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Han, Fellow, IEEE

Abstract— In this paper, we consider a decode-and-forward
based wireless multihop network with a single source node, a
single destination node, and N intermediate nodes. To increase
the spectral efficiency and energy efficiency of the system, we
propose a cooperative multihop communication protocol with
spatial reuse, in which interference is treated as noise or can be
canceled. The performance of spatial-reused space-time coded
cooperative multihop network is analyzed over Rayleigh fading
channels. In particular, the exact closed-form expression for the
outage probability at the nth receiving node is derived when there
are multiple interference sources over non-i.i.d. Rayleigh fading
channels. Furthermore, the outage probability expressions are
derived when nodes are equipped with more than one antenna.
In addition, to reduce the effect of interference on multihop trans-
mission, we propose a simple power control scheme which is only
dependent on the statistical knowledge of channels. In the second
approach for managing the interference, linear interference
cancelation schemes are employed for both non-cooperative and
cooperative spatial-reused multihop transmissions. Finally, the
analytic results were confirmed by simulations. Simulation results
show that the spatial-reused multihop transmission outperforms
the interference-free multihop transmission in terms of energy
efficiency in low and medium SNR scenarios.

I. INTRODUCTION

Cooperative multihop wireless systems have been consid-
ered as the promising technique to extend coverage area and
reduce power consumption [1], [2]. This technique relies on
the concept of multihop diversity introduced in [3] where the
benefits of spatial diversity are achieved from the concurrent
reception of signals that have been transmitted by multiple
previous terminals along the single primary route. This scheme
exploits the broadcast nature of wireless networks where the
communications channel is shared among multiple terminals.
In [2], three cooperative multihop transmission protocols were
proposed that compromise between spectral and energy effi-
ciencies. Other variations of multihop diversity are studied in
[4] and [5]. In [4], it is shown that a CDF-aware multihop
diversity results a significant diversity gain over Nakagami-
m fading channels. A buffer-aided multihop diversity scheme
in [5] can be also exploited for enhancing the reliability of
wireless multihop communications.
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To further increase of multiplexing gain and energy ef-
ficiency, in this paper, we consider a cooperative multihop
transmission with interference due to the simultaneous trans-
mission of multiple packets. The idea of multihop transmission
with spatial reuse is proposed in [6]. To facilitate concurrent
transmission of several packets in the network, the available
bandwidth is reused among transmitters, with a minimum
division of K nodes between simultaneously transmitting
nodes. Therefore, we have to deal with a type of co-channel
interference (CCI).

The performance analysis of multihop transmission in
Rayleigh fading channels under CCI were recently studied
in the number of literature such as [7]–[11]. In particular,
the performance of a dual-hop relay network over CCI was
studied in [12]–[14], while the multihop case was studied in
[15], [16]. The impacts of imperfect channel estimation in such
networks have also been studied in [17], [18]. For an arbitrary
but fixed number of Nakagami-distributed interferers per hop,
authors in [15] derive closed-form expressions for the outage
probability of AF and DF relaying. In [16], the authors have
investigated the asymptotic error probability for the channel
state information (CSI)-assisted amplify-and-forward multihop
over Nakagami-m fading channels in the presence of the CCI.
Other related works include upper-layer game-theoretic studies
such as in [19], [20]. However, to the best of our knowledge,
this is the first work that investigate the performance analysis
of multihop networks with multiple interferences over non-
i.i.d. Rayleigh fading. This is of primarily importance for
the study of interference due to spatial reused cooperative
multihop transmission.

In this paper, we study the performance analysis of the
decode-and-forward based cooperative multihop transmission
with interference due to the concurrent transmission of mul-
tiple data. The capacity of the cooperative multihop transmis-
sion can be improved by using the spatial reuse scheme. The
achievable rate of the multihop transmission can be increased
up to ⌊N+1

K
⌋ times, where K is the minimum separation of

concurrently transmitting nodes in a network with N relays,
in expense of performance degradation. Moreover, we derive a
closed-form expression for the outage probability of the coop-
erative multihop system in presence of interferences due to the
spatial reuse over Rayleigh fading channels. The simplicity of
the calculated expression can give insights on performance of
the system and ways to optimize the system. In addition, the
asymptotic formulas for different signal-to-noise ratio (SNR)
and interference-to-noise ratio (INR) conditions are derived.
Furthermore, we generalize the spatial-reused cooperative mul-
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(a)

(b)

Fig. 1. Multihop-then-Cooperate Protocol: (a) Initial phases; (b)
Subsequent phases using a distributed space-time code with M = 4.

tihop transmission to the case of nodes with more than one
antenna. The outage probability expressions for the spatially-
reused cooperative multihop transmission are derived when
nodes are equipped with multiple antennas. Next, we formulate
the problem of minimizing the transmit power for an outage-
restricted equal power multihop network under the assumption
of no instantaneous CSI knowledge at the transmitters. As
another approach for managing the interferences induced by
spatial-reused transmission, interference cancelation schemes
are utilized in multihop networks with multiple-antenna nodes.

The remainder of this paper is organized as follows. In
Section II, the system model and protocol description are
given. The performance analysis of cooperative multihop
transmission with spatial reuse is presented in Section III.
In Section IV, two power control schemes are proposed. The
interference cancelation techniques to remove the interferences
induced by spatial-reuse transmissions are given in Section
V. In Section VI, the overall performance of the system is
presented for classical line networks. Finally, the conclusion
is presented in Section VII.

II. SYSTEM MODEL AND PROTOCOL DESCRIPTION

Consider a wireless communication network in which the
source s intends to transmit its data to the destination d

with the help of N cascaded intermediate nodes. Due to the
broadcast nature of the wireless channel, some intermediate
relays can overhear and retransmit the received packets. The
channel between any two nodes in the network is assumed
to be a Rayleigh fading. Analogues to [1], each transmission
could either be a broadcast transmission where one node
transmits the signal that is heard by multiple receivers, or be
a cooperative transmission where multiple nodes concurrently
transmit the signal to a single receiving node. Here, we adopt
the cooperation protocol proposed in [21] which consists of

N+1 transmission phases. We assume there is no CSI knowl-
edge at transmitters and only statistical CSI is available at the
transmitters. Thus, distributed space-time coded transmissions
like codes proposed in [22] are the feasible choice to be
employed for the cooperative transmission.

