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Abstract—Hardware impairments in radio-frequency compo-
nents of a wireless system cause unavoidable distortions to trans-
mission that are not captured by the conventional linear channel
model. In this paper, a “binoisy” single-user multiple-input
multiple-output (SU-MIMO) relation is considered where the ad-
ditional distortions are modeled via an additive noise term at the
transmit side. Through this extended SU-MIMO channel model,
the effects of transceiver hardware impairments on the achievable
rate of multi-antenna point-to-point systems are studied. Channel
input distributions encompassing practical discrete modulation
schemes, such as, QAM and PSK, as well as Gaussian signaling
are covered. In addition, the impact of mismatched detection and
decoding when the receiver has insufficient information about the
non-idealities is investigated. The numerical results show that for
realistic system parameters, the effects of transmit-side noise and
mismatched decoding become significant only at high modulation
orders.

Index Terms—Multiple antennas, mismatched decoding,
ergodic capacity, fading channels, generalized mutual information
(GMI), transceiver hardware impairments.

I. INTRODUCTION

M IMO, i.e., multiple-input multiple-output, wireless links
are a mature research subject and their theory is al-

ready well understood [1]. However, the extensive body of
literature on link-level analysis conventionally concerns signal
models of the form y = Hx+ n reckoning with an additive
thermal-noise term, namely n, only at the receiver after the
fading channel H . In this paper, we investigate single-user
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MIMO channels and adopt a generalized (“binoisy”) input–
output relation from [2]–[11]:

y = H(x+ v) +w, (1)

where w is an additive receive-side distortion-plus-noise com-
ponent. The system model (1) allows including an additive
noise term, namely v, also at the transmitter, thus making
the total effective noise term Hv +w colored and correlated
with the fading channel. This small but significant complement
yields a MIMO link model whose performance analysis is still
an open research niche in many respects.

Although we primarily aim at extending the capacity theory
of binoisy SU-MIMO channels under fading without commit-
ting to any particular application, the signal model (1) originally
stems from the practical need for modeling the combined effect
of various transceiver hardware impairments which are detailed
in [12], [13], and the references therein. However, it is worth
acknowledging that the additive noise assumed herein is only
a simplified representation of complex nonlinear phenomena
occurring due to hardware impairments, especially when con-
sidering their joint coupled effects or trying to model residual
distortion after compensation. Thus, the binoisy signal model
should be regarded as a compromise between facilitating the-
oretical analysis and resorting to measurements or simulations
under more accurate modeling. Yet the central limit theorem
further justifies the model by averaging the combined effects
of different impairments to additive Gaussian noise when the
signal model (1) is understood to represent a single narrowband
subcarrier within a wideband system.

Additive receiver hardware impairments can be incorporated
into the conventional signal model by increasing the level of
the thermal-noise term n by a constant noise figure, e.g., about
3–5 dB, or by scaling it in proportion to the input signal level
such that it matches with w. On the other hand, regarding the
joint effect of transmitter hardware impairments as an additive
transmit-side noise term v is analogous to the principles of
practical radio conformance testing. In particular, the common
transmitter quality indicator is error-vector magnitude (EVM)
which reduces the distortion effects to an additive component
and measures its level relatively to signal amplitude [14].

Typical target EVM values guarantee that the signal x is
at least 20–30 dB above the transmit-side noise v. On the
other hand, for basic discrete channel inputs such as quadrature
phase-shift keying (QPSK), Hx is usually at most 10–15 dB
above the receive-side noise w, after which the communication
is not anymore limited by noise but the lack of entropy in the
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Fig. 1. System model for non-ideal MIMO communications with transmit and
receive distortion. The receiver might be misinformed or ignorant of some of
the variables in the transmission chain leading to mismatched decoding.

modulation alphabet. This implies that transmitter hardware
impairments can be justifiably omitted in the analysis of simple
low-rate wireless systems: Either Hv is well below the receive-
side noise w (say 5–20 dB) or the signal-to-noise ratio (SNR) is
set to an uninterestingly high level. However, there has been a
trend to improve data rates by using, e.g., quadrature amplitude
modulation (QAM) up to 64-QAM at relatively high SNR, in
which case the transmit-side noise begins to play a notable role
in the link-level performance.

The considered system setup corresponding to (1) is shown
in Fig. 1. As for MIMO processing, we focus on regular spa-
tial multiplexing where a conventional transmitter separately
encodes and sends an independent stream at each of its antennas
without having channel state information or being aware of the
transmit-side noise it produces; the receiver jointly decodes the
output signals of the MIMO channel knowing its instantaneous
realization H and some noise statistics. However, conventional
receivers are designed and implemented based on the conven-
tional signal model (where v = 0) due to which they are prone
to lapse into suboptimal mismatched decoding by inaccurately
postulating the statistics of the actual noise term Hv +w.
Even if off-the-shelf receivers can adapt to colored receiver
noise, they may not be able to track the variable statistics of
the component Hv propagated from the transmitter since it is
correlated with the fading channel. Only an advanced receiver
would be able to perform matched decoding knowing perfectly
the noise statistics as if it was designed and implemented
explicitly based on the generalized binoisy signal model (1).

A. Related Works

The key reference results for the present study are reported
in [2]–[11]. These seminal works originally formulated the
research niche around (1) and established the baseline under-
standing of MIMO communication in the presence of transmit-
side noise with numerical simulations and theoretical analysis.
The majority of the related works, e.g., [2], [3], [6], [8], concern
regular spatial multiplexing using separate encoding like the
present paper but also different variations of joint encoding
have been creditably investigated, e.g., in [4], [7]. On the other
hand, all the studies that we are aware of assume (implicitly)
advanced receivers that know the presence of transmit noise, no
matter what form of decoding is used.

Especially, the reference results are polarized such that the
scope of analytical studies [6], [8] typically differs from that
of studies reporting simulations [6], [7], [9] or measurements
[4]–[6]. Except for [2], practical discrete modulation schemes,

e.g., QAM, have not been previously analytically evaluated in
the presence of transmit noise, and simulation-based studies
usually concern bit/symbol/packet error rates, not transmission
rates which could be more interesting when studying modern
adaptive encoding. In contrast, all the analytical capacity stud-
ies assume Gaussian signaling and the throughput simulations
of [3] with adaptive modulation and coding are their closest
counterpart when it comes to experimental work.

If the receiver does not properly account for the additional
transmit-side noise in the received signal, conventional mutual
information (MI) is not anymore the correct upper bound for
coded transmissions. Rather, due to mismatched decoding,
one has to employ other metrics, such as generalized mutual
information (GMI) [15], [16] adopted herein. Another common
use for GMI is the analysis of bit-interleaved coded modu-
lation [17], while also transceiver hardware impairments [18]
and effects of imperfect channel state information at receiver
[19]–[21] are analyzed in terms of GMI. It is important to
realize that the GMI framework differs, both conceptually and
in technical details, from the approach in [22], [23], where
conventional MI of a modified channel model is computed for
a decoder that has certain side-information about the variables
in the modified system.

In the present paper, MI and GMI are evaluated using
the replica method [24], [25], originating from the field of
statistical physics and introduced to the analysis of wireless
systems by [26], [27]. Since then, the replica method has been
applied to various problems in communication theory, e.g.,
MIMO systems [28]–[31]. For some special cases like Gaussian
signaling, the replica trick renders exact asymptotic results
when the number of antennas grows without bound, while they
can be otherwise considered accurate approximations as shown
by comparisons to Monte Carlo simulations.

B. Summary of Contributions

In this paper, we investigate two aspects of binoisy MIMO
channels that are unexplored in related works despite their
fundamental role in understanding the effects of hardware
impairments in wireless systems. Firstly, analytical capacity
results are limited to Gaussian signaling while practical digital
modulation is evaluated only based on simple simulations or
measurements. Secondly, the earlier literature focuses on the
optimistic case of matched decoding by employing receivers
that are actually not available off the shelf but implicitly up-
dated to take account of transmit-side noise.

In particular, this paper contributes to the capacity theory
of MIMO communication links by examining the effects of
transmit-side noise as follows.

• Analytical GMI expressions are calculated for studying the
rate loss of mismatched decoding when using a conven-
tional receiver which is unaware of the transmit-side noise.
Especially, it is shown that the performance remains the
same irrespective of how well the noise covariance matrix
is known if it is a constant.

• The above analysis is further translated into corresponding
asymptotic high-SNR limits for Gaussian signaling as a
complement for the results of [10], which covers matched
decoding and conventional MI.
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• The analytical expressions provided for both conventional
MI and GMI cover many practical discrete modulation
schemes such as variations of PSK and QAM. This re-
solves the serious problem that evaluating (G)MI with
direct Monte Carlo simulations for the present system
is computationally infeasible except for cases with small
number of antennas and low order modulation sets.

Extending beyond the scope of the paper, the replica analysis of
GMI is also a new aspect at large.

C. Outline of the Paper and Its Nomenclature

After the considered system model is specified in the follow-
ing section, the main analytical content of this paper is divided
into two parts: Section III concerns the performance of conven-
tional suboptimal receivers under mismatched decoding, which
is analyzed based on GMI; and Section IV studies conventional
MI with advanced receivers, which are aware of transmitter
noise and, thus, capable of optimal matched decoding. In
Section V, the presented theory is illustrated with numerical
results, including simulations for double-checking its accuracy,
which is finally followed by concluding remarks in the last sec-
tion. Some general results from literature that are used through-
out the paper for derivations are collected in Appendix A for
the convenience of the reader. Appendices B contains general
description of the replica method and Appendix C sketches the
derivation of the main results in Section III.

Notation: Complex Gaussian random variables (RVs) are
always assumed to be proper and the density of such x ∈ CN

with mean μ and covariance R is denoted g(x|μ;R). For
the zero-mean proper Gaussians, we say they are circularly
symmetric complex Gaussian (CSCG). For convenience, both
discrete and continuous RVs are said to have a probability
density function (PDF) that is denoted by p, and we do not
separate RVs and their realizations. For postulated PDFs we
write q and add tilde on top of the related RVs (most of the
time). Given a RV x that has a PDF p(x), we write x ∼ p(x)
(and x̃ ∼ q(x̃) for the postulated case). Statistical expectation
is denoted E{·} and, unless stated otherwise, calculated over
all randomness in the argument using true or postulated PDFs,
depending on which type of RVs are present. Integrals w.r.t.
real-valued variables are always over R (for vectors over the
appropriate product space) and we tend to omit the integration
limits for notational simplicity. For a complex variable z = x+
jy, we denote

∫
( )dz =

∫
( )dx dy, and similarly for complex

vectors. Logarithms are natural logs and denoted ln unless
stated otherwise.

II. SYSTEM MODEL

Consider the system model depicted in Fig. 1 and the signal
model of y ∈ C

N written in (1) where H ∈ C
N×M is the

channel matrix and x ∈ C
M the signal of interest. The receive-

side distortion plus noise component is divided into two parts,
namely w = n+ ω ∈ C

N where n is caused by thermal noise
and ω represents hardware impairments arising from the non-
ideal behavior of the radio-frequency (RF) transceivers. Simi-
larly, v = m+ ν ∈ C

M where m and ν are related to thermal
noise and hardware impairments or distortions, respectively, at

the transmit-side. In practice, the effect of m is often negligible
compared to ν. In conventional MIMO literature it is common
to consider only the thermal noise at the receiver, which trans-
lates to assuming ω = ν = m = 0 in our more generic system
model.

Let us denote the PDF of the transmit vector x by p(x) and
assume it factorizes as

p(x) =
M∏

m=1

p(xm), (2)

so that independent streams are transmitted at each transmit
antenna. Furthermore, let p(xm) be a zero-mean distribution
with variance γ̄m. For later convenience, we let Γ be a diagonal
matrix whose non-zero elements are given by γ̄1, . . . , γ̄M ,
that is, Γ = E{xxH}. The channel H is assumed to have
independent identically distributed (IID) CSCG elements with
variance1 1/M . The thermal noise samples at the transceivers
are modeled as CSCG random vectors m and n that have
independent elements. For simplicity, we assume that any given
noise or hardware impairment component is independent of
any other RVs in the system. The transmit-and receive-side
impairments ν and ω are taken to be CSCG random vectors
with covariance matrices Rν and Rω , respectively. The dis-
tortion plus noise vectors v and w are thus CSCG random
vectors whose covariance matrices we denote Rv and Rw,
respectively. Notice that these matrices can be functions of the
statistics of some other RVs albeit we suppress the explicit
statement of such dependence at this point for notational con-
venience. The SNR without transmit-side noise is defined as
tr(Γ)/tr(Rw).

The PDF of the received signal, conditioned on x, v and H ,
is given by

p(y|x,v,H) = g (y|H(x+ v);Rw) , (3)

and the receiver is assumed to know H and the true distribution
p(x) of the channel input. However, the additional transmit-
side term v is in general unknown at the receive-side and,
thus, the PDF (3) cannot be directly used for detection and
decoding. Herein, we consider two different scenarios for the
joint decoding operation at the receiver:

1) The receiver knows H , the PDFs of the noise plus
distortion terms v and w as well as the distribution of
the data vector x. Matched joint decoding is then based
on the conditional PDF

p(y|x,H) =Ev {g (y|H(x+ v);Rw)} (4)

= g(y|Hx;Rw +HRvH
H), (5)

where the second equality follows by first using (62) to
calculate the expectation w.r.t. v and simplifying the end
result using (63) and (64). Note that the effective noise

1Typically the total power emitted from the transmit antennas in MIMO
systems is constant; that is, tr(Γ) = γ̄, where γ̄ is some fixed power budget
that does not depend on M . Hence the elements of Γ need to be functions
of M to satisfy the transmit power normalization. For the following analysis,
however, it is more convenient to treat the elements of Γ to be independent of
M and let the transmit power normalization be a part of the channel. Clearly,
both approaches are mathematically fully equivalent.
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covariance matrix in (5) depends now on the instanta-
neous channel realization H .

2) The receiver has perfect knowledge of H and the PDF of
the data vector x. Instead of (4), however, the device uses
a postulated channel law

q(y|x,H) = g(y|Hx; R̃), (6)

for mismatched joint decoding [15], [16]. In contrast
to Rw in (5), that is a random matrix, the postulated
covariance matrix R̃ in (6) is arbitrary but fixed.

If matched joint decoding is employed, the conventional
metric for evaluating the (ergodic) achievable rate of the system
for given input distribution p(x) is the MI between the channel
inputs and outputs, namely,

I(y;x) = E {ln p(y|x,H)} − E {ln p(y|H)} , (7)

where p(y|H) = Ex{p(y|x,H)} and the expectation is w.r.t.
all RVs in the system model, including the channel matrix
H . From the system design perspective, however, it might be
impractical to use (5) due to complexity of implementation,
resulting in mismatched decoding. To lower bound the true
maximum rate that can be achieved reliably over channel (1)
when decoding rule (6) is used at the receiver, we use GMI that
is discussed in the next section.

III. MISMATCHED JOINT DECODING:
GENERALIZED MUTUAL INFORMATION

A. Definition and Key Properties

Let us assume that the received signal is given by (1) but the
receiver uses (6) for decoding. Given p(x), the (ergodic) GMI
between the channel inputs and outputs is defined as [15], [16]

IGMI(y;x) = sup
s>0

I
(s)
GMI(y;x), (8)

where, denoting q(s)(y|H) = Ex{q(y|x,H)s}, the
s-dependent part reads

I
(s)
GMI(y;x) = E {ln q(y|x,H)s} − E

{
ln q(s)(y|H)

}
. (9)

Notice that since we consider ergodic rates, the expectations in
(9) are w.r.t. all RVs in the system model, including the channel
matrix H .

The GMI in (8) gives the achievable rate for which reliable
transmission over the channel (1) is possible given decoding
metric (6) and ensemble of codebooks where the code words are
independent with IID elements. An important property of GMI
is that it always provides a valid lower bound for the maximum
rate of the channel, namely, if I is the maximum ergodic rate
that can be reliably transmitted over the channel (1) using input
distribution p(x) and decoding rule (6), then2 I ≥ IGMI. It is

2For the special case of IID codebooks and discrete memoryless channels
with mismatched decoding, the lower bound provided by GMI is indeed tight
[16]. However, there are examples (see e.g., [15], [16] and references therein)
where rates higher than GMI can be obtained through other choice of code
distribution. The downside of the techniques employed in the latter case is
that they are often limited to finite alphabet channels and are much more
cumbersome to use than the GMI, which can be easily applied to very general
channel models. For more discussion on GMI, see for example, [15]–[21] and
the references therein.

important to notice that the task of computing I for an arbitrary
channel with an arbitrary decoding rule is in general an open
research problem and the very reason why we have to resort to
alternative approaches such as GMI.

B. Special Case of Gaussian Signaling

We are first interested in evaluating the s-dependent part of
the normalized GMI per transmit stream M−1I

(s)
GMI(y;x) for

given s > 0. The optimization over the free parameter s is
carried out after the suitable expressions are found. Note that
(9) is a valid lower bound on the achievable rate for any s > 0
and the optimization is carried out to obtain the tightest bound
possible. The first term in (9) can be written as

1

M
E {ln q(y|x,H)s}

= −

=c(s)︷ ︸︸ ︷
s

M
[N lnπ + ln det R̃]

− s

M
E
{
(Hv +w)HR̃

−1
(Hv +w)

}
= −c(s)− s

M

[
tr(R̃

−1
Rw)+

1

M
tr(R̃

−1
)tr(Rv)

]
. (10)

The first equality follows from (6) by the fact that y −Hx =
Hv +w when x is given. The second equality is a conse-
quence of the assumption that the channels and noise vectors
are all mutually independent and H has zero-mean IID entries
with variance 1/M . Notice that (10) is independent of p(x) and
hence valid for all channel inputs. Evaluating the second term
in (9) is more complicated but for the special case of Gaussian
inputs we have the result shown below.

