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Outage Minimization via Power Adaptation and
Allocation for Truncated Hybrid ARQ

Mohammed Jabi, Leszek Szczecinski, Mustapha Benjillali, and Fabrice Labeau

Abstract

In this work, we analyze hybrid ARQ (HARQ) protocols over theindependent block fading channel. We
assume that the transmitter is unaware of the channel state information (CSI) but has a knowledge about the channel
statistics. We consider two scenarios with respect to the feedback received by the transmitter:i) “conventional”,
one-bit feedback about the decoding success/failure (ACK/NACK), and ii) the multi-bit feedback scheme when, on
top of ACK/NACK, the receiver provides additional information about the state of the decoder to the transmitter.
In both cases, the feedback is used to allocate (in the case ofone-bit feedback) or adapt (in the case of multi-bit
feedback) the power across the HARQ transmission attempts.The objective in both cases is the minimization
of the outage probability under long-term average and peak power constraints. We cast the problems into the
dynamic programming (DP) framework and solve them for Nakagami-m fading channels. A simplified solution
for the high signal-to-noise ratio (SNR) regime is presented using a geometric programming (GP) approach. The
obtained results quantify the advantage of the multi-bit feedback over the conventional approach, and show that
the power optimization can provide significant gains over conventional power-constant HARQ transmissions even
in the presence of peak-power constraints.

Index Terms

Chase Combining, Dynamic Programming, Geometric Programming, HARQ, Incremental Redundancy, Outage
Probability, Nakagami-m Fading.

I. INTRODUCTION

TO GUARANTEE reliable data transmissions over unreliable channels, two fundamental techniques
are commonly used: forward error correction (FEC) and automatic repeat request (ARQ) [1]. In FEC

schemes, error correcting codes are used to combat transmission errors. In ARQ schemes, error detecting
codes are used and retransmission is requested every time a negative acknowledgment (NACK) is sent to
the transmitter via the feedback channel. An HARQ scheme combines ARQ and FEC, and provides better
performances compared to each scheme alone [2]. In typical HARQ protocols, a retransmission request is
repeated until the codeword is received without errors—in which case a positive acknowledgment (ACK)
is sent on the feedback channel—or a maximum number of transmissions is reached; this particular
case is called truncated HARQ [3], [4]. HARQ schemes can be classified into two categories: the
Chase combining HARQ (CC-HARQ) [5], where all retransmitted packets are identical, and the incremental redundancy HARQ (IR-HARQ)
[6] where each retransmission carries a different piece of the “mother code” that generates the complete
coded version of the message.

In this paper, we design transmission schemes and power assignment strategies which minimize the
outage probability subject to both peak power and long-termaverage power constraints for IR-HARQ
and CC-HARQ protocols in block fading channels. We analyze both cases when one bit ACK/NACK or
multi-bits feedback is available at the transmitter. The multi-bit feedback scenario covers the case when
the transmitter may obtain the CSI from the receiver throughthe feedback channel, but—due, e.g., to
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long communication/processing delays—the CSI is fully outdated (i.e., independent of the CSI in the
subsequent transmissions).

To improve HARQ’s performance, many power policies have been proposed in the litterature. In
[7], a power adaptation was proposed to increase the throughput in the case of a discretized CSI. An
asymptotically optimal power control algorithm that attains the diversity limit in long-term static channels
has been presented in [8]. The case of long-term static channels was also studied in [9], where the authors
determined the optimal power assignment strategy to minimize the total average transmission power subject
to outage probability constraints. The optimization of power efficiency with a packet error rate (PER)
constraint was solved as a GP problem in [10] for the case of space-time coded HARQ, and in [11]
for CC-HARQ over independent Rayleigh block fading channels. In [12], the authors derived an optimal
power allocation scheme which minimizes the packet drop probability under a total average transmit power
constraint for IR-HARQ with two transmissions. A suboptimal feedback and power adaptation rule was
proposed for multiple-input multiple-output (MIMO) IR-HARQ block fading channels in [13], achieving
the optimal outage diversity.

The objective of this paper is to assess the value of the multi-bit feedback for power assignment schemes
in HARQ, and the main contributions of this work are the following:

1) We show how to use the well-known DP methods [14] to find the optimal power adaptation policies
for truncated HARQ in order to minimize the outage probability under constraints on peak and
long-term average power. The method can be applied for both CC-HARQ and IR-HARQ and for
any channel with a continuous cumulative distribution function. Unlike [13], where the proposed
power strategies are sub-optimal in terms of outage performance, our power policies are optimal in
terms of outage.

2) We show how to optimize the power-allocation policy for IR-HARQ and CC-HARQ over Nakagami-
m fading channels. The optimal solutions are given in parametrized closed form for an arbitrary
number of transmissions. We note that only two transmissions were allowed in [12]; in [11] and
[12] only Rayleigh block fading channels were considered.

