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Abstract

The complexity-performance trade-off is a fundamental aspect of the design of low-density parity-check (LDPC)

codes. In this paper, we consider LDPC codes for the binary erasure channel (BEC), use code rate for performance

metric, and number of decoding iterations to achieve a certain residual erasure probability for complexity metric.

We first propose a quite accurate approximation of the numberof iterations for the BEC. Moreover, a simple

but efficient utility function corresponding to the number of iterations is developed. Using the aforementioned

approximation and the utility function, two optimization problems w.r.t. complexity are formulated to find the

code degree distributions. We show that both optimization problems are convex. In particular, the problem with the

proposed approximation belongs to the class ofsemi-infinite problems which are computationally challenging to be

solved. However, the problem with the proposed utility function falls into the class ofsemi-definiteprogramming

(SDP) and thus, the global solution can be found efficiently using available SDP solvers. Numerical results reveal

the superiority of the proposed code design compared to existing code designs from literature.

Index Terms

Low-density parity-check (LDPC) codes, complexity-performance trade-off, density evolution, message-passing

decoding, semi-definite programming.

I. INTRODUCTION

Efficient design of low-density parity-check (LDPC) codes under iterative message-passing have been

widely investigated in the literature [1]–[6]. In [1] and [2], capacity-achieving ensembles of LDPC codes

were originally introduced. Several upper bounds on the maximum achievable rate of LDPC codes over

http://arxiv.org/abs/1401.4337v1
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the binary erasure channel (BEC) for a given check degree distribution were derived in [3]. Moreover,

irregular LDPC codes were designed by optimizing the degreestructure of the Tanner graphs with code

rates extremely close to the Shannon capacity in [4]. These codes are referred to asperformance-optimized

codessince the objective of code design is to obtain degree distributions which maximize the code rate

for a given channel as the performance metric. However, for aperformance-optimized code, convergence

of the decoder usually requires a large number of iterations. This leads to high decoding complexity

and processing delay which is not appropriate for many practical applications. Hence, the complexity of

decoding process has to be considered as a design criterion for the LDPC codes, as well. In contrast to

performance-optimized codes, codes which are designed to minimize the decoding complexity for a given

code rate are denoted bycomplexity-optimized codes.

The concept of performance-complexity trade-off under iterative message-passing decoding was intro-

duced in [7]–[10]. In [7] and [8], the authors investigated the decoding and encoding complexity for

achieving the channel capacity of the binary erasure channel (BEC). Moreover, Sason and Wiechman [10]

showed that the number of decoding iterations which is required to fall below a given residual erasure

probability under iterative message-passing decoding, scales proportional to the inverse of the gap between

code rate and capacity. However, specifically for a code ratesignificantly below Shannon capacity, there

exist different ensembles for the same rate but with different convergence behavior of decoder. Therefore,

how to find an ensemble which leads to the lowest number of decoding iterations is an important question

in the code design.

Unfortunately, characterizing the number of decoding iterations as a function of code parameters is

not straightforward. Hence, several bounds and approximations for the number of decoding iterations

have been proposed in literature [10]–[12]. Simple lower bounds on the number of iterations required for

successful message-passing decoding over BEC were proposed in [10]. These bounds are expressed in

terms of some basic parameters of the considered code ensemble. In particular, the fraction of degree-2

variable nodes, the target residual erasure probability, and the gap to the channel capacity are considered in

[10]. Thereby, the proposed lower bound in [10] suggests that for given code rate, the fraction of degree-2

variable nodes has to be minimized for a low number of decoding iterations. However, all other degree

distribution parameters are not included in this lower bound. In [11], an approximation of the number

of iterations was proposed and used to formulate an optimization problem for complexity minimization,

i.e., a complexity-optimizing problem. The proposed approximation is a function of all degree distribution
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parameters. However, the resulting optimization problem is non-convex and is solved iteratively, only.

Furthermore, it was proved that under a certain mild condition, the considered optimization problem in

each iteration is convex. A similar approach to design a complexity-optimized code was investigated in

[12]. We note that one of the essential constraints that has to be considered for LDPC code design is

to guarantee that the residual erasure probability decreases after each decoding iteration. In general, this

successful decoding constraint for the BEC leads to an optimization problem which belongs to a class of

semi-infinite programming, i.e., the problem has infinite number of constraints [13], [14]. Semi-infinite

optimization problems are computationally challenging tobe solved. We will investigate this class of

optimization problems in more detail in Section III.

The extrinsic information transfer (EXIT) chart [15], [16]and density evolution [17] are two powerful

tools for tracking the convergence behavior of iterative decoders. For the BEC, EXIT charts coincide with

the density evolution analysis [10], [18]. For simple presentation of the performance-complexity tradeoff,

we analyze a modified density evolution in this paper. In particular, first a quite accurate approximation of

the number of iterations is proposed. Based on this approximation, an optimization problem is formulated

such that for any given check degree distribution, a variable degree distribution with a finite maximum

variable node degree is found such that the number of required decoding iterations to achieve a certain

target residual erasure probability is minimized while a desired code rate is guaranteed. Although, we

prove that the considered optimization problem is convex, it still belongs to the class ofsemi-infinite

programming. Therefore, we first propose a lower bound on thenumber of decoding iterations. Based on

this, a simple, but efficient utility function corresponding to the number of decoding iterations is developed.

We show that by applying this utility function, the optimization problem now falls into the class ofsemi-

definite programming (SDP) where the global solution of the considered optimization problem can be

found efficiently using available SDP solvers such as CVX [19]. It is worth mentioning that a general

framework is developed to prove that the considered problemis SDP. Thus, this framework may be also

used to design LDPC codes w.r.t. other design criteria. As anexample, we formulate an optimization

problem to obtain performance-optimized codes, i.e., for any given check degree distribution, a variable

degree distribution with finite maximum variable node degree will be found such that the achievable

code rate is maximized. The maximum achievable code rate obtained from the performance-optimizing

optimization problem is also used as an upper bound for the desired rate in the considered complexity-

optimizing code design.
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To summarize, the contributions of this paper are twofolded: i) we propose a quite accurate approxi-

mation, a lower bound, and a simple utility function corresponding to the number of decoding iterations

and formulate two optimization problems w.r.t. complexityto find the best variable degree distribution

for any given check node distribution, andii ) we show that both problems are convex in the optimization

variables, and as the main contribution of the paper, we prove that the optimization problem with the

proposed utility function has a SDP representability whichallows to efficiently solve the problem. Note

that the approximation proposed here is derived for the number of iterations between any two general

functions and is quite different from the one proposed in [11]. Moreover, the formulated problem using the

utility function in this paper is proved to be a semi-definiteand convex problem, compared to the semi-

infinite problems considered in [11] and [12]. Numerical results reveal that for a given limited number

of iterations, the complexity-optimized codes significantly outperform the performance-optimized codes.