Example 1: For the special case of Gaussian inputs; that is,
p(x) = g(x|0;Γ),

1

M
I
(s)
GMI(y;x) =

1

M
EH

{
ln det(R̃+ sHΓHH)

+ s tr
[(
Rw +H(Rv + Γ)HH

)
(R̃+ sHΓHH)

−1
]

− s tr(R̃
−1
Rw)− s

M
tr(R̃

−1
)tr(Rv)− ln det R̃

}
. (11)

The result is obtained by first using (62) and then simplifying
with (63) and (64). Inserting the RHS of (1) into the obtained
expression and taking the expectations w.r.t. the noise terms v
and w completes the derivation.

Example 1 shows that for Gaussian signals we only need to
average over the channel matrix H to obtain the s-dependent
part of GMI. This is doable with Monte Carlo simulation.
However, finding the optimal s is time consuming even in this
case and a simple analytical expression that does not explicitly
depend on the form of the marginals in (2) would be highly
desirable. With this in mind, we adopt the following restriction
to our system model from the physical characteristics of typical
real transmitters for simplifying the analysis.

Assumption 1: The covariance matrix for the transmit-side
distortion plus noise term v is diagonal so that we may
write Rv = Rm +Rν = diag(r

(1)
v , . . . , r

(M)
v ). Hence, v has
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independent (but not necessarily identically distributed) entries
drawn according to p(vm) = g(vm|0; r(m)

v ).
The physical meaning of this assumption is that hardware

impairments at different transmitter branches arise in separate
electrical components and there are no mechanisms which
generate significant correlation between the elements of the
distortion noise vector. Furthermore, it is actually not necessary
for the replica analysis but it helps simplify the end result to a
form whose numerical evaluation is computationally easy.

C. Analytical Results via the Replica Method

If the goal is to calculate the expectations related to the latter
term in (9) analytically and for general input distributions, we
need to employ somewhat more advanced analytical tools than
the basic probability calculus used in Example 1. As we shall
see shortly, employing the replica method provides a formula
that is applicable to a variety of input constellations, such as
Gaussian or QAM. To begin, let us first denote

− 1

M
E ln q(s)(y|H) = c(s) + f(s), (12)

where c(s) is defined in (10) and the latter term, equivalent of
the so-called free energy in statistical mechanics, reads

f(s)=− 1

M
E
{
lnEx̃

{
e−[H(x+v−x̃)+w]HsR̃

−1
[H(x+v−x̃)+w]

}}
.

(13)

Now the inner expectation over the postulated channel input
x̃ is w.r.t. a generic PDF (2) and cannot be solved using (62)
as before. The outer expectation is w.r.t. the rest of the RVs
in the system, namely {x,v,w,H}. Due to (9) and (10) the
expression to be optimized in the GMI formula thus becomes

1

M
I
(s)
GMI(y;x)=f(s)− s

M

[
tr(R̃

−1
Rw)+

1

M
tr(R̃

−1
)tr(Rv)

]
.

(14)

Remark 1: By (13) and (14), it is clear that if the receiver
assumes that the additive noise in the system is spatially white
R̃ = r̃IN with some finite sample variance r̃, the GMI remains
the same for all r̃ > 0 since the optimization over s > 0 in (8)
can be replaced by an optimization over a new variable s̃ =
s/r̃ > 0. Thus, if the receiver uses R̃ = r̃IN for decoding, the
GMI is the same for all r̃ > 0 when the transmit and receive
covariance matrices Rv and Rw are fixed.

The main obstacle in evaluating (14) is clearly f(s). This
term happens to be, however, of a form that can be tackled
by the replica method, as outlined in Appendix B. The
following result is derived in Appendix C under the assumption
of the so-called replica symmetric (RS) ansatz (see Step 3 in
Appendix B) when the system approaches the large system
limit (LSL), that is, M,N → ∞ with finite and fixed ratio α =
M/N > 0. The limit notation is omitted below and the results
should therefore be interpreted as approximations for systems
that have finite dimensions.

Proposition 1: Let m = 1, . . . ,M and denote

χm =xm + vm, (15)
χ̃m = x̃m, (16)

where xm, x̃m ∼ p(xm) and vm ∼ g(vm|0; r(m)
v ) are indepen-

dent for all m by assumption. Let

p(zm|χm) = g(zm|χm; η−1), (17)

q(zm|χ̃m) = g(zm|χ̃m; ξ−1), (18)

be the PDF of an output zm of an additive white Gaussian
noise (AWGN) channel whose input is either (15) or (16),
respectively, and corrupted by additive noise with variance η−1

or ξ−1, respectively. The parameters η, ξ satisfy

η =
1

α

[
1
N tr(Ω̃

−1
)
]2

1
N tr(Ω̃

−1
ΩΩ̃

−1
)
, (19)

ξ =
1

αN
tr(Ω̃

−1
), (20)

for the given matrices

Ω =Rw + εIN , (21)

Ω̃ = s−1R̃+ ε̃IN , (22)

and variables

ε =
1

M

M∑
m=1

E
{
|vm + xm − 〈x̃m〉q|2

}
, (23)

ε̃ =
1

M

M∑
m=1

E
{
|x̃m − 〈x̃m〉q|2

}
. (24)

The notation 〈x̃m〉q above refers to a decoupled posterior mean
estimator

〈x̃m〉q =
Ex̃m

{x̃mq(zm|x̃m)}
q(zm)

, (25)

where q(zm) = Eχ̃m
{q(zm|χ̃m)}. If we also write p(zm) =

Eχm
{p(zm|χm)}, the free energy f(s) defined in (14) is given

under the assumption of the RS ansatz by

fRS(s) =
1

αN

[
ln det Ω̃+ tr(Ω̃

−1
Ω)− ln det(s−1R̃)

]

−
(
ln

π

ξ
+

ξ

η
+

1

M

M∑
m=1

∫
p(zm) ln q(zm)dzm

)

− ξε+
ξ(ξ − η)

η
ε̃. (26)

If multiple solutions to the coupled fixed point (19)–(24) are
found, the one minimizing (26) should be chosen.

Proof: An outline of the derivation is given in Appendix C.
The above result extends some previous works such as [26],

[27] in the direction of correlated noise at the receiver and addi-
tive transmit-side impairments. It is thus clear that the original
GMI term (9) of the MIMO system that suffers from transceiver
hardware impairments has an interpretation in terms of an
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equivalent decoupled3 scalar system. This decoupled channel
has only additive distortions but unlike in the conventional case
of replica analysis [26], [27], the transmit-side has its own
noise term. It should be remarked, however, that the implicit
assumption here is that fRS(s) = f(s); that is, the system is not
replica symmetry breaking (RSB). We leave the RSB case as a
possible future work and check the validity of the solution with
selected numerical simulations.

For simplicity of presentation, we consider next a few prac-
tical special cases of Proposition 1 where the transmit power
is the same for all antennas and the noise and distortions at
the transmit-side are spatially uncorrelated, namely, Γ = γ̄IM

and Rv = rvIM . The receiver postulates spatially white noise
R̃ = r̃IN with some variance r̃ > 0. This allows us to write

1

M
IGMI(y;x) = sup

s̃>0

{
f(s̃)− α−1s̃

[
N−1tr(Rw) + rv

]}
,

(27)

where f(s̃) is given by (13) with sR̃
−1

replaced by s̃IN .
Furthermore, in this case all variables are identically distributed
for all m = 1, 2, . . . ,M so we may omit the subscripts related
to m in the following. We still need to fix the input distribution
(2) to obtain the parameters (23) and (24). For this, we give
two concrete examples: 1) Gaussian signaling; and 2) discrete
channel inputs, such as, QAM.

Example 2: Let the channel inputs (2) be IID Gaussian,
namely, p(x) = g(x|0; γ̄IM ) so that p(χ̃m) = p(xm) =
g(x|0; γ̄) and p(χm) = g(χm|0; γ̄ + rv) in Proposition 1. The
parameter ξ can then be obtained explicitly as

ξ =
γ̄s̃(1− α)− α+

√
4αγ̄s̃+ [γ̄s̃(1− α)− α]2

2αγ̄
, (28)

while η and ε are obtained by solving the coupled fixed point
equations

η =
1

α [N−1tr(Rw) + ε]
, (29)

ε=
ηrv+γ̄(η+ξ2γ̄)

η(1+ξγ̄)2
=

γ̄+rv
(1+ξγ̄)2

+
1

η(1+1/ξγ̄)2
. (30)

Additional algebra shows that for IID Gaussian inputs, the free
energy (26) reduces to

fRS(s̃)=
1

α

(
ξ

η
+ln s̃+ln

1

αξ

)
−ξε+ln(1+ξγ̄)+

ξrv
1+ξγ̄

.

(31)

Note that the expression for parameter ε̃ in (24) is not explicitly
given here but it is implicitly a part of (28) due to relations (20)
and (22).

The computational formula for obtaining the GMI with the
above example is detailed in Table I. Notice that there are
two non-trivial steps in the algorithm: 1) the optimization
over s̃ > 0; and 2) the problem of solving a system of two

3This decoupling property is ubiquitous in replica analysis (see for example
[26], [27]) as well as in random matrix theory (see [32], [33] and references
therein), and is one of the key reasons why the asymptotic methods provide
computationally feasible solutions for complex problems.

TABLE I
HOW TO OBTAIN GMI FOR GAUSSIAN SIGNALING FROM EXAMPLE

nonlinear equations with two unknowns. The first difficulty is
not specific to the current study and is present in any work that
considers GMI as means to analyze mismatched decoding. The
computational complexity of the second problem is negligible
compared to the original task of taking an expectation over the
channel matrices in (11). Indeed, a typical solution for η and ε is
obtained after some tens of iterations of an iterative substitution
method.

For the high-SNR case where γ̄ → ∞ for a fixed covariance
matrix Rw, the result in Example 2 can be further simplified as
shown in Example 3 below.

Example 3: Let us consider the case of Gaussian signaling
as given in Example 2 in the limit γ̄ → ∞. We assume for
simplicity (see, e.g., [10]) that Rw = rwIN and rv = γ̄κ2

where κ > 0 and rw > 0 are fixed and finite parameters. At
high-SNR, there are two possibilities for the parameter s̃ = s/r̃
in the GMI: 1) the optimal value of s̃ is a strictly positive
constant; and 2) the value of s̃ goes to zero when γ̄ → ∞. For
the first case, M−1I

(s)
GMI(y;x) → −∞ so to obtain a consistent

solution for the fixed point equations, the parameter s̃ has to
be inversely proportional to γ̄, i.e., s̃ = sγ̄/γ̄ where sγ̄ is a
strictly positive finite constant. Then ξ → 0 as γ̄ → ∞, and the
normalized GMI reduces to

1

M
I∞GMI(y;x) = sup

sγ̄>0

{
1

α
ln

(
sγ̄
αξγ̄

)
+ ln(1 + ξγ̄)

+
κ2ξγ̄
1 + ξγ̄

− sγ̄κ
2

α

}
, (32)

in the limit γ̄ → ∞. The auxiliary parameter ξγ̄
Δ
=ξγ̄>0

is given by

ξγ̄ =
sγ̄(1− α)− α+

√
4αsγ̄ + [sγ̄(1− α)− α]2

2α
. (33)

Compared to the finite-SNR case in Example 2, the GMI is now
directly given by (32) and there are no fixed-point equations
that need to be solved.

The next example provides explicit formulas for the compu-
tation of GMI given finite discrete constellations, such as, PSK
or QAM.

Example 4: Let A be a discrete modulation alphabet with
fixed and finite cardinality |A| and consider the GMI (27). Let
the channel inputs xm be drawn independently and uniformly
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from A. The parameters of the decoupled channel model in
Proposition 1 can be obtained by first solving ξ and ε̃ from

ξ =
s̃

α(1 + s̃ε̃)
, (34)

ε̃ = γ̄ −
∫

q(z) |〈x̃〉q|2 dz, (35)

using the following definitions for the decoupled estimator and
the postulated channel probability

〈x̃〉q =
1

q(z)|A|
∑
x̃∈A

x̃g(z|x̃; ξ−1), (36)

q(z) =
1

|A|
∑
x∈A

g(z|x; ξ−1), (37)

respectively. Note that this implies solving two parameters from
two nonlinear equations and can be done, for example, by using
an iterative substitution method. After obtaining the solutions
for ξ (and ε̃), the rest of the parameters can be obtained by
solving the two coupled equations

η =
1

α [N−1tr(Rw) + ε]
, (38)

ε =E
{
|v + x− 〈x̃〉q|2

}
, (39)

for η and ε, where the expectation is w.r.t. the true joint
probability of {x, v, z}. Finally, the free energy reads

fRS(s̃) =
1

α

(
ξ

η
+ ln s̃+ ln

1

αξ

)
− ξε+

ξ(ξ − η)

η
ε̃

−
(
ξ

η
+ ln

π

ξ
+

∫
p(z) ln q(z)dz

)
, (40)

where we denoted

p(z) =
1

|A|
∑
x∈A

g(z|x; η−1 + rv), (41)

for the decoupled PDF of the received signal.
Notice that the form of η in Example 4 is the same as in

Example 2, but the parameter ε has now a different structure.
Compared to the Gaussian case, the equivalent result for IID
discrete channel inputs looks in general more cumbersome.
First of all, we need to solve now two sets of equations instead
of just one. They both contain terms that involve |A| summa-
tions and there are also two expectations left to evaluate, one
in (35) and another in (39). However, both expectations involve
only scalar variables. This is in stark contrast to the original
problem that involved computing |A|M summations for every
channel and noise/distortion realization and taking expectation
over the channel and noise that are multidimensional integrals.

This makes direct Monte Carlo computation of the GMI for
discrete signaling in practice infeasible for large constellations
and numbers of antennas.

IV. MATCHED JOINT DECODING

A. Definition and the Special Case of Gaussian Signaling

Let us now consider the case of matched decoding where
the correct channel transition probability (5) is utilized at the
receiver. The first entropy term in (7) reads

E {ln p(y|x,H)} = −EH

{
ln det(Rw +HRvH

H)
}
− c,

(42)

where c = N ln(eπ). It should be remarked that there is still an
expectation left w.r.t. the channel realizations H in (42). This
could be evaluated, for example, using Monte Carlo methods
or random matrix theory [32], [33]. For the special case of
Gaussian inputs, the identities in Appendix A allow us to
partially calculate also the latter entropy term in (7), providing
the following result that is useful for Monte Carlo simulations.

Example 5: Let p(x) = g(x|0;Γ).Then,

1

M
I(y;x) =

1

M
EH

{
ln det

(
Rw +H(Γ+Rv)H

H
)}

− 1

M
EH

{
ln det(Rw +HRvH

H)
}
, (43)

is the normalized ergodic MI for matched decoding.
The above expression is relatively easy to compute also

by brute-force Monte Carlo methods since there is only an
expectation over the fading. Unfortunately, to the best of our
knowledge, the latter entropy term in (7) is mathematically
intractable for rigorous methods like random matrix theory
when p(x) is an arbitrary distribution that satisfies (2). For
example, given discrete inputs as in Example 4, calculating
E{ln p(y|H)} and combining it with (42) reduces the MI to
(44), shown at the bottom of the page. This form is com-
putationally very complex and can be evaluated using Monte
Carlo methods only for small number of antennas and simple
constellations. To obtain a result for general input distribution
p(x) that has lower computational complexity, we resort to
the replica method (see Appendix B). As before, the results
that follow have been written in a simplified form where the
assumption of LSL is suppressed for notational simplicity.

B. Analytical Results via the Replica Method

Proposition 2: Let us write for notational convenience

χm = xm + vm, m = 1, . . . ,M, (45)

I(y;x) = M ln |A| −N − 1

|A|
∑

x∈AM

Ev,w,H

{
ln

( ∑
x̃∈AM

e−[H(x−x̃+v)+w]H(Rw+HRvH)−1[H(x−x̃+v)+w]

)}
(44)
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where xm ∼ p(xm) and vm ∼ g(vm|0; r(m)
v ) are independent

for all m. Let

p(zm|χm) = g(zm|χm; η−1), (46)

be a conditional PDF of an AWGN channel whose input is (45)
and noise variance is η−1. The conditional mean estimator of
χm received over this channel reads

〈χm〉 = Eχm
{χmp(zm|χm)}

Eχm
{p(zm|χm)} , (47)

where the parameter η is given, along with another parameter
ε, as the solution to the coupled fixed point equations

η =
1

αN
tr
[
(Rw + εIN )−1

]
, (48)

ε =
1

M

M∑
m=1

[
γ̄m + r(m)

v − E |〈χm〉|2
]
. (49)

If we also define a second set of parameters η′ and ε′ that are
solutions to the coupled fixed point equations

η′ =
1

αN
tr
[
(Rw + ε′IN )

−1
]
, (50)

ε′ =
1

M

M∑
m=1

r
(m)
v

1 + η′r
(m)
v

, (51)

the per-stream MI is finally given by

1

M
I(y;x) =

ln det(Rw + εIN )− ln det(Rw + ε′IN )

αN

−(ηε− η′ε′) +
1

M

M∑
m=1

[
I(zm;χm)− ln

(
1 + η′r(m)

v

)]
,

(52)

where

I(zm;χm) = −1− ln
π

η
−
∫

p(zm) ln p(zm)dzm, (53)

is the MI of the Gaussian channel defined by (45) and (46).
Proof: The result can be obtained using Appendix B for

two separate MIMO channels. For the first one, we replace
everywhere xa → xa + va, a = 0, 1, . . . , u and an application
of the RM provides the equations (45)–(49). The formulas
(50)–(53), on the other hand, are obtained by substituting
xa → va, a = 0, 1, . . . , u in Appendix B.

Just like Proposition 1 in Section III, Proposition 2 is valid
for any input distribution that satisfies (2). The solutions to the
coupled (48) and (49) as well as (50) and (51) can be obtained
numerically, e.g., using an iterative substitution method.

For concreteness, we again give examples for Gaussian and
discrete signaling when the noise plus distortion is spatially
white Rv = rvIM and transmit power is uniformly allocated
Γ = γ̄IM . This makes the channels m = 1, 2, . . . ,M identi-
cally distributed so we omit the subscript m in the following.