3) We present a simplified allocation policy for the high SNR regime obtained using the geometric
programming (GP) framework.

4) We provide numerical results for practically interesting wireless channel models, comparing the
outage probability with various power adaptation/allocation methods.

The rest of the paper is organized as follows. In Sec. II, we introduce the adopted system model and,
in Sec. III, we define the optimization problem. We show the optimization method for power adaptation
policies in Sec. IV and the power allocation is treated in Sec. V. The optimal allocation for the high SNR
regime is discussed in Sec. VI. We provide numerical examples that illustrate the advantages obtained
using the optimal power policies in Sec. VII. Conclusions are drawn in Sec. VIII.

II. SYSTEM MODEL

We consider a block-fading model where the channel between the transmitter and the receiver is varying
(fading) randomly from one transmission to another but stays invariant during each of the transmissions,
thus the signal received on thekth ARQ transmission round is given by

yk =
√

γk · Pk(CSIk−1) · xk + zk, k = 1, ..., K (1)

wherezk is a zero-mean, unit-variance Gaussian noise,xk is the unit-variance transmitted signal,Pk(CSIk−1) ≥
0 is the transmit power and is a function of the previous realization of the channelCSIk−1 = [γ1, γ2, ..., γk−1],
where

√
γk is the instantaneous channel gain. Then,γk has the meaning of an instantaneous nominal SNR

(i.e., which considers unitary power transmission) which is assumed to be perfectly known at the receiver
but unknown to the transmitter. Thus, the transmitter cannot adjust the communication rate in thekth

transmission based onγk.
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To recover from decoding errors, the coded versions of a datapacket are transmitted at mostK times. On
top of the conventional one-bit signaling between the transmitter and the receiver (ACK/NACK messages),
we also allow the receiver to send the CSI collected during unsuccessful transmission attempts back to
the transmitter (entirely defined through SNR realizationsγk) via the feedback channel (which is assumed
error-free). The transmitter should be able toadapt the transmit power during thekth transmission attempt
using the knowledge ofγ1, . . . , γk−1. Thus, we will talk aboutpower adaptation when the CSI are used
to adjust the power used in each transmission. On the other hand, thepower allocation covers the case
when only the “conventional” one-bit feedback (ACK/NACK) is available. In this case, the transmitter
responds to the reception of a NACK message by retransmitting the packet with a power that depends
only on the transmission idexk = 1, · · · , K.

We assume thatγk can be modelled as independent and identically distributed(i.i.d.) random variables
with γk = Eγk [γk], whereEγ [·] denotes the mathematical expectation calculated with respect to γ. The
independence ofγk can be justified by the practical scenario where the successive transmissions are
not sent in adjacent time instants and, being sufficiently well separated, the realizations of the channel
become—to all practical extent—independent [15].

Most of the derivations will be done in abstraction of the particular fading distribution, but in numerical
examples, we consider the popular Nakagami-m fading profile. Hence, the channel normalized SNRγk
follows a gamma distribution with a probability density function (PDF)pγ(x) given by

pγ(x) =
mm

Γ(m)γmxm−1e−mx/γ , x > 0,

and the cumulative density function (CDF)Fγ(x) is given by

Fγ(x) = 1− Γ(m,mx/γ)

Γ(m)
, (2)

whereΓ(x) andΓ(s, x) denote respectively the gamma function and the upper incomplete gamma function.
We assume that the decoding is successful if the average accumulated mutual information at the receiver

is larger than the overall transmission rate for IR-HARQ. Inthe case of CC-HARQ, the decoding is
successful if the accumulated SNR is larger than an SNR threshold. Thus, the decoding fails afterk
transmissions with the probability

fk =







Pr
{

∑k
l=1 log (1+γl · Pl(CSIl−1)) < R

}

, for IR-HARQ

Pr
{

log
(

1+
∑k

l=1γl · Pl(CSIl−1)
)

< R
}

, for CC-HARQ

= Pr {Ik < ith} (3)

=FIk(ith)=

∫ ith

0

pIk(x)dx, (4)

where
{

Ik =
∑k

l=1Cl, ith = R for IR-HARQ

Ik =
∑k

l=1σl, ith = γth=2R−1 for CC-HARQ
, (5)

andσl = γl · Pl(CSIl−1), Cl = log (1 + γl · Pl(CSIl−1)) andpIk(x) is the PDF ofIk.
With this notation, the scenarios we consider are defined as follows:
• Constant power (CO) HARQ, wherePk(CSIk−1) ≡ P̄ , i.e., the power is the same throughout

retransmissions.
• Power Allocation (AL), where the CSI feedback is ignored (or, simply not available) and the power

varies solely as a function of the transmission’s index, i.e., Pk(CSIk−1) ≡ P̂k · I(Ik−1 ≤ ith) where
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I(x) = 1 if x is true, and0 otherwise, since thekth transmission is necessary only if the previous
(k−1) transmissions were unsuccessful. Finding the scalarsP̂k is a problem of power allocation.