Moreover, the codes designed by the proposed utility function require a number of decoding iterations

which is very close to that of the codes designed by the proposed quite accurate approximation.

The rest of the paper is organized as follows: In Section II, some preliminaries of LDPC codes are

recapitulated and the proposed approximation of the numberof iterations is devised. Section III is devoted

to the optimization problems for the design of complexity-optimized codes based on this approximation

and the utility function. The optimization problem for the performance-optimized codes is presented in

Section IV. In Section V, numerical results, and comparisons are given and Section VI concludes the

paper.

II. PROBLEM FORMULATION

In this section, we first discuss some basic preliminaries ofLDPC codes for the BEC. Then, we

introduce a modified density evolution and propose an approximation for the number of iterations based

on the concept of performance-complexity tradeoff.

A. Preliminaries

An ensemble of an irregular LDPC codes is characterized by the edge-degree distributionsλ =

[λ2, λ3, . . . , λdv ] andρ = [ρ2, ρ3, . . . , ρdc ] with
∑dv

i=2 λi = 1 and
∑dc

i=2 ρi = 1. In particular, the fraction of

edges in the Tanner graph of a LDPC code that are connected to degree-i variable nodes is denotedλi,

and the fraction of edges that are connected to degree-i check nodes, is denotedρi (degree distributions
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from the edge perspective) [1]. Moreover,dv anddc denote the maximum variable node degree and check

node degree, respectively. Furthermore, let

λ(x)=
dv
∑

i=2

λix
i−1, and (1a)

ρ(x)=

dc
∑

i=2

ρix
i−1 (1b)

be defined as generating functions of the variable and check degree distributions, respectively [1]. Using

these notation, the rate of the LDPC code is given by [20]

R = 1−

∫ 1

0

ρ(x)dx

∫ 1

0

λ(x)dx

= 1−

dc
∑

i=2

ρi
i

dv
∑

i=2

λi
i

. (2)

We consider a BEC with bit erasure probabilityε, i.e., the channel capacity isC = 1 − ε. Assuming

message-passing decoding for an ensemble of LDPC codes withdegree distributions(λ,ρ), the average

residual erasure probability over all variable nodes at thel-th iteration,Pl, when the block length tends

to infinity, is given by [20]

Pl = ελ(1− ρ(1 − Pl−1)), l = 1, 2, . . . . (3)

whereP0 = ε. An essential constraint for a successful decoding is that the residual erasure probability

decreases after each decoding iteration, i.e.,Pl < Pl−1, ∀l. In particular, the condition to achieve a target

residual erasure probabilityη is [21]

ελ(1− ρ(1− x)) < x, ∀x ∈ (η, ε]. (4)

In this paper, we consider the achievable code rate as the performance metric and the number of decoding

iterations which yields to a residual average erasure probability below η as the complexity metric. Note

that the decoding threshold has also been considered as a performance metric in the literature, i.e., for a

given code rate, the best degree distribution is determinedsuch that the successful decoding constraint in

(4) holds for the maximum possible erasure probabilityε. However, the code rate maximization problem

for a given erasure probability is in principle equivalent to the threshold maximization problem for a given

code rate [11].
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In general, the complexity of the decoding process is comprised of the number of required iterations

and the complexity per iteration which is also referred to asgraphical complexity. Formally, graphical

complexityG is defined in [10] as the number of edges in the Tanner graph perinformation bit. In this

paper, however, our goal is to find a variable degree distribution for any given check node distributionρ(x)

and code rateR < C. Moreover, for givenρ(x), the number of edges in the Tanner graph is obtained

asM = m∫
1

0
ρ(x)dx

wherem is the number of check nodes. Furthermore, the code rateR is defined as

R = 1− m
n

wheren is the number of variable nodes, i.e., the length of the code.Therefore, for givenρ(x)

andR, the graphical complexity is fixed toG = M
n−m

= 1−R

R
∫ 1

0
ρ(x)dx

, and hence, not changed by varying

λ(x). We can conclude that the decoding complexity depends only on the number of decoding iterations.

Moreover, the number of iterations is also mainly used to measure the processing delay in decoding [10].

B. Number of Decoding Iterations

The expected performance of a particular ensemble over BEC can be determined by tracking the residual

erasure probabilities through the iterative decoding process by density evolution [11], [20]. In this paper,

a modified version of the density evolution is utilized to determine the required number of decoding

iterations to achieve a certain residual erasure probability. To this end, we define the following function

ψ(x) =
1

ε
[1− ρ−1(1− x)]. (5)

Note that by definingψ(x), we have separated the known parametersρ(x) and ε from the optimization

variablesλ(x). Then, the residual erasure probability can be tracked by the iterations between the two

curvesλ(x) andψ(x), cf. eq. (3) and Fig. 1. In particular, the successful decoding constraint in (4) is

equivalent to constraintλ(x) < ψ(x), x ∈ (ζ, ξ] whereξ = ψ−1(1) = 1 − ρ(1 − ε) and ζ = ψ−1(η
ε
) =

1− ρ(1 − η). Furthermore, for a given code rateR, we can conclude from (2) that the area bounded by

the curvesλ(x) andψ(x) is fixed for a given code rate, i.e.

∫ 1

0

[ψ(x)− λ(x)]dx =

(

1

ε
−

1

1− R

)
∫ 1

0

ρ(x)dx. (6)

The above property is well known as area Theorem [16]. Therefore, the problem of code design can

be interpreted as a curve shaping problem forλ(x) subjected to the constraints thatλ(x) is belowψ(x)

and the area bounded by the two curves is fixed. Asymptotically, as the target code rate approaches the

capacity,C−R → 0, the area bounded by the curvesλ(x) andψ(x) vanishes, and the number of decoding
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P2/ε
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x
ξζ

Fig. 1. Modified density evolution for BEC with bit erasure probability ε, ψ(x) = 1

ε
[1− ρ−1(1− x)], andξ = ψ−1(1) andζ = ψ−1( η

ε
).

iterations grows to infinity. However, for the code rate below the capacity, one can find differentλ(x)

that have code rateR while acquiring different convergence behaviors. Therefore, the goal of code design

is to shape the curvesλ(x) for the best complexity-performance trade-off. In the following, we utilize

the distance concept of performance-complexity trade-offillustrated in Fig. 1 to propose a quite accurate

approximation for the number of iterations. To this end, we state the following definition, see also Fig. 2.