Example 6: Let Rv = rvIM and consider the special case
of Gaussian inputs p(x) = g(x|0; γ̄IM ). Then

I(z;χ) = ln [1 + η(γ̄ + rv)] , (54)

ε =
γ̄ + rv

1 + η(γ̄ + rv)
, (55)

and the rest of the parameters are given in Proposition 2.
We next consider the high-SNR case γ̄ → ∞ as in Example

3 and compare it to the result obtained in [10] using completely
different mathematical methods.

Example 7: For the case Rw = rwI , Rv = κ2γ̄I (see, e.g.,
[10]) we find that if α ≤ 1 then γ̄ → ∞ yields η = η′ and ε =
ε′. The high SNR limit is therefore

1

M
I∞(y;x) = log

(
1 + κ2

κ2

)
, α ≤ 1. (56)

For the case α > 1, both η and η′ tend to zero at high SNR while
ε and ε′ grow without bound. This is not yet sufficient to solve
(52). However, combining this with the relations η′ε′ = ηε and
ε′ = ε κ2

1+κ2 , that hold in the limit γ̄ → ∞ for α > 1, provides
the second part of the high SNR result

1

M
I∞(y;x) =

1

α
log

(
1 + κ2

κ2

)
, α > 1. (57)

The asymptotic mutual information expressions in (56) and (57)
coincide exactly with the results obtained previously in [10], as
expected.

Example 8: If the channel inputs are from a discrete alphabet
A as in Example 4, the parameter ε in (49) is obtained using

〈χ〉= 1

p(z)

∑
x∈A

[
1

|A|g(z|x; η
−1+rv)

(
x+ηrvz

1+ηrv

)]
, (58)

E |〈χ〉|2=
∫

p(z)E
{
|〈χ〉|2

}
dz, (59)

in Proposition 2. Here p(z) is given by (41) and 〈χ〉 denotes
the conditional mean estimator of (45) from the observations
(46).The related MI term reads by definition

I(z;χ) = ln
( η

eπ

)
−
∫

p(z) ln p(z) dz. (60)

Both (49) and (60) need, in general, to be solved numerically.

V. NUMERICAL EXAMPLES

In the following, assume for simplicity that Γ = γ̄I , Rw =
I and Rv = κ2γ̄I , where κ = 10EVM/20 and EVM denotes
the EVM of the transmitter in decibels. The SNR without
transmit-side noise is therefore simply γ̄, or in decibels, γ̄dB =
10 log10(γ̄). Furthermore, all cases assume a symmetric an-
tenna setup α = M/N = 1 for simplicity.

The first numerical experiment plotted in Fig. 2 examines the
accuracy of the asymptotic analytical results when applied to
finite-sized systems. The EVM is fixed to a rather pessimistic
value EVM = −10 dB to highlight the differences between the
ideal and imperfect hardware configurations. The normalized
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Fig. 2. Normalized rate M−1I(y;x) in bits per channel use (cu) vs. SNR for MIMO transmission. Lines for replica results and markers for Monte Carlo
simulations for M = N = 4 antenna configuration. Selected cases of ideal hardware EVM = −∞ dB and hardware impairments (EVM = −10 dB) with matched
and mismatched decoding are plotted. (a) Gaussian signaling. (b) Discrete signaling.

Fig. 3. Performance of a MIMO system with M = N antennas and given ideal (EVM = −∞ dB) or non-ideal hardware (EVM = −20 dB) for different
signaling methods. Markers depict the points where discrete constellations and matched decoding with hardware impairments experience the maximum rate losses
compared to the ideal cases. (a) Normalized rate M−1I(y;x) given ideal hardware (dashed lines) or non-ideal hardware and matched decoding (solid lines).
(b) Rate loss percentage compared to ideal hardware for matched (solid lines) and mismatched (dash-dotted lines) decoding.

rate is shown using the asymptotic replica analysis (lines) and
Monte Carlo simulations (markers) for a finite-size symmetric
antenna setup with M = N = 4. In the case of Gaussian sig-
naling, plotted in Fig. 2(a), the analytical approximations for
the normalized rate M−1I(y;x) given by Examples 2 and 5
are quite good when compared to the finite size simulations
based on Examples 1 and 5. For discrete signaling depicted in
Fig. 2(b) we have plotted only the case of matched decoding
due to the computational complexity of Monte Carlo simu-
lations in the mismatched case. The gap between asymptotic
result presented in Example 8 and Monte Carlo averaging of
(44) is similar to the Gaussian case for both constellations.
Fig. 2 shows that the analytical approximation given by the
replica method is reasonably good already at M = N = 4,
even though formally the limit M,N → ∞ is required by the

analysis. Note that Monte Carlo simulation of (44) has expo-
nential computational complexity and the system size cannot be
increased much higher than M = 4. Therefore, the rest of the
examples are generated using only the analytical results given
in the previous sections.

Fig. 3 illustrates the performance of an M = N MIMO
system for a more realistic EVM value EVM = −20 dB. For
the case of matched decoding we used Examples 6 and 8, while
Examples 2 and 4 were used to obtain the curves represent-
ing mismatched decoding. In Fig. 3(a), the normalized rate
M−1I(y;x) is depicted as a function of SNR γ̄ in decibels.
For clarity of presentation, we have plotted only the ideal case
and the case of non-ideal hardware with matched decoding.
The Gaussian curves (black lines) here are the same as the
simulation curves in [10, Fig. 2] given the parameter value
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Fig. 4. Normalized rate M−1I(y;x) in bits per channel use vs. EVM
in decibels for MIMO transmission with Gaussian signaling. Solid lines for
matched decoding and dash-dotted lines for mismatched decoding.

κ = 0.1. Apart from 64-QAM and Gaussian signaling, the
figure seems to imply that lower order constellations exhaust
the source entropy before the transmit-side noise has any sig-
nificant effect for this choice of EVM. To see more clearly
the effect of transmit noise, Fig. 3(b) shows the rate loss (in
percentage) for the case with transmit noise EVM = −20 dB
when compared to the ideal case EVM = −∞ dB. The solid
lines represent again matched decoding while dash-dotted lines
are for mismatched decoding. As expected, mismatched de-
coding reduces the achievable rate when compared to matched
decoding, but the effect is relatively minor when compared to
the total rate loss caused by the presence of transmit noise itself.
The markers depict the points where maximum relative rate loss
is experienced for matched decoding. The same markers are
also plotted in Fig. 3(a) for comparison.

In Fig. 4 we have plotted the asymptotic high-SNR results
given in Examples 3 and 7. Note that given a finite value
of EVM, the normalized rates for matched and mismatched
decoding have a gap in this case. For more realistic, but still
quite high SNR values of 20 dB and 30 dB, the two decoding
strategies converge to the same value roughly when γ̄dB <
−EVM. The apparent discrepancy is explained by recalling
that the asymptotic cases assume γ̄ → ∞ for a fixed and
nonzero EVM and, thus, as a finite SNR approximation implies
γ̄ � 1/κ2. As may be observed from the lower right corner
of the figure, the SNR values 20 dB and 30 dB have also a
similar behavior near γ̄ � 1/κ2. Thus, the high-SNR result is
consistent with the finite-SNR cases.

It is important to guarantee certain performance when de-
signing a system. The maximum EVM that leads to at most
5% rate loss (as compared to having ideal hardware) for a fixed
input distribution and different given SNRs is plotted in Fig. 5.
For Gaussian signaling we have plotted both the matched and
mismatched cases while discrete cases assume matched joint
decoding for simplicity. As expected, the EVM requirement
for Gaussian signaling is a monotonically decreasing, but not
linear, function of SNR. A simple linear approximation that

Fig. 5. Maximum allowed EVM in decibels for matched decoding so that the
system experiences at most 5% loss in rate compared to the case with ideal
hardware (EVM = −∞ dB). Markers depict the worst case EVM requirement
for the discrete constellations and parenthesis in the legend provide the re-
spective values as (γ̄dB, EVM). All discrete cases correspond to matched joint
decoding at the receiver.

provides a lower bound for the case of Gaussian signaling with
matched decoding is given by

EVM = −0.7 · γ̄dB − 13, (61)

in decibels for the depicted region. This can be used as a
simple rule-of-thumb for worst-case maximum allowed EVM
in the system, although we recommend that EVM target values
obtained in this way are always rounded down to 1–5 dB preci-
sion to include extra safety margin. For discrete constellations,
the EVM requirement first follows the Gaussian case but then
starts to get looser at higher SNRs. This is expected, as can
be observed from Fig. 3(a), since the maximum achievable rate
for a discrete constellation saturates at a certain SNR when the
input distribution runs out of entropy. After this point, the rate
loss can be held fixed for increasing SNR by increasing the
transmit-side noise variance, or EVM, accordingly.

VI. CONCLUSION AND FUTURE WORK

Considering a ‘binoisy’ channel model, we have derived
asymptotic expressions for the achievable rate of SU-MIMO
systems suffering from transceiver hardware impairments. For
matched decoding, where the receiver is designed and im-
plemented explicitly based on the generalized system model,
expressions for the ergodic mutual information between the
channel inputs and outputs have been given. In addition, a
simplified receiver that neglected the hardware imperfections
and performed mismatched detection and decoding has been
studied via generalized mutual information. The mathematical
expressions provided in the paper cover practical discrete mod-
ulation schemes, such as, quadrature amplitude modulation,
as well as Gaussian signaling. The numerical results showed
that for realistic system parameters, the effects of transmit-side
noise and mismatched decoding become significant only at
high modulation orders. Furthermore, the effect of mismatched
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decoding was found to be relatively minor compared to the total
rate loss caused by the presence of transmit noise itself. The
results were also used to identify the maximum EVM values
that allows for certain system operation.

A. Future Work

For the ease of exposition, the present paper considered the
analysis of a relatively simple SU-MIMO system where the
channel had IID Gaussian elements. An extension of the present
replica analysis to correlated or Ricean fading channels can be
done by following, for example, the analysis in [29] and [30],
respectively. Establishing the effects of transmit-side noise for
the cases of correlated and non-Rayleigh fading channels is an
important avenue for future work.

As a further extension, it is important to investigate whether
similar phenomena as observed in the present paper are present
also for more complicated signal models with discrete channel
inputs. Such systems already analyzed in the ideal setting with
the replica method include, for example, multiuser MIMO and
base station collaboration [34], channels with interference and
precoding [35] and K-hop relay channels [36]. Combining the
ideas from the present paper and [34]–[36] would provide a
possible approach to solving such cases.

APPENDIX A
USEFUL RESULTS

Here we collect useful results that are used often in the paper.
All matrix operations below are implicitly assumed to be well-
defined. The Gaussian integration formula for vector x ∈ C

N

is given by (see, e.g., [37, Appendix I])

1

πN

∫
e−xHMx+2�{bHx}dx =

1

det(M)
eb

HM−1b, (62)

and used in Sections II–IV and Appendix C. Similarly, the
matrix inversion lemma [38]

(W−1+UT−1V H)
−1

=W−WU(T+V HWU)
−1
V HW ,

(63)
and the related determinant identity

det(W−1 +UT−1V H)

= det(T + V HWU) det(W−1) det(T−1), (64)

are employed several times in the paper.

APPENDIX B
REPLICA METHOD

Consider a function Z that maps RVs to positive real
numbers4 and define two sets of RVs, V ∈ V and X ∈ X , with
joint probability PV,X . Assume for convenience that PV,X can
be described in terms of a joint PDF p(V,X) and denote the
marginal PDFs of X and V pX(X) and pV (V ), respectively.

4In the following we refrain differentiating random variables and their
realizations for notational convenience. Also, Z and, as a result, f can depend
on some parameters (non-random variables) that are not explicitly stated.

Then, both in statistical mechanics and communication theory,
we often encounter a formula

f = − 1

M
EV {lnEX {Z(V,X)}}

= − 1

M

∫
V

pV (V ) lnZ(V )dV, (65)

where Z(V ) =
∫
X pX(X)Z(V,X)dX . In physics jargon, the

variables V are said to be quenched and the quantity (65) is
the average free energy density of a system whose partition
function is Z(V ). Two concrete examples of (65) are:

1) Let Z(V,X) = g(y|Hx;Rw) be the conditional PDF
of the observation in an ideal MIMO channel with V =
{y,H} and X = {x}, where x has IID elements from
a discrete modulation set A, such as PSK or QAM. Then
(65) represents a normalized version of the second term in
(7), namely, the (normalized) total entropy of the received
signal y given a realization of H and averaged over all
possible realizations of H .

2) Let Z(V,X) = eβσ
HJσ , where β > 0 denotes the inverse

temperature, V = J ∈ R
M×M a coupling matrix and

X = σ ∈ {±1}M a spin configuration. If pV (V ) is a
uniform probability over σ and J has, e.g., IID Gaussian
elements, then (65) is the average free energy density of a
mean-field Ising spin glass in the absence of external field
(up to trivial constants).

In both cases, f captures important properties of the system at
hand and obtaining a computable formula for (65) would be of
great interest. This seems infeasible though since the number of
terms in the expectation is exponential in M .

A. Outline of the Replica Method

One method for solving (65) is the replica method (RM) from
equilibrium statistical mechanics. While the RM is extremely
versatile, it unfortunately lacks mathematical rigor in some
parts (see, e.g., [24]–[26]). However, due to its success both
in physics and engineering, it is generally agreed to be at
least a valuable starting point for analysis of problems that
seem otherwise too difficult to handle. A cursory overview of
literature about the RM inside a specific field or topic may paint
the picture that the RM is a fixed set of mathematical methods
which can be applied to any suitable problem at hand. This
is not entirely accurate and conceptually the RM can be seen
more like a systematic way of turning a very difficult problem
into a more manageable one than a set of specific tools that
actually solve the problem. Indeed, the mathematical methods
that are used at different stages of the RM can often be chosen
from a variety of choices, although it is very common to have
some form of large deviations theory as part of the analysis
(see Step 2 below). Thus, instead of trying to be entirely
general, we describe next (one form of) the steps taken in the
RM in the context of the first example above.



IE
EE

Pr
oo

f

12 IEEE TRANSACTIONS ON COMMUNICATIONS

Step 1 (Replica Trick): Consider (65) and write it as

f = − 1

M
lim

u→0+

∂

∂u
lnEV {[Z(V )]u}

= − 1

M
lim

u→0+

∂

∂u
lnEV

{( ∑
x∈AM

pX(x)Z(V,x)

)u}

= − 1

M
lim

u→0+

∂

∂u
ln Ξ(u), (66)

where u ∈ R and we denoted Ξ(u) = EV {[Z(V )]u}. Then,
assume that we can treat u as an integer when we take the
expectation, namely,

Ξ(u)=EV

⎧⎨
⎩

u∏
a=1

∑
xa∈AN

pX(xa)Z(V,xa)

⎫⎬
⎭

=
1

πuN (detRw)u

×EV

⎧⎨
⎩∑

{xa}

u∏
a=1

[
e−(y−Hxa)

HR−1
w (y−Hxa)pX(xa)

]⎫⎬
⎭,

(67)

where the summation in the last expression is over the set
{xa}ua=1. After taking the expectations, if we manage to write
(67) in a form that does not explicitly force u to be an integer,
invoke analytical continuity to extend u to real numbers.

The step above is at the very heart of the RM. It is impor-
tant to realize that the equalities in (66) are provably true if
differentiation under the integral sign is permitted and u ∈ R.
The part lacking rigorous mathematical justification is (67),
especially when combined with the next two steps. Somewhat
surprisingly, however, the end results of RM can sometimes
be proved to be exact. Examples of such cases are: MIMO
channel with Gaussian inputs, random energy model (REM)
and Sherrington-Kirkpatrick model of spin glasses (see, e.g.,
[24]–[27], and references therein).

Step 2 (Large System Limit): Let the system approach the
LSL, that is, the dimensions of the channel matrix H grow
without bound at a finite and fixed ratio α = M/N > 0. Fur-
thermore, assume that the limits w.r.t. u and M commute, so
that we can first calculate the expectations in (67) in the LSL
and then let u → 0, as in (66).

The LSL assumption is natural in equilibrium statistical
mechanics (e.g., the second example above), where the systems
contain usually very large numbers of interacting particles
M . In communication theory, the equivalent would be, e.g.,
a MIMO systems with large antenna arrays or a CDMA with
large number of simultaneous users. It is in fact quite common
to write the LSL assumption directly as a part of the replica
trick in (66). The steps are separated here since the replica trick
could also be used for finite sized systems. Due to mathematical
difficulty of such cases, however, both steps are usually found
together. The assumption of commuting limits is typically pos-
tulated a priori and rigorous justification of this step is beyond
the scope of the present paper.

Let us denote the true transmitted vector x0, so that y =
Hx0 +w is the generating model for the observation y and
we can equivalently write V = {w,x0,H}. Returning then to
Step 1, we note that although the replicated vectors {xa}ua=1

act as IID RVs drawn according to pX in (67) when condi-
tioned on V , they can be correlated if not conditioned on V .
We examine this through the empirical correlations between
the vectors in the set Xu+1 = {xa}ua=0 using overlap matrix
Q ∈ C

(u+1)×(u+1), whose (a, b)th element5 is given by Qa,b =
M−1xH

bxa. Then, the structure that is imposed on Q divides the
replica analysis into two rough categories as described below.

Step 3 (Replica Symmetry): The RS ansatz or RS assumption
means that the indexes a = 1, . . . , u are permutation symmetric
and Q can be written in terms of four parameters, for exam-
ple, Q0,0 = p, Q0,a = m, a ≥ 1, Qa,a = q, a ≥ 1, and Qa,b =

q, a = b ≥ 1. Note that Q = QH by construction. If Q is not of
the RS form, it is said to have replica symmetry breaking (RSB)
structure whose analysis is much more involved [24], [25].

The importance of the RS assumption will become clear
when we present a rough sketch of the analysis of an ideal
MIMO channel. We also note that the overlap matrix given in
Step 3 allows the “zeroth” index to be treated separately to take
into account the possibility that either x0 has different distri-
bution than xa when a ≥ 1, or the decoder uses mismatched
statistics, i.e., Z(V,xa) does not match the probability law
of the observation y = Hx0 +w as in Appendix C. For the
simplified case considered below, however, we have p = Q and
m = q since the indexes a = 0, 1, . . . , u can be treated on equal
footing and two parameters are sufficient to define the RS form
of Q.