In general, cooperative transmission protocols have two ma-
jor phases: non-cooperative and cooperative stages. Depending
on the requirements, the non-cooperative phase may contain
one or multiple steps. The next phases employ space-time
cooperated transmission. As an example, Fig. 1 depicts a
protocol employing distributed quasi-orthogonal space time
code (D-QOST) with M = 4, where M is the number of
cooperating nodes. The detailed description of cooperative
multihop protocols, i.e., Broadcast-then-Cooperate, Multihop-
then-Cooperate, and Full-Cooperation, is studied in [23].
For consistency, hereinafter, we consider the Multihop-then-
Cooperate protocol illustrated in Fig. 1. However, the proposed
procedure can be easily modified using two other protocols.
Assuming the usage of full-rate distributed space-time codes,
the number of cooperating nodes is equal to the transmitting
packets. Hence, the source node intends to transmit M packets
to the destination. The signals transmitted by the source
terminal during the mth time slot of Phase 1 is denoted as
sm(t), m = 1, . . . ,M where t is the time index and is indicated
as a group of M packets transmitted at a given time, and
E{sm(t)}= 0 and E{|sm(t)|2}= 1 for m = 1, . . . ,M. In Phase
1, the source transmits the information, and the signal received
at the ith node in the first M time slots is given by

yi,m(t)=
√

P0,1h0,ism(t)+ vi,m(t), for m = 1, . . . ,M, (1)

where P0,1 is the average transmit power of the source sym-
bol in the first phase, and vi,m denotes complex zero-mean
white Gaussian noise with variance N0. The link coefficients
from the jth node to the ith node h j,i, j = 0,1, . . . ,N, i =
1,2 . . . ,N + 1, are complex Gaussian random variables with
zero-mean and variances σ2

j,i, where the (N +1)th node is the
destination d. We assume coherence times of the channels are
such that channel coefficients h j,i are not varying during M

consecutive time slots. Note that σ2
j,i = (d0/d j,i)

δ is the path-
loss coefficient, where d j,i is the distance between nodes j and
i, δ is the path-loss exponent, which typically lies in the range
of 2 ≤ δ ≤ 6, and d0 depends on the operating frequency.

For the first M − 1 phases, we repeat the non-cooperative
transmission described above for the nth relay, 1 ≤ n < M−1
to retransmit the source data. After initial stages, the coop-
erative transmission is utilized for routing the source packets
to the destination. In contrast to [1] where transmitters are
able to modify their phases, here, the instantaneous CSI is not
known at the transmitter nodes. This assumption is realistic for
most wireless systems. Hence, space-time coded cooperation
is the appropriate choice to achieve the spatial diversity gain.
In Phase n, M ≤ n, the previous M nodes transmit their
signals concurrently toward the next node using an appropriate
distributed space-time code.

To facilitate the simultaneous transmission of several pack-
ets in the network, the available bandwidth is reused among
transmitters, with a minimum separation of K nodes between
concurrently transmitting nodes. Fig. 2 shows a spatial-reused
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Fig. 2. Spatial-reused cooperative multihop network with M = 2.

cooperative multihop network with M = 2. Since in Phase
n ≥ M, M nodes transmit the intended data to the nth node,
and by assuming half-duplex transmission, the minimum value
of the spatially-reused factor K is M + 1, and thus, M + 1 ≤
K ≤ N +1. For the message detection, the nth node consider
all received signals not coming from the M previous nodes as
Gaussian interference. In this work, we treat the interference as
the additive Gaussian noise. In the presence of inter-network
interference from the spatial-reused nodes, for n ≥ M the
received signal at the n-th receiving node can be represented
as

yn,m(t) =
M

∑
m=1

√

Pn−m,nhn−m,n xn,m(t)

+ ∑
u∈Un

M

∑
m=1

√

Pu−m,uhu−m,n xu,m(t − τ)+ vn,m(t), (2)

where xn,m(t) is the zero-mean space-time coded signal,
normalized as E{|xn,m(t)|2} = 1 during the whole packet
transmission, and Pn−m,n, m= 1, . . . ,M, is the average transmit
power of node n−m during the mth time slot of Phase n. In
(2), Un denotes the set of nodes transmitting simultaneously
with Nodes n−m, m = 1, . . . ,M, due to spatial reuse, i.e.,

Un = {u ∈ {1,2, . . . ,N +1}|u ̸= n and K divides n−u} , (3)

and τ = n−u
K

. If there is the knowledge of forwarding channels
at the nth node, the interference from the forwarding messages
can be easily removed. The reason is that those messages have
already detected in the nth node. Therefore, in this case, the
set of interfering nodes in (3) can be modified as

U
′

n = {u ∈ {1,2, . . . ,n−1}|u ̸= n and K divides n−u} . (4)

However, estimating the forwarding channels might not be
practical due to increasing the signaling overhead. Thus, it
is assumed that all hops use the total bandwidth of W , and we
are interested in the reliable delivery of messages at a rate of
R bits/second/Hertz by consuming the minimum total transmit
power.

III. PERFORMANCE ANALYSIS OF MULTIHOP

TRANSMISSION WITH SPATIAL REUSED SPACE-TIME

CODED COOPERATION

In the following, the outage probability ρout
n , Pr{rn <R} of

the nth receiving node at the nth hop in spatial-reused system
is derived, which describes the probability that the transmit
rate R is larger than the supported rate rn. This probability

depends on the fixed transmission parameters and the channel
condition within the hops.

In the cooperative multihop transmission with spatial reuse
factor of K, from (1) and (2), the instantaneous achieved rate
at the nth hop becomes

rn =
1
K

log

(

1+
∑M

m=1 Pn−m,n|hn−m,n|2
N0W+∑u∈Un ∑M

m=1Pu−m,u|hu−m,n|2

)

, (5)

where Pn−i,n = 0 for n = 1, . . . ,M−1, i = 2, . . . ,M.

A. Outage Probability

Here, we derive an exact closed-form expression for the
outage probability at the nth receiving node in presence
of interference from the multiple-antenna secondary BS. By
defining γth , 2RK −1, the outage probability of the coopera-
tive transmission can be given by

ρout
n = Pr

{

∑M
m=1 Pn−m,n|hn−m,n|2

N0W+∑u∈Un ∑M
m=1Pu−m,u|hu−m,n|2

< γth

}

. (6)

Thus, the receiver can reliably decode the source data when-
ever rn ≥ R. For decoding the message correctly, the outage
probability must be less than a desired end-to-end outage
probability ρmax.

Lemma 1 ([24]): Considering a set of independent expo-
nential random variables X = {X1, . . . ,XM} with mean of
σ2

xm
, m = 1, . . . ,M, the cumulative distribution function (CDF)

of the summation of independent-not-identical exponentially
distributed random variables, i.e., X = ∑M

m=1 Xm is given by

Pr{X < x}=
M

∑
m=1

αm

(

1− e
−x

σ2
xm

)

, (7)

where

αm =
M

∏
j=1
j ̸=m

σ2
xm

σ2
xm

−σ2
x j

. (8)

Using inductive reasoning, the following lemma can be
obtained:

Lemma 2: For αm defined in (8), the following properties
hold:

M

∑
m=1

αm = 1, (9)

M

∑
m=1

αm

σ2k
xm

= 0, for k = 1, . . . ,M−1, (10)

M

∑
m=1

αm

σ2M
xm

=
(−1)M+1

∏M
m=1 σ2

xm

. (11)

Proposition 1: Given finite sets of independent random
variables X = {X1, . . . ,XM} and Y = {Y1, . . . ,YQ} with non-
identical exponential distribution and mean of σ2

xm
, m =

1, . . . ,M, and σ2
yq

, q = 1, . . . ,Q, respectively, the CDF of

SINR =
∑M

m=1 Xm

1+∑
Q
q=1 Yq

can be calculated as

Pr{SINR < γ}= 1−
M

∑
m=1

αm e
− γ

σ2
xm

Q

∏
q=1

(

σ2
yq

σ2
xm

γ +1

)−1

. (12)
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Proof: The proof is given in Appendix I.