Definition 1: Let functionsf1(x) and f2(x) have positive first-order derivatives and satisfy condition

f1(x) < f2(x), x ∈ [a, b]. Then,N(f1(x), f2(x), a, b) is defined as

N(f1(x), f2(x), a, b) = min arg
l

{Zl < a} (7)

where

Zl = f1(f
−1
2 (Zl−1)), and Z0 = b. (8)

From the above definition, the number of iterations to achieve a certain target residual erasure probability

η is given byN(λ(x), ψ(x), η, ε). We observe that due to iterative structure of the decoding process, the

number of iterations as a function of code parameters is a non-differentiable function which is difficult

to deal with in a code design in general and does not offer muchinsight. In the following, we propose a
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Fig. 2. Approximation of decreasing step fromxl towardsxl+1 between functionsf1(x) andf2(x).

continuous approximation of the number of iterations between two general functionsf1(x) andf2(x).

We first define a function for the distance betweenf2(x) andf1(x), i.e.,∆f(x) = f2(x)−f1(x), which

plays a main role in characterizing the number of iterations, i.e.,∆f(x) is the decreasing step atx. Then,

we can rewriteZl in (8) as follows

Zl = Z0 −

l−1
∑

i=0

∆f(xi), (9)

whereZl = f2(xl). Assumex ∈ [x∗, x∗+∆x∗] ⊂ [a, b] where∆x∗ is sufficiently small such that∆f(x)

is assumed to be constant within this interval, see Fig. 2. Thus, each decreasing step in this interval toward

axis y, i.e., ∆f(x), or toward axisx, i.e., ∆x = xl − xl+1, is fixed with the relation∆f(x) = f ′

2(x)∆x.

Hence, the number of iterations in this interval is given by

∆N(f1(x), f2(x), x
∗, x∗+∆x∗)=

⌈

∆x∗

∆x

⌉

=

⌈

f ′

2(x)∆x
∗

f2(x)−f1(x)

⌉

. (10)

where⌈x⌉ = min{m ∈ Z|m ≥ x} is the ceiling function whereZ is the set of integer numbers. The main

idea of extending the above expression to all interval is to momentarily ignore the fact that the number

of iterations has to be an integer, and to compute the incremental increase in the number of iterations

as a function of the incremental change inx. Notice that a similar method was also used in [11] but a
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completely different approximation had been obtained. By this, the incremental change in the number of

iterations as a function of incremental change inx can be written as∆N =
f ′
2
(x)∆x

f2(x)−f1(x)
. To calculate the

total number of iterations, we use the integration over[a, b] which leads to

N(f1(x), f2(x), a, b) ≈

∫ b

a

f ′

2(x)

f2(x)− f1(x)
dx

(here)
=

∫ ξ

ζ

ψ′(x)

ψ(x)− λ(x)
dx (11)

where equality(code design) is obtained as an approximation for the number of decoding iterations, i.e.,

by substitutingf1(x) = ψ(x), f2(x) = λ(x), a = ζ , andb = ξ. Since we use the continuous assumption

in the incremental change of the number of iterations, the expression in (11) is an approximation of the

number of iterations.

In Section IV, it is shown that the approximation (11) of number of iterations is quite accurate for

several numerical examples. Moreover, this approximationhas nice properties compared to the number

of iterations given in (7):i) differentiability, andii) convexity w.r.t. the optimization variablesλi. The

convexity of (11) will be investigated in detail in the following section.

III. COMPLEXITY-OPTIMIZED LDPC CODES

In this section, we discuss the approximation (11) for the number of decoding iterations for the

complexity-optimizing code design. Moreover, to facilitate obtaining a complexity-optimized code, another

optimization problem is also formulated based on a utility function corresponding to the number of

decoding iterations.

A. Code Design with Approximation (11)

In this subsection, we formulate an optimization problem tofind a fast convergent LDPC code based

on the approximation in (11) for BEC with bit erasure probability ε, target residual erasure probability

η, and desired code rateRd. In particular, the following optimization problem is considered to obtain the

complexity-optimized LDPC codes

minimize
λ

∫ ξ

ζ

ψ′(x)

ψ(x)− λ(x)
dx

subject to C1 :λ(x) < ψ(x), ∀x ∈ [ζ, ξ]

C2 :R ≥ Rd

C3 :

dv
∑

i=2

λi = 1
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C4 :λi ≥ 0, i = 2, . . . , dv, (12)

whereψ(x) is defined in (5). The cost function is indeed the approximation (11), constraintC1 is the

decoding constraint in (4), constraintC2 specifies the code rate requirement, and constraintsC3 andC4

impose the restrictions of the definition of degree distribution λ. The following lemma states that the

problem in (12) is convex.

Lemma 1:The optimization problem (12) is convex w.r.t optimizationvariablesλ and in domainx ∈

(ζ, ξ].

Proof: We first note that constraintsC1, C3, andC4 in the optimization problem (12) are affine

in λ. Moreover, constraintC2 can be rewritten as
dv
∑

i=2

λi
i
= 1

1−Rd

∑dc
i=2

ρi
i

which is an affine form inλ.

Therefore, it suffices to show the convexity of the cost function
∫ ξ

ζ

ψ′(x)
ψ(x)−λ(x)

dx. Moreover, the convexity

of the integrand is sufficient for the convexity of the integral since integration preserves convexity [22].

To show the convexity of the integrand, i.e.,f(λ) = ψ′(x)
ψ(x)−λ(x)

, we show that it has a positive semi-definite

Hessian matrix, i.e.,∇2f(λ) � 0, which is a sufficient condition of convexity [22]. In particular, the

Hessian matrix off(λ) is given by

∇2f(λ) =
2ψ′(x)

(ψ(x)− λ(x))3



















x2 x3 · · · xdv

x3 x4 · · · xdv+1

...
...

. . .
...

xdv xdv+1 · · · x2dv−2



















(13)

A matrix is positive semi-definite if all its eigenvalues arenon-negative. Moreover, the trace of a matrix

is equal to the sum of its eigenvalues, i.e.,tr{∇2f(λ)} =
∑dv−1

i=1 υi holds whereυi, i = 1, . . . , dv−1 are

the eigenvalues of∇2f(λ). Herein, the Hessian matrix in (13) has rank one since all thecolumns of the

matrix is linearly dependent with the first column. This implies that all the eigenvalues are zero except

one. The non-zero eigenvalue is given by

υ =
2ψ′(x)

(ψ(x)− λ(x))3

dv−1
∑

i=1

x2i > 0 (14)

where we useψ′(x) ≥ 0 andλ(x) < ψ(x), x ∈ (0 ξ]. Thus, the Hessian matrix of the integrand is positive

semi-definite and the integrand and consequently the cost function in (12) are convex. This completes the

proof.
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Although the optimization problem in (12) is convex, it still belongs to the class of semi-infinite

programming [13], [14]. In particular, optimization problems with finite number of variables and infinite

number of constraints or alternatively, infinite number of variables and finite number of constraints are

referred to as semi-infinite programming. Herein, the optimization problem in (12) has finite number of

variables, i.e.,λi, i = 2, . . . , dv, but infinite number of constraints sinceλ(x) < ψ(x) must hold for all

x ∈ (ζ, ξ]. One way to solve the optimization problem in (12) is to approximate the continuous interval

x ∈ (ζ, ξ] by a discrete setX = {x0, x1, . . . , xn} [14]. We note that a discrete set is also required to

numerically calculate the integral expression for the number of iterations since, in general, no closed form

solution is available. Thereby, we have finite number of constraintsλ(xi) < ψ(xi), i = 1, . . . , n and the

cost function can be expressed as
n−1
∑

i=2

ψ′(xi)∆xi
ψ(xi)−λ(xi)

where∆xi =
xi+1−xi−1

2
. For a uniform discretization, we

obtain∆xi =
ξ−ζ

n
∀i, xi = xi−1 +∆x, x0 = ζ , andxn = ξ.