Next we give a brief and informal example of replica analysis
for an ideal MIMO channel. The reader may be surprised to find
out that most of the discussion below deals with details about
how to obtain the necessary formulas when we follow the three
stages above and not about those stages per se.

B. Average Over the Channel and Noise

The starting point of our replica calculation is (67), where we
use the generating model of y to write in the exponential y −
Hxa = w −H(x0 − xa). The first task is then to compute
the expectation w.r.t. w and H for a fixed set Xu+1 = {xa}ua=0

that satisfies the correlations of the RS overlap matrix Q. Note
that we cannot assume anymore that the vectors in Xu+1 are
independent since we changed the order of expectations in
(67) and the average over Xu+1 is carried out (later) without
conditioning on w and H . With this in mind, it follows that
given Xu+1, the set {Hxa} consists of CSCG RVs with corre-
lations EH{(Hxa)(Hxb)

H} = M−1xH
bxaIN = Qa,bIN that

are deterministic in the LSL. Thus, we can replace {H(x0 −
xa)}ua=1 by a set of CSCG RVs {Δa}ua=1 and use Gaussian
integration (62) to average over both w and {Δa}ua=1 to obtain
(for more details, see Appendix C-B).

Ξ(u) =

∫
eNG(u)(Q)μ(Q)dQ, (68)

G(u)(Q) = −u ln det [Rw + (Q− q)IN ]
− u lnπ − ln(u+ 1), (69)

5The row/column indexes of Q are 0, 1, . . . , u so that the correlations are
measured also w.r.t. the true transmitted vector x0. Furthermore, due to (2), the
empirical correlations can be expected to converge to the true ones in the LSL
postulated in Step 2.
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where Q should be understood to be in its RS parametrized
form and μ(Q) is the PDF of the overlap matrix Q.

Remark 2: Firstly, note that due to the RS assumption
(Step 3), the function (69) is of a form that does not restrict
u to be an integer, as desired. This is one of the reasons why we
need to express matrix Q in a parametrized way instead of using
it “as-is.” Secondly, there is some universality in this derivation
and the form (68) is a typical result of replica analysis. In some
cases, however, different techniques are needed. One example is
non-IID “mixing matrix” that requires direct matrix integration
[39], [40].

C. Distribution of the Overlap Matrix and Large Deviations

The second major step in the analysis is to find an explicit
formula for μ(Q), i.e., for the probability weight of the set
{xa}ua=0 that satisfies Qa,b = M−1xH

bxa. The form of (68)
suggest that we should try to represent μ(Q) as an exponential
whose argument is linear in N (or M ) so that we can employ
Laplace’s method or the method of steepest descent to evaluate
the integral w.r.t. Q. If xa ∈ R

M , due to (2), the elements
of xa are IID for all a = 0, 1, . . . , u and μ follows the large
deviation principle [25], [41]. Informally this implies6 μ(Q) �
e−Mc(u)(Q), where the rate function

c(u)(Q) = sup
Q̃

{
tr(QQ̃)− lim

M→∞

1

M
lnφ(u)(Q̃)

}
, (70)

describes the exponential behavior of the probability,

φ(u)(Q̃) = EXu+1

⎧⎨
⎩exp

⎛
⎝ u∑

a,b=0

Q̃a,bx
H
bxa

⎞
⎠
⎫⎬
⎭ , (71)

is the moment generating function (MGF) associated with μ(Q)
and the supremum is over all (u+ 1)× (u+ 1) matrices Q̃ that
have the same RS form as Q, that is, Q̃0,0 = p̃, Q̃0,a = m̃, a ≥
1, Q̃a,a = Q̃, a ≥ 1, and Q̃a,b = q̃, a = b ≥ 1. Thus, we can
assess (68) in the LSL up to the leading order by using the
exponential form of μ and Laplace’s method, namely,

Ξ(u) �
∫

eMα−1G(u)(Q)e−Mc(u)(Q)dQ

=

∫
exp

(
N
[
α−1G(u)(Q)− c(u)(Q)

])
dQ (72)

� exp

(
M sup

Q,Q̃

{
T (u)(Q, Q̃)

})
, (73)

where we denoted for notational convenience

T (u)(Q, Q̃) =
1

α
G(u)(Q)− tr(QQ̃) + lim

M→∞

1

M
lnφ(u)(Q̃).

(74)

For complex vectors {xa}, the end result is essentially the
same and the solution to the supremum is found among the

6We use notation aM � bM to denote “equality up to the leading exponen-
tial order,” that is limM→∞ M−1 ln(aM/bM ) = 0.

critical points of the argument (see e.g., [29], [31], [39]).
The large deviations analysis also guarantees that Q̃ is in
general a real symmetric matrix and if (Q∗, Q̃

∗
) is the solution

of the optimization problem in (73) then T (u)(Q∗, Q̃
∗
) ∈ R, as

expected since f is in our case real.
However, in RM there is some ambiguity as to whether the

correct point in the saddle-point approximation (73) minimizes
or maximizes the exponential when we let u → 0 [24], [25].
Thus, in RM, we seek in practice the critical points and (66) is
thus of the form

f = − lim
u→0+

∂

∂u
extr
Q,Q̃

{
T (u)(Q, Q̃)

}
, (75)

where extrX{h(X)} denotes finding the critical points of a
function h(X).

D. Decoupled MGF and Critical Points

The second part of replica analysis where the RS assumption
plays an important role (for the first one, see Remark 2) is
when we try to solve (71) and find the critical points of
T (u)(Q, Q̃). For the simplified setup in this section where
Q and Q̃ are represented with parameter {Q, q} and {Q̃, q̃},
respectively, the MGF can be expressed as (see, e.g., [27] for
details)

φ(u)(Q̃) =

M∏
m=1

[(
q̃

π

)−u ∫ [
Exm

g(zm|xm; q̃−1)
]u+1

dzm

]
,

(76)

where zm are just dummy variables. On the other hand, finding
the critical points involves taking eight partial derivatives for
the RS case in Step 3 (for the simplified case here, four is
enough). Then, one should pick the solution that satisfies the
conditions at the critical point while providing the global ex-
tremum of (66).In the case considered here, we can actually get
rid of two parameters since p = M−1E‖x‖2 and p̃ = 0 always
at the critical point. Note that if we did not parametrize Q, the
critical points would be described by u(u+ 1) equations and
Ξ(u) would depend explicitly on the fact that u is an integer.
This is one of the reasons why even the full-RSB solution (see
[24], [25]) uses a round-about way of presenting Q instead of
using it “as-is.”

Finally, we remark that it is quite common (see, e.g., [27]) to
represent the end result in terms of new variables. For example,
if we have equal transmit powers for each antennas γ̄ = γ̄m in
the simplified case considered here, then the parameters η = q̃
and ε = Q− q = γ̄ − q fully describe the RS matrices Q and
Q̃ at the critical point. The former variable is inverse noise
variance of a decoupled Gaussian channel

z = x+ w, p(w) = g(w|0; η−1), (77)

and the latter variable ε is the MMSE of this channel when
the inputs are drawn according to pX(x). The rest of RM is
straightforward, albeit tedious algebra to arrive at (66).
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APPENDIX C
REPLICA ANALYSIS FOR MISMATCHED CASE

The analysis herein follows the main steps of RM as listed
in Appendix B. Reader who is not familiar with the RM is
encouraged to use discussion there as a guide to the derivations
below.

A. Replica Trick

Let us consider the function f(s) (free-energy) defined in
(13). We then postulate that it can be expressed in the LSL using
the standard replica trick (cf. Appendix B)

f(s) = − lim
M→∞

1

M
lim
u→0

∂

∂u
ln Ξ(u,M)(s), (78)

where we defined for later convenience

Ξ(u,M)(s) = E

{
u∏

a=1

e−[w+H(χ0−χa)]
HΣ−1[w+H(χ0−χa)]

}
,

(79)

and denoted7 Σ = s−1R̃ along with χ0 = x0 + v0 and χa =
xa, a = 1, . . . , u. Here x0 is the original transmit vector in (1)
and {xa}ua=1 are replicated data vectors, which are IID drawn
according to p(x) when conditioned on {x0,v0,w,H}. On the
other hand, v0 represents the noise plus distortion component
at the transmit-sidethat is CSCG with covariance matrix Rv .
Starting with (79), the goal is then to obtain a functional
expression for Ξ(u,M)(s) in the LSL that does not enforce u
to be an integer and then use (78) to obtain the desired quantity.
In the following, explicit limit notations are often omitted for
notational convenience.

B. Average Over the Channel and Noise

To proceed with the evaluation of (79), we first make the RS
assumption

p =M−1‖χ0‖2, (80)

m =M−1χH
0χa, a = 1, . . . , u, (81)

Q =M−1‖χa‖2, a = 1, . . . , u, (82)

q =M−1χH
aχb, a = b ∈ {1, . . . , u}. (83)

and remind the reader that if we average first over H , the
empirical correlations between {xa}ua=0 are not zero in general
as discussed in Appendix B. Thus, noticing that

EH

{
[H(χ0 − χa)] [H(χ0 − χb)]

H
}

=

{
[p− (m+m∗) +Q] IN , a = b,
[p− (m+m∗) + q] IN , a = b,

(84)

7We remind the reader that for the case of mismatched decoding, the
postulated covariance matrix R̃ is fixed by definition so that Σ = s−1R̃ is also
a fixed predefined matrix. This is in contrast to the case of matched decoding
(5), where the effective covariance matrix Rw +HRvH is random and
depends directly on the channel matrix H .

we may replace {H(χ0 − χa)}ua=1 in (79) in the LSL by
CSCG vectors {Δa}ua=1 that are constructed as

Δa =da

√
Q− q + t

√
p− (m+m∗) + q (85)

=da

√
A+ t

√
B, (86)

where {t, {da}ua=1} are IID standard complex Gaussian RVs
independent of w. Plugging (86) into Ξ(u,M)(s) and recalling
that Σ is a fixed predefined matrix gives

Ξ(u,M)(s) =
1

det(Rw)
E

∫
dw

πN
e−wH(R−1

w +uΣ−1)w

×
∫

dt

πN
e−tH(I+uBΣ−1)t−2�{wH(u

√
BΣ−1)t}

×
[∫

e
−dH(I+AΣ−1)d+2�

{
[−

√
AΣ−1(w+

√
Bt)]

H
d
}
dd

πN

]u
.

(87)

Next, Gaussian integration (62) is applied on the integral w.r.t.
d. Using also (63) we arrive at

Ξ(u,M)(s) = E

∫
dw

πN

e−wH(R−1
w +u(AIN+Σ)−1)w[

det(I +AΣ−1)
]u

det(Rw)

×
∫

e
−tH[IN+uB(AIN+Σ)−1]t+2�

{
[−u

√
B(AIN+Σ)−1w]

H
t
}
dt

πN
.

(88)

Application of (62) and (63) again for the integral w.r.t. t
provides

Ξ(u,M)(s)

=E

⎧⎪⎨
⎪⎩

[
det(I +AΣ−1)

]−u

det [IN+uB(AIN+Σ)−1] det(Rw)

×
∫

e−wH(R−1
w +u[(A+uB)IN+Σ]−1)w dw

πN

⎫⎪⎬
⎪⎭

=E

⎧⎪⎨
⎪⎩

(
det

[
IN+uRw ((A+uB)IN+Σ)−1

])−1

det [IN+uB(AIN+Σ)−1]
[
det(I+AΣ−1)

]u
⎫⎪⎬
⎪⎭ ,

(89)

where the second line is also obtained through Gaussian inte-
gration. The above holds for any Rw and Σ that are Hermitian
and invertible. The determinants in (89) can be further simpli-
fied using (64), so that recalling Σ = s−1R̃ and defining two
auxiliary matrices

Ω(p,m, q) =Rw + (p− (m+m∗) + q) IN , (90)

Ω̃(Q, q) = s−1R̃+ (Q− q)IN , (91)

that are both Hermitian, we finally have

Ξ(u,M)(s) = det(s−1R̃)uE
{
eG

(u)(p,m,q,Q)
}
, (92)

G(u)(p,m, q,Q) = (1− u) ln det Ω̃(Q, q)

− ln det
[
Ω̃(Q, q) + uΩ(p,m, q)

]
, (93)
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Using the differentiation rule ∂
∂x ln detA = tr(A−1 ∂A

∂x ), where
the partial derivative should be understood as an elementwise
operation on A, we also obtain for later use the equalities

∂

∂p
G(u)(Q) = − utr

(
(Ω̃+ uΩ)−1

)
, (94)

∂

∂m
G(u)(Q) =

∂

∂m∗G
(u)(Q) = utr

(
(Ω̃+ uΩ)−1

)
, (95)

∂

∂q
G(u)(Q) =u(u− 1)tr

(
Ω̃

−1
Ω(Ω̃+ uΩ)−1

)
, (96)

∂

∂Q
G(u)(Q) =utr

(
Ω̃

−1
Ω(Ω̃+ uΩ)−1

)
− utr(Ω̃

−1
), (97)

where the dependencies to {p,m, q,Q} were omitted on the
RHSs of the equations for notational implicity.

C. Distribution of the Overlap Matrix and Large Deviations

Let us now write the general form of empirical correlations
between {Δa} as

1

M
EH

{
ΔH

bΔa

}
=

(
‖χ0‖2
M

− χH
bχ0

M
− χH

0χa

M
+

χH
bχa

M

)
=(Q0,0 −Q0,b −Qa,0 +Qa,b), (98)

where Qa,b are the elements of the overlap matrix Q ∈
C

(u+1)×(u+1) and have the obvious definitions. We then need
to find a suitable formula for the rate function (70). By the RS
assumption,

tr(QQ̃) = pp̃+ um̃(m+m∗) + uQQ̃+ u(u− 1)qq̃, (99)

since Q̃ is real symmetric and we may write (78) as in (100),
shown at the bottom of the page, where the per-antenna rate
function reads

φ(u)
m (Q̃) = E{χa,m}

{
exp

[
u∑

a=0

u∑
b=0

Q̃a,bχ
∗
b,mχa,m

]}
,

(101)
and χa = [χa,1 · · ·χa,M ]�.

D. Decoupled MGF and Critical Points

The first set of equations for the critical point arises from the
equality

∂

∂x
tr(QQ̃) =

1

M

∂

∂x
G(u)(Q), (102)

for x ∈ {p,m, q,Q}. The partial derivatives on the LHS are
trivial due to (99) and the RHSs we already obtained in
(94)–(97). If we drop the explicit dependence of Ω and Ω̃

on {p,m, q,Q} for notational simplicity, the RS conjugate
parameters satisfy

p̃ = −u
1

M
tr
[
(Ω̃+ uΩ)−1

]
= −um̃, (103)

m̃ =
1

M
tr
[
(Ω̃+ uΩ)−1

]
, (104)

q̃ =
1

M
tr
[
Ω̃

−1
Ω(Ω̃+ uΩ)−1

]
, (105)

Q̃ =
1

M
tr
[
Ω̃

−1
Ω(Ω̃+ uΩ)−1

]
− 1

M
tr
(
Ω̃

−1
)
. (106)

Note that the above implies that in the limit u → 0, we have
p̃ → 0, and m̃ → −(Q̃− q̃), so that the relevant critical point
can be written by using two instead of four “tilde-parameters.”

The next task is to obtain an explicit expression for the per-
component moment generating function (MGF) in (101) that
does not require u to be an integer. Since this part is closely
similar to the analysis carried out, e.g., in [27] we omit the
details of the derivations. Following the notation of [27], we let
ξ = m̃ and η = m̃2/q̃ which is sufficient to describe Q̃ here.
Then, if we denote χm = xm + vm and χ̃m = x̃m, the scalar
MGF (101) can be written as

φ(u)
m (Q̃) =

(
π

ξ

)u

E

{∫
dzmeuξ(|zm|2−|χm|2)

× p(zm|χm) [Eχ̃m
q(zm|χ̃m)]u

}
, (107)

where p(zm|χm) = g(zm|χm; , η−1) and q(zm|χ̃m) =
g(zm|χ̃m; ξ−1). As a consequence of the above, u does not
need to be an integer anymore and the limit u → 0 is well
defined. From the partial derivatives of {p̃, m̃, q̃, Q̃} we obtain
the second set of conditions at the critical point

p = lim
M→∞

1

M

M∑
m=1

E|xm + vm|2, (108)

Q = lim
M→∞

1

M

M∑
m=1

E
〈
|x̃m|2

〉
q
, (109)

m = lim
M→∞

1

M

M∑
m=1

E(xm + vm) 〈x̃∗
m〉q , (110)

q = lim
M→∞

1

M

M∑
m=1

E 〈x̃∗
m〉q 〈x̃∗

m〉q , (111)

where xm, x̃m ∼ p(xm), vm ∼ g(vm|0; rmv ),

〈f(x̃m)〉q = Ex̃m
f(x̃m)

q(zm|x̃m)

q(zm)
, (112)

fRS = − lim
M→∞

1

M
ln det(Σ)− extr

Q,Q̃
lim

M→∞

{
1

M
lim
u→0

∂

∂u
G(u)(Q)

− lim
u→0

∂

∂u

[
pp̃+ u(mm̃∗ + m̃m∗) + uQQ̃+ u(u− 1)qq̃

]
+

1

M

M∑
m=1

lim
u→0

∂

∂u
lnφ(u)

m (Q̃)

}
(100)
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and q(zm) = Ex̃m
q(zm|x̃m). The interpretation is that (112)

represents the conditional mean estimator for postulated chan-
nel q(zm|χ̃m) when the true channel is given by p(zm|χm).
Then the true ε = p− (m+m∗) + q, and postulated ε̃ = Q−
q MMSE reduce to (23) and (24), respectively. Finally, comput-
ing the partial derivatives w.r.t. u in (100) and taking the limit
u → 0 provides after some algebra the free energy (26).
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Abstract—Hardware impairments in radio-frequency compo-
nents of a wireless system cause unavoidable distortions to trans-
mission that are not captured by the conventional linear channel
model. In this paper, a “binoisy” single-user multiple-input
multiple-output (SU-MIMO) relation is considered where the ad-
ditional distortions are modeled via an additive noise term at the
transmit side. Through this extended SU-MIMO channel model,
the effects of transceiver hardware impairments on the achievable
rate of multi-antenna point-to-point systems are studied. Channel
input distributions encompassing practical discrete modulation
schemes, such as, QAM and PSK, as well as Gaussian signaling
are covered. In addition, the impact of mismatched detection and
decoding when the receiver has insufficient information about the
non-idealities is investigated. The numerical results show that for
realistic system parameters, the effects of transmit-side noise and
mismatched decoding become significant only at high modulation
orders.

