96 is anyways significantly smaller than the power consumed
dB. by other sources of power consumption, see RerhArk 1 and
From the figure we also observe that in the massive MIMBemark[2). The reduced dynamic range requirement for the
regime,n; (R, ©) decreases with decreasing channel gain  PAs validates the linear PA model assumed by us in Section
This confirms Theoreml]5. The same type of variation in tf#]
optimal EE of both the ideal and non-ideal systems (for seena In Fig.[2 we consider the scenario whére R, 7., B, G..)
ios wherep,ug < (Mp,+Kpg) andK < Kp0.(0) < T/4), and the ratios between the PCPs i@, 4, 1) are fixed. To
supports our hypothesis of studying the ideal system to mae precisepr = 2, R = 8 bps/Hz,G, = 10~° (=100 dB),
conclusions about the non-ideal system. 8 =1,6 = 10 and p = 0.02. We plot the unnormalized
In Fig.[d we also plot).;(2,1,7*(2,1, R, ©), R,©) which optimal EEn;,(R,©) as a function of decreasing.. Such
is the unnormalized optimal EE for a fixéd/, K) = (2,1) a scenario models reduction in the PCPs due to technology
(i.e., ¢:¢(2,1,7,R,©) is maximized over integral values ofscaling. As shown in Theorefdl 2, it is observed from the
1 < 7 < T). As discussed in RemaiK 5, from the figure ifigure that for large values of,. > 7.3 x 1073 W, ns (R, 0)
is observed that for decreasing values @f (when M, K increases linearly with decreasing (the slope of the log-
are larger thar2 and 1 respectively), the decrease in thdog curve is—1). From the analytical condition if_(21) of
optimal EE (with increasingM, K)) is much smaller than the Theoreni 2, we get thad/’; (R, ©), K};(R,0)) = (2,1) for
decrease for a fixedM, K) = (2,1). As an example, when p,. > 5.5 x 102 W (which agrees well witlp, > 7.3 x 1073
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169 . maximizingn, s (M, K,7,R,0) = Gen,s(M, K, 1,R,0) /Ny
AN jointly over (M, 7) € Z? subject toM > K and K < 7 <
E BN -¢- K7 (R, 60) 1 T. In the figure, atG. = —70 dB, the per-user information
Ll & —o—1(R,©) x 1077 | rate with optimal number of users (based on our model, i.e.,
—5- 1, (K =16, R,0) x 107 constanipg) is R/ K (R, ©) = 50/3 bps/Hz. This cannot be
10k o i a practical operating point due to the prohibitive compiexi
\\ of the channel decoders in the BS. Instead, with fikée- 16
8k N 8 (curve marked with squares) the per-user information raite i
Ly only 50/16 = 3.125 bps/Hz, and interestingly the EE is only
6F R <y ] 5 times less tham; (R, ©) (as suggested by Theorér 7).
4r ol .
IRCEERN APPENDIXA
2r B8 —8—8—8—%==9 PROOF OFTHEOREMI]
& ‘ ‘ ‘ ‘ The proof follows from the following where
—140 -120 100 80 —60 —40 we have used the abbreviationsM, K, for

Channel Gain G (dB) M 4(R,©1),K!4(R,01),7"(R,01) respectively, and sim-

Fig. 3. Optimal EE with a fixed = Kax(9) = 16, ie., /(K = larly M3, K3, 75 for M};(R,©2), K;;(R,02),7"(R, ©2)
16, R, ©) plotted as a function of varying channel gain, for a fixed higrrespectlvely.

spectral efficiencyR = 50 bps/Hz. Fixeda = 2, pr = pg = ps = 0.01 W, R (a) R
Co = 1079 J, B = 200 KHz andT. = 2 ms. —_— —

0 c sz(Rvel) - sz(M17K17Tf7R7@1)
®) R

W observed from the figure). We also observe that in this non- S Gy(M3, K3, 75, R, 01)

massive MIMO regime the optimal EE is roughly the same as © . . 8, w200,

the bounde(R, ©), which confirms Theoreriil 3. The bound = | eK2yz + psy + K (pdl + §(K2) T)
e(R,6) assumew,, = 0, and since it is tight, it follows that

for large values of(p,, pa, ps, Co) the power consumed by +M3 (pr1 + 2K3po, + 4(K2*)2p(%)>
the PA in the UT is a small fraction of the total system power

consumption (see Remalk 2).
P ( ) () <O‘K2*75 + ps, + K; (pdz + §(K5)2pﬁ)