From Proposition 1 and by defining Xm =
Pn−m,n|hn−m,n|2

N0W
,

m = 1, . . . ,M, Yq =
Pu−m,u|hu−m,n|2

N0W
, q = 1, . . . ,Q, and Q = |Un|M

where |Un| denotes the cardinality of the set Un, the outage
probability in (6) can be written as

ρout
n = Pr{SINR < γth}= 1−

M

∑
m=1

αm,n e
− γth N0W

Pn−m,nσ2
n−m,n

× ∏
u∈Un

M

∏
i=1

(

Pu−i,uσ2
u−i,n

Pn−m,nσ2
n−m,n

γth +1

)−1

, (13)

where

αm,n =
M

∏
j=1
j ̸=m

Pn−m,nσ2
n−m,n

Pn−m,nσ2
n−m,n −Pn− j,nσ2

n− j,n

. (14)

The outage probability ρn at the nth receiver is affected
by all previous n nodes. An upper-bound expression for the
outage probability at the destination, i.e., at the (N+1)th hop
can be found as [23, Eq. (29)]

ρout ≤ 1−
N

∏
ν=0

(

1−ρout
N−ν+1

)ΩM(ν)
, (15)

where ΩM(ν) = 1, 0 ≤ ν < M, which represent the first
M−1 non-cooperative phases, and ΩM(ν) = ∑M

i=1 ΩM(ν − i),
M ≤ ν ≤ N, describe next M-cooperative phases. Note that
for the case of M = 2, {Ω2(ν)} is a Fibonacci sequence,
i.e., Ω2(ν) = Ω2(ν − 1) + Ω2(ν − 2). In addition, for the
extreme case of M = N + 1, we have ΩM+1(ν) = 2ν−1. In
addition, when M = 1, i.e., in the non-cooperative multihop
transmission scenario, we have Ω1(ν) = 1, for ν = 0, . . . ,N.
It is important to note that assuming the equality in (15)
implies that the outage at the destination happens even if one
intermediate node experience an error. This guarantees that by
using the power control strategies proposed in the next section,
the outage probability QoS at the destination is satisfied. By
assuming, ρout

n = ρ0, n = 1, . . . ,N + 1, to get an insight into
the relationship between the end-to-end outage probability of
ρdes , ρN+1 and ρ0, we have

ρdes= 1−
N

∏
ν=0

(1−ρ0)
ΩM(ν)=1− (1−ρ0)

∑N
ν=0ΩM(ν). (16)

Thus, the target outage probability at each hop ρ0 can be
represented in terms of the desired probability of error at the
destination ρdes.

Furthermore, assuming ρout ≪ 1, the outage probability at
the destination in (15) can be approximated as follows:

ρout ≈
N

∑
ν=0

ΩM(ν)ρout
N−ν+1. (17)

Proposition 2: In high SNR conditions, i.e., when

SNRn,m ,
Pn−m,nσ2

n−m,n

N0W
≫ 1, and medium or low interference

scenario due to spatial-reuse where interference terms is

defined as INRn,u,m ,
Pu−m,uσ2

u−m,n

N0W
, the outage probability at

the nth receiving node can be stated as

ρout
n ≈ γM

th

∏M
m=1 SNRn,m

∑
u∈Un

M

∑
m=1

α ′
m,u,n

M

∑
i=0

INRi
n,u,m

(M− i)!
, (18)

where α ′
m,u,n is defined as

α ′
m,u,n = ∏

i∈Un

M

∏
j=1

(i, j)̸=(u,m)

Pu−m,uσ2
u−m,n

Pu−m,uσ2
u−m,n −Pi− j,iσ2

i− j,n

. (19)

Proof: The proof is given in Appendix II.
From Proposition 2 and by using the definition of diversity

order Gd = limSNR→∞
− log(ρout

n )
log(SNR) [25, Eq. (1.19)], we have the

following corollary:
Corollary 1: In a spatial-reused multihop network with

cooperation order of M, even in existence of inter-network
interference due to spatial reuse, we can achieve the full
diversity order of M.

Corollary 2: In the interference-free conditions and the
high SNR regime, the outage probability in (18) can be
modified as

ρout
n ≈ γM

th

M! ∏M
m=1 SNRn,m

. (20)

From Proposition 1 and by using the facts that e−x ≈ 1− x

and 1
1+x

≈ 1− x, for x ≪ 1, we have
Corollary 3: In the high SNR regime, for a non-

cooperative spatial-reused multihop transmission, i.e., when
M = 1, the outage probability can be approximated as

ρout
n ≈ γth

SNRn,1

(

1+ ∑
u∈Un

INRn,u,1

)

. (21)

If the interference due to spatial reuse is strong, the follow-
ing corollary can be obtained from Proposition 2:

Corollary 4: In the high SNR and high interference sce-
nario, i.e., when SNRn,m ≫ 1 and INRn,u,m ≫ 1, the system
becomes interference-limited due to an error floor, and the
outage probability can be approximated as

ρout
n ≈ 1−

M

∑
m=1

M

∏
j=1
j ̸=m

SNRn,m

SNRn,m −SNRn, j

× ∏
u∈Un

M

∏
i=1

(

INRn,u,i

SNRn,m
γth +1

)−1

. (22)

B. Extension to Multiple Antenna (MA) Case

In this subsection, we derive the close-form expressions for
the outage probability of the cooperative multihop transmis-
sion when nodes are equipped with Ms antennas.

Lemma 3 ( [24]): Consider M sets of independent random
variables Xm = {Xm,1, . . . ,Xm,Ms}, for m = 1, . . . ,M, with ex-
ponential distribution, where RVs in each set have identical
mean of σ2

xm
, m = 1, . . . ,M, while every two sets have distinct

mean, i.e., σ2
xi
̸= σ2

x j
for i ̸= j. The CDF of the summation

of independent-partly-not-identical exponentially distributed
random variables, i.e., X = ∑M

m=1 ∑
Ms
i=1 Xm,i is given by

Pr{X <x}=1−
[

M

∏
m=1

σ−2Ms
xm

]

M

∑
m=1

Ms

∑
i=1

Ψm,i(−σ−2
xm

)xMs−1e
−x

σ2
xm

(Ms − i)!(−1)!
,

(23)
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where

Ψm,i(t) =− ∂ i−1

∂ t i−1











M

∏
j=0
j ̸=m

(σ−2
x j

+ t)−Ms











. (24)

Proposition 3: Consider a finite set of independent ex-
ponentially distributed random variables X = {X1, . . . ,XM}
and Y = {Y 1, . . . ,Y Q}, where Xm = [Xm,1, . . . ,Xm,Ms ], m =
1, . . . ,M, and Y q = [Yq,1, . . . ,Yq,Ms ], q = 1, . . . ,Q, are Ms di-
mensional vectors of i.i.d RVs with mean of σ2

xm
, and σ2

yq
,

respectively. The CDF of

SINRMA =
∑M

m=1 ∑
Ms
i=1 Xm,i

1+∑
Q
q=1 ∑

Ms
i=1 Yq,i

can be calculated as

Pr{SINRMA < γ}= 1−
M

∑
m=1

DmγMs−1
∞

∑
k=0

Vk

×
Ms−1

∑
i=0

(

Ms−1
i

)

(i+QMs + k−1)!e
− γ

σ2
xm

(

1
σ2

xm

+ 1
β1

)i+QMs+k
, (25)

where

Dm =

[

M

∏
n=1

σ−2Ms
xn

]

Ms

∑
i=1

Ψm,i(−σ−2
xm

)

(Ms − l)!(i−1)!
, (26)

Vk =
Q

∏
q=1

β Ms
1

σ2Ms
yq

∞

∑
k=0

δk

β QMs+k
1 (QMs + k−1)!