Index Terms—Multiple antennas, mismatched decoding,
ergodic capacity, fading channels, generalized mutual information
(GMI), transceiver hardware impairments.

I. INTRODUCTION

M IMO, i.e., multiple-input multiple-output, wireless links
are a mature research subject and their theory is al-

ready well understood [1]. However, the extensive body of
literature on link-level analysis conventionally concerns signal
models of the form y = Hx+ n reckoning with an additive
thermal-noise term, namely n, only at the receiver after the
fading channel H . In this paper, we investigate single-user
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MIMO channels and adopt a generalized (“binoisy”) input–
output relation from [2]–[11]:

y = H(x+ v) +w, (1)

where w is an additive receive-side distortion-plus-noise com-
ponent. The system model (1) allows including an additive
noise term, namely v, also at the transmitter, thus making
the total effective noise term Hv +w colored and correlated
with the fading channel. This small but significant complement
yields a MIMO link model whose performance analysis is still
an open research niche in many respects.

Although we primarily aim at extending the capacity theory
of binoisy SU-MIMO channels under fading without commit-
ting to any particular application, the signal model (1) originally
stems from the practical need for modeling the combined effect
of various transceiver hardware impairments which are detailed
in [12], [13], and the references therein. However, it is worth
acknowledging that the additive noise assumed herein is only
a simplified representation of complex nonlinear phenomena
occurring due to hardware impairments, especially when con-
sidering their joint coupled effects or trying to model residual
distortion after compensation. Thus, the binoisy signal model
should be regarded as a compromise between facilitating the-
oretical analysis and resorting to measurements or simulations
under more accurate modeling. Yet the central limit theorem
further justifies the model by averaging the combined effects
of different impairments to additive Gaussian noise when the
signal model (1) is understood to represent a single narrowband
subcarrier within a wideband system.

Additive receiver hardware impairments can be incorporated
into the conventional signal model by increasing the level of
the thermal-noise term n by a constant noise figure, e.g., about
3–5 dB, or by scaling it in proportion to the input signal level
such that it matches with w. On the other hand, regarding the
joint effect of transmitter hardware impairments as an additive
transmit-side noise term v is analogous to the principles of
practical radio conformance testing. In particular, the common
transmitter quality indicator is error-vector magnitude (EVM)
which reduces the distortion effects to an additive component
and measures its level relatively to signal amplitude [14].

Typical target EVM values guarantee that the signal x is
at least 20–30 dB above the transmit-side noise v. On the
other hand, for basic discrete channel inputs such as quadrature
phase-shift keying (QPSK), Hx is usually at most 10–15 dB
above the receive-side noise w, after which the communication
is not anymore limited by noise but the lack of entropy in the

0090-6778 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. System model for non-ideal MIMO communications with transmit and
receive distortion. The receiver might be misinformed or ignorant of some of
the variables in the transmission chain leading to mismatched decoding.

modulation alphabet. This implies that transmitter hardware
impairments can be justifiably omitted in the analysis of simple
low-rate wireless systems: Either Hv is well below the receive-
side noise w (say 5–20 dB) or the signal-to-noise ratio (SNR) is
set to an uninterestingly high level. However, there has been a
trend to improve data rates by using, e.g., quadrature amplitude
modulation (QAM) up to 64-QAM at relatively high SNR, in
which case the transmit-side noise begins to play a notable role
in the link-level performance.

The considered system setup corresponding to (1) is shown
in Fig. 1. As for MIMO processing, we focus on regular spa-
tial multiplexing where a conventional transmitter separately
encodes and sends an independent stream at each of its antennas
without having channel state information or being aware of the
transmit-side noise it produces; the receiver jointly decodes the
output signals of the MIMO channel knowing its instantaneous
realization H and some noise statistics. However, conventional
receivers are designed and implemented based on the conven-
tional signal model (where v = 0) due to which they are prone
to lapse into suboptimal mismatched decoding by inaccurately
postulating the statistics of the actual noise term Hv +w.
Even if off-the-shelf receivers can adapt to colored receiver
noise, they may not be able to track the variable statistics of
the component Hv propagated from the transmitter since it is
correlated with the fading channel. Only an advanced receiver
would be able to perform matched decoding knowing perfectly
the noise statistics as if it was designed and implemented
explicitly based on the generalized binoisy signal model (1).

A. Related Works

The key reference results for the present study are reported
in [2]–[11]. These seminal works originally formulated the
research niche around (1) and established the baseline under-
standing of MIMO communication in the presence of transmit-
side noise with numerical simulations and theoretical analysis.
The majority of the related works, e.g., [2], [3], [6], [8], concern
regular spatial multiplexing using separate encoding like the
present paper but also different variations of joint encoding
have been creditably investigated, e.g., in [4], [7]. On the other
hand, all the studies that we are aware of assume (implicitly)
advanced receivers that know the presence of transmit noise, no
matter what form of decoding is used.

Especially, the reference results are polarized such that the
scope of analytical studies [6], [8] typically differs from that
of studies reporting simulations [6], [7], [9] or measurements
[4]–[6]. Except for [2], practical discrete modulation schemes,

e.g., QAM, have not been previously analytically evaluated in
the presence of transmit noise, and simulation-based studies
usually concern bit/symbol/packet error rates, not transmission
rates which could be more interesting when studying modern
adaptive encoding. In contrast, all the analytical capacity stud-
ies assume Gaussian signaling and the throughput simulations
of [3] with adaptive modulation and coding are their closest
counterpart when it comes to experimental work.

If the receiver does not properly account for the additional
transmit-side noise in the received signal, conventional mutual
information (MI) is not anymore the correct upper bound for
coded transmissions. Rather, due to mismatched decoding,
one has to employ other metrics, such as generalized mutual
information (GMI) [15], [16] adopted herein. Another common
use for GMI is the analysis of bit-interleaved coded modu-
lation [17], while also transceiver hardware impairments [18]
and effects of imperfect channel state information at receiver
[19]–[21] are analyzed in terms of GMI. It is important to
realize that the GMI framework differs, both conceptually and
in technical details, from the approach in [22], [23], where
conventional MI of a modified channel model is computed for
a decoder that has certain side-information about the variables
in the modified system.

In the present paper, MI and GMI are evaluated using
the replica method [24], [25], originating from the field of
statistical physics and introduced to the analysis of wireless
systems by [26], [27]. Since then, the replica method has been
applied to various problems in communication theory, e.g.,
MIMO systems [28]–[31]. For some special cases like Gaussian
signaling, the replica trick renders exact asymptotic results
when the number of antennas grows without bound, while they
can be otherwise considered accurate approximations as shown
by comparisons to Monte Carlo simulations.

B. Summary of Contributions

In this paper, we investigate two aspects of binoisy MIMO
channels that are unexplored in related works despite their
fundamental role in understanding the effects of hardware
impairments in wireless systems. Firstly, analytical capacity
results are limited to Gaussian signaling while practical digital
modulation is evaluated only based on simple simulations or
measurements. Secondly, the earlier literature focuses on the
optimistic case of matched decoding by employing receivers
that are actually not available off the shelf but implicitly up-
dated to take account of transmit-side noise.

In particular, this paper contributes to the capacity theory
of MIMO communication links by examining the effects of
transmit-side noise as follows.

• Analytical GMI expressions are calculated for studying the
rate loss of mismatched decoding when using a conven-
tional receiver which is unaware of the transmit-side noise.
Especially, it is shown that the performance remains the
same irrespective of how well the noise covariance matrix
is known if it is a constant.

• The above analysis is further translated into corresponding
asymptotic high-SNR limits for Gaussian signaling as a
complement for the results of [10], which covers matched
decoding and conventional MI.
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• The analytical expressions provided for both conventional
MI and GMI cover many practical discrete modulation
schemes such as variations of PSK and QAM. This re-
solves the serious problem that evaluating (G)MI with
direct Monte Carlo simulations for the present system
is computationally infeasible except for cases with small
number of antennas and low order modulation sets.

Extending beyond the scope of the paper, the replica analysis of
GMI is also a new aspect at large.

C. Outline of the Paper and Its Nomenclature

After the considered system model is specified in the follow-
ing section, the main analytical content of this paper is divided
into two parts: Section III concerns the performance of conven-
tional suboptimal receivers under mismatched decoding, which
is analyzed based on GMI; and Section IV studies conventional
MI with advanced receivers, which are aware of transmitter
noise and, thus, capable of optimal matched decoding. In
Section V, the presented theory is illustrated with numerical
results, including simulations for double-checking its accuracy,
which is finally followed by concluding remarks in the last sec-
tion. Some general results from literature that are used through-
out the paper for derivations are collected in Appendix A for
the convenience of the reader. Appendices B contains general
description of the replica method and Appendix C sketches the
derivation of the main results in Section III.

Notation: Complex Gaussian random variables (RVs) are
always assumed to be proper and the density of such x ∈ CN

with mean μ and covariance R is denoted g(x|μ;R). For
the zero-mean proper Gaussians, we say they are circularly
symmetric complex Gaussian (CSCG). For convenience, both
discrete and continuous RVs are said to have a probability
density function (PDF) that is denoted by p, and we do not
separate RVs and their realizations. For postulated PDFs we
write q and add tilde on top of the related RVs (most of the
time). Given a RV x that has a PDF p(x), we write x ∼ p(x)
(and x̃ ∼ q(x̃) for the postulated case). Statistical expectation
is denoted E{·} and, unless stated otherwise, calculated over
all randomness in the argument using true or postulated PDFs,
depending on which type of RVs are present. Integrals w.r.t.
real-valued variables are always over R (for vectors over the
appropriate product space) and we tend to omit the integration
limits for notational simplicity. For a complex variable z = x+
jy, we denote

∫
( )dz =

∫
( )dx dy, and similarly for complex

vectors. Logarithms are natural logs and denoted ln unless
stated otherwise.

II. SYSTEM MODEL

Consider the system model depicted in Fig. 1 and the signal
model of y ∈ C

N written in (1) where H ∈ C
N×M is the

channel matrix and x ∈ C
M the signal of interest. The receive-

side distortion plus noise component is divided into two parts,
namely w = n+ ω ∈ C

N where n is caused by thermal noise
and ω represents hardware impairments arising from the non-
ideal behavior of the radio-frequency (RF) transceivers. Simi-
larly, v = m+ ν ∈ C

M where m and ν are related to thermal
noise and hardware impairments or distortions, respectively, at

the transmit-side. In practice, the effect of m is often negligible
compared to ν. In conventional MIMO literature it is common
to consider only the thermal noise at the receiver, which trans-
lates to assuming ω = ν = m = 0 in our more generic system
model.

Let us denote the PDF of the transmit vector x by p(x) and
assume it factorizes as

p(x) =
M∏

m=1

p(xm), (2)

so that independent streams are transmitted at each transmit
antenna. Furthermore, let p(xm) be a zero-mean distribution
with variance γ̄m. For later convenience, we let Γ be a diagonal
matrix whose non-zero elements are given by γ̄1, . . . , γ̄M ,
that is, Γ = E{xxH}. The channel H is assumed to have
independent identically distributed (IID) CSCG elements with
variance1 1/M . The thermal noise samples at the transceivers
are modeled as CSCG random vectors m and n that have
independent elements. For simplicity, we assume that any given
noise or hardware impairment component is independent of
any other RVs in the system. The transmit-and receive-side
impairments ν and ω are taken to be CSCG random vectors
with covariance matrices Rν and Rω , respectively. The dis-
tortion plus noise vectors v and w are thus CSCG random
vectors whose covariance matrices we denote Rv and Rw,
respectively. Notice that these matrices can be functions of the
statistics of some other RVs albeit we suppress the explicit
statement of such dependence at this point for notational con-
venience. The SNR without transmit-side noise is defined as
tr(Γ)/tr(Rw).

The PDF of the received signal, conditioned on x, v and H ,
is given by

p(y|x,v,H) = g (y|H(x+ v);Rw) , (3)

and the receiver is assumed to know H and the true distribution
p(x) of the channel input. However, the additional transmit-
side term v is in general unknown at the receive-side and,
thus, the PDF (3) cannot be directly used for detection and
decoding. Herein, we consider two different scenarios for the
joint decoding operation at the receiver:

1) The receiver knows H , the PDFs of the noise plus
distortion terms v and w as well as the distribution of
the data vector x. Matched joint decoding is then based
on the conditional PDF

p(y|x,H) =Ev {g (y|H(x+ v);Rw)} (4)

= g(y|Hx;Rw +HRvH
H), (5)

where the second equality follows by first using (62) to
calculate the expectation w.r.t. v and simplifying the end
result using (63) and (64). Note that the effective noise

1Typically the total power emitted from the transmit antennas in MIMO
systems is constant; that is, tr(Γ) = γ̄, where γ̄ is some fixed power budget
that does not depend on M . Hence the elements of Γ need to be functions
of M to satisfy the transmit power normalization. For the following analysis,
however, it is more convenient to treat the elements of Γ to be independent of
M and let the transmit power normalization be a part of the channel. Clearly,
both approaches are mathematically fully equivalent.
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covariance matrix in (5) depends now on the instanta-
neous channel realization H .

2) The receiver has perfect knowledge of H and the PDF of
the data vector x. Instead of (4), however, the device uses
a postulated channel law

q(y|x,H) = g(y|Hx; R̃), (6)

for mismatched joint decoding [15], [16]. In contrast
to Rw in (5), that is a random matrix, the postulated
covariance matrix R̃ in (6) is arbitrary but fixed.

If matched joint decoding is employed, the conventional
metric for evaluating the (ergodic) achievable rate of the system
for given input distribution p(x) is the MI between the channel
inputs and outputs, namely,

I(y;x) = E {ln p(y|x,H)} − E {ln p(y|H)} , (7)

where p(y|H) = Ex{p(y|x,H)} and the expectation is w.r.t.
all RVs in the system model, including the channel matrix
H . From the system design perspective, however, it might be
impractical to use (5) due to complexity of implementation,
resulting in mismatched decoding. To lower bound the true
maximum rate that can be achieved reliably over channel (1)
when decoding rule (6) is used at the receiver, we use GMI that
is discussed in the next section.

III. MISMATCHED JOINT DECODING:
GENERALIZED MUTUAL INFORMATION

A. Definition and Key Properties

Let us assume that the received signal is given by (1) but the
receiver uses (6) for decoding. Given p(x), the (ergodic) GMI
between the channel inputs and outputs is defined as [15], [16]

IGMI(y;x) = sup
s>0

I
(s)
GMI(y;x), (8)

where, denoting q(s)(y|H) = Ex{q(y|x,H)s}, the
s-dependent part reads

I
(s)
GMI(y;x) = E {ln q(y|x,H)s} − E

{
ln q(s)(y|H)

}
. (9)

Notice that since we consider ergodic rates, the expectations in
(9) are w.r.t. all RVs in the system model, including the channel
matrix H .

The GMI in (8) gives the achievable rate for which reliable
transmission over the channel (1) is possible given decoding
metric (6) and ensemble of codebooks where the code words are
independent with IID elements. An important property of GMI
is that it always provides a valid lower bound for the maximum
rate of the channel, namely, if I is the maximum ergodic rate
that can be reliably transmitted over the channel (1) using input
distribution p(x) and decoding rule (6), then2 I ≥ IGMI. It is

2For the special case of IID codebooks and discrete memoryless channels
with mismatched decoding, the lower bound provided by GMI is indeed tight
[16]. However, there are examples (see e.g., [15], [16] and references therein)
where rates higher than GMI can be obtained through other choice of code
distribution. The downside of the techniques employed in the latter case is
that they are often limited to finite alphabet channels and are much more
cumbersome to use than the GMI, which can be easily applied to very general
channel models. For more discussion on GMI, see for example, [15]–[21] and
the references therein.

important to notice that the task of computing I for an arbitrary
channel with an arbitrary decoding rule is in general an open
research problem and the very reason why we have to resort to
alternative approaches such as GMI.

B. Special Case of Gaussian Signaling

We are first interested in evaluating the s-dependent part of
the normalized GMI per transmit stream M−1I

(s)
GMI(y;x) for

given s > 0. The optimization over the free parameter s is
carried out after the suitable expressions are found. Note that
(9) is a valid lower bound on the achievable rate for any s > 0
and the optimization is carried out to obtain the tightest bound
possible. The first term in (9) can be written as

1

M
E {ln q(y|x,H)s}

= −

=c(s)︷ ︸︸ ︷
s

M
[N lnπ + ln det R̃]

− s

M
E
{
(Hv +w)HR̃

−1
(Hv +w)

}
= −c(s)− s

M

[
tr(R̃

−1
Rw)+

1

M
tr(R̃

−1
)tr(Rv)

]
. (10)

The first equality follows from (6) by the fact that y −Hx =
Hv +w when x is given. The second equality is a conse-
quence of the assumption that the channels and noise vectors
are all mutually independent and H has zero-mean IID entries
with variance 1/M . Notice that (10) is independent of p(x) and
hence valid for all channel inputs. Evaluating the second term
in (9) is more complicated but for the special case of Gaussian
inputs we have the result shown below.