• Power Adaptation (AD), where the power is modified in each transmission attempt using the CSI
provided over the feedback channel. From (3), the decoding error event in thekth transmission depends
uniquely onIk−1 andγk (which is unknown, and cannot be predicted from the previousCSI γ1,. . . ,
γk−1 due to the independence assumption). Consequently,Ik−1 (which is a scalar representation of
the vectorCSIk−1) is the only parameter eventually required to adapt the power Pk(CSIk−1) via a
scalar function

Pk(CSIk−1) ≡ P̃k(Ik−1) · I(Ik−1 ≤ ith), k = 1, ..., K (6)

whereI0 , 0. Finding the functionP̃k(Ik−1) is a problem of power adaptation.
For simplicity, we assume that the transmitter has a perfectknowledge ofIk−1, that is, we ignore all

eventual transmission and discretization errors. This assumption lets us know the maximum gain that can
be achieved using information about the decoder’s state contained inIk−1.

III. OPTIMIZATION PROBLEM

According to the reward-renewal theorem [16], the long-term average consumed power is the ratio
between the average transmit power between two consecutiverenewals (sending a new data packet)
ECSIK

[

P(CSIK)
]

and the expected number of transmissionsECSIK

[

T (CSIK)
]

needed to deliver the
packet with up toK transmission attempts [7], [15]:

P ,
ECSIK

[

P(CSIK)
]

ECSIK

[

T (CSIK)
] =

K
∑

k=1

ECSIk−1

[

Pk(CSIk−1)
]

K−1
∑

k=0

fk

, (7)

wherefk is the probability of a decoding failure afterk transmission attempts given by (3), andECSIk−1

[

Pk(CSIk−1)
]

is the expected transmit power during thekth transmission attempt, obtained by considering all the events
yielding thekth transmission, i.e., the eventIk−1 < ith.

In this work, we aim at minimizing the outage probabilityfK with respect to the power policy
{Pk(CSIk−1)}Kk=1 for a given long-term average powerPmax, peak allowed powerPmax and a transmission
rateR. Taking (7) into consideration, the optimization problem can be formulated as follows:

min
P1,P2(CSI1),...,PK(CSIK−1)

fK , s.t.

{

P ≤ Pmax

0 ≤ Pk(CSIk−1) ≤ Pmax, 1 ≤ k ≤ K
. (8)

The problem (8) requires an optimization over the scalarP1 and the functionsPk(CSIk−1), so to solve
it we will discretize the functions usingN equidistant points. Then we define the Lagrangian function
L : R

N(K−1)+1
+ ×R → R associated with the problem (8) as

L (P1, P2(CSI1), ..., PK(CSIK−1), λ) = fK + λ ·
(

K
∑

k=1

ECSIk−1

[

Pk(CSIk−1)
]

− Pmax

K−1
∑

k=0

fk

)

, (9)

where we left implicit all power constraints0 ≤ Pk(CSIk−1) ≤ Pmax. Without any loss of generality, we
considerPmax=1 in what follows.
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IV. OUTAGE-OPTIMAL POWER ADAPTATION

For power adaptation (6), the expected transmit power during thekth transmission is given by:

ECSIk−1

[

Pk(CSIk−1)
]

= EIk−1

[

P̃k(Ik−1)
]

=

∫ ith

0

P̃k(x)pIk−1
(x)dx. (10)

Thus the Lagrangian functionL defined in (9) can be written as:

L
(

P̃1, P̃2(I1), . . . , P̃K(IK−1), λ
)

= fK + λ ·
(

K
∑

k=1

EIk−1

[

P̃k(Ik−1)
]

−
K−1
∑

k=0

fk

)

. (11)

To solve the primal problem in (8), it is difficult to use the Karush–Kuhn–Tucker (KKT) conditions
on the Lagrangian function (11) since it requires to solve analytically a system of an infinite number of
equations where, in addition, closed form expressions offk (for 2 ≤ k ≤ K) are unknown. To overcome
these difficulties, we can solve the dual problem.