. (27)

Proof: The proof is given in Appendix III.
From Proposition 3, and by assuming equal transmit power

across antennas at each of nodes, the outage probability at the

n-th hop, i.e., ρMA
n is given in (25) where σ2

xm
=

Pn−m,nσ2
n−m,n

MsN0W

and σ2
yq
=

Pu−m,uσ2
u−m,n

MsN0W
. Furthermore, the outage probability at

the destination can be obtained via (15).
So far, the impact of spatial-reuse interference on the

performance of cooperative multihop system is studied. In the
subsequent sections, we introduce two approaches to improve
the system performance, i.e., power control and interference
cancelation.

IV. POWER ALLOCATION FOR MULTIHOP TRANSMISSION

WITH INTERFERENCE

In this section, we derive the required power for the mul-
tihop transmission scheme discussed in Section II in order to
achieve a certain rate R with a given outage probability QoS.
In the following, two power allocation strategies are proposed.

A. Equal-Power Per-Hop Outage Constrained Power Alloca-

tion

Finding the optimal value of the transmit powers can
be challenging due to the complexity of outage probability
Pr{rn < R} derived in (13) and (18). By assuming an equal
power at every node, in what follows, a suboptimal power
allocation strategy is proposed. In the case of interference-
free transmission, as stated in [23, Theorem 1], the cooperative

transmit power coefficients should be equal in each transmis-
sion phase, i.e., Pn−m,n = Pn, n = 1, . . . ,N +1. To get a more
accurate result, we further assume equal transmission power
in all phases to achieve a target outage probability QoS. Thus,
assuming the equal transmit power, i.e., Pn−m,n = Pu−m,u = P0,
for m = 1, . . . ,M, n = 1, . . . ,N +1, and u ∈ Un, we have

ρout
n = 1− e

−
γthN0W

P0σ2
n−1,n ∏

u∈Un

∏
i∈Mu

(

σ2
u−i,n

σ2
n−1,n

γth +1

)−1

, (28)

for n = 1, . . . ,M − 1, where Mu = {1} if u < M, and Mu =
{1,2, . . . ,M}, if u ≥ M. For n = M, . . . ,N + 1, the outage
probability can be rewritten as

ρout
n = 1−

M

∑
m=1

Am,n e
−

γthN0W

P0σ2
n−m,n , (29)

where

Am,n =
M

∏
j=1
j ̸=m

σ2
n−m,n

σ2
n−m,n −σ2

n− j,n
∏

u∈Un

∏
i∈Mu

(

σ2
u−i,n

σ2
n−m,n

γth +1

)−1

. (30)

Since ρout
n is a decreasing function of the power coefficient

P0 for P0 ≥ 0, to find the minimum value of the problem in
P0, the constraint ρout

n ≤ ρn is turned into the equality. Thus,
the positive root of ρout

n −ρn = 0 should be calculated. Hence,
from (28), for n = 1, . . . ,M−1, we have

Pn =
−γth N0W σ−2

n−1,n

ln(1−ρn)+∑u∈Un
ln

(

σ2
u−1,n

σ2
n−1,n

γth +1

) . (31)

For n = M, . . . ,N +1, and for a given initial value, Pn can be
calculated from (29) using the following recursive equation:

P
(t+1)
n =

−γth N0W σ−2
n−1,n

ln

[

1−ρn

A1,n
−∑i∈Mu−{1}

Am,n

A1,n
e

− γth

P
(t)
n σ2

n−m,n

]

,

(32)

where P
(t)
n is the updated version of the power coefficient in

the t-th iteration. Since ρout
n is a decreasing function of Pn, to

guarantee that ρout
n ≤ ρn where ρn is a target outage probability

per hop, we have

P0 = max{P∗
n } , (33)

where P∗
n is the solution of (31) and the recursive equation

in (32). Assuming a fixed per-hop outage target of ρn = ρ0

and using (16), we can represent P0 in terms of ene-to-
end outage probability of ρdes by replacing ρn with ρ0 =

1− [1−ρdes]
1

∑N
ν=0ΩM (ν) in (32).

Proposition 4: In the spatial-reused multihop transmission,
the minimum allowed target outage requirement at the desti-
nation is given by

ρdes ≥ 1−





M−1

∏
n=1

∏
u∈Un

∏
i∈Mu

(

σ2
u−i,n

σ2
n−1,n

γth +1

)−1




×
N+1

∏
n=M

(

M

∑
m=1

Am,n

)ΩM(N−n+1)

. (34)
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Proof: The minimum amount of permissable target
outage per hop can be obtained by putting Pn → ∞ in (28)
and (29) to get

ρn ≥ 1− ∏
u∈Un

∏
i∈Mu

(

σ2
u−i,n

σ2
n−1,n

γth +1

)−1

, (35)

for n = M, . . . ,N +1, and

ρn ≥ 1−
M

∑
m=1

Am,n, for n = M, . . . ,N +1. (36)

Combining (15), (35), and (36), the minimum feasible outage
probability QoS at the destination is obtained as (34).

In addition, for a given desired outage probability ρdes at the
destination, one can find the minimum spatial-reused factor,
i.e., nodes distance K, using Proposition 3. Moreover, it can
be observed from (9), (34), and (36) that when there is no
interference, we have ρdes ≥ 0, and thus, there is no limitation
in choosing ρdes.

For the case of non-cooperative multihop transmission, i.e.,
when M = 1, the closed-form solution for P0 is given by the
following proposition:

Proposition 5: Assuming the equal power transmission
from all nodes, the minimum transmit power P∗

0 per node to
achieve a per-hop outage probability of ρn in a non-cooperative
spatial-reused multihop system over Rayleigh fading channels
can be expressed as

P∗
0 = max

n















γth N0W σ−2
n−1,n

ρn − γth ∑u∈Un

σ2
u−1,n

σ2
n−1,n















. (37)

Proof: From the approximation given in Corollary 3,
which is actually an upper-bound, and by the fact that Pn = P0,
for n = 1, . . . ,N +1, we have

ρout
n ≤ γth N0W

Pnσ2
n−m,n

+ γth ∑
u∈Un

σ2
u−1,n

σ2
n−1,n

. (38)

Then, combining (33) and (38), the result in (37) can be
yielded.

