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Abstract

This paper investigates the behavior of the Min-Sum decoderrunning on noisy devices. The aim is

to evaluate the robustness of the decoder in the presence of computation noise,e.g.due to faulty logic

in the processing units, which represents a new source of errors that may occur during the decoding

process. To this end, we first introduce probabilistic models for the arithmetic and logic units of the the

finite-precision Min-Sum decoder, and then carry out the density evolution analysis of the noisy Min-Sum

decoder. We show that in some particular cases, the noise introduced by the device can help the Min-Sum

decoder to escape from fixed points attractors, and may actually result in an increased correction capacity

with respect to the noiseless decoder. We also reveal the existence of a specific threshold phenomenon,

referred to as functional threshold. The behavior of the noisy decoder is demonstrated in the asymptotic