With further decrease imp,, the PCPs satisfy condition < 3 T
(B4) when8 x 1077 < p, < 2.1 x 1072, From Lemma
in Appendix[F we expect that the optimal’,(R,0) is +M3 (pr2 + 2K3po, + 4(K2*)2p%)>
greater than one under these conditions (i.e., massive MIMO

regime). The optimal EE increases with decreagipngwhich - R (44)

confirms Corollary[R2. However, from the figure it is also (R, ©2)

observed that the rate of increase in the optimal EE is lesgnere (a) is due to[719), (b) follows froni {19) being a
in the massive MIMO regime when compared to that in thginimization problem and (c) follows froni{lL7). For step (d)

pon-ma_ssive MIMO regim_e. We belie\_/e this to be o!ue to theste that at least one among,, . pa, , ps, » po, ) is strictly less
increasing optima(}/, K) in the massive MIMO regime. In 145 its counterpart i9s. n

Fig. @ we have also plotted the EE achieved with a fixed
(M,K) = (2,1). As discussed in RemafK 5, it is observed
that in the massive MIMO regime the EE can be improved
significantly by varying(M, K) with changingp,. as opposed
to having a fixed(M, K) = (2,1) (compare the curves for
n;p(R,©) andn.r(2,1,7%(2,1, R, ©), R, ©)).

In Fig.[3, we consider a fixed high spectral efficiency ofM =
R = 50 bps/Hz, where the channel decoder complexity and
its power consumption (i.epg..) would vary significantly due (45)
to varying per-user information rate. Therefore for laiget
it would not make practical sense to have the optifddbased R — min min R
on our model wherey.. is assumed to be constant. For such ¢ (2,0) (M.K)EM, T€Z, Cr(M, K, 7, R,0)
scenarios, in RematfK 6, it is proposed that one should have th =TS

APPENDIXB
PROOF OFTHEOREM[Z

Consider the set

{(M,K)GZQ|M>K2 1,(M,K) # (2,1)}.

number of users to be significantly larger than the optifial min R (46)
based on our system model. In Hig. 3 we plot the EE achieved ’ el CGr(M=2K=1rTR,0)

with a fixed K = K,,,..(©) = 16 as a function of decreasing
G., for a fixed R = 50 bps/Hz,a = 2, p, = pqg = ps = 0.01

a fixed K is denoted byy”,(K, R, ©), and is computed by

and therefore in order to show that
W, Cy = 1077 J, B = 200 KHz andT. = 2 ms. The EE with (M};(R,0), K};(R,0)) =

(2,1) it suffices to show
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. R R . R
(MK)eM, rez, Cop(M, K, 7, R, ©) S (R©) ~  rel ((2.1,7.R,6)
K<r<T ’ 1<7<T ’
. R (a) 32 po
(47 s + 2pr + 4po + pa + = (54
> ;Ienzn C;2.1,7,R.0) (47) > P P Po T Pd 3T (54)
1<r<T
Since R > min . R a suffi- where (a)_folloyvs from the fact that, > 0 for. an_yl <
¢-5(2,L,IVT],R,©) mm1<eTZ<’T ¢:4(21L,7R,0) 7 < T. Again using Theorel2, for anjR, ©) satisfying the

cient condition which guaranteds {47) is that, for(@ll, K',7)  conditions in [2]l) we also have
such that(M,K) e MandK <7 <T R R
R R ————— = min —F—7F—————
> . 48 *(R,0 1<r<T (,¢(2,1,7,R,0
LGOLEnR®) oo Wi re) &8 GRe) Gt )

a . 32 Lo
Using the upper bound on, in (7) of Lemmall with @ a (121% %) P+ 200 +Apo+ pa+ oo

(M, K,7) = (2,1, |VT]) we get 32
R — 32p0 ® O‘Vu(T:\_\/TJ)+ps+2pr+4p0+pd+_@
(21L\/TJR@)_a7u+ps+2pr+pd+4p0+§? < 3T
<zf s Ly y 41 R () o 04(1+L\/TJ)(2171R§1 _1)
< | + a“D%TJ)(T@ S IR VT
32
+ps + 2pr + 4po + pa + 3%
32 po
s+ 2py 4 —=1.(49 32
+0s + 20 + pa +dpo+ =7 (49) @ ps+3pr+6p0+pd+?%
Also, for a?zy(M,K,T) from (I7) it is clear that < g(ps T 2 + 4po + pa + 3_32%) (55)