Therefore, for the case of Multihop-then-Cooperate proto-
col, the total transmit power for transmitting a packet is given
by

PT =
N+1

∑
n=1

C (Txn,n) =
M−1

∑
n=1

Pn−1,n +
N+1

∑
n=M

M

∑
m=1

Pn−m,n

= (3M+MN −M2 −1)P∗
0 . (39)

Moreover, P∗
0 in Proposition 5 can be written in terms of the

desired outage probability at the destination, i.e., ρdes. For
instance, an upper-bound for P0 can be obtained from (37), by
replacing ρn with 1− (1−ρdes)

1/(∑N
ν=0ΩM(ν)).

B. Power Allocation with End-to-End Outage Constraint

The power allocation proposed in Subsection IV-A is not
optimal in terms of minimizing the total transmit power given
an end-to-end outage probability constraint ρdes. Moreover, in
the previous subsections, we introduced the per-hop outage

probability ρ0 and ρn. If the intermediate relays do not intend
to use the source’s data, and act only as passive nodes to relay
source’s messages, the outage probability constraint for each
hop is not required. Therefore, in this subsection, we propose
a centralized power allocation schemes to achieve the rate R

with an end-to- end outage probability constraint ρdes at the
destination. The proposed power control in this subsection is
optimal in the sense of minimizing the transmit power given
a constraint ρdes.

1) Non-Cooperative Multihop Link Cost: First, we inves-
tigate non-cooperative transmit powers Pn−1,n to satisfy the
target rate R with a target outage probability of ρdes at the
destination. We consider that the receiver can correctly decode
the source data whenever Pn−i,n|hn−i,n|2 ≥ γth. Hence, in 1−
ρdes of the total transmissions, we have a reliable detection
of symbols. From (15) and (20), the outage probability at the
destination becomes

ρout ≈ 1−
N+1

∏
n=1

[

1− γth

SNRn,1

(

1+ ∑
u∈Un

INRn,u,1

)]

≤
N+1

∑
n=1

γth

SNRn,1

(

1+ ∑
u∈Un

INRn,u,1

)

=
N+1

∑
n=1

ρ̂out
n , f (P0,1, . . . ,PN,N+1), (40)

where ρ̂out
n = γth

Pn−1,nσ2
n−1,n

[

N0W +∑u∈Un
Pu−1,uσ2

u−1,n

]

.

Now, we formulate the problem of power allocation in
the non-cooperative multihop networks with the acceptable
outage probability of ρdes at the destination. The link cost
or total transmitted power for all (N + 1) phases becomes
C = ∑N+1

n=1 Pn−1,n. Therefore, the power allocation problem,
which has a required outage probability constraint on the
destination node, can be formulated as

min
N+1

∑
n=1

Pn−1,n,

s.t. f (P0,1, . . . ,PN,N+1)≤ ρdes,

Pn−1,n ≥ 0, for n = 1, . . . ,N +1. (41)

Therefore, the required transmit power can be calculated in
the following theorem:

Proposition 6: The optimal power allocation values P∗
k−1,k

in the optimization problem (41) can be obtained recursively
from the following equations:

Pk−1,k =
λ ρout

k

1+∑N+1
n=1,n ̸=k

k∈Un

γth
Pn−1,nσ2

n−1,n
σ2

k−1,n

, (42)

for k = 1, . . . ,N +1, where

λ =
∑N+1

n=1 Pn−1,n

ρdes −∑N+1
i=1 Pi−1,i ∑N+1

n=1,n ̸=i
i∈Un

γth
Pn−1,nσ2

n−1,n
σ2

i−1,n

. (43)

Proof: The proof is given in Appendix IV.
Hence, the non-cooperative multihop link cost is given by

PT (non-coop) =
N+1

∑
n=1

P∗
n−1,n. (44)
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2) Cooperative Multihop Link Cost: Here, our objective
is to find the minimum power allocation required for the
cooperative transmission in order to achieve certain rate R with
the successful reception of source’s data at the destination. For
decoding the message reliably, the outage probability at the
destination must be less than the desired end-to-end outage
probability ρdes.

As stated in Section II, the source node transmits M

symbols with the power P0,1 during the first phase. In Phase
n, n = M, . . . ,N +1, a set of M nodes Txn = {txn,1, . . . , txn,M}
cooperate to transmit information of the source to a single

receiver node rxn, as stated in (2). Therefore, the total trans-
mission power in all phases becomes PT = ∑M−1

n=1 Pn−1,n +

∑N+1
n=M ∑M

i=1 Pn−i,n, such that the outage probability at the des-
tination becomes less than the target value ρdes.

From (17), the outage probability at the destination can be
approximated as ρout ≈ ∑N

ν=0 ΩM(ν)ρout
N−ν+1 , ρ̂out. With a

derivation similar to [26], it is straightforward to show that
the approximated form (17) serves as an upper bound for
the exact outage probability, i.e., ρout ≤ ρ̂out. Thus, if ρ̂out

is considered for distributing the power within the multihop
system, the applied end-to-end probability constraint is more
stringent. Note that the approximation in (17) is an upper-
bound on the outage probability, and thus, is reliable to be
used for all SNR conditions (low, medium, and high SNRs).
Since the required outage probabilities at the destination ρdes

usually have small values, the corresponding required SNRs
are high. Therefore, the power allocation problem, which has
a required outage probability constraint on the receiving node,
can be formulated as

min
M−1

∑
n=1

Pn−1,n +
N+1

∑
n=M

M

∑
i=1

Pn−i,n,

s.t.
N

∑
ν=0

ΩM(ν)ρout
N−ν+1 ≤ ρdes, Pn−i,n ≥ 0, for i = 1, . . . ,M.

(45)

Finding the optimal solution of the transmit powers in (45)
is complicated due to the complexity of outage probability
ρout

n derived in (13). As a special case, we consider the
interference-free scenario. The centralized power allocation for
two-nodes cooperation is studied in [2]. Here, we extend it for
a network with arbitrary number of cooperating nodes. Note
that the following analysis is also valid for a network under
interferences if we treat interference as noise.

From 1− e−x ≤ x, Corollary 2, and (17), an upper-bound
for ρout can be obtained as

ρout ≈
M−1

∑
n=1

γthΩM(N −n+1)

σ2
n−1,nPn−1,n

+
N+1

∑
n=M

γM
th ΩM(N −n+1)

M!
M

∏
i=1

σ2
n−i,nPn−i,n

. (46)

Thus, for the case of interference-free centralized end-to-end
outage constrained link cost formulation, we modify the outage

restricted minimum power allocation problem of (45) as

min
M−1

∑
n=1

Pn−1,n +
N+1

∑
n=M

M

∑
i=1

Pn−i,n,

s.t.
M−1

∑
n=1

γthΩM(N −n+1)

σ2
n−1,nPn−1,n

+
N+1

∑
n=M

γM
th ΩM(N −n+1)

M!
M

∏
i=1

σ2
n−i,nPn−i,n

≤ρdes,

Pn−i,n ≥ 0, for i = 1, . . . ,M. (47)

Due to the symmetry between Pn−i,n, for n = M, . . . ,N + 1,
i = 1, . . . ,M, in the objective and constraint function in (47),
it follows that Pn−i,n = Pn−1,n, n = M, . . . ,N +1, i = 1, . . . ,M.
Therefore, the optimization problem in (47) is equivalent to

min
M−1

∑
n=1

Pn−1,n +
N+1

∑
n=M

M Pn−1,n

s.t.
M−1

∑
n=1

γthΩM(N −n+1)

σ2
n−1,nPn−1,n

+
N+1

∑
n=M

γM
th ΩM(N −n+1)

M!PM
n−1,n

M

∏
i=1

σ2
n−i,n

≤ρdes,

Pn−1,n ≥ 0. (48)

The outage constraint in (48) is a posynomial function [27],
which is a convex function. Hence, since the objective function
and the constraints are convex, the optimal power allocation
values Pn−1,n in the optimization problem (48) are unique.