In the general case, the dual problem provides a solution which is a lower bound to the solution of
(8); the difference between the lower bound and the true optimum is called the “duality gap”. However,
according to a result in [17, Theorem 1], optimization problems with expectations over possibly non-
convex functions of random variables in both objective and constraint functions have a zero duality gap,
given that the PDF of the random variable of interest has no points of strictly positive probability (i.e.,
its CDF is continuous). For this reason, we express the outage probability and the average transmit power
(10) as a function of the channel normalized SNRγk, k = 1, . . . , K, with a continuous CDF, indeed
verifying the above requirement:

fK = Pr {IK < ith} = Eγ1,γ2,...γK[I(IK < ith)], (12)

and

ECSIK
[P ] = P̃1 +

K
∑

k=2

Eγ1,γ2,...γk−1

[

P̃k(Ik−1)
]

= P̃1 + Eγ1,γ2,...γK−1

[

K
∑

k=2

P̃k(Ik−1)

]

. (13)

According to [17, Theorem 1], the objective and constraint functions must be expectations over (possibly
non-convex) functions of random variables. However,P̃1 is independent of any random variable. So we
introduce a sub-optimization problem for each value ofP̃1 > 0

f̂K(P̃1) , min
P̃2(I1),...,P̃K(IK−1)

fK , s.t.











K
∑

k=2

EIk−1

[

P̃k(Ik−1)
]

−
K−1
∑

k=2

fk ≤ 1 + f1 − P̃1

0 ≤ P̃k (Ik−1) ≤ Pmax, for 1 ≤ k ≤ K

. (14)

The optimal solution of (8) is then given by

min
P̃1

f̂K(P̃1). (15)

Defining the Lagrange dual functiond : R+ ×R → R as

d(P̃1, λ), min
P̃2(I1),...,P̃K(IK−1)

L
(

P̃1,P̃2(I1), . . . ,P̃K(IK−1), λ
)

, (16)
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the dual optimization problem is thus given by

D(P̃1) = min
λ≥0

d(P̃1, λ). (17)

Note that, since the problem (14) and its dual (17) have a zeroduality gap, we can guarantee that
D(P̃1) ≡ f̂K(P̃1) for P̃1 > 0.

Finally, (16) can be rewritten in a recursive form characteristic of dynamic programming optimization
(DP):

d(P̃1, λ) = J1(I0)

J1(I0) =
{

− λ · Eγ1[I(I1 < ith)] + λ · P̃1 + Eγ1[J2(I1)]
}

(18)

J2(I1) = min
P̃2(I1)

{

− λ · Eγ2[I(I2 < ith)] + λ · P̃2(I1) + Eγ2[J3(I2)]
}

(19)

...

Jk(Ik−1) = min
P̃k(Ik−1)

{

− λ · Eγk[I(Ik < ith)] + λ · P̃k(Ik−1) + Eγk[Jk+1(Ik)]
}

(20)

...

JK(IK−1) = min
P̃K(IK−1)

{

λ · P̃K(IK−1) + EγK[I(IK < ith)]
}

, (21)

whereIk is a function ofIk−1, P̃k(Ik−1), andγk in the form

Ik =

{

Ik−1 + log
(

1 + γkP̃k(Ik−1)
)

, for IR-HARQ

Ik−1 + γkP̃k(Ik−1), for CC-HARQ
. (22)

For a givenIk—noting thatIk∈[0, ith] should be discretized overN points—we can optimize the value of
the functionP̃k(Ik−1) provided that the functionJk+1(Ik) is known. Thus, the global optimization of the
possibly non-convex problem in (14) over the set ofNK−1 values is reduced to a series of(K − 1) ·N
one-dimensional optimizations thanks to the DP formulation equations in (18)-(21).

A. Radio silence

In this context of IR-HARQ transmissions, we have

Eγk

[

I(Ik < ith)
]

= Fγk

(

2R−Ik−1 − 1

P̃k(Ik−1)

)

. (23)

The condition to guarantee a minimum in the last DP step is that the derivative of the function under
minimization in (21) equals zero, i.e.,

u(P̃K) , λ− 2R−IK−1 − 1

P̃ 2
K

· pγK
(

2R−IK−1 − 1

P̃K

)

= λ− 1

2R−IK−1 − 1
· q
(

2R−IK−1 − 1

P̃K

)

= 0, (24)

where it is easy to show thatq(x),x2pγK(x) satisfiesq(x) > 0, q(0) = 0, andq(∞) = 0, and hence,q(x)
has a maximumqmax = maxx q(x). Since the derivativeu(0) = λ andu(P̃K) must be locally non-increasing
aroundP̃K = 0 (i.e., u′(0) ≤ 0), the solution of (24) does not exist ifλ · (2R−IK−1 − 1) > qmax; meaning
that the minimum is obtained by setting̃PK = 0 and yieldingJK(IK−1) = 1. Whenλ·(2R−IK−1−1) < qmax,
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u(P̃K) has at least two zeros1 and the optimal solution corresponds to the point where the second derivative
is positive.

In Fig. 1, we show the adaptation policỹPk(x) in a case of IR-HARQ withK = 4. As we see, the
optimal solution requires a “radio silence”, that is, knowing in thekth transmission that the accumulated
mutual information at the receiver is below a thresholdi0,k−1, the transmitter decides to stay silent (zero
transmit power) until the maximum number of transmissions is attained. This “silence time” guarantees that
the power is “saved” when the transmitter does not have a “reasonable hope” of successfully terminating
the transmission.