The solution obtained via this discritization method is asymptotically optimal asn→ ∞. However, it is

in general computationally challenging. The problems associated with the successful decoding constraint

for BEC given in (4) encounters the same computational complexity, e.g., such as the problems considered

in [11], [12].

B. Code Design by Means of a Utility Function

In this subsection, our goal is to formulate and solve an optimization problem based on a utility function

corresponding to the number of decoding iterations. In particular, a lower bound on the number of iterations

is first proposed. Based on this lower bound, we develop this utility function and show that the resulting

optimization problem can be solved more efficiently than theoptimization problem (12). Optimizing a

utility function instead of the original problem has been frequently applied in practical and engineering

designs when the original problem is not manageable or computationally challenging (NB: using pair-wise

error probability (PEP) instead of the exact error probability or using minimum min square error (MMSE)

and zero-forcing (ZF) detectors instead of maximum-likelihood detector are the well-known examples).

Lemma 2:For two functionsf1(x) andf2(x) with positive first-order derivatives and satisfyingf1(x) <

f2(x) in interval [a, b], cf. Fig. 2, where the area bound by the two functions is fixed,i.e.,
∫ b

a
f2(x) −

f1(x)dx = c, the approximation of the number of iterations is lower bounded by

∫ b

a

f ′

2(x)

f2(x)− f1(x)
dx ≥

b− a

c
(f2(b)− f2(a)) , (15)
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where the inequality holds with equality if

f1(x) = f2(x)−
c

f2(b)− f2(a)
f ′

2(x), x ∈ [a, b]. (16)

Proof: The Jensen’s inequality is used to obtain the lower bound. Inparticular, for a convex function

ϕ(·) and a non-negative functionf(x) over [a, b], Jensen’s inequality indicates

ϕ

(
∫ b

a

f(x)dx

)

≤
1

b− a

∫ b

a

ϕ ((b− a)f(x)) dx, (17)

where the inequality holds with equality if and only iff(x) = d, x ∈ [a, b] whered is a constant. In

order to use the Jensen’s inequality, we assumeϕ(γ) = 1
γ
, γ > 0 andf(x) = f2(x)−f1(x)

f ′
2
(x)

. Therefore, the

following lower bound for the approximation (11) is obtained

∫ b

a

f ′

2(x)

f2(x)− f1(x)
dx ≥

(b− a)2
∫ b

a

f2(x)−f1(x)
f ′
2
(x)

dx
, (18)

where the lower bound in (18) is achieved with equality if andonly if

f2(x)− f1(x)

f ′

2(x)
=d or f1(x) = f2(x)−df

′

2(x), x ∈ [a, b]. (19)

In order to obtain constantd, we integrate both side off2(x) − f1(x) = df ′

2(x) over the interval[a, b]

which leads to

d =
c

f2(b)− f2(a)
· (20)

Substitutingd in (20) into (19) and (18) gives the lower bound (15) and the condition (16) to achieve

this lower bound with equality stated in Lemma 2. Notice thatthe constantd corresponds to a decent in

Figs. 1 and 2 with equal length steps on abscissax. We conclude from (15) and (16) that the number

of iterations is minimized iff1(x) is chosen in a way that, for a given areac, all the steps have equal

length. This completes the proof.

For a givenf2(x), the choice off1(x) introduced in (16) to achieve the lower bound with equality

provides an insightful design tool. Specifically, we can conclude that the best choice off1(x) for any

given f2(x) is the one that has the maximum distance withf2(x) weighted byf ′

2(x). For the number

of decoding iterations, we have to setf1(x) = λ(x), f2(x) = ψ(x), a = ζ , b = ξ. Then, we propose the
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smallest step size as a utility function, i.e.

U(λ) = min
x∈[ζ̃, ξ]

{

ψ(x)− λ(x)

ψ′(x)

}

. (21)

where ζ̃ is a design parameter with a value close toζ . U(λ) denotes the smallest step size of decent on

abscissax for all x ∈ [ζ̃ , ξ], i.e., intuitively the bottleneck within the iterative process. The lower bound

(15) indicates that there should not exists any such bottleneck. Thus, a maximization ofU(λ) is obviously

reasonable for lowering the number of iterations.

Remark 1:Note that for the constraints in Lemma 2 onf1(x), i.e., f1(x) < f2(x) and
∫ b

a
f2(x) −

f1(x)dx = c, the optimal choice off1(x) to minimize the number of iterationsN(f1(x), f2(x), a, b) is

already given in (16) and there is no need for optimization. However, for the code design, we have an

extra constraint onλ(x) which is the structure ofλ(x), i.e.,
∑dv

i=2 λi = 1 and λi ≥ 0, i = 2, . . . , dv.

Therefore, (16) is not directly applicable for the code design. However, as we will see in Section V, the

insight that (16) offers, i.e., maximizing the smallest step sizeU(λ), is very efficient and leads to codes

with quite low number of decoding iterations.

Remark 2:The reason that we do not chooseζ̃ = ζ is that the expression in (21) is a utility function

corresponding to the number of iterations and is neither theexact nor an approximation of the number

of iterations. Hence, the choice ofζ̃ = ζ does not necessarily lead to the minimum number of decoding

iterations at the target residual erasure probabilityη, note thatζ = ψ−1(η
ε
). For the code design, we can

chooseζ̃ for the lowest number of iterations at the target residual erasure probability.