Example 1: For the special case of Gaussian inputs; that is,
p(x) = g(x|0;Γ),

1

M
I
(s)
GMI(y;x) =

1

M
EH

{
ln det(R̃+ sHΓHH)

+ s tr
[(
Rw +H(Rv + Γ)HH

)
(R̃+ sHΓHH)

−1
]

− s tr(R̃
−1
Rw)− s

M
tr(R̃

−1
)tr(Rv)− ln det R̃

}
. (11)

The result is obtained by first using (62) and then simplifying
with (63) and (64). Inserting the RHS of (1) into the obtained
expression and taking the expectations w.r.t. the noise terms v
and w completes the derivation.

Example 1 shows that for Gaussian signals we only need to
average over the channel matrix H to obtain the s-dependent
part of GMI. This is doable with Monte Carlo simulation.
However, finding the optimal s is time consuming even in this
case and a simple analytical expression that does not explicitly
depend on the form of the marginals in (2) would be highly
desirable. With this in mind, we adopt the following restriction
to our system model from the physical characteristics of typical
real transmitters for simplifying the analysis.

Assumption 1: The covariance matrix for the transmit-side
distortion plus noise term v is diagonal so that we may
write Rv = Rm +Rν = diag(r

(1)
v , . . . , r

(M)
v ). Hence, v has
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independent (but not necessarily identically distributed) entries
drawn according to p(vm) = g(vm|0; r(m)

v ).
The physical meaning of this assumption is that hardware

impairments at different transmitter branches arise in separate
electrical components and there are no mechanisms which
generate significant correlation between the elements of the
distortion noise vector. Furthermore, it is actually not necessary
for the replica analysis but it helps simplify the end result to a
form whose numerical evaluation is computationally easy.

C. Analytical Results via the Replica Method

If the goal is to calculate the expectations related to the latter
term in (9) analytically and for general input distributions, we
need to employ somewhat more advanced analytical tools than
the basic probability calculus used in Example 1. As we shall
see shortly, employing the replica method provides a formula
that is applicable to a variety of input constellations, such as
Gaussian or QAM. To begin, let us first denote

− 1

M
E ln q(s)(y|H) = c(s) + f(s), (12)

where c(s) is defined in (10) and the latter term, equivalent of
the so-called free energy in statistical mechanics, reads

f(s)=− 1

M
E
{
lnEx̃

{
e−[H(x+v−x̃)+w]HsR̃

−1
[H(x+v−x̃)+w]

}}
.

(13)

Now the inner expectation over the postulated channel input
x̃ is w.r.t. a generic PDF (2) and cannot be solved using (62)
as before. The outer expectation is w.r.t. the rest of the RVs
in the system, namely {x,v,w,H}. Due to (9) and (10) the
expression to be optimized in the GMI formula thus becomes

1

M
I
(s)
GMI(y;x)=f(s)− s

M

[
tr(R̃

−1
Rw)+

1

M
tr(R̃

−1
)tr(Rv)

]
.

(14)

Remark 1: By (13) and (14), it is clear that if the receiver
assumes that the additive noise in the system is spatially white
R̃ = r̃IN with some finite sample variance r̃, the GMI remains
the same for all r̃ > 0 since the optimization over s > 0 in (8)
can be replaced by an optimization over a new variable s̃ =
s/r̃ > 0. Thus, if the receiver uses R̃ = r̃IN for decoding, the
GMI is the same for all r̃ > 0 when the transmit and receive
covariance matrices Rv and Rw are fixed.

The main obstacle in evaluating (14) is clearly f(s). This
term happens to be, however, of a form that can be tackled
by the replica method, as outlined in Appendix B. The
following result is derived in Appendix C under the assumption
of the so-called replica symmetric (RS) ansatz (see Step 3 in
Appendix B) when the system approaches the large system
limit (LSL), that is, M,N → ∞ with finite and fixed ratio α =
M/N > 0. The limit notation is omitted below and the results
should therefore be interpreted as approximations for systems
that have finite dimensions.

Proposition 1: Let m = 1, . . . ,M and denote

χm =xm + vm, (15)
χ̃m = x̃m, (16)

where xm, x̃m ∼ p(xm) and vm ∼ g(vm|0; r(m)
v ) are indepen-

dent for all m by assumption. Let

p(zm|χm) = g(zm|χm; η−1), (17)

q(zm|χ̃m) = g(zm|χ̃m; ξ−1), (18)

be the PDF of an output zm of an additive white Gaussian
noise (AWGN) channel whose input is either (15) or (16),
respectively, and corrupted by additive noise with variance η−1

or ξ−1, respectively. The parameters η, ξ satisfy

η =
1

α

[
1
N tr(Ω̃

−1
)
]2

1
N tr(Ω̃

−1
ΩΩ̃

−1
)
, (19)

ξ =
1

αN
tr(Ω̃

−1
), (20)

for the given matrices

Ω =Rw + εIN , (21)

Ω̃ = s−1R̃+ ε̃IN , (22)

and variables

ε =
1

M

M∑
m=1

E
{
|vm + xm − 〈x̃m〉q|2

}
, (23)

ε̃ =
1

M

M∑
m=1

E
{
|x̃m − 〈x̃m〉q|2

}
. (24)

The notation 〈x̃m〉q above refers to a decoupled posterior mean
estimator

〈x̃m〉q =
Ex̃m

{x̃mq(zm|x̃m)}
q(zm)

, (25)

where q(zm) = Eχ̃m
{q(zm|χ̃m)}. If we also write p(zm) =

Eχm
{p(zm|χm)}, the free energy f(s) defined in (14) is given

under the assumption of the RS ansatz by

fRS(s) =
1

αN

[
ln det Ω̃+ tr(Ω̃

−1
Ω)− ln det(s−1R̃)

]

−
(
ln

π

ξ
+

ξ

η
+

1

M

M∑
m=1

∫
p(zm) ln q(zm)dzm

)

− ξε+
ξ(ξ − η)

η
ε̃. (26)

If multiple solutions to the coupled fixed point (19)–(24) are
found, the one minimizing (26) should be chosen.

Proof: An outline of the derivation is given in Appendix C.
The above result extends some previous works such as [26],

[27] in the direction of correlated noise at the receiver and addi-
tive transmit-side impairments. It is thus clear that the original
GMI term (9) of the MIMO system that suffers from transceiver
hardware impairments has an interpretation in terms of an
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equivalent decoupled3 scalar system. This decoupled channel
has only additive distortions but unlike in the conventional case
of replica analysis [26], [27], the transmit-side has its own
noise term. It should be remarked, however, that the implicit
assumption here is that fRS(s) = f(s); that is, the system is not
replica symmetry breaking (RSB). We leave the RSB case as a
possible future work and check the validity of the solution with
selected numerical simulations.

For simplicity of presentation, we consider next a few prac-
tical special cases of Proposition 1 where the transmit power
is the same for all antennas and the noise and distortions at
the transmit-side are spatially uncorrelated, namely, Γ = γ̄IM

and Rv = rvIM . The receiver postulates spatially white noise
R̃ = r̃IN with some variance r̃ > 0. This allows us to write

1

M
IGMI(y;x) = sup

s̃>0

{
f(s̃)− α−1s̃

[
N−1tr(Rw) + rv

]}
,

(27)

where f(s̃) is given by (13) with sR̃
−1

replaced by s̃IN .
Furthermore, in this case all variables are identically distributed
for all m = 1, 2, . . . ,M so we may omit the subscripts related
to m in the following. We still need to fix the input distribution
(2) to obtain the parameters (23) and (24). For this, we give
two concrete examples: 1) Gaussian signaling; and 2) discrete
channel inputs, such as, QAM.

Example 2: Let the channel inputs (2) be IID Gaussian,
namely, p(x) = g(x|0; γ̄IM ) so that p(χ̃m) = p(xm) =
g(x|0; γ̄) and p(χm) = g(χm|0; γ̄ + rv) in Proposition 1. The
parameter ξ can then be obtained explicitly as

ξ =
γ̄s̃(1− α)− α+

√
4αγ̄s̃+ [γ̄s̃(1− α)− α]2

2αγ̄
, (28)

while η and ε are obtained by solving the coupled fixed point
equations

η =
1

α [N−1tr(Rw) + ε]
, (29)

ε=
ηrv+γ̄(η+ξ2γ̄)

η(1+ξγ̄)2
=

γ̄+rv
(1+ξγ̄)2

+
1

η(1+1/ξγ̄)2
. (30)

Additional algebra shows that for IID Gaussian inputs, the free
energy (26) reduces to

fRS(s̃)=
1

α

(
ξ

η
+ln s̃+ln

1

αξ

)
−ξε+ln(1+ξγ̄)+

ξrv
1+ξγ̄

.

(31)

Note that the expression for parameter ε̃ in (24) is not explicitly
given here but it is implicitly a part of (28) due to relations (20)
and (22).

The computational formula for obtaining the GMI with the
above example is detailed in Table I. Notice that there are
two non-trivial steps in the algorithm: 1) the optimization
over s̃ > 0; and 2) the problem of solving a system of two

3This decoupling property is ubiquitous in replica analysis (see for example
[26], [27]) as well as in random matrix theory (see [32], [33] and references
therein), and is one of the key reasons why the asymptotic methods provide
computationally feasible solutions for complex problems.

TABLE I
HOW TO OBTAIN GMI FOR GAUSSIAN SIGNALING FROM EXAMPLE

nonlinear equations with two unknowns. The first difficulty is
not specific to the current study and is present in any work that
considers GMI as means to analyze mismatched decoding. The
computational complexity of the second problem is negligible
compared to the original task of taking an expectation over the
channel matrices in (11). Indeed, a typical solution for η and ε is
obtained after some tens of iterations of an iterative substitution
method.

For the high-SNR case where γ̄ → ∞ for a fixed covariance
matrix Rw, the result in Example 2 can be further simplified as
shown in Example 3 below.

Example 3: Let us consider the case of Gaussian signaling
as given in Example 2 in the limit γ̄ → ∞. We assume for
simplicity (see, e.g., [10]) that Rw = rwIN and rv = γ̄κ2

where κ > 0 and rw > 0 are fixed and finite parameters. At
high-SNR, there are two possibilities for the parameter s̃ = s/r̃
in the GMI: 1) the optimal value of s̃ is a strictly positive
constant; and 2) the value of s̃ goes to zero when γ̄ → ∞. For
the first case, M−1I

(s)
GMI(y;x) → −∞ so to obtain a consistent

solution for the fixed point equations, the parameter s̃ has to
be inversely proportional to γ̄, i.e., s̃ = sγ̄/γ̄ where sγ̄ is a
strictly positive finite constant. Then ξ → 0 as γ̄ → ∞, and the
normalized GMI reduces to

1

M
I∞GMI(y;x) = sup

sγ̄>0

{
1

α
ln

(
sγ̄
αξγ̄

)
+ ln(1 + ξγ̄)

+
κ2ξγ̄
1 + ξγ̄

− sγ̄κ
2

α

}
, (32)

in the limit γ̄ → ∞. The auxiliary parameter ξγ̄
Δ
=ξγ̄>0

is given by

ξγ̄ =
sγ̄(1− α)− α+

√
4αsγ̄ + [sγ̄(1− α)− α]2

2α
. (33)

Compared to the finite-SNR case in Example 2, the GMI is now
directly given by (32) and there are no fixed-point equations
that need to be solved.

The next example provides explicit formulas for the compu-
tation of GMI given finite discrete constellations, such as, PSK
or QAM.

Example 4: Let A be a discrete modulation alphabet with
fixed and finite cardinality |A| and consider the GMI (27). Let
the channel inputs xm be drawn independently and uniformly
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from A. The parameters of the decoupled channel model in
Proposition 1 can be obtained by first solving ξ and ε̃ from

ξ =
s̃

α(1 + s̃ε̃)
, (34)

ε̃ = γ̄ −
∫

q(z) |〈x̃〉q|2 dz, (35)

using the following definitions for the decoupled estimator and
the postulated channel probability

〈x̃〉q =
1

q(z)|A|
∑
x̃∈A

x̃g(z|x̃; ξ−1), (36)

q(z) =
1

|A|
∑
x∈A

g(z|x; ξ−1), (37)

respectively. Note that this implies solving two parameters from
two nonlinear equations and can be done, for example, by using
an iterative substitution method. After obtaining the solutions
for ξ (and ε̃), the rest of the parameters can be obtained by
solving the two coupled equations

η =
1

α [N−1tr(Rw) + ε]
, (38)

ε =E
{
|v + x− 〈x̃〉q|2

}
, (39)

for η and ε, where the expectation is w.r.t. the true joint
probability of {x, v, z}. Finally, the free energy reads

fRS(s̃) =
1

α

(
ξ

η
+ ln s̃+ ln

1

αξ

)
− ξε+

ξ(ξ − η)

η
ε̃

−
(
ξ

η
+ ln

π

ξ
+

∫
p(z) ln q(z)dz

)
, (40)

where we denoted

p(z) =
1

|A|
∑
x∈A

g(z|x; η−1 + rv), (41)

for the decoupled PDF of the received signal.
Notice that the form of η in Example 4 is the same as in

Example 2, but the parameter ε has now a different structure.
Compared to the Gaussian case, the equivalent result for IID
discrete channel inputs looks in general more cumbersome.
First of all, we need to solve now two sets of equations instead
of just one. They both contain terms that involve |A| summa-
tions and there are also two expectations left to evaluate, one
in (35) and another in (39). However, both expectations involve
only scalar variables. This is in stark contrast to the original
problem that involved computing |A|M summations for every
channel and noise/distortion realization and taking expectation
over the channel and noise that are multidimensional integrals.

This makes direct Monte Carlo computation of the GMI for
discrete signaling in practice infeasible for large constellations
and numbers of antennas.

IV. MATCHED JOINT DECODING

A. Definition and the Special Case of Gaussian Signaling

Let us now consider the case of matched decoding where
the correct channel transition probability (5) is utilized at the
receiver. The first entropy term in (7) reads

E {ln p(y|x,H)} = −EH

{
ln det(Rw +HRvH

H)
}
− c,

(42)

where c = N ln(eπ). It should be remarked that there is still an
expectation left w.r.t. the channel realizations H in (42). This
could be evaluated, for example, using Monte Carlo methods
or random matrix theory [32], [33]. For the special case of
Gaussian inputs, the identities in Appendix A allow us to
partially calculate also the latter entropy term in (7), providing
the following result that is useful for Monte Carlo simulations.

Example 5: Let p(x) = g(x|0;Γ).Then,

1

M
I(y;x) =

1

M
EH

{
ln det

(
Rw +H(Γ+Rv)H

H
)}

− 1

M
EH

{
ln det(Rw +HRvH

H)
}
, (43)

is the normalized ergodic MI for matched decoding.
The above expression is relatively easy to compute also

by brute-force Monte Carlo methods since there is only an
expectation over the fading. Unfortunately, to the best of our
knowledge, the latter entropy term in (7) is mathematically
intractable for rigorous methods like random matrix theory
when p(x) is an arbitrary distribution that satisfies (2). For
example, given discrete inputs as in Example 4, calculating
E{ln p(y|H)} and combining it with (42) reduces the MI to
(44), shown at the bottom of the page. This form is com-
putationally very complex and can be evaluated using Monte
Carlo methods only for small number of antennas and simple
constellations. To obtain a result for general input distribution
p(x) that has lower computational complexity, we resort to
the replica method (see Appendix B). As before, the results
that follow have been written in a simplified form where the
assumption of LSL is suppressed for notational simplicity.

B. Analytical Results via the Replica Method

Proposition 2: Let us write for notational convenience

χm = xm + vm, m = 1, . . . ,M, (45)

I(y;x) = M ln |A| −N − 1

|A|
∑

x∈AM

Ev,w,H

{
ln

( ∑
x̃∈AM

e−[H(x−x̃+v)+w]H(Rw+HRvH)−1[H(x−x̃+v)+w]

)}
(44)
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where xm ∼ p(xm) and vm ∼ g(vm|0; r(m)
v ) are independent

for all m. Let

p(zm|χm) = g(zm|χm; η−1), (46)

be a conditional PDF of an AWGN channel whose input is (45)
and noise variance is η−1. The conditional mean estimator of
χm received over this channel reads

〈χm〉 = Eχm
{χmp(zm|χm)}

Eχm
{p(zm|χm)} , (47)

where the parameter η is given, along with another parameter
ε, as the solution to the coupled fixed point equations

η =
1

αN
tr
[
(Rw + εIN )−1

]
, (48)

ε =
1

M

M∑
m=1

[
γ̄m + r(m)

v − E |〈χm〉|2
]
. (49)

If we also define a second set of parameters η′ and ε′ that are
solutions to the coupled fixed point equations

η′ =
1

αN
tr
[
(Rw + ε′IN )

−1
]
, (50)

ε′ =
1

M

M∑
m=1

r
(m)
v

1 + η′r
(m)
v

, (51)

the per-stream MI is finally given by

1

M
I(y;x) =

ln det(Rw + εIN )− ln det(Rw + ε′IN )

αN

−(ηε− η′ε′) +
1

M

M∑
m=1

[
I(zm;χm)− ln

(
1 + η′r(m)

v

)]
,

(52)

where

I(zm;χm) = −1− ln
π

η
−
∫

p(zm) ln p(zm)dzm, (53)

is the MI of the Gaussian channel defined by (45) and (46).
Proof: The result can be obtained using Appendix B for

two separate MIMO channels. For the first one, we replace
everywhere xa → xa + va, a = 0, 1, . . . , u and an application
of the RM provides the equations (45)–(49). The formulas
(50)–(53), on the other hand, are obtained by substituting
xa → va, a = 0, 1, . . . , u in Appendix B.

Just like Proposition 1 in Section III, Proposition 2 is valid
for any input distribution that satisfies (2). The solutions to the
coupled (48) and (49) as well as (50) and (51) can be obtained
numerically, e.g., using an iterative substitution method.

For concreteness, we again give examples for Gaussian and
discrete signaling when the noise plus distortion is spatially
white Rv = rvIM and transmit power is uniformly allocated
Γ = γ̄IM . This makes the channels m = 1, 2, . . . ,M identi-
cally distributed so we omit the subscript m in the following.