200

COrE o) M(p, + 2Kpo + 4K*22) | |
8 _»po where (a) follows from the fact that in the expression for

+ K(Pd + ;K ?) +ps- (50)  ¢.4(2,1,7, R,©) only v, depends on. Step (b) follows from

3
- " . the fact thatr = |V/T] satisfies the condition < 7 < T
A sufficiency condition for[[48) (and therefore fdL{47)) 'Sh the minimization in step (a), sinc€ > 1. The notation

g}FEEeKR)'E'; oif[é(BO) is greater than the R.H.S.[of (49) nyru(T = |V/T]) is used to highlight the fact that we choose
’ T o 8 oo T = |VT]. Step (c) follows from[(7) of Lemmall (with
M (pr + 2Kp0 + 4K*2) + K (pa + SK*22) +p, (M,K,7) = (2,1,|v/T))). Step (d) follows from the fact
JT r that (R, ©) satisfies[(2I1). Usind (54) and (55) along withl(15)
o a(l + [VT]) (214@i _ 1) and [22) completes the proof. [
1+ [VT| VT
32p
+ps + 2pp + pa + 4po + ??o . (1) APPENDIXD
PROOF OFLEMMA [2]
For any(M, K) € M it is clear that
M(pr 2Ky + 4K2@) +K(pd + §K2@) + ps From [9) we know thatp,,.q is a sum of two terms,
T < 3T IMKCyB + (4AMK?Cy/T.) and 8K3Cy/(3T.). We will
> 3(pr 1200 +4@) + (pd + _@) + ps show that if© satisfies the conditions i (25), then for all
T 39 3T 1 < K < K42(©) and anyM, the first term ofp,,,..q is less
> ps + 3pr + pa + 6p0 + —@. (52) thanMp, and the second term is less th&mp,. The fact that
) ) 3 T . ) the first term is less than or equal idp, follows from the
32 Lo
ps+3Pr+Pd+6PO+?T > ps +2pr + pa +4po (2MKCOB+4MK2%) 2KCOB K Cy
R . = + o
32 po « a(l+ L\/Tj) LTl Mp, Dr pr1e
== 2 —1)| (53
Srtiivn T v (2 -1)| &9 (@ 2K%+4K2;—3
which completes the proof. u ) Kmaz(©)po ) Kmaz(©)
< o (2+ T/4 )
APPENDIXC o o Kmaz(©)p0
PROOF OFTHEOREM[3 © 3,07 <1 (56)

From Theorerl2 we know that, for aff, ©) satisfying the
conditions in [(21L), the optimdlM, K) = (2,1) and therefore where (a) follows from[(15) and (b) follows from the fact that
K < Kna(©). Step (c) follows from[[24). Next we show
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that the second term of,,..4 is less than or equal t& p,. Using this in [29) we get
SKEGR () 2Kpo 4K ﬁ = M’ Kflz@ K,R,©
Kpqg = 3pa T csi( k) ) Ccsi( csi( L) )a L) )
2Kmaz(@)p0 4Kmaz(@) 1

() =— | K(pg + pr) + 27/ ap, K(2B/K — 1) + p, |.(62
2 vy T 7 | K(pa+pr) \/p( ) + ps |-(62)
(e)
< 1 (57) we next minimizel/¢ (K, R,©) w.r.t. K, subject to the

where (a) follows from[{T5) and (b) follows from the fact thafonstraint thatl < K < Kﬂm(@)/’ However we firstly
K < Kumae(©). Step (c) follows from[{24). The inequalitycons'der finding the minimum of /{/,,(K, R,©) when K
in @) now follows from [56) and(57). Also, froni{24) and'S unconstrained and then introduce the constraints [ates.