From the Lagrangian (61) and the Kuhn-Tucker condition,
the following set of equations can be found as

Pn−1,n=

√

λ
γthΩM(N −n+1)

σ2
n−1,n

, for n = 1, . . . ,M−1,

Pn−1,n= M+1

√

λ
γM

th ΩM(N −n+1)

M!∏M
i=1 σ2

n−i,n

, for n = M, . . . ,N +1.

(49)

Since the strong duality condition [27, Eq. (5.48)] holds
for convex optimization problems, the constraint in (48) is
satisfied with equality:

M−1

∑
n=1

γthΩM(N −n+1)

σ2
n−1,nPn−1,n

+
N+1

∑
n=M

γM
th ΩM(N −n+1)

M!PM
n−1,n

M

∏
i=1

σ2
n−i,n

=ρdes. (50)

Combining (49) and (50), we can find the optimal value
of power coefficients Pn−1,n, n = 1, . . . ,N+1. By defining

a=∑N+1
n=2

√
γth ΩM(N−n+1)

σn−1,n
, b= M+1

√

γM
th ΩM(N−n+1)

M!PM
n−1,n ∏M

i=1 σ2
n−i,n

, and x=

λ
1

2(M+1) , we can find the optimal value of λ by solving
axM+1+bx2M = ρdes.

V. INTERFERENCE MANAGEMENT IN MULTIHOP

TRANSMISSION WITH SPATIAL-REUSE INTERFERENCE

In this section, interference cancelation is employed to
improve the performance of spatial-reused multihop systems.
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Fig. 3. Wireless space-timed coded multihop network with one interference
stream due to spatial reused from previous nodes.

A. Interference Cancelation in Noncooperative Multihop

Transmission with Interference

Let us start with the noncooprative transmission with con-
current signal transmission of nodes which are separated by
K nodes. If we restrict the interference cancelation to two
adjacent nodes, each node need to have two antennas. Assume
that interfering packets s3 and s1 are transmitted from n−K−1
and n+K −1 nodes, and the desired packet s2 is transmitted
from the (n− 1)th node. Assuming the knowledge of local
channels are available at the nth node, the interference from
(n+K − 1)th node is simply removed (since in the previous
hops nth node already detected the symbol s1). Therefore,
nodes equipped with two antennas can completely remove the
interference caused by the (n−K − 1)th node. We have two
independent equations received by two antennas, and thus, the
desired packet s2 and the interfering packet s3 are detected.
This problem is actually equivalent to multiple access channel.
The channel linearly combines the two packets. Hence, the
two-antenna receiver can detect packets reliably.

Extending the procedure given above to interference can-
celation for m interfering nodes is straightforward. Suppose
there are m1 and m2 backward and forward interfering nodes,
respectively, i.e., m = m1 + m2. We need to have m1 + 1
antennas at each intermediate node. In this case, given the
independence of channels, there would be m1+1 independent
equations and m1 + 1 variables including the desired packet.
In other words, the channel linearly combines m1 +1 packets
(i.e., it linearly combines every m1 +1 digital samples of the
packets). Hence, an (m1 +1)-antenna receiver can cancel the
interference to recover the desired packet.

B. Interference Cancelation in Cooperative Multihop Trans-

mission with Interference: Linear Processing

Consider the cooperative routing scenario with the simul-
taneous transmission of packets from nodes with the spatial
separation of K nodes. In Section IV, the interference caused
by spatial reused scheme is treated as noise. Here, we propose
an interference cancelation technique for increasing the perfor-
mance of cooperative routing in multihop networks with inter-
ference. For simplicity, we restrict the interference cancelation
to two adjacent nodes. We assume that each node has channel
state information (CSI) of local nodes and is able to remove
the interferences from forward nodes. Thus, the interference
cancelation problem only deals with the interference caused by
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Fig. 4. The outage probability curves versus the transmit SNR in a wireless
multihop network with N = 5 for non-cooperative (M = 1) and cooperative
(M = 2) cases, different spatial reuse factors, and R = 1

2 bits/sec/Hz.

backward nodes. Assume that s1 and s2 are transmitted from
the (n−K −2)th and (n−K −1)th nodes using the Alamouti
code, and the desired packets s3 and s4 are transmitted from
the (n−2)th and (n−1)th nodes, respectively (see Fig. 3). The
received signal at the nth receiving node in Phase n can be
expressed as

y̌n = ȞnΛ̌ ns+ v̌n, (51)

where y̌n and v̌n are 4× 1 extended vector of the received
signal and noise at the nth node equipped with two receiving
antennas. The first and second two components of the received
vector are corresponding to the received signals at the first and
second antennas, respectively. The transmit vector and power
allocation matrix in (51) are represented by s = [s1,s2,s3,s4]

T

and Λ̌ n = diag [Pn−K−2,n−K ,Pn−K−1,n−K ,Pn−2,n,Pn−1,n], respec-
tively. The equivalent channel matrix is given by

Ȟn =













h
(1)
n−K−2,n h

(1)
n−K−1,n h

(1)
n−2,n h

(1)
n−1,n

h
∗(1)
n−K−1,n −h

∗(1)
n−K−2,n h

∗(1)
n−1,n −h

∗(1)
n−2,n

h
(2)
n−K−2,n h

(2)
n−K−1,n h

(2)
n−2,n h

(2)
n−1,n

h
∗(2)
n−K−1,n −h

∗(2)
n−K−2,n h

∗(2)
n−1,n −h

∗(2)
n−2,n













, (52)

where superscripts (1) and (2) refer to the first and second
receiving antennas, respectively. Assuming Ȟ

h

nȞn, where (·)h

is conjugate transpose operation, is a full-rank matrix, we can
successfully detect the desired packets s3 and s4. Therefore,
the traditional MIMO interference cancelation techniques –
or multiple access channels interference cancelation – can
be employed. For example, one can use zero-force (ZF),
minimum mean square error (MMSE), maximum likelihood
(ML), or successive interference cancelation (SIC) techniques.
For the case of nonlinear detection techniques like SIC, single-
antenna nodes can be employed.