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

 

 

PSfrag replacements

Ik−1

P̃
k
(I

k
−
1
)

P̃1

P̃2(I1)

P̃3(I2)

P̃4(I3)

Fig. 1. Optimized adaptation policies̃Pk(Ik−1) for the case of IR-HARQ in Nakagami-m fading model, whenm = 2, K = 4, R = 1.5
and γ = −4 dB. The “radio silence” means that if the accumulated mutualinformation after thekth transmission is less than a specific
thresholdi0,k (i.e., if Ik < i0,k wherei0,1 ≈ 0.12, i0,2 ≈ 0.33, i0,3 ≈ 0.63 in this example), the HARQ process decides to use zero power
for all reminder transmissions, i.e.,Pl(Il−1) = 0, k < l ≤ K.

B. Outage calculation

To calculate the outage probability, we use (4) where the CDFof Ik is FIk(x) and taking into
consideration that̃Pk(x) = 0 for x ∈ [0, i0,k−1], we obtain

FIk(x) =Pr
{

Ik−1 + log(1 + γk · P̃k(Ik−1)) < x
}

=



















FIk−1
(x), if x < i0,k−1

FIk−1
(i0,k−1) +

∫ x

i0,k−1

Fγ

(

2x−y − 1

P̃k(y)

)

· pIk−1
(y) dy, if x > i0,k−1

, (25)

which depends on the PDFpIk−1
(y) of Ik−1.

The differentiation of (25) yields a recursive relationship for the PDF

pIk(x) =











pIk−1
(x), if x < i0,k−1

∫ x

i0,k−1

log(2)2x−y

P̃k(y)
pIk−1

(y) · pγ
(

2x−y−1
P̃k(y)

)

dy if x > i0,k−1

, (26)

1In the case of a Rayleigh fading channel, there are exactly two zeros: one corresponds to the local maximum, and the other one to the
local minimum.
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where

pI1(x) =
log(2)2x

P̃1

· pγ
(

2x − 1

P̃1

)

. (27)

ConsideringEγk[I(Ik < ith] = Fγk

(

γth−Ik−1

P̃k(Ik−1)

)

, the same analysis as (25) and (26) can be done in the case
of CC-HARQ. Thus,

FIk(x) = Pr
{

Ik−1 + γk · P̃k(Ik−1) < x
}

=



















FIk−1
(x), if x < i0,k−1

FIk−1
(i0,k−1) +

∫ x

i0,k−1

Fγ

(

x− y

P̃k(y)

)

· pIk−1
(y) dy, if x > i0,k−1

, (28)

which again depends on the PDFpIk−1
(y) of Ik−1.

Differentiation of (28) yields the recursive relationshipfor the pdf

pIk(x) =











pIk−1
(x) if x < i0,k−1

∫ x

i0,k−1

1
P̃k(y)

pIk−1
(y)pγ

(

x−y

P̃k(y)

)

dy, if x > i0,k−1

, (29)

where

pI1(x) =
1

P1
pγ(

x

P1
). (30)

V. OUTAGE OPTIMAL POWER ALLOCATION

In this section, we consider the problem of optimal power allocation
(

i.e.,Pk(CSIk−1) ≡ P̂k · I(Ik−1 ≤
ith)
)

. The expected power consumed in thekth transmission attempt is given by

ECSIk
[P ]=EIk−1

[P̂k · I(Ik−1 ≤ ith)]= P̂k · fk−1, (31)

and the long-term average power (7) by

P =

K
∑

k=1

P̂k · fk−1

K−1
∑

k=0

fk

. (32)

Thus, the Lagrangian functionL defined in (9) can be expressed as

L(P̂1, P̂2, . . . , P̂K , λ) = fK + λ ·
(

K
∑

k=1

P̂kfk−1 −
K
∑

k=0

fk

)

. (33)

To cast (33) into the DP formulation, we have to find the “states” Sk such that: (i)fk may be calculated
from Sk, and (ii) stateSk+1 may be obtained fromSk and P̂k+1. Because the closed form expressions of
fk are unknown, we use an accurate approximation to expressfk in terms of{P̂l}kl=1; as shown in the
Appendix A, we can obtain the following relationship:

fk ≈ hk

P̂mk

k

· fk−1, for 1 ≤ k ≤ K, (34)
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where the parameterhk is independent from̂Pk andmk is the parameter of the Nakagami-m channel at
thekth transmission. Consideringf0 = 1, the optimization problem in (33) can be reformulated recursively
as follows

L(P̂1, P̂2, ..., P̂K , λ) = J1(f0)

J1(f0) = λ · (P̂1 − 1) · f0 + J2(f1) (35)

J2(f1) = λ · (P̂2 − 1) · f1 + J3(f2) (36)
...