condition (C.1) in[[ZB) it follows that ;.. (0) > 10. m Uunconstrained minimum is obtained by setting the derieativ
e of 1/¢/,(K, R,©) w.r.t. K to be zero. Doing this, we see that

the optimal K’ must satisfy

APPENDIXE )
PROOF OFLEMMA[3 et pyt ap,(28/K —1) 28K i log(2)ap, _
The equivalence betweefi {25) an@{(33), (D.1) [ofl (34)) K’ Vap K'(2F/K —1)
follows from (32). Using the definition of(©) in (@8), we (63)
observe that (D.2) of(34) is equivalent to Further for any (R,©), the second derivative of
(4R /3K 1a2(©)) _ g(c¢(©)) (58) 1/¢..;,(K, R,©) w.r.t. K is positive, i.e.
4R /3K 1o (© © 2 /.
V4R/ (©) Ve(®) d (1/(021;{12,}3,@)) >0 VE>0 (64)

Sinceg(z)/+/x is a strictly monotonically increasing with >
0, it follows that [58) is equivalent t§ s < ¢(0), e, 1-€.1/Cy (K, R, 0) is a strictly convex function of< > 0 for

R < 3¢(0)Kmar(©) = 3Ry (0), which completes the any gwen(R, 0). Theref_ore if there exists a s_olutlon_ (g_)__[63),
proof. The uniqueness a{©) in (@) is due to the fact that then it has to be the unique global unconstrained minimum of

. A
g(z)/+/z is unbounded and strictly monotonically increasing./Ccs; (K, 1, ©) w.r.t. K. With the notationr = R/K’, the

m condition in [63) can be equivalently written as
Pd R
/ B + —_ = 65
APPENDIXF ( P \/pr) «@ 9(r) (63)
!
TIGHT BOUNDS ON( 4 (R, ©) FOR (R, ©) SATISFYING (33) where g(-) is given by [35). It can be shown thatr) is

AND (34) a strictly monotonically increasing function ef g(0) = 0
The following theorem presents the exact solutior{td (31)and dg(r)/dr?* > 0. Since (\/pr + pa//Pr)V/ R/ > 0, it
Theorem 8: For a given (R, ©) there exists a unique follows that the solutidHl to (68) exists and is unique, and

2'(R,0©) > 0 such that we denote it byr = 2/(R, ©) (this proves[(89)). Since =
R/K' = 2/(R,©) is the unique solution td(65), it follows
Rp, that the unique solution t¢(b3) &' = R/2'(R, ©).
'(R,0) = (1+2 59 q )
9(=' (R, ©)) ( + pr) ! (59) Given that R/2/(R,0©) is the location of the unique

minimum of the objective functionl/. (K, R, ©) without
any constraints onkK, we will next find the expression
for the unique minimum ofl /¢’ (K, R,©) subject to the

where g(z), z > 0 is given by [35). For any giver®
satisfying [38), the solution td_(B1) is given by

K!,(R,©) = max( min (%, Kmam(e)) , 1) constraintl < K < Kp;,..(0). If R/2'(R,0) lies in the
, / (R, ©) interval [1, K,n..(©)] then it is clear that?/z'(R, ©) wil
M. (R,©) = Kiu(R,0) remain to be the unique minimum of the objective function

o (2R/KL(RO) _q 1/¢,;(K, R,©) under the constraint < K < K,,,,(0).
+/ K::si(Rvg)\/ ( 5 ) (60) If the unconstrained minimunk/2'(R,©) < 1, then since
" the objective function is strictly convex i (from (64)) it

Proof: In (3), in order to minimize——-~——— w.r.t. both follows that its derivative w.r.tK is strictly positive for all
' Ceni (M, K, R, 0) e : . :
M and K, we first minimize it w.r.tM for a given(k, R,0), K € [1, Kma.(0)] (the derivative is an increasing function
ie. of K and is zero al{ = R/2'(R, ©) < 1). Hence for the case
M'(K,R,©) = arg min v whenR/z'(R,©) < 1, the uniqgue minimum of the objective
MeR, M>K (esi(M, K, R, ©) function in the interva[l , K,,..(0)] will be at K’ (R, ©) =
B , K 2R/K _1 M L. Lastly, if R/2'(R, ©) > Kna:(©), then since the objective
_argMeﬁlﬁ>K E(O‘ M—-—K TPt Epr) function is strictly convex inK it follows that its derivative
a(2R/K 1) 1%“Solution to [6B)” refers to the value of > 0 such thatg(r) = (\/pr +
=K —— VK. 6 pr
+ Pr VE (61) pa//Pr)\/ R/a.