Example 6: Let Rv = rvIM and consider the special case
of Gaussian inputs p(x) = g(x|0; γ̄IM ). Then

I(z;χ) = ln [1 + η(γ̄ + rv)] , (54)

ε =
γ̄ + rv

1 + η(γ̄ + rv)
, (55)

and the rest of the parameters are given in Proposition 2.
We next consider the high-SNR case γ̄ → ∞ as in Example

3 and compare it to the result obtained in [10] using completely
different mathematical methods.

Example 7: For the case Rw = rwI , Rv = κ2γ̄I (see, e.g.,
[10]) we find that if α ≤ 1 then γ̄ → ∞ yields η = η′ and ε =
ε′. The high SNR limit is therefore

1

M
I∞(y;x) = log

(
1 + κ2

κ2

)
, α ≤ 1. (56)

For the case α > 1, both η and η′ tend to zero at high SNR while
ε and ε′ grow without bound. This is not yet sufficient to solve
(52). However, combining this with the relations η′ε′ = ηε and
ε′ = ε κ2

1+κ2 , that hold in the limit γ̄ → ∞ for α > 1, provides
the second part of the high SNR result

1

M
I∞(y;x) =

1

α
log

(
1 + κ2

κ2

)
, α > 1. (57)

The asymptotic mutual information expressions in (56) and (57)
coincide exactly with the results obtained previously in [10], as
expected.

Example 8: If the channel inputs are from a discrete alphabet
A as in Example 4, the parameter ε in (49) is obtained using

〈χ〉= 1

p(z)

∑
x∈A

[
1

|A|g(z|x; η
−1+rv)

(
x+ηrvz

1+ηrv

)]
, (58)

E |〈χ〉|2=
∫

p(z)E
{
|〈χ〉|2

}
dz, (59)

in Proposition 2. Here p(z) is given by (41) and 〈χ〉 denotes
the conditional mean estimator of (45) from the observations
(46).The related MI term reads by definition

I(z;χ) = ln
( η

eπ

)
−
∫

p(z) ln p(z) dz. (60)

Both (49) and (60) need, in general, to be solved numerically.

V. NUMERICAL EXAMPLES

In the following, assume for simplicity that Γ = γ̄I , Rw =
I and Rv = κ2γ̄I , where κ = 10EVM/20 and EVM denotes
the EVM of the transmitter in decibels. The SNR without
transmit-side noise is therefore simply γ̄, or in decibels, γ̄dB =
10 log10(γ̄). Furthermore, all cases assume a symmetric an-
tenna setup α = M/N = 1 for simplicity.

The first numerical experiment plotted in Fig. 2 examines the
accuracy of the asymptotic analytical results when applied to
finite-sized systems. The EVM is fixed to a rather pessimistic
value EVM = −10 dB to highlight the differences between the
ideal and imperfect hardware configurations. The normalized
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Fig. 2. Normalized rate M−1I(y;x) in bits per channel use (cu) vs. SNR for MIMO transmission. Lines for replica results and markers for Monte Carlo
simulations for M = N = 4 antenna configuration. Selected cases of ideal hardware EVM = −∞ dB and hardware impairments (EVM = −10 dB) with matched
and mismatched decoding are plotted. (a) Gaussian signaling. (b) Discrete signaling.

Fig. 3. Performance of a MIMO system with M = N antennas and given ideal (EVM = −∞ dB) or non-ideal hardware (EVM = −20 dB) for different
signaling methods. Markers depict the points where discrete constellations and matched decoding with hardware impairments experience the maximum rate losses
compared to the ideal cases. (a) Normalized rate M−1I(y;x) given ideal hardware (dashed lines) or non-ideal hardware and matched decoding (solid lines).
(b) Rate loss percentage compared to ideal hardware for matched (solid lines) and mismatched (dash-dotted lines) decoding.

rate is shown using the asymptotic replica analysis (lines) and
Monte Carlo simulations (markers) for a finite-size symmetric
antenna setup with M = N = 4. In the case of Gaussian sig-
naling, plotted in Fig. 2(a), the analytical approximations for
the normalized rate M−1I(y;x) given by Examples 2 and 5
are quite good when compared to the finite size simulations
based on Examples 1 and 5. For discrete signaling depicted in
Fig. 2(b) we have plotted only the case of matched decoding
due to the computational complexity of Monte Carlo simu-
lations in the mismatched case. The gap between asymptotic
result presented in Example 8 and Monte Carlo averaging of
(44) is similar to the Gaussian case for both constellations.
Fig. 2 shows that the analytical approximation given by the
replica method is reasonably good already at M = N = 4,
even though formally the limit M,N → ∞ is required by the

analysis. Note that Monte Carlo simulation of (44) has expo-
nential computational complexity and the system size cannot be
increased much higher than M = 4. Therefore, the rest of the
examples are generated using only the analytical results given
in the previous sections.

Fig. 3 illustrates the performance of an M = N MIMO
system for a more realistic EVM value EVM = −20 dB. For
the case of matched decoding we used Examples 6 and 8, while
Examples 2 and 4 were used to obtain the curves represent-
ing mismatched decoding. In Fig. 3(a), the normalized rate
M−1I(y;x) is depicted as a function of SNR γ̄ in decibels.
For clarity of presentation, we have plotted only the ideal case
and the case of non-ideal hardware with matched decoding.
The Gaussian curves (black lines) here are the same as the
simulation curves in [10, Fig. 2] given the parameter value
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Fig. 4. Normalized rate M−1I(y;x) in bits per channel use vs. EVM
in decibels for MIMO transmission with Gaussian signaling. Solid lines for
matched decoding and dash-dotted lines for mismatched decoding.

κ = 0.1. Apart from 64-QAM and Gaussian signaling, the
figure seems to imply that lower order constellations exhaust
the source entropy before the transmit-side noise has any sig-
nificant effect for this choice of EVM. To see more clearly
the effect of transmit noise, Fig. 3(b) shows the rate loss (in
percentage) for the case with transmit noise EVM = −20 dB
when compared to the ideal case EVM = −∞ dB. The solid
lines represent again matched decoding while dash-dotted lines
are for mismatched decoding. As expected, mismatched de-
coding reduces the achievable rate when compared to matched
decoding, but the effect is relatively minor when compared to
the total rate loss caused by the presence of transmit noise itself.
The markers depict the points where maximum relative rate loss
is experienced for matched decoding. The same markers are
also plotted in Fig. 3(a) for comparison.

In Fig. 4 we have plotted the asymptotic high-SNR results
given in Examples 3 and 7. Note that given a finite value
of EVM, the normalized rates for matched and mismatched
decoding have a gap in this case. For more realistic, but still
quite high SNR values of 20 dB and 30 dB, the two decoding
strategies converge to the same value roughly when γ̄dB <
−EVM. The apparent discrepancy is explained by recalling
that the asymptotic cases assume γ̄ → ∞ for a fixed and
nonzero EVM and, thus, as a finite SNR approximation implies
γ̄ � 1/κ2. As may be observed from the lower right corner
of the figure, the SNR values 20 dB and 30 dB have also a
similar behavior near γ̄ � 1/κ2. Thus, the high-SNR result is
consistent with the finite-SNR cases.

It is important to guarantee certain performance when de-
signing a system. The maximum EVM that leads to at most
5% rate loss (as compared to having ideal hardware) for a fixed
input distribution and different given SNRs is plotted in Fig. 5.
For Gaussian signaling we have plotted both the matched and
mismatched cases while discrete cases assume matched joint
decoding for simplicity. As expected, the EVM requirement
for Gaussian signaling is a monotonically decreasing, but not
linear, function of SNR. A simple linear approximation that

Fig. 5. Maximum allowed EVM in decibels for matched decoding so that the
system experiences at most 5% loss in rate compared to the case with ideal
hardware (EVM = −∞ dB). Markers depict the worst case EVM requirement
for the discrete constellations and parenthesis in the legend provide the re-
spective values as (γ̄dB, EVM). All discrete cases correspond to matched joint
decoding at the receiver.

provides a lower bound for the case of Gaussian signaling with
matched decoding is given by

EVM = −0.7 · γ̄dB − 13, (61)

in decibels for the depicted region. This can be used as a
simple rule-of-thumb for worst-case maximum allowed EVM
in the system, although we recommend that EVM target values
obtained in this way are always rounded down to 1–5 dB preci-
sion to include extra safety margin. For discrete constellations,
the EVM requirement first follows the Gaussian case but then
starts to get looser at higher SNRs. This is expected, as can
be observed from Fig. 3(a), since the maximum achievable rate
for a discrete constellation saturates at a certain SNR when the
input distribution runs out of entropy. After this point, the rate
loss can be held fixed for increasing SNR by increasing the
transmit-side noise variance, or EVM, accordingly.

VI. CONCLUSION AND FUTURE WORK

Considering a ‘binoisy’ channel model, we have derived
asymptotic expressions for the achievable rate of SU-MIMO
systems suffering from transceiver hardware impairments. For
matched decoding, where the receiver is designed and im-
plemented explicitly based on the generalized system model,
expressions for the ergodic mutual information between the
channel inputs and outputs have been given. In addition, a
simplified receiver that neglected the hardware imperfections
and performed mismatched detection and decoding has been
studied via generalized mutual information. The mathematical
expressions provided in the paper cover practical discrete mod-
ulation schemes, such as, quadrature amplitude modulation,
as well as Gaussian signaling. The numerical results showed
that for realistic system parameters, the effects of transmit-side
noise and mismatched decoding become significant only at
high modulation orders. Furthermore, the effect of mismatched
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decoding was found to be relatively minor compared to the total
rate loss caused by the presence of transmit noise itself. The
results were also used to identify the maximum EVM values
that allows for certain system operation.

A. Future Work

For the ease of exposition, the present paper considered the
analysis of a relatively simple SU-MIMO system where the
channel had IID Gaussian elements. An extension of the present
replica analysis to correlated or Ricean fading channels can be
done by following, for example, the analysis in [29] and [30],
respectively. Establishing the effects of transmit-side noise for
the cases of correlated and non-Rayleigh fading channels is an
important avenue for future work.

As a further extension, it is important to investigate whether
similar phenomena as observed in the present paper are present
also for more complicated signal models with discrete channel
inputs. Such systems already analyzed in the ideal setting with
the replica method include, for example, multiuser MIMO and
base station collaboration [34], channels with interference and
precoding [35] and K-hop relay channels [36]. Combining the
ideas from the present paper and [34]–[36] would provide a
possible approach to solving such cases.

APPENDIX A
USEFUL RESULTS

Here we collect useful results that are used often in the paper.
All matrix operations below are implicitly assumed to be well-
defined. The Gaussian integration formula for vector x ∈ C

N

is given by (see, e.g., [37, Appendix I])

1

πN

∫
e−xHMx+2�{bHx}dx =

1

det(M)
eb

HM−1b, (62)

and used in Sections II–IV and Appendix C. Similarly, the
matrix inversion lemma [38]

(W−1+UT−1V H)
−1

=W−WU(T+V HWU)
−1
V HW ,

(63)
and the related determinant identity

det(W−1 +UT−1V H)

= det(T + V HWU) det(W−1) det(T−1), (64)

are employed several times in the paper.

APPENDIX B
REPLICA METHOD

Consider a function Z that maps RVs to positive real
numbers4 and define two sets of RVs, V ∈ V and X ∈ X , with
joint probability PV,X . Assume for convenience that PV,X can
be described in terms of a joint PDF p(V,X) and denote the
marginal PDFs of X and V pX(X) and pV (V ), respectively.

4In the following we refrain differentiating random variables and their
realizations for notational convenience. Also, Z and, as a result, f can depend
on some parameters (non-random variables) that are not explicitly stated.

Then, both in statistical mechanics and communication theory,
we often encounter a formula

f = − 1

M
EV {lnEX {Z(V,X)}}

= − 1

M

∫
V

pV (V ) lnZ(V )dV, (65)

where Z(V ) =
∫
X pX(X)Z(V,X)dX . In physics jargon, the

variables V are said to be quenched and the quantity (65) is
the average free energy density of a system whose partition
function is Z(V ). Two concrete examples of (65) are:

1) Let Z(V,X) = g(y|Hx;Rw) be the conditional PDF
of the observation in an ideal MIMO channel with V =
{y,H} and X = {x}, where x has IID elements from
a discrete modulation set A, such as PSK or QAM. Then
(65) represents a normalized version of the second term in
(7), namely, the (normalized) total entropy of the received
signal y given a realization of H and averaged over all
possible realizations of H .

2) Let Z(V,X) = eβσ
HJσ , where β > 0 denotes the inverse

temperature, V = J ∈ R
M×M a coupling matrix and

X = σ ∈ {±1}M a spin configuration. If pV (V ) is a
uniform probability over σ and J has, e.g., IID Gaussian
elements, then (65) is the average free energy density of a
mean-field Ising spin glass in the absence of external field
(up to trivial constants).

In both cases, f captures important properties of the system at
hand and obtaining a computable formula for (65) would be of
great interest. This seems infeasible though since the number of
terms in the expectation is exponential in M .

A. Outline of the Replica Method

One method for solving (65) is the replica method (RM) from
equilibrium statistical mechanics. While the RM is extremely
versatile, it unfortunately lacks mathematical rigor in some
parts (see, e.g., [24]–[26]). However, due to its success both
in physics and engineering, it is generally agreed to be at
least a valuable starting point for analysis of problems that
seem otherwise too difficult to handle. A cursory overview of
literature about the RM inside a specific field or topic may paint
the picture that the RM is a fixed set of mathematical methods
which can be applied to any suitable problem at hand. This
is not entirely accurate and conceptually the RM can be seen
more like a systematic way of turning a very difficult problem
into a more manageable one than a set of specific tools that
actually solve the problem. Indeed, the mathematical methods
that are used at different stages of the RM can often be chosen
from a variety of choices, although it is very common to have
some form of large deviations theory as part of the analysis
(see Step 2 below). Thus, instead of trying to be entirely
general, we describe next (one form of) the steps taken in the
RM in the context of the first example above.
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Step 1 (Replica Trick): Consider (65) and write it as

f = − 1

M
lim

u→0+

∂

∂u
lnEV {[Z(V )]u}

= − 1

M
lim

u→0+

∂

∂u
lnEV

{( ∑
x∈AM

pX(x)Z(V,x)

)u}

= − 1

M
lim

u→0+

∂

∂u
ln Ξ(u), (66)

where u ∈ R and we denoted Ξ(u) = EV {[Z(V )]u}. Then,
assume that we can treat u as an integer when we take the
expectation, namely,

Ξ(u)=EV

⎧⎨
⎩

u∏
a=1

∑
xa∈AN

pX(xa)Z(V,xa)

⎫⎬
⎭

=
1

πuN (detRw)u

×EV

⎧⎨
⎩∑

{xa}

u∏
a=1

[
e−(y−Hxa)

HR−1
w (y−Hxa)pX(xa)

]⎫⎬
⎭,

(67)

where the summation in the last expression is over the set
{xa}ua=1. After taking the expectations, if we manage to write
(67) in a form that does not explicitly force u to be an integer,
invoke analytical continuity to extend u to real numbers.

The step above is at the very heart of the RM. It is impor-
tant to realize that the equalities in (66) are provably true if
differentiation under the integral sign is permitted and u ∈ R.
The part lacking rigorous mathematical justification is (67),
especially when combined with the next two steps. Somewhat
surprisingly, however, the end results of RM can sometimes
be proved to be exact. Examples of such cases are: MIMO
channel with Gaussian inputs, random energy model (REM)
and Sherrington-Kirkpatrick model of spin glasses (see, e.g.,
[24]–[27], and references therein).

Step 2 (Large System Limit): Let the system approach the
LSL, that is, the dimensions of the channel matrix H grow
without bound at a finite and fixed ratio α = M/N > 0. Fur-
thermore, assume that the limits w.r.t. u and M commute, so
that we can first calculate the expectations in (67) in the LSL
and then let u → 0, as in (66).

The LSL assumption is natural in equilibrium statistical
mechanics (e.g., the second example above), where the systems
contain usually very large numbers of interacting particles
M . In communication theory, the equivalent would be, e.g.,
a MIMO systems with large antenna arrays or a CDMA with
large number of simultaneous users. It is in fact quite common
to write the LSL assumption directly as a part of the replica
trick in (66). The steps are separated here since the replica trick
could also be used for finite sized systems. Due to mathematical
difficulty of such cases, however, both steps are usually found
together. The assumption of commuting limits is typically pos-
tulated a priori and rigorous justification of this step is beyond
the scope of the present paper.

Let us denote the true transmitted vector x0, so that y =
Hx0 +w is the generating model for the observation y and
we can equivalently write V = {w,x0,H}. Returning then to
Step 1, we note that although the replicated vectors {xa}ua=1

act as IID RVs drawn according to pX in (67) when condi-
tioned on V , they can be correlated if not conditioned on V .
We examine this through the empirical correlations between
the vectors in the set Xu+1 = {xa}ua=0 using overlap matrix
Q ∈ C

(u+1)×(u+1), whose (a, b)th element5 is given by Qa,b =
M−1xH

bxa. Then, the structure that is imposed on Q divides the
replica analysis into two rough categories as described below.

Step 3 (Replica Symmetry): The RS ansatz or RS assumption
means that the indexes a = 1, . . . , u are permutation symmetric
and Q can be written in terms of four parameters, for exam-
ple, Q0,0 = p, Q0,a = m, a ≥ 1, Qa,a = q, a ≥ 1, and Qa,b =

q, a = b ≥ 1. Note that Q = QH by construction. If Q is not of
the RS form, it is said to have replica symmetry breaking (RSB)
structure whose analysis is much more involved [24], [25].

The importance of the RS assumption will become clear
when we present a rough sketch of the analysis of an ideal
MIMO channel. We also note that the overlap matrix given in
Step 3 allows the “zeroth” index to be treated separately to take
into account the possibility that either x0 has different distri-
bution than xa when a ≥ 1, or the decoder uses mismatched
statistics, i.e., Z(V,xa) does not match the probability law
of the observation y = Hx0 +w as in Appendix C. For the
simplified case considered below, however, we have p = Q and
m = q since the indexes a = 0, 1, . . . , u can be treated on equal
footing and two parameters are sufficient to define the RS form
of Q.