JK−1(fK−1) = λ · (P̂K − 1) · fK−1 + fK . (37)

From the KKT necessary conditions, and starting with (37), we find a unique (therefore, the optimal)
solution as

P̂k =











min

{

(

mk ·gk+1·hk

λ

)
1

mk+1

, Pmax

}

, for 1 ≤ k ≤ K − 1

min
{

(

mK ·hK

λ

)
1

mK+1 , Pmax

}

, for k = K
, (38)

where

gk ,

{

λ · (P̂k − 1) +
gk+1·hk

P̂
mk
k

, for 1 ≤ k ≤ K − 1

λ · (P̂K − 1) + hK

P̂
mK
K

, for k = K
. (39)

VI. A PPROXIMATE SOLUTIONS

We target the high SNR regime, where typicallylim
γ→∞

fk = 0 for k ∈ {1, ..., K}. Thus, the long term

average power (defined in (32)) can be expressed in the high SNR regime as:

P ≈
K
∑

k=1

P̂k · fk−1. (40)

We note that [11] and [12] define the long term average power asin (40) even if it is only a valid
approximation in high SNR regime. Thus, the optimization problem (8) can be rewritten in the case of
power allocation as:

min
P̂1,P̂2,...,P̂K

fK , s.t.
K
∑

k=1

P̂k · fk−1 ≤ 1, (41)

where we assume thatPmax = ∞ andPmax = 1.
As shown in Appendix A, for Nakagami-m fading channel, a unified approximation of the outage

probability fK and the expected transmit power for both IR-HARQ and CC-HARQcan be written as

fK ≈ AK ·
K
∏

k=1

P̂−m
k , (42)

and

P̂k · fk−1 ≈ Ak−1 · P̂k

k−1
∏

l=1

P̂−m
l . (43)

whereA0 = 1, Ak is defined in (61) and (52) for the case of IR-HARQ and CC-HARQ respectively.



10

Thus, the optimization problems (41) can be written in the standard primal form of geometric program-
ming problems [18], [19], [20]:

min
P̂1,P̂2,...,P̂K

{

AK ·
K
∏

k=1

P̂−m
k

}

, s.t.
K
∑

k=1

Ak−1 · P̂k

k−1
∏

l=1

P̂−m
l ≤ 1, (44)

As shown in Appendix B, the optimal solution of (44) is given by

fK = (λ(δ∗))λ(δ
∗) · AK ·

K+1
∏

k=2

(

Ak−2

δ∗k

)δ∗
k

, (45)

whereδ∗ = [δ∗1, . . . , δ
∗
K+1] and

δ∗k =

{

1, for k = 1

m · (m+ 1)(K+1−k), for k ∈ {2, ..., K + 1} , (46)

and thusλ(δ∗) = (m + 1)K − 1, cf. (66). Therefore, the optimal power policy corresponding to the
optimization problem (41) is given by (69)

Pk =















δ∗2
λ(δ∗) · A0

, if k = 1

δ∗i+1

λ(δ∗) · Ai−1 ·
∏i−1

j=1

(

P ∗
j

)−m , if k ∈ {2, .., K}
. (47)

On the other hand, the diversity is defined as [21]

D = − lim
γ→∞

log(fK)

log(γ)
. (48)

In theAk’s expressions, the exponent ofγ is equal to−mk. Thus, according to (45) the diversityD for
power allocation is given by

D = Kmδ1 +
K+1
∑

k=2

(k − 2)mδk

= Kmδ1 + 0mδ2 + 1mδ3 + ...+ (K − 1)mδK+1

= Km+m2[(m+ 1)K−2 + 2(m+ 1)K−3 + ... + (K − 2)(m+ 1) + (K − 1)]

= Km+m2 ·K ·
(

1 + (m+ 1) + ...+ (m+ 1)K−2
)

− 1− 2 · (m+ 2)− ...− (K − 1) · (m+ 1)K−2

= (m+ 1)K − 1 (49)

We note that the same diversity value was obtained in [13] where, in addition, it was proven that both
multi-bit feedback (i.e., adaptation) and single-bit feedback (i.e., allocation) have the same diversity gain
for an infinite constellation size; this is confirmed by our results. On the other hand, the diversity of
constant power HARQ is given byD = Km.