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. XX, XX XXXX 14

w.r.t. K is strictly negative for all K € [1, K;0.(0)]. Lemma 6: Consider any® satisfying [3B) and?; < Ry <
Hence for the case whe®/z'(R,0) > Kp.:(0), the Ry...(0) suchthatbotiR;, ©) and(R2, ©) satisfy condition
unique minimum of the objective function in the interva(D.3) of (34). It follows that
1, Kinae(©)] willbe at K. (R, 0) = Kq4(©). Combining
all these cases we get the expression fof,;(R,©) in ¢ (R1,0) < (..(Rs,0). (72)
(60). Further, from[(61) it follows that the optimall is
Mési(Rv 6) = Mési(Kési(Rv 6)5 Rv 6) u

From LemmdB we know that anyz, ©) satisfies (D.2) of  proof: We will show that the partial derivative df (R, ©)
(39) if and only if R < 3Rz (©)/4. Along with this fact, the wrt. R is positive for any(R,©) with © satisfying [33),
following lemma shows that for anjR, ©) satisfying [38) and (R,©) satisfying (D.3) of [34) andR < Ry.q.(©). Since
(B4), K.,;(R, ©) lies strictly betweenl and Ky.a2(©). This R < R,,,.(©) and(R, ©) satisfies (D.3) of(34), from Lemma
result is useful later in deriving tight bounds ¢fy. (R, ©). it follows that

Lemma 5: For any© satisfying [3B) and anyz, we have

R < Ry42(©) if and only if R/2'(R,©) < K4.(0), i.€. 1 < K/, (R ©O) < Knaw(®). (73)
R
R < Rpax(©) = (R0 < Kpaz(0). (66)
) Using [73) in [6D) we get
or equivalently
R < Rpaz(©®) <= K/, (R,0) < Kp(0). (67
) :9) o0 KL,(RO) = o (74)
Further for any® satisfying [38),(R, ©) satisfies (D.3) of (R, 0)
(39) if and only if K/ ,(R,0) > 1, i.e.
K ,(RO) > 1. (68) Using [73) in [60) and(31) along with the definition @fz)

we get
Proof. Note thatR/z'(R,0) < Ki,..(©) if and only if
z'(R,0) > R/Kq.(©) which in turn holds if and only if 1 - Yh(a') + 22

A
9@/ (R,0)) @ g(R/Kas(®)) , or equiv. Cesi(1,©) ,
whereh(z') L 2(2" - 1) 75)
pd Rp, (] L : - ; 91 o 10g(2) “or 11
(1 + pr)\/j . g(Kmam(e)) , Or equiv.
)

pd\ | Kmaz(©)pr 9(R/ K 1naz(9)) . _ o
I+—= W\ ———— > —F————== , orequwv. / _
( pr) a R/ Koman(O) q wherex’ is used as an abbreviation fof(R, ©). Further

>

g(C(@)) (¢) g(R/Kmaz(e))
AN A A A 69 -
@ - R (0) ®) o (I/CCM(R,@)) (4 (RO e
oR ProoPd™"5R R
.Wher.e (a) fol_lows from the fact that(x) is strictly monoton- dh(z) 02'(R, ©) Ds
ically increasing withz > 0. Step (b) follows from[(59) and = (pr + pa) =7 = le=s'(r0) —r g (9

step (c) follows from the definition of(©) in ([36). Since
g(x)/+/x is strictly monotonically increasing with: > 0, .
step (c) above is equivalent t§0) > R/K,nas(0), which is ~ From Theorem[8 we know thay(z'(R,0)) = (1 +

in turn equivalent toR < ¢(0)K,42(0) = Rpmax(©). This (pa/pr))\/ Rpr /o and therefore for a fixe®, g(z'(R,0))
proves [(GB). increases strictly monotonically with increasifyg Sinceg(-)

From the expression fodk’_(R,©) in (80) it follows is a strictly monotonically increasing function, it follewv
that R/« (R, ©) < Kyas(O) i 'and only if K’ (R,0) < that 7/(R,©) increases strictly monotonically with increas-

Komaz(©). This along with [65) then proveE(67). Conditiod"d &, that is dz'(R,©)/0R > 0. Using this in [75)
(D.3) of (32) is equivalent to along with the fact thatdh(xz)/dz < 0 we finally get

d(1/¢..(R,0))/OR < 0. (]
o) > (142 = gre)  0) ( )

r (67

and sincg(x) is strictly monotonically increasing with > 0
we equivalently get

Z(R,©) < R, or equiv,L > 1. (71)

z'(R,0)
Lemma 7: For any(R, ©) satisfyin and(34) we have
SinceK ,4.(©) > 1 (from (33)), using[(71) in[{60) we finally 4 ) ying [33) and{34)
get [68). Similarly, ifK._,(R,©) > 1, then from[[6D) we have