Next we give a brief and informal example of replica analysis
for an ideal MIMO channel. The reader may be surprised to find
out that most of the discussion below deals with details about
how to obtain the necessary formulas when we follow the three
stages above and not about those stages per se.

B. Average Over the Channel and Noise

The starting point of our replica calculation is (67), where we
use the generating model of y to write in the exponential y −
Hxa = w −H(x0 − xa). The first task is then to compute
the expectation w.r.t. w and H for a fixed set Xu+1 = {xa}ua=0

that satisfies the correlations of the RS overlap matrix Q. Note
that we cannot assume anymore that the vectors in Xu+1 are
independent since we changed the order of expectations in
(67) and the average over Xu+1 is carried out (later) without
conditioning on w and H . With this in mind, it follows that
given Xu+1, the set {Hxa} consists of CSCG RVs with corre-
lations EH{(Hxa)(Hxb)

H} = M−1xH
bxaIN = Qa,bIN that

are deterministic in the LSL. Thus, we can replace {H(x0 −
xa)}ua=1 by a set of CSCG RVs {Δa}ua=1 and use Gaussian
integration (62) to average over both w and {Δa}ua=1 to obtain
(for more details, see Appendix C-B).

Ξ(u) =

∫
eNG(u)(Q)μ(Q)dQ, (68)

G(u)(Q) = −u ln det [Rw + (Q− q)IN ]
− u lnπ − ln(u+ 1), (69)

5The row/column indexes of Q are 0, 1, . . . , u so that the correlations are
measured also w.r.t. the true transmitted vector x0. Furthermore, due to (2), the
empirical correlations can be expected to converge to the true ones in the LSL
postulated in Step 2.
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where Q should be understood to be in its RS parametrized
form and μ(Q) is the PDF of the overlap matrix Q.

Remark 2: Firstly, note that due to the RS assumption
(Step 3), the function (69) is of a form that does not restrict
u to be an integer, as desired. This is one of the reasons why we
need to express matrix Q in a parametrized way instead of using
it “as-is.” Secondly, there is some universality in this derivation
and the form (68) is a typical result of replica analysis. In some
cases, however, different techniques are needed. One example is
non-IID “mixing matrix” that requires direct matrix integration
[39], [40].

C. Distribution of the Overlap Matrix and Large Deviations

The second major step in the analysis is to find an explicit
formula for μ(Q), i.e., for the probability weight of the set
{xa}ua=0 that satisfies Qa,b = M−1xH

bxa. The form of (68)
suggest that we should try to represent μ(Q) as an exponential
whose argument is linear in N (or M ) so that we can employ
Laplace’s method or the method of steepest descent to evaluate
the integral w.r.t. Q. If xa ∈ R

M , due to (2), the elements
of xa are IID for all a = 0, 1, . . . , u and μ follows the large
deviation principle [25], [41]. Informally this implies6 μ(Q) �
e−Mc(u)(Q), where the rate function

c(u)(Q) = sup
Q̃

{
tr(QQ̃)− lim

M→∞

1

M
lnφ(u)(Q̃)

}
, (70)

describes the exponential behavior of the probability,

φ(u)(Q̃) = EXu+1

⎧⎨
⎩exp

⎛
⎝ u∑

a,b=0

Q̃a,bx
H
bxa

⎞
⎠
⎫⎬
⎭ , (71)

is the moment generating function (MGF) associated with μ(Q)
and the supremum is over all (u+ 1)× (u+ 1) matrices Q̃ that
have the same RS form as Q, that is, Q̃0,0 = p̃, Q̃0,a = m̃, a ≥
1, Q̃a,a = Q̃, a ≥ 1, and Q̃a,b = q̃, a = b ≥ 1. Thus, we can
assess (68) in the LSL up to the leading order by using the
exponential form of μ and Laplace’s method, namely,

Ξ(u) �
∫

eMα−1G(u)(Q)e−Mc(u)(Q)dQ

=

∫
exp

(
N
[
α−1G(u)(Q)− c(u)(Q)

])
dQ (72)

� exp

(
M sup

Q,Q̃

{
T (u)(Q, Q̃)

})
, (73)

where we denoted for notational convenience

T (u)(Q, Q̃) =
1

α
G(u)(Q)− tr(QQ̃) + lim

M→∞

1

M
lnφ(u)(Q̃).

(74)

For complex vectors {xa}, the end result is essentially the
same and the solution to the supremum is found among the

6We use notation aM � bM to denote “equality up to the leading exponen-
tial order,” that is limM→∞ M−1 ln(aM/bM ) = 0.

critical points of the argument (see e.g., [29], [31], [39]).
The large deviations analysis also guarantees that Q̃ is in
general a real symmetric matrix and if (Q∗, Q̃

∗
) is the solution

of the optimization problem in (73) then T (u)(Q∗, Q̃
∗
) ∈ R, as

expected since f is in our case real.
However, in RM there is some ambiguity as to whether the

correct point in the saddle-point approximation (73) minimizes
or maximizes the exponential when we let u → 0 [24], [25].
Thus, in RM, we seek in practice the critical points and (66) is
thus of the form

f = − lim
u→0+

∂

∂u
extr
Q,Q̃

{
T (u)(Q, Q̃)

}
, (75)

where extrX{h(X)} denotes finding the critical points of a
function h(X).

D. Decoupled MGF and Critical Points

The second part of replica analysis where the RS assumption
plays an important role (for the first one, see Remark 2) is
when we try to solve (71) and find the critical points of
T (u)(Q, Q̃). For the simplified setup in this section where
Q and Q̃ are represented with parameter {Q, q} and {Q̃, q̃},
respectively, the MGF can be expressed as (see, e.g., [27] for
details)

φ(u)(Q̃) =

M∏
m=1

[(
q̃

π

)−u ∫ [
Exm

g(zm|xm; q̃−1)
]u+1

dzm

]
,

(76)

where zm are just dummy variables. On the other hand, finding
the critical points involves taking eight partial derivatives for
the RS case in Step 3 (for the simplified case here, four is
enough). Then, one should pick the solution that satisfies the
conditions at the critical point while providing the global ex-
tremum of (66).In the case considered here, we can actually get
rid of two parameters since p = M−1E‖x‖2 and p̃ = 0 always
at the critical point. Note that if we did not parametrize Q, the
critical points would be described by u(u+ 1) equations and
Ξ(u) would depend explicitly on the fact that u is an integer.
This is one of the reasons why even the full-RSB solution (see
[24], [25]) uses a round-about way of presenting Q instead of
using it “as-is.”

Finally, we remark that it is quite common (see, e.g., [27]) to
represent the end result in terms of new variables. For example,
if we have equal transmit powers for each antennas γ̄ = γ̄m in
the simplified case considered here, then the parameters η = q̃
and ε = Q− q = γ̄ − q fully describe the RS matrices Q and
Q̃ at the critical point. The former variable is inverse noise
variance of a decoupled Gaussian channel

z = x+ w, p(w) = g(w|0; η−1), (77)

and the latter variable ε is the MMSE of this channel when
the inputs are drawn according to pX(x). The rest of RM is
straightforward, albeit tedious algebra to arrive at (66).
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APPENDIX C
REPLICA ANALYSIS FOR MISMATCHED CASE

The analysis herein follows the main steps of RM as listed
in Appendix B. Reader who is not familiar with the RM is
encouraged to use discussion there as a guide to the derivations
below.

A. Replica Trick

Let us consider the function f(s) (free-energy) defined in
(13). We then postulate that it can be expressed in the LSL using
the standard replica trick (cf. Appendix B)

f(s) = − lim
M→∞

1

M
lim
u→0

∂

∂u
ln Ξ(u,M)(s), (78)

where we defined for later convenience

Ξ(u,M)(s) = E

{
u∏

a=1

e−[w+H(χ0−χa)]
HΣ−1[w+H(χ0−χa)]

}
,

(79)

and denoted7 Σ = s−1R̃ along with χ0 = x0 + v0 and χa =
xa, a = 1, . . . , u. Here x0 is the original transmit vector in (1)
and {xa}ua=1 are replicated data vectors, which are IID drawn
according to p(x) when conditioned on {x0,v0,w,H}. On the
other hand, v0 represents the noise plus distortion component
at the transmit-sidethat is CSCG with covariance matrix Rv .
Starting with (79), the goal is then to obtain a functional
expression for Ξ(u,M)(s) in the LSL that does not enforce u
to be an integer and then use (78) to obtain the desired quantity.
In the following, explicit limit notations are often omitted for
notational convenience.

B. Average Over the Channel and Noise

To proceed with the evaluation of (79), we first make the RS
assumption

p =M−1‖χ0‖2, (80)

m =M−1χH
0χa, a = 1, . . . , u, (81)

Q =M−1‖χa‖2, a = 1, . . . , u, (82)

q =M−1χH
aχb, a = b ∈ {1, . . . , u}. (83)

and remind the reader that if we average first over H , the
empirical correlations between {xa}ua=0 are not zero in general
as discussed in Appendix B. Thus, noticing that

EH

{
[H(χ0 − χa)] [H(χ0 − χb)]

H
}

=

{
[p− (m+m∗) +Q] IN , a = b,
[p− (m+m∗) + q] IN , a = b,

(84)

7We remind the reader that for the case of mismatched decoding, the
postulated covariance matrix R̃ is fixed by definition so that Σ = s−1R̃ is also
a fixed predefined matrix. This is in contrast to the case of matched decoding
(5), where the effective covariance matrix Rw +HRvH is random and
depends directly on the channel matrix H .

we may replace {H(χ0 − χa)}ua=1 in (79) in the LSL by
CSCG vectors {Δa}ua=1 that are constructed as

Δa =da

√
Q− q + t

√
p− (m+m∗) + q (85)

=da

√
A+ t

√
B, (86)

where {t, {da}ua=1} are IID standard complex Gaussian RVs
independent of w. Plugging (86) into Ξ(u,M)(s) and recalling
that Σ is a fixed predefined matrix gives

Ξ(u,M)(s) =
1

det(Rw)
E

∫
dw

πN
e−wH(R−1

w +uΣ−1)w

×
∫

dt

πN
e−tH(I+uBΣ−1)t−2�{wH(u

√
BΣ−1)t}

×
[∫

e
−dH(I+AΣ−1)d+2�

{
[−

√
AΣ−1(w+

√
Bt)]

H
d
}
dd

πN

]u
.

(87)

Next, Gaussian integration (62) is applied on the integral w.r.t.
d. Using also (63) we arrive at

Ξ(u,M)(s) = E

∫
dw

πN

e−wH(R−1
w +u(AIN+Σ)−1)w[

det(I +AΣ−1)
]u

det(Rw)

×
∫

e
−tH[IN+uB(AIN+Σ)−1]t+2�

{
[−u

√
B(AIN+Σ)−1w]

H
t
}
dt

πN
.

(88)

Application of (62) and (63) again for the integral w.r.t. t
provides

Ξ(u,M)(s)

=E

⎧⎪⎨
⎪⎩

[
det(I +AΣ−1)

]−u

det [IN+uB(AIN+Σ)−1] det(Rw)

×
∫

e−wH(R−1
w +u[(A+uB)IN+Σ]−1)w dw

πN

⎫⎪⎬
⎪⎭

=E

⎧⎪⎨
⎪⎩

(
det

[
IN+uRw ((A+uB)IN+Σ)−1

])−1

det [IN+uB(AIN+Σ)−1]
[
det(I+AΣ−1)

]u
⎫⎪⎬
⎪⎭ ,

(89)

where the second line is also obtained through Gaussian inte-
gration. The above holds for any Rw and Σ that are Hermitian
and invertible. The determinants in (89) can be further simpli-
fied using (64), so that recalling Σ = s−1R̃ and defining two
auxiliary matrices

Ω(p,m, q) =Rw + (p− (m+m∗) + q) IN , (90)

Ω̃(Q, q) = s−1R̃+ (Q− q)IN , (91)

that are both Hermitian, we finally have

Ξ(u,M)(s) = det(s−1R̃)uE
{
eG

(u)(p,m,q,Q)
}
, (92)

G(u)(p,m, q,Q) = (1− u) ln det Ω̃(Q, q)

− ln det
[
Ω̃(Q, q) + uΩ(p,m, q)

]
, (93)
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Using the differentiation rule ∂
∂x ln detA = tr(A−1 ∂A

∂x ), where
the partial derivative should be understood as an elementwise
operation on A, we also obtain for later use the equalities

∂

∂p
G(u)(Q) = − utr

(
(Ω̃+ uΩ)−1

)
, (94)

∂

∂m
G(u)(Q) =

∂

∂m∗G
(u)(Q) = utr

(
(Ω̃+ uΩ)−1

)
, (95)

∂

∂q
G(u)(Q) =u(u− 1)tr

(
Ω̃

−1
Ω(Ω̃+ uΩ)−1

)
, (96)

∂

∂Q
G(u)(Q) =utr

(
Ω̃

−1
Ω(Ω̃+ uΩ)−1

)
− utr(Ω̃

−1
), (97)

where the dependencies to {p,m, q,Q} were omitted on the
RHSs of the equations for notational implicity.

C. Distribution of the Overlap Matrix and Large Deviations

Let us now write the general form of empirical correlations
between {Δa} as

1

M
EH

{
ΔH

bΔa

}
=

(
‖χ0‖2
M

− χH
bχ0

M
− χH

0χa

M
+

χH
bχa

M

)
=(Q0,0 −Q0,b −Qa,0 +Qa,b), (98)

where Qa,b are the elements of the overlap matrix Q ∈
C

(u+1)×(u+1) and have the obvious definitions. We then need
to find a suitable formula for the rate function (70). By the RS
assumption,

tr(QQ̃) = pp̃+ um̃(m+m∗) + uQQ̃+ u(u− 1)qq̃, (99)

since Q̃ is real symmetric and we may write (78) as in (100),
shown at the bottom of the page, where the per-antenna rate
function reads

φ(u)
m (Q̃) = E{χa,m}

{
exp

[
u∑

a=0

u∑
b=0

Q̃a,bχ
∗
b,mχa,m

]}
,

(101)
and χa = [χa,1 · · ·χa,M ]�.

D. Decoupled MGF and Critical Points

The first set of equations for the critical point arises from the
equality

∂

∂x
tr(QQ̃) =

1

M

∂

∂x
G(u)(Q), (102)

for x ∈ {p,m, q,Q}. The partial derivatives on the LHS are
trivial due to (99) and the RHSs we already obtained in
(94)–(97). If we drop the explicit dependence of Ω and Ω̃

on {p,m, q,Q} for notational simplicity, the RS conjugate
parameters satisfy

p̃ = −u
1

M
tr
[
(Ω̃+ uΩ)−1

]
= −um̃, (103)

m̃ =
1

M
tr
[
(Ω̃+ uΩ)−1

]
, (104)

q̃ =
1

M
tr
[
Ω̃

−1
Ω(Ω̃+ uΩ)−1

]
, (105)

Q̃ =
1

M
tr
[
Ω̃

−1
Ω(Ω̃+ uΩ)−1

]
− 1

M
tr
(
Ω̃

−1
)
. (106)

Note that the above implies that in the limit u → 0, we have
p̃ → 0, and m̃ → −(Q̃− q̃), so that the relevant critical point
can be written by using two instead of four “tilde-parameters.”

The next task is to obtain an explicit expression for the per-
component moment generating function (MGF) in (101) that
does not require u to be an integer. Since this part is closely
similar to the analysis carried out, e.g., in [27] we omit the
details of the derivations. Following the notation of [27], we let
ξ = m̃ and η = m̃2/q̃ which is sufficient to describe Q̃ here.
Then, if we denote χm = xm + vm and χ̃m = x̃m, the scalar
MGF (101) can be written as

φ(u)
m (Q̃) =

(
π

ξ

)u

E

{∫
dzmeuξ(|zm|2−|χm|2)

× p(zm|χm) [Eχ̃m
q(zm|χ̃m)]u

}
, (107)

where p(zm|χm) = g(zm|χm; , η−1) and q(zm|χ̃m) =
g(zm|χ̃m; ξ−1). As a consequence of the above, u does not
need to be an integer anymore and the limit u → 0 is well
defined. From the partial derivatives of {p̃, m̃, q̃, Q̃} we obtain
the second set of conditions at the critical point

p = lim
M→∞

1

M

M∑
m=1

E|xm + vm|2, (108)

Q = lim
M→∞

1

M

M∑
m=1

E
〈
|x̃m|2

〉
q
, (109)

m = lim
M→∞

1

M

M∑
m=1

E(xm + vm) 〈x̃∗
m〉q , (110)

q = lim
M→∞

1

M

M∑
m=1

E 〈x̃∗
m〉q 〈x̃∗

m〉q , (111)

where xm, x̃m ∼ p(xm), vm ∼ g(vm|0; rmv ),

〈f(x̃m)〉q = Ex̃m
f(x̃m)

q(zm|x̃m)

q(zm)
, (112)

fRS = − lim
M→∞

1

M
ln det(Σ)− extr

Q,Q̃
lim

M→∞

{
1

M
lim
u→0

∂

∂u
G(u)(Q)

− lim
u→0

∂

∂u

[
pp̃+ u(mm̃∗ + m̃m∗) + uQQ̃+ u(u− 1)qq̃

]
+

1

M

M∑
m=1

lim
u→0

∂

∂u
lnφ(u)

m (Q̃)

}
(100)
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and q(zm) = Ex̃m
q(zm|x̃m). The interpretation is that (112)

represents the conditional mean estimator for postulated chan-
nel q(zm|χ̃m) when the true channel is given by p(zm|χm).
Then the true ε = p− (m+m∗) + q, and postulated ε̃ = Q−
q MMSE reduce to (23) and (24), respectively. Finally, comput-
ing the partial derivatives w.r.t. u in (100) and taking the limit
u → 0 provides after some algebra the free energy (26).
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