Now, we are ready to find the complexity-optimized codes by the maximizing the minimum step size,

i.e., the utility function in (21), for a given desired code rateRd, as follows

maximize
λ

U(λ)

subject to C1 :λ(x) < ψ(x), ∀x ∈ [ζ̃ , ξ],

C2 :R ≥ Rd,

C3 :
dv
∑

i=2

λi = 1,

C4 :λi ≥ 0, i = 2, . . . , dv. (22)

In order to show that the optimization problem (22) is a semi-definite programming, we introduce an

auxiliary variablet and maximizet whereU(λ) ≥ t ≥ 0 holds as a constraint. Moreover, considering
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ψ′(x) > 0, x ∈ [ζ̃ , ξ], we can rewriteU(λ) ≥ t asψ(x)− λ(x) ≥ tψ′(x), x ∈ [ζ̃ , ξ] which leads to the

following equivalent optimization problem

maximize
λ,t

t

subject to C1 : ψ(x)− λ(x) ≥ tψ′(x), ∀x ∈ (ζ̃ , ξ]

C2 :

dv
∑

i=2

λi
i
≥

1

1− Rd

dc
∑

i=2

ρi
i

C3 :

dv
∑

i=2

λi = 1

C4 : λi, t ≥ 0, i = 2, . . . , dv (23)

The above optimization problem is still a semi-infinite programming since it contains infinite number

of constraints with respect to∀x ∈ [ζ̃ , ξ]. In the following, we state a lemma which is useful to transform

some category of semi-infinite problems into equivalent SDPproblems.

Lemma 3:Let π(x) = π0 + π1x + · · · + π2kx
2k be a polynomial of degree2k. There exists a matrix

Λ where a constraintπ(x) ≥ 0, ∀x ∈ R has the following SDP representability w.r.t. variableπi, i =

0, . . . , 2k

∃Λ, π(x) ≥ 0, ∀x ∈ R, ⇐⇒















Λ � 0,

∑

m+n=i+2

Λmn = πi,
(24)

whereΛmn is the element inm-th row andn-th column of the matrixΛ.

Proof: Please refer to [23, Chapter 4].

For the clarity of Lemma 3, we consider as an example the quadratic polynomialπ(x) = ax2 + bx+ c.

Then, from Lemma 3, we obtain an equivalent SDP representation ofπ(x) ≥ 0, x ∈ R as





Λ11 Λ12

Λ21 Λ22



 � 0

whereΛ11 = π0 = c, Λ12 + Λ21 = π1 = b, andΛ22 = π2 = a. The aforementioned SDP representation

is equivalent to the well-known conditionsb2 − 4ac ≤ 0 anda > 0 for the non-negativity of a quadratic

polynomial.

Note that Lemma 3 is developed forx ∈ R and variablesπi, i = 0, . . . , 2k. Therefore, to apply Lemma

3 to the first constraint in (23), we have to consider:i) the interval[ζ̃ , ξ] has to be mapped toR, and ii )

the coefficients of the polynomial functions in constraintC1 in (23) have to be calculated and shown to

be in an affine form in the optimization parameters (λ, t). In the following theorem, we present the SDP
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representation of constraintC1 in (23). To this end, the functionψ(x) is expanded into a Taylor series

ψ(x) = lim
M→∞

∑M

i=2 Tix
i−1 aroundx = 0.

Theorem 1:The constraintπ(x) = ψ(x)− λ(x)− tψ′(x) ≥ 0, ∀x ∈ [ζ̃ , ξ], i.e., constraintC1 in (23),

has the following equivalent SDP representation















Λ ≻ 0,

∑

m+n=k+2

Λmn = πk, 0 ≤ k ≤ D
(25)

whereπ0 = 0 and

πk =
D
∑

i=1

fiζ̃
i

(

k
∑

j=0

ak−jbj

)

−
D
∑

i=1

iTiζ̃
i−1

(

k
∑

j=0

ck−jdj

)

t, k = 1, . . . , D (26)

whereD =M − 1 and coefficientsfi, aj , bj, cj anddj are given by

fi =











Ti+1 − λi+1, i = 1, . . . , dv − 1,

Ti+1, otherwise

(27a)

aj =











(

i

j

)

ξj

ζ̃j
, 0 ≤ j ≤ i

0, otherwise

(27b)

bj =











(

D−i

j

)

, 0 ≤ j ≤ D − i

0, otherwise

(27c)

cj =











(

i−1
j

)

ξj

ζ̃j
, 0 ≤ j ≤ i− 1

0, otherwise

(27d)

dj =











(

D−i+1
j

)

, 0 ≤ j ≤ D − i+ 1

0, otherwise

. (27e)

Proof: Please refer to Appendix A.

We note that the matrix elements, i.e.,Λmn, are in an affine form of the optimization variables, since all

πi are affine int andfi and finallyfi is affine inλi+1. Therefore, all the constraints of the optimization

problem in (23) have shown to be affine or matrix semi-definiteconstraints. Thus, the optimization problem

in (23) is SDP and can be efficiently solved using available SDP solvers [19].
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Remark 3:Note that, for practical code design, a relatively largeM is enough for a quite accurate

approximationψ(x) ≈
∑M

i=2 Tix
i−1. Moreover, Taylor series coefficientsTi can be represented in close

form for check regular ensembles, i.e.,ρ(x) = xdc−1, as

Ti =

(

ω

i− 1

)

(−1)i , ω = 1/ (dc − 1) (28)

where
(

ω

i

)

is the fractional binomial expansion and defined for real valuedω and a positive integer valued

i as [21], [24]
(

ω

i

)

=
ω(ω − 1) . . . (ω − i+ 1)

i!
(29)

IV. PERFORMANCE-OPTIMIZED LDPC CODE

A general framework has been developed for the statement andthe proof of Theorem 1 such that it can

be possibly used to formulate and solve optimization problems with similar structures. In particular, the

optimization problems that have constraint likef(x,λ) ≥ 0 whereλ contains the optimization variables

and the constraint must hold for allx within an interval[a, b] might have equivalent SDP representation

as shown by the framework of Section III and Appendix A. Specifically, one should first map the interval

[a, b] to (−∞, +∞) and then show that the coefficients of the resulting polynomial are in affine form

of the optimization variables. As a relevant example, we formulate an optimization problem for code rate

maximization to obtain the performance-optimized code in the following and show how the global optimal

solution can be obtained via the optimization framework developed in this paper.

For a performance-optimized code, our goal is to maximize the code rate for BEC with given bit erasure

probabilityε such that the successful decoding is guaranteed. This optimization problem is formulated as

follows

maximize
λ

R

subject to C1 :λ(x) < ψ(x), ∀x ∈ (0, ξ],

C2 :

dv
∑

i=2

λi = 1,

C3 :λi ≥ 0, i = 2, . . . , dv. (30)

It can easily be observed that constraintsC2 and C3 are affine in the optimization variablesλ and

constraintC1 has a SDP representation in the optimization variablesλ using the aforementioned Taylor

series expansion ofψ(x). Moreover, from (2), we can conclude that maximizing the code rate for a given
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ρ(x) is equivalent to maximizing
∑dv

i=2
λi
i

. Therefore, with a similar approach as in problem (22), we can

write the following SDP representation of (30)

maximize
λ

dv
∑

i=2

λi
i

subject to C1 : Λ ≻ 0,
∑

m+n=k+2

Λmn = πk, k = 0, . . . , D

C2 :

dv
∑

i=2

λi = 1

C3 : λi ≥ 0, i = 2, . . . , dv (31)

whereΛmn, πk, andD are the same as the ones given in Theorem 1 settingt = 0 and ζ̃ = 0.