R > 2'(R,©) which then implies[(70), which in turn implies / 3, (4R 3
(D3) Of @) u sz(R’ 6) > ] Ccsi( 3 7@) > ] Ccsi (Rv 6) (77)

A. Lower bound ort’ ;(©)
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Proof. The lower bound or(;f(R,G) follows from the Proof. An upper bound can be derived by considering

following chain of inequalities Dmud :RO, i.e., from [28) we have
- i Kvyu + ps + Mpr + Kpa
R . 8 2 po ' (R,0) z M}?ﬂlnm?’ any
5= = min (ozK’yu + Klps + K" = AN éx’q}ﬂe e‘)
sz(Ry @) 1£1;§,§[g21§]]j':(_‘))7 ( 3 T) 1}?§T_<Tn,“]l\?(>}g’
K<t<T ,M>K (@) ) (2R/K _ 1)
S min osz#—ps—b-Mpr—b-Kpd
+ps+ M (Pr + 2Kpo + 4K2”—7?)> | M Fjer? loy (M - K)
T M>K
R
(@ - _aK K\ (rate g = —ra (80)
< (M,}?E)ILR?’\ |: (M - K) ( + T )( " ) Cesi(R,©O)
<K<Kmaz(© H
e (B MK where the last equality follows froni_(R9) %n[[\?l). Step
K 2K(l—%) —1
+ Ka+7 + ps + 2Mp, + 2Kpd:| (a) follows from the fact thaty, > £t7 —arn >
2%71
. K N . N [
® min o M (o ruKmar@®@7/TY _ 1 I—FK) (see [(6)).
(0110052 | [ (M—K)( )
1<K <Kmax (O),
M>K C. Proof of Theorerh]5
Sincep, = G.p./(NoB), it follows that [41) is equivalent
+2ps +2Mpr + 2Kpd} to (34). Since(R, ©) satisfies[(38) and (34), from Lemrha 3
. we haveR < R,,..(0©) and therefore from Lemnid 5 we have
© QaK(QW - 1) K!(R,0) = R/2'(R,©) which gives us[(75). Froni.(T5) it
s min  ———————2% 4 2p, 4+ 2Mp, + 2K - isfi
< e T (MoK P p pd follows thatn.; (R, ©) satisfies ,
1§Ky§]é<>m}gz(®) (RB)/p- _((1 + AR (1 202 — 1) ) n 5)
(d) 8R/3  (e) 8R/3 78) Nesi (R, O) o 2¢'z'log(2) —2*" +1

where step (a) follows from Lemnid 1, Lemia 2 (conditionwherez’ is an abbreviation for’(R, ©). It can be shown
(@5) in Lemma® is implied by[(33) and (D.1) df{34)). Wethat the partial derivative of the R.H.S. above w.rt(R, ©)
have also used the fact that= K, (O) is a valid choice is negative and therefolre singe is constant we have
sincer = K0:(0) < T andt = K0 (©) > K. In step (b) W < 0. (82)
we have used the fact théit+(K/7)) = (1+ K/ Kpmqe(0)) < (R, ©)
2 sinceK < K,,4.(0©). In step (b) we have also used the factSince (o, R, T, pr, pa, ps, Co) are fixed,(o, R, T, 3,0, 1) are
that oK/ (K + 7) 4+ ps < 2ps sinceaK/(K + 1) < /2 also fixed, and therefore from Lemink 4 we also know that the
(as K < 1) anda/2 < ps (from (D.1) of 32)4 step (c) partial derivative of’ (R, ©) W.ILL pp is positive/and therefore
follows from the fact thatis,...(0) < T/4 (see [2H)). Step sincep, is fixed we hqveazgé%;@) = 25 ama(;i,@) > 0.
(d) follows from [29) and[(31). Using this fact along with[{82) completes the proof. N
Since (R, ©) satisfies [(3B) and[(34), from Lemnid 3 it
follows that Ry 2 R< 3Rnmaz(©)/4 and thereforeRs 2 D. Proof of Theoreril6