VII. NUMERICAL EXAMPLES

For the case ofm = 2, Fig. 2a and Fig. 2b present the optimized outage probability in the case of
IR-HARQ and CC-HARQ, respectively. We show both cases whenPmax = 5 andPmax = ∞. We also
plot the outage probability of constant-power transmissions (CO). We can see, that for high SNR, the
optimized results outperform CO HARQ, which is due to the increases diversity of both power adaptation
and allocation strategies. On the other hand, the results for CO HARQ can outperform AL HARQ because
the latter is based on the approximations, which loose theirvalidity for low SNR. For example, forγ < −2
dB in Fig. 2a and forγ < 0 dB in Fig. 2b.
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Fig. 2. Optimized outage probability when using the optimized power adaptation (AD) and allocation (AL) compared with the outage
probability of constant-power transmission (CO) (i.e.,Pk = P = 1, ∀k) in the case of (a) IR-HARQ, and (b) CC-HARQ.K = 2, 4 and
Nakagami-m fading withm = 2; R = 1.5. Unconstrained peak (i.e.,Pmax = ∞) and constrained peak (i.e.,Pmax = 5) cases are shown.

WhenPmax = 5 instead ofPmax = ∞, the gain of the optimized outage compared with CO starts to
decrease after a specific valueγ0 of the average SNRγ. For example, in the case of allocation with
K = 4, γ0 ≈ 0 dB for IR-HARQ andγ0 ≈ 2 dB for CC-HARQ. This is justified by the fact that the
constraintPmax = 5 becomes active forγ ≥ γ0, as can be seen in Fig. 3. Moreover, when the maximum
power constraints are active, the diversity of the adaptation/allocation schemes is the same as the diversity
of the constant power transmission.

Fig. 4 illustrates the gain of the power adaptation over allocation strategies, where it is clear that the
gain is not only a function of the maximum number of transmissionsK, but is also depends on the channel
parameterm. In particular, forK = 2 we obtain the gain of approximately 0.1 dB, 0.2 dB, and 0.5 dB
for m = 1, m = 2, andm = 3, respectively. ForK = 4, the respective gains increase and also grow with
m; they are approximately given by 0.5 dB, 1.5 dB, and 1.8 dB. InFig. 5, we compare the optimized
solutions obtained using DP and GP for CC-HARQ and IR-HARQ. For high SNR, and as expected, the
solutions of GP converge to the optimized solution obtainedwith DP.

VIII. C ONCLUSION

In this paper, we analyzed the impact of multi-bit feedback on the performance of HARQ protocols in
terms of outage probability. We analyzed HARQ with Chase combining and Incremental Redundancy in
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Fig. 3. Optimized allocation policieŝPk as a function ofγ in the case of (a) IR-HARQ and (b) CC-HARQ.K = 4, m = 2, R = 1.5.
Both cases of unbounded (i.e.,Pmax = ∞) and bounded peak power (i.e.,Pmax = 5) are shown for comparison.
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Fig. 4. Optimized outage probability when using the optimized power adaptation (AD) and allocation (AL) policies in thecase of CC-HARQ
whenK = 2, 4 and all variables correspond to Nakagami-m fading withm = 1, 2, 3, R = 1.5, andPmax = ∞.

Nakagami-m block fading channels. We show that an optimized power allocation/adaptation strategy
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Fig. 5. Outage probability when HARQ process use the optimized allocation power policies find by dynamic programming (DP) and
geometric programming (GP) in the case of (a) CC-HARQ and (b)IR-HARQ. K = 2 and all variables correspond to Nakagami-m fading
with m = 1, 2, 3 andR = 1.5.

throughout the transmissions leads to notable gains over the power-constant HARQ. Adding multi-
bit feedback improves the performance and the achievable gains increase with the allowed number of
transmissions as well as with the parameterm of the Nakagami-m distribution.

APPENDIX A

We aim to determine the expression ofhk and AK (required in (34) and (42) respectively) for the
case of IR-HARQ and CC-HARQ. For that, we will derive a simpleand accurate approximation offk
defined in (3). Clearly, calculating the outage probabilityin (3) for the power allocation scheme requires
the derivation of the CDF of the sum ofk independent random variables:Ck = log2

(

1 + γkP̂k

)

in the

case of IR-HARQ andσk = γkP̂k in the case of CC-HARQ.

A. CC-HARQ

We use a simple and accurate method to evaluate the outage probability at the output of maximum ratio combining (MRC)
receivers in arbitrarily fading channels introduced in [22]. The approximation is based on the so-called
saddle-point approximation (SPA) [23], [24]. For the special case of Nakagami-m fading channels, the
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outage probability can be approximated by [22]

fK ≈
(

exp(1) · γth

m̃K

)m̃K

· 1√
2πm̃K

·
K
∏

k=1

(

mk

γkP̂k

)mk

, (50)

= ACC
K ·

K
∏

k=1

1

P̂mk

k

, (51)

wherem̃K =
∑K

k=1mk and

ACC
K =

(

exp(1) · γth

m̃K

)m̃K

· 1√
2πm̃K

·
K
∏

k=1

(

mk

γk

)mk

. (52)