Remark 4:The performance-optimized codes resulting from (31) are not constrained w.r.t. the required

number of decoding iterations. Thus, the the achievable code rate of the performance-optimized code,

Rmax, can be used as an upper bound for the rate constraint in the complexity-optimizing problems. In

other words, the desired rateRd for the complexity-optimized code has to be chosen such thatRd ≤ Rmax

holds, otherwise, the optimization problems in (12) and (22) become infeasible.

Remark 5:We note that the maximum achievable code rate obtained from (31) usually is below the

channel capacity,Rmax ≤ C = 1−ε, since a finite maximum variable degreedv is assumed. In particular,

one can conclude from (6) that asR → C, the area between curvesλ(x) andψ(x) vanishes which leads

to λ(x) → ψ(x), x ∈ (0 ξ]. In general, in order to constructλ such that
∫ ξ

0
[ψ(x) − λ(x)]dx = δ holds

for any arbitraryδ > 0, a maximum variable degree is required which may tend to infinity, i.e., dv → ∞.

V. NUMERICAL RESULTS

In this section, we evaluate the LDPC codes which are obtained by solution of the proposed optimization

problems. For benchmark schemes, we consider the complexity-optimized code (COC) reported in [12]

and performance-optimized codes (POCs) in [21] and [24]. Weconsider both regular and irregular check

degree distributionsρ(x) = x7 andρ(x) = 0.5330x6 + 0.4670x7, respectively, see footnote1.

Note that both, the proposed approximation of the number of decoding iterations given in (11) and

the utility function given in (21), are based on the distanceconcept introduced for the modified density

evolution in Section II-B. Therefore, the distance conceptin Fig. 3 is investigated for some performance-

optimized and complexity-optimized codes. At first, we assume the following parameters for the code

1This irregular check degree distribution is assumed in [12]. Therefore, to have a fair comparison, we also adopt this check degree
distribution for the code design.
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Fig. 3. Modified density evolution: functionλ(x) for the performance-optimized and complexity-optimized codes obtained forρ(x) = x7,
dv = 16, η = 10−5, andε = 0.5.

designρ(x) = x7, dv = 16, η = 10−5, andε = 0.5. Fig. 3 shows the modified density evolutions introduced

in Section II-B for the performance-optimized code obtained by means of (30) and complexity-optimized

code obtained by means of (12). The maximum achievable code rate for the considered set of parameter is

obtained asRmax = 0.4714 from (30). We observe that the obtained variable degree distribution,λ(x), for

the performance-optimized code in (30) is very close to function ψ(x) = 2[1−(1−x)
1

7 ] which leads to the

high number of decoding iteration required to achieve the considered target residual erasure probability

η = 10−5. However, if a lower code rate is considered, i.e.,Rd < Rmax, we are able to design complexity-

optimized codes which lead to a lower number of decoding iterations compared to performance-optimized

codes. Fig. 3 shows that as the desired code rate decreases, the distance betweenλ(x) designed in (12)

andψ(x) increases which leads to a lower number of decoding iterations.

Using the distance concept introduced for the modified density evolution, the approximation of the

number of iterations (11) is proposed. In Fig. 4, the exact number of iterations and the proposed approx-

imation of the number of iterations vs. the residual erasureprobability are shown where the following
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Fig. 4. Number of iterationsN vs. the residual erasure probabilityPN , ρ(x) = 0.5330x6+0.4670x7, R1 = 0.5, R2 = 0.48, andε = 0.48.

parameters are used:ρ(x) = 0.5330x6 + 0.4670x7, λ1(x) = 0.2220x+ 0.3814x2 + 0.1331x8 + 0.2635x15,

λ2(x) = 0.1881x + 0.4056x2 + 0.0828x8 + 0.3234x15, andε = 0.48. Note thatλ1(x) andλ2(x) lead to

code ratesR1 = 0.48 andR2 = 0.5, respectively, where the channel capacity isC = 1 − ε = 0.52. We

observe that the approximation (11) is quite accurate although we utilized the continuous assumption of

the number of iterations in the derivation. Moreover, changing the code rate does not noticeably change

the accuracy of the proposed approximation. Furthermore, it can be easily seen from Fig. 4 that the

function given in (7) for the exact number of iterations is a non-differentiable function while the proposed

approximation is a continuous function which significantlyfacilitates tackling the optimization problem.

In Fig. 5, the number of decoding iterations vs. the rate to capacity ratio, i.e., R
1−ε

, is depicted. We

consider the following parameters for the code designρ(x) = 0.5330x6 + 0.4670x7, dv = 16, R = 0.5,

andη = 10−3. The results for the proposed complexity-optimized codes designed by means of (12) (the

approximation of the number of iterations) and (22) (the utility function) are illustrated. We observe that

the codes obtained with the proposed utility function leadsto quite similar number of iterations compared
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Fig. 5. Number of iterations vs. rate to capacity ratio,R
1−ε

, for different codes,ρ(x) = 0.5330x6 + 0.4670x7, dv = 16, Rd = 0.5, and
η = 10−3.

to that obtained by the accurate approximation in (11) whichconfirms the effectiveness of the proposed

utility function. Note that the maximum achievable rate to capacity ratio for the considered set of parameter

is obtained asR
1−ε

= 0.984 from the equivalent threshold maximization problem to the rate maximization

problem in (30). Therefore,R
1−ε

= 0.984 is the upper limit fordv = 16 and the givenρ(x). For any

R
1−ε

> 0.984, both problems in (12) and (22) become infeasible. As a performance benchmark, we probe

the complexity-optimized code in [12] and performance-optimized codes in [21] and [24]. Note that the

codes proposed in [12] and [24] are obtained for a fixed rateRd = 0.5 which is the reason we consider

the same rate. As can be seen from Fig. 5, the proposed code in [21] requires a lower number of iterations

compared to the code in [24]. However, both of them are outperformed by the new complexity-optimized

codes in terms of the number of decoding iterations. Unfortunately, only one point is reported in [12]

which coincides with the curves obtained via the proposed complexity-optimizing approach.