VI. NUMERICAL ANALYSIS

In this section, numerical results are provided to analyze
the performance of the the proposed spatial-reused cooperative
multihop scheme. A regular line topology is considered where
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Fig. 5. The outage probability curves versus the transmit SNR in a wireless
multihop network with multiple-antenna nodes of Ms = 2, K = 3, N = 5, R= 1

2
bits/sec/Hz, and for non-cooperative (M = 1) and cooperative (M = 2,3) cases.

nodes are located at unit distance from each other on a straight
line. The optimal non-cooperative transmission in this network
is to send the signal to the next closest node in the direction
of the destination. Assume that rate R is 1

2 , bandwidth W is
normalized to 1, the path-loss exponent is assumed to be 3,
and the number of intermediate relay nodes are N = 5.

In Fig. 4, we compare the outage probability curves of
the spatial-reused multihop transmission with respect to the
interference-free multihop scenario. The depicted curves are
outage probabilities at the last transmission phase, i.e., ρN+1,
and the non-cooperative (M = 1) and cooperative (M = 2)
cases with different spatial reuse factors (K = 3,4) were com-
pared with interference-free case. As it can be seen, in low and
medium SNR regimes, spatial-reused multihop transmission
outperforms the interference-free case. For instance, for the
cooperative transmission case, when the outage probability
of 10−1 is required at each step, using the spatial-reused
scheme with K = 3, around 5 dB saving in transmit power is
achievable compared to the interference-free case. However, in
high SNR conditions, one can observe that the interference-
free transmission performs better than spatial-reused schemes.
Since higher K means lower concurrent transmissions, and
thus, lower interferences, as K increases, curves get closer to
the interference-free case. Furthermore, Fig. 4 confirms the
correctness of our analytical results derived in (13), since the
curves are exactly match the simulations results.

Fig. 5 and Fig. 6 consider a network with multiple-antenna
nodes as discussed in Subsection III-B. The depicted curves
in Fig. 5 are outage probabilities corresponding to a wireless
spatial-reused multihop network with multiple-antenna nodes
of Ms = 2, K = 3, and for non-cooperative (M = 1) and
cooperative (M = 2,3) cases. It can be seen that the analytical
results obtained in Proposition 3 are confirmed by simulations.
Moreover, it shown that a network with M = 2 outperforms a
non-cooperative network and a network with M = 3. Hence,
increasing the number of cooperating nodes is not always
beneficial for the system performance. Similar to MIMO sys-
tems, the spatial diversity is beneficial for high SNR scenarios.
However, in low SNR scenarios, the antenna selection or
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Fig. 7. The comparison of power allocation schemes studied in Subsection
IV-B in terms of total transmit power versus the end-to-end outage probability
ρdest in a wireless multihop network with different spatial reuse factors and
R = 1

2 bits/sec/Hz.

transmission from a single antenna outperforms the space-time
coding (see, e.g., [25, p. 105]. In [28], it is also shown that the
Alamaouti scheme works poorly compared to optimal coding
in low SNR scenarios. Similar phenomenon can be happened
in cooperative systems (see, e.g., [29]). In Fig. 6, we compare
the outage probability curves versus transmit SNR by changing
the number of antennas and spatial-reuse factors when M = 2.
It can be observed that by adding more antennas, the system
performs better in all SNR regimes.

In Fig. 7 and Fig. 8, we compare different power allocation
schemes studied in Section IV in terms of total transmit power
versus the end-to-end outage probability ρdest in a wireless
multihop network with N = 2,3 relays and R = 1

2 bits/sec/Hz.
It can be seen from Fig. 7 that as we increase the end-to-end
outage probability constraint at the destination, spatial-reused
case outperforms the non-spatial-reused case, i.e., K = N +1
in term of energy consumption, when the power allocation
introduced in Subsection IV-B is employed. For the effect of
cooperation factor, M, it can be seen from Fig. 8 that the
cooperative case (M = 2) leads to a better performance in term
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Fig. 8. The comparison of power allocation schemes studied in Subsection
IV-A in terms of total transmit power versus the end-to-end outage probability
ρdest in a wireless multihop network for non-cooperative (M = 1) and
cooperative (M = 2) cases with different spatial reuse factors, and R = 1

2
bits/sec/Hz.

of the consumed power compared to the non-cooperative case
(M = 1).

Finally, we summarize some key results to show the impact
of parameters like K, M, and Ms in different settings studied
above. For the impact of K, from Fig. 4 and 7, it is shown that
the spatially-reused cooperative multihop transmission outper-
forms the non-spatial reused case in low and and medium
SNRs, or equivalently, in high outage probability conditions.
From Fig. 4, 5, and 7, it is observed that cooperative multihop
transmission with M = 2 outperforms the non-cooperative case
in all SNR scenarios. In addition, the spatial reused cooperative
multihop transmission with multiple antennas outperforms the
single-antenna case in all SNR scenarios.

VII. CONCLUSION

In this paper, we have shown that by using the spatial-reused
concurrent packet transmission, a higher spectral efficiency in
wireless multihop networks in low or medium SNR conditions
is achievable for a fixed transmission power. Alternatively, it
is shown that by using the spatial-reused concurrent packet
transmission, a higher energy efficiency in wireless multihop
networks in low or medium SNR conditions is achievable
for the fixed data rate and outage probability. We analyzed
the performance of the spatially-reused cooperative multihop
transmission. Then, the analysis is extended to calculate
the outage probability of the system with multiple antenna
nodes. Moreover, we have formulated the problem of finding
the minimum energy cooperative transmission for a wireless
network under Rayleigh fading. We have proposed a spatial-
reused cooperative multihop routing for the purpose of energy
savings, constrained on a required outage probability at the
destination. The calculated power allocations are independent
of instantaneous channel variation, and thus, can be used in
practical wireless systems. Finally, interference cancelation
schemes have been used to improve the performance of spatial-
reused multihop systems for both cases of non-cooperative and
cooperative transmissions.

APPENDIX I
PROOF OF PROPOSITION 1

The PDF of Yq is given as pq(yq) =
e

− y

σ2
yq

σ2
yq

. Moreover,

the CDF of X = ∑M
m=1 Xm is calculated in Lemma 1. By

marginalizing over the independent random variables Yq, the
CDF of SINR can be calculated as

P{SINR < γ}

=
∫ ∞

0;Q−fold
Pr

{

X < γ + γ
Q

∑
q=1

yq

}

Q

∏
q=1

pq(yq)dyq

=
M

∑
m=1

αm

∫ ∞

0;Q−fold



1− e
−

γ(1+∑
Q
q=1 yq)

σ2
xm





Q

∏
q=1

pq(yq)dyq

= 1−
M

∑
m=1

αm e
− γ

σ2
xm

Q

∏
q=1

∫ ∞

0
e
−yq

(

γ

σ2
xm

+ 1
σ2

yq

)

dyq

σ2
yq

, (53)

where in the third equality, we used the first property of
Lemma 2 in (9). Thus, the closed-form solution for integral
in (53) is obtained as (12).

APPENDIX II
PROOF OF PROPOSITION 2

We express the CDF of X = ∑M
m=1 Xm in Lemma 1 in terms

of its Taylor series as

Pr{X < x}=
M

∑
m=1

αm

∞

∑
k=1

−1
k!