4R/3 < .Rm‘”(@)' Note that since(R, ©) Sa.tIS.erS (D.3). .Of Since(R, ©) satisfies the conditions il (B33) arld{34), from
QDEC)% it f|s cIearSFhat(Rl = R,0) alsto_ ?Iatlsfles ct:on_d|t||?n Lemmalb it follows thatk”_ (R, ©) — R/z'(R,©), From
(D.3) of (34). Sinceg(x)/\/x is a strictly monotonically | o2 we know that'(R, ©) decreases with decreasing
|r12crea5|ng funcglon withe > O_andRQ > Ry, it follows tha_t pry and sinceK’ (R,©) = R/z/(R,0) it follows that
9°(I2)/ Ry > g*(F1)/Ry. Using this in (D.3) of [34) itis . (R, ©) increases strictly monotonically with decreasing
clear that(R2, ©) also satisfies this condition. Step (e) nomb o8t

follows from Lemmel 6. B Using K (R,0) = R/2'(R,©) in (60) along with the

CcS1

expression fog(x), gives us

B. Upper bound or’;(R, ©) (1+8)(2" —1)

: . Mém ’ = Kém ’ 1 7 7 83
Lemma 8: For © satisfying [38) and any? > 0 we have (R, ©) (. ©) ( t oy log(2) — 2= + 1) (83)
C.;(R,0) < (l4(R,0O). (79)  wherez’ is an abbreviation for/(R, ©). It can be shown
A

. _ that s(z') = (2°° — 1)/(2*2" log(2) — 2°" + 1) increases
Since for anyv > 0, v/1 +v > 1, from (?) r(ltge ';’rOOf of Lemm&ll gurictly monotonically with decreasing’ > 0. From Lemma
(K+7) (2 T/ —1

it follows that s, is lower bounded by S— Therefore [ we know thatz’(R,©) decreases strictly monotonically
(1 T — - ’ . - . . /

tightening of LemmallL can at best replace the tarf + ) in the R.H.S. W'th decreas_mgor. Comblr_ung the_se facts W_e see _thﬁfv )

of (@ by a smaller positive value, say (K -+ 7) for somee < 1. Using this  increases strictly monotonically with decreasjing Using this

tightened bound of Lemn{d 1 in step (a) bfl(78), the main resuf@d) will fact in (33) a|0ng with the fact thak”’ -(R @) increases with
continue to hold even ifs > € /2. Sincee < 1 it follows that tightening of esty U

; ) , ) .
the bound in LemmE&]1 will result in the conditign > /2 getting relaxed decrea5|ngpr It _fOHOWS tha_t M;;(R,©) increases strictly
to ps > ear/2. monotonically with decreasing,.. |
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E. Proof of Theorerhl7

In (@3), the Ilower bound on the
2+(R,0)/¢,¢(K,R,0) follows from the fact that K
is not necessarily equal to the optimal (R, ®©). Starting
from the definition of(’ (K, R, ©) in @2{ and usingk’ as
an abbreviation foK’_, (R, ©) we have

cst

L = min aK~y, +
C;f(K7 R7 @) (]VI,T)E]Rz\ T ps
K<r<T,M>K
20
+M(pr + 2Kpo + AK T)
8 2 PO

+K (o0 + 5K F)
@ min 22K (2% - 1) s + 2Mpy + 2K
< wrfrlelﬂ?\ [ ) + 2ps + pr + pPd

JM>K
O oK+ o) + 2o K@ 1) + ]
c K R
© 275 [K’(pd+pr) + 2\ ap, K'(2%7 —1) + ps]
K R

@ 9 _ = 84
= K TR, ©) (9
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where step (a) is exactly similar to the sequence of steps (@)] A-J. Annema, B. Nauta, R. V. Langevelde and H. Tuinhdanalog

(b) and (c) in [ZB) for a fixed< (note that® satisfying [3B)

andK < K,,..(0) are sufficient conditions for steps (a), (b),
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and (c) in [ZB) to hold). Step (b) follows frorh (61) and(62)

for a sum-rate oftR/3. Step (c) follows from the fact that
K > 4K!_.(R,0)/3. Step (d) follows from Theoreml 8 (in

the proofcgf Theorerhl8, substituting = K'_;(R, ©) in (62)
gives usl/¢/ (R, ®©)). Further from Lemmal8 it follows that
L+ (R,©) < (,;(R,©). Using this along with[(84) we get
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