In Fig. 6, the effect of the value of the maximum variable degree dv on the proposed code design

is investigated. Thereby, the same parameters are used as the ones in Fig. 5 and also the number of
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, for different maximum variable node degree,ρ(x) = 0.5330x6 + 0.4670x7 ,
R = 0.5, andη = 10−3.

decoding iterations vs. the rate to capacity ratio is depicted. First, for a given rate to capacity ratio, the

number of iterations decreases asdv increases. Second, asdv increases the maximum achievable rate

to capacity ratio, the upper limits in Fig. 6, increases. This is due to the fact that a higherdv leads to

a larger feasibility solution set in the optimization problems in (12), (22) and (30) for the complexity-

optimized and performance-optimized codes, respectively. However, the effect of increasingdv for low rate

to capacity ratio is negligible. In order to illustrate the effect of increasingdv on the feasibility solution

set for the considered optimization problem in (22), we alsoplot the maximum rate to capacity ratio,

R
1−ε

, vs. maximum variable node degree,dv, for ρ(x) = x7 and different channel erasure probabilities

ε = 0.48, 0.50, 0.52, see Fig. 7. Since asdv increases, the feasible set for the solution of the optimization

problem in (22) becomes larger which leads to a higher rate tocapacity ratio. Moreover, as ultimately

dv → ∞, we obtain R
1−ε

→ 1. As an interesting observation here, at least fordv < 20, we observe from

Fig. 7 that asε decreases, i.e., capacity increases, a higher rate to capacity is achieved.

Fig. 8 presents the number of decoding iterations vs. the residual erasure probability. We assume
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the following parameters for the code designρ(x) = 0.5330x6 + 0.4670x7, dv = 16, ε = 0.5, Rd =

0.485, 0.488, and η = 10−2, 10−3, 10−5. It can be seen that that each code requires lower number of

iterations for the respective target residual erasure probability that is designed for. For instance, considering

the set of parameters forRd = 0.485, for the target residual erasure probability10−5, the code that is

designed forη = 10−5 needs204 iterations while codes that designed forη = 10−3 andη = 10−2 need214

and278 number of iterations, respectively. Moreover, focusing onthe result forη = 10−5 as an example,

it can be seen that in order to have a lower number of iterations for target erasure probability10−5, first

the code designed forη = 10−5 requires a higher number of iterations compared to the code designed

for lower target residual erasure probabilities, i.e.,η = 10−2, 10−3, but finally, it outperforms them at the

target erasure probabilityη = 10−5. This can be interpreted also in the modified density evolution in Fig.

1. In particular,λ(x) is designed forη = 10−5 has a closer distance toψ(x) in the regimesx > 10−2 and

x > 10−3 compared to that forλ(x) that are designed forη = 10−2 and η = 10−3, respectively, which

leads to a higher number of iterations in these regimes. However, at this cost, the distance betweenλ(x)
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which is designed forη = 10−5 to ψ(x) is higher in the regimesx < 10−2 andx < 10−3 compared to

that for λ(x) that are designed forη = 10−2 andη = 10−3, respectively, which in total leads to a lower

number of iterations at the target erasure probabilityη = 10−5.

Finally, in Table I, the degree distributions of the proposed codes used in this section and found by

using CVX [19] to solve the optimization problems (12), (22)and (30) are presented. Note that all the

presented coefficients ofλ(x) are rounded for four-digit accuracy. Optimizedλ(x) are given in Table I for

different design criteria and parameters which allows someinterpretations and intuitions. For instance, for

the performance-optimized code in Fig. 3 with code rateR = 0.4714, we obtainλ2 = 0.2673 while for

the complexity-optimized codes with given code ratesR = 0.45 andR = 0.4, the values areλ2 = 0.2126

and λ2 = 0.1041, respectively. Thus, we can conclude that, as a lower code rate is required, we have

to reduce the value ofλ2 for a complexity-optimized code. As an other example, we compare the codes

designed by means of the proposed approximation (11) with that obtained by means the proposed utility

function (21). The resultingλ(x) corresponding to the graphs in Fig. 5 are similar but not identical which
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TABLE I
SEVERAL EXAMPLES OF THEPROPOSEDDEGREEDISTRIBUTIONS(λ,ρ) USED IN THE NUMERICAL RESULTS.

λ(x) ρ(x) Comments
0.2673x+ 0.2107x2 + 0.5220x15 x7 Fig. 3, POC,R = 0.4714
0.2126x+ 0.2650x2 + 0.5224x15 x7 Fig. 3, COC,R = 0.4500
0.1041x+ 0.3704x2 + 0.5255x15 x7 Fig. 3, COC,R = 0.4000

0.1881x+ 0.4056x2 + 0.0828x8 + 0.3234x15 0.5330x6 + 0.4670x7 Fig. 4, R = 0.50
0.2220x+ 0.3814x2 + 0.1331x8 + 0.2635x15 0.5330x6 + 0.4670x7 Fig. 4, R = 0.45

0.1555x+ 0.4993x2 + 0.0348x12 + 0.3104x13 0.5330x6 + 0.4670x7 Fig. 5, Prop. Code with Approx.,R
1−ε

= 0.90

0.1301x+ 0.5279x2 + 0.2651x11 + 0.0769x12 0.5330x6 + 0.4670x7 Fig. 5, Prop. Code with Utility, R
1−ε

= 0.90

0.2172x+ 0.3888x2 + 0.0470x9 + 0.1559x10 + 0.1911x15 0.5330x6 + 0.4670x7 Fig. 5, Prop. Code with Approx.,R
1−ε

= 0.94

0.2056x+ 0.3971x2 + 0.1859x8 + 0.2114x15 0.5330x6 + 0.4670x7 Fig. 5, Prop. Code with Utility, R
1−ε

= 0.94

0.2986x+ 0.1833x2 + 0.1602x4 + 0.0406x5 + 0.3173x15 0.5330x6 + 0.4670x7 Fig. 5, Prop. Code with Approx.,R
1−ε

= 0.98

0.2940x+ 0.2016x2 + 0.1013x4 + 0.0901x5 + 0.3130x15 0.5330x6 + 0.4670x7 Fig. 5, Prop. Code with Utility, R
1−ε

= 0.98

0.2793x+ 0.2774x2 + 0.4434x12 0.5330x6 + 0.4670x7 Fig. 6, R
1−ε

= 0.97, dv = 12

0.2743x+ 0.2571x2 + 0.1484x5 + 0.0181x6 + 0.3022x15 0.5330x6 + 0.4670x7 Fig. 6, R
1−ε

= 0.97, dv = 16

0.2715x+ 0.2721x2 + 0.0941x6 + 0.1390x7 + 0.2233x18 0.5330x6 + 0.4670x7 Fig. 6, R
1−ε

= 0.97, dv = 30

0.2977x+ 0.0949x2 + 0.1901x3 + 0.4173x15 x7 Fig. 7, dv = 16, ε = 0.48
0.2673x+ 0.2107x2 + 0.5220x15 x7 Fig. 7, dv = 16, ε = 0.50
0.2749x+ 0.0828x2 + 0.6424x15 x7 Fig. 7, dv = 16, ε = 0.52