( −x

σ2
xm

)k

. (54)

In addition, Y = ∑
Q
q=1 Yq, where Yq is defined in Lemma 1, has

a distribution similar to X with different parameters, and its
PDF can be represented as

py(y) =
Q

∑
q=1

α ′
q

σ2
yq

e
− y

σ2
yq , (55)

where α ′
q = ∏

Q
j=1
j ̸=q

σ2
yq

σ2
yq
−σ2

y j

. By marginalizing over the random

variable Y and using (54), the integral in (53) can be rewritten
as

Pr{SINR < γ}=
∫ ∞

0
Pr{X < γ(1+ y)} py(y)dy

=
∫ ∞

0

M

∑
m=1

αm

∞

∑
k=1

−1
k!

(−γ(1+ y)

σ2
xm

)k

py(y)dy

=
∞

∑
k=1

Ψk

M

∑
m=1

αm

σ2k
xm

, (56)

where Ψk is defined as

Ψk =
∫ ∞

0

(−1)k+1γk(1+ y)k

k!
py(y)dy. (57)
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Now, by replacing py(y) from (55) in (57), we have

Ψk =
∫ ∞

0

(−1)k+1γk(1+ y)k

k!

Q

∑
q=1

α ′
q

σ2
yq

e
− y

σ2
yq dy

=
(−1)k+1γk

k!

Q

∑
q=1

α ′
q

σ2
yq

∫ ∞

0
(1+ y)k e

− y

σ2
yq dy

=
(−1)k+1γk

k!

Q

∑
q=1

α ′
q

σ2
yq

∫ ∞

0

k

∑
i=0

(

k

i

)

yi e
− y

σ2
yq dy

= (−1)k+1γk
Q

∑
q=1

α ′
q

k

∑
i=0

σ2 i
yq

(k− i)!
, (58)

where in the third equality, the binomial series expansion of
(1+ y)k is used. Combining (56) in (58) and the closed-form
solution for the integral is obtained.

Then, by using the second property of Lemma 2, i.e., (10),
the first M − 1 terms in (56) becomes zero, and the outage
probability is simplified as

Pr{SINR < γ}=
∞

∑
k=M

Ψk

M

∑
m=1

αm

σ2k
xm

. (59)

Finally, by the fact that σ2
xm

≫ 1 is equivalent to SNRn,m ≫
1, we can ignore higher order terms, and thus, we have
Pr{SINR < γ} ≈ΨM ∑M

m=1
αm

σ2M
xm

. Using (11), the outage prob-
ability can be further simplified as

Pr{SINR < γ} ≈ΨM

(−1)M+1

∏M
m=1 σ2

xm

.

Hence, the result in (18) is obtained.

APPENDIX III
PROOF OF PROPOSITION 3

We define Y = ∑
Q
q=1 ∑

Ms
i=1 Yq,i which has a gamma distribu-

tion Ms degrees of freedom with PDF [30]

py(y) =
Q

∏
q=1

β Ms
1

σ2Ms
yq

∞

∑
k=0

δk yQMs+k−1

β QMs+k
1 (QMs + k−1)!

e
− y

β1 ,

where

δk =
1

k+1

k+1

∑
i=1

δk+1−iMs

Q

∑
j=1

(

1− β1

σ2
yq

)i

,

β1 = min{σ2
yq
} and δ0 = 1. Moreover, the distribution of X =

∑M
m=1 ∑

Ms
i=1 Xm,i is found in Lemma 3. By marginalizing over

the random variable Y , the CDF of the SINRST = X
1+Y

can be

calculated as

P{SINRMA < γ}=
∫ ∞

0
Pr{X < γ + γ y} py(y)dy

= 1−
M

∑
m=1

DmγMs−1
∫ ∞

0
(1+ y)Ms−1

e
− γ(1+y)

σ2
xm py(y)dy

= 1−
M

∑
m=1

DmγMs−1
∞

∑
k=0

Vk

∫ ∞

0
(1+ y)Ms−1

× e
− γ(1+y)

σ2
xm yQMs+k−1e

− y
β1 dy

= 1−
M

∑
m=1

DmγMs−1
∞

∑
k=0

Vk

Ms−1

∑
i=0

(

Ms−1
i

)

× (i+QMs + k−1)!e
− γ

σ2
xm

(

1
σ2

xm

+ 1
β1

)i+QMs+k
. (60)

Using Taylor series for expansion of (1+y)n, the closed-form
solution for integral in (60) is obtained as (25).

APPENDIX IV
PROOF OF PROPOSITION 6

The Lagrangian of the problem stated in (41) is

L(P0,1, . . . ,PN,N+1) =
N+1

∑
n=1

Pn−1,n +λ f (P0,1, . . . ,PN,N+1), (61)

where the function f in (40) can be rewritten as

f (P0,1, . . . ,PN,N+1)

=

[

N+1

∑
n=1

γthN0W

Pn−1,nσ2
n−1,n

]

+
γth

Pk−1,kσ2
k−1,k

∑
u∈Uk

Pu−1,uσ2
u−1,n

+
N+1

∑
n=1,n ̸=k

k∈Un

γth

Pn−1,nσ2
n−1,n

Pk−1,kσ2
k−1,n. (62)

To satisfy KKT conditions, we have

∂L(P0,1, . . . ,PN,N+1)

∂Pk−1,k
= 1+λ

∂ f (P0,1, . . . ,PN,N+1)

∂Pk−1,k
= 0, (63)

for k = 1, . . . ,N +1, where

∂ f (P0,1, . . . ,PN,N+1)

∂Pk

=
−γthN0W

P2
k−1,kσ2

k−1,k

+
−γth

P2
k−1,kσ2

k−1,k
∑

u∈Uk

Pu−1,uσ2
u−1,n

+
N+1

∑
n=1,n ̸=k

k∈Un

γth

Pn−1,nσ2
n−1,n

σ2
k−1,n

=
−ρout

k

Pk−1,k
+

N+1

∑
n=1,n̸=k

k∈Un

γth

Pn−1,nσ2
n−1,n

σ2
k−1,n. (64)

Combining (63) and (64), we have

1−λ
ρout

k

Pk−1,k
+

N+1

∑
n=1,n̸=k

k∈Un

γth

Pn−1,nσ2
n−1,n

σ2
k−1,n = 0, (65)

for k = 1, . . . ,N +1.
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To find the optimal power coefficients, we need one more
equation. Assuming that the equality in the first constraint in
(41) is satisfied, we have

N+1

∑
n=1

ρout
n = ρdes. (66)

Using (63) and (64), we have N + 2 equations and N + 2
unknown, and thus, the optimal solution of the problem stated
in (41) can be obtained. To get a more specific solution, from
(63) and (64), the Lagrange multiplier can be computed as

λ =
∑N+1

n=1 Pn−1,n

ρdes −∑N+1
i=1 Pi−1,i ∑N+1

n=1,n ̸=i
i∈Un

γth
Pn−1,nσ2

n−1,n
σ2

i−1,n

. (67)

Next, we substitute λ from (67) into (65), and we get (42).
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