In this case, we can easily show thathk, required in (34), is given by

hk =















(

exp(1)γthmk

γkm̃k

)mk

·
(

1− mk

m̃k

)m̃k−1+0.5

, for 2 ≤ k ≤ K

1√
2πm1

(

exp(1)·γth

γ1

)m1

, for k = 1

. (53)

B. IR-HARQ

In [25] and [26], the authors develop a simple and powerful way of characterizing the performance
of diversity schemes via limiting analysis of outage probabilities in Rayleigh fading channels. We use a
similar analysis to approximate the outage probability in the case of IR-HARQ for Nakagami-m fading
channels. The key idea is the following:

Theorem 1: [25, Theorem. 1] [26, Lemma. 1]
Let Z andW be two independent random variables. If their CDF verify

lim
γ→∞

γn1 · FZ(t) = a · q(t), (54)

lim
γ→∞

γn2 · FW (t) = b · g(t), (55)

wheren1, n2, a andb are constants,g(t) andq(t) are monotonically increasing functions, and the derivative
of q(t) (denoted asq′(t)) is integrable, then the CDF of the sumY = Z +W satisfies

lim
γ→∞

γn1+n2FY (t) = ab ·
∫ t

0

g(x) · q′(t− x)dx. (56)

Sinceγk follows a gamma distribution, it is easy to show that

lim
γ→∞

γmkFCk
(t) =

mmk

k

P̂mk

k Γ(mk + 1)
·
(

2t − 1
)mk . (57)

Using Theorem 1 witht = R recursively, we have an approximation of the outage probability as

fK ≈ f̂K = gK(R) ·
K
∏

k=1

mmk

k

P̂mk

k γmkΓ(mk + 1)
, (58)

= AIR
K ·

K
∏

k=1

1

P̂mk

k

, (59)
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where

gk(t) =

∫ t

0

gk−1(x)q
′
k(t− x)dx, (60)

with g0 = 1 andqk(t) = (2t − 1)
mk . Thus,AIR

K is given by

AIR
K = gK(R) ·

K
∏

k=1

mmk

k

γmkΓ(mk + 1)
, (61)

wheregk(R) can be calculated numericaly. We show the accuracy of the approximation in Fig. 6.
Sincegk(t) are independent of the transmitted power and/or SNR, the expression ofhk, required in

(34), is thus given by

hk =















gk(R)

gk−1(R)
· mmk

k

γmkΓ(mk + 1)
, 2 ≤ k ≤ K

(

m1(2
R − 1)

γ

)m1

· 1

Γ(m1 + 1)
, k = 1

. (62)
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Fig. 6. Exact outage probabilityfK compared with the SPA approximation̂fK (58) in the case of IR-HARQ for Nakagami-m when
K = 1, 2, 3, 4, R = 1 andm = 1.5.

APPENDIX B

In this appendix, we show how we solve the optimization problem (44) written as a GP problem [18]
, [19] , [20] in the standard primal form

min
x

{

g0(x) = AK ·
K
∏

k=1

x−m
k

}

s.t. g1(x) =
K
∑

k=1

Ak−1 · xk

k−1
∏

l=1

x−m
l ≤ 1, (63)

wherex = [x1, x2, . . . , xK ]. The dual problem corresponding to the primal problem (63) is defined as

max
δ

v(δ) = (λ(δ))
λ(δ)

(

AK

δ1

)δ1 K+1
∏

i=2

(

Ai−2

δi

)δi

, (64)

s.t.











δ1 = 1,

δi ≥ 0, ∀i ∈ {1, ..,K + 1}
−m · δ1 + δj −m ·

∑K+1
i=j+1 δi = 0, ∀j ∈ {2, ..,K + 1}

, (65)
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whereδ = [δ1, . . . , δK+1] and

λ(δ) =
K+1
∑

i=2

δi. (66)

This is a GP with a zero degree of difficulty [19], which implies that the unique solutionδ∗ of the dual
constraints (65) is also the solution of (64) . Because the dual constraints are linear,δ∗ can be determined
easily by solving (65) as

δ∗i =

{

1, if i = 1

m · (m+ 1)(K+1−i), if i ∈ {2, ..., K + 1} . (67)

Definingx∗ as the argument which maximizes (63), the optimal solution of (63) is given by [18, pp. 114-
116]

g1(x
∗) = v(δ∗) = (λ(δ∗))λ(δ

∗) ·AK ·
K+1
∏

i=2

(

Ai−2

δ∗i

)δ∗i

, (68)

if and only if

x∗
i =















δ∗2
λ(δ∗) ·A0

, if i = 1

δ∗i+1

λ(δ∗) ·Ai−1 ·
∏i−1

j=1

(

x∗
j

)−m , if i ∈ {2, .., K}
, (69)

where

λ(δ∗) = (m+ 1)K − 1. (70)

Basically, (69) is the closed-form expression of the optimal power policy.
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