0.3051x+ 0.0589x2 + 0.2709x3 + 0.3651x15 0.5330x6 + 0.4670x7 Fig. 8,R = 0.488, η = 10−2

0.2888x+ 0.1681x2 + 0.0628x3 + 0.1206x4 + 0.3598x15 0.5330x6 + 0.4670x7 Fig. 8,R = 0.488, η = 10−3

0.2811x+ 0.2077x2 + 0.1528x4 + 0.3584x15 0.5330x6 + 0.4670x7 Fig. 8,R = 0.488, η = 10−5

roughly confirms the effectiveness of the proposed utility function. Last but not least, from the codes

designed for different values ofdv corresponding to Fig. 6, we can conclude that, for the rate-to-capacity

ratio R
1−ε

= 0.97, increasingdv from 12 to 16, crucially changes the resulting complexity-optimized codes.

Moreover, the maximum degree is non-zero for the codes withdv = 12, 16. However, fordv = 30, we

observe that the maximum degree with non-zero value is19 by which we can conclude that increasing

dv more than19 cannot decrease the number of iterations for the consideredrate-to-capacity ratio. This

observation can also be confirmed from Fig. 6 as fordv = 12, 16 and30, the number of decoding iterations

for the rate-to-capacity ratioR
1−ε

= 0.97 are335, 159, and157, respectively.

VI. CONCLUSION

The design of complexity-optimized LDPC codes for the BEC isconsidered in this paper. To this

end, a quite accurate approximation of the number of iterations is proposed based on the concept of

performance-complexity tradeoff. For any given check degree distribution, a complexity-optimizing prob-

lem is formulated to find a variable degree distribution for agiven finite maximum variable node degree

such that the number of required decoding iterations to achieve a certain target residual erasure probability

is minimized and a given code rate is guaranteed. It is shown that the optimization problem is convex

in the optimization variables, however, it belongs to the class of semi-infinite programming, i.e., it has
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infinite number of constraints. To facilitate obtaining a complexity-optimized code, first a lower bound on

the number of iterations is proposed. Then, a utility function corresponding to the number of iterations is

introduced based on this proposed lower bound. It is shown that the resulting optimization problem has

a SDP representation and thus can be solved much more efficiently compared to semi-infinite problems.

Numerical results confirmed the effectiveness of the proposed methods for code design.

APPENDIX A

PROOF OFTHEOREM 1

In this appendix, the SDP representability of constraintC1 in (23) is shown. To this end, we first

rewriteψ(x) in a polynomial formψ′(x) = lim
M→∞

∑M

i=2 (i− 1)Tix
i−2 whereTi are the Taylor expansion

coefficients ofψ(x) aroundx = 0. Let

f(x) = ψ(x)− λ(x) =

D
∑

i=1

fix
i (32)

whereD = max{dv,M}. Assuming a relatively large value ofM to guarantee the accuracy of the

approximationψ(x) ≈
∑M

i=2 Tix
i−1 [21], we consider the caseM > dv for the sake of simplicity of

presentation. Thus, we obtainD =M − 1 andfi is given by

fi =







Ti+1 − λi+1, i = 1, . . . , dv − 1,

Ti+1, otherwise

Note that affine mapping preserves the semi-definite representability of a set [23]. Here, we use the

following mapping

x = (ξ − ζ̃)
y2

1 + y2
+ ζ̃ , (33)

which mapsx ∈ [ζ̃ , ξ] to y ∈ (−∞, +∞). Note that the mapping (33) has to be affine in the optimization

variablesλ, t not in x. Using this mapping, constraintC1 in (23) is rewritten as follows

f(x) > tψ′(x), for x ∈ [ζ̃ , ξ] ⇔

f

(

(ξ−ζ̃)

(

y2

1 + y2

)

+ζ̃

)

>tψ′

(

(ξ−ζ̃)

(

y2

1 + y2

)

+ζ̃

)

, for y∈R (34)



26

By multiplying both side of (34) by positive value(1 + y2)D, we obtain

(1 + y2)Df

(

ξy2 + ζ̃

1 + y2

)

= (1 + y2)D





D
∑

i=1

fi

(

ξy2 + ζ̃

1 + y2

)i




> t(1 + y2)D





D
∑

i=1

iTi+1

(

ξy2 + ζ̃

1 + y2

)i−1


, for y ∈ R. (35)

Removing the identical terms in the nominators and the respective denominators and moving all terms in

one side of the inequality lead to

D
∑

i=1

fiζ̃
i

(

ξ

ζ̃
y2 + 1

)i
(

y2 + 1
)D−i

−

D
∑

i=1

iTi+1ζ̃
i−1

(

ξ

ζ̃
y2+1

)i−1

(y2+1)D−i+1t>0, for y∈R (36)

Next, let the left hand side of (36) be written asπ(y) =
∑D

k=0 πky
2k. Then, by considering the binomial

expansion,(1 + x)n =
n
∑

j=0

(

n

j

)

xj with
(

n

j

)

= n!
j!(n−j)!

, π(y) is expanded by

π(y) =

D
∑

k=0

πky
2k=

D
∑

i=1

fiζ̃
i

(

i
∑

j=0

ajy
2j

)(

D−i
∑

j=0

bjy
2j

)

−

D
∑

i=1

iTi+1ζ̃
i−1

(

i−1
∑

j=0

cjy
2j

)(

D−i+1
∑

j=0

djy
2j

)

t>0, for y∈R (37)

whereaj, bj , cj, anddj are given in (27). In order to explicitly obtain the coefficients πk, k = 0, . . . , D

in terms of the known parameters, the polynomial multiplication rule (convolution rule)

(

n
∑

i=0

αix
i

)(

m
∑

i=0

βix
i

)

=

n+m
∑

i=0

γix
i, with γi=

i
∑

j=0

αi−jβj (38)

is applied. Using the above rule, the coefficientsπk, k = 0, . . . , D are obtained asπ0=0 and

πk =
D
∑

i=1

fiζ̃
i

(

k
∑

j=0

ak−jbj

)

−
D
∑

i=1

iTiζ̃
i−1

(

k
∑

j=0

ck−jdj

)

t, k = 1, . . . , D (39)

Now, we are ready to use Lemma 3 to show the SDP representationof constraintC1 in (23). In

particular, the interval in constraintC1 in (23), i.e.,[ζ̃ , ξ], is mapped to(−∞,+∞) where all coefficients

πk are in affine form of optimization variables[λ, t]. Therefore, by using Lemma 3, constraintC1 in (23)

has the SDP representation as introduce in Theorem 1. This completes the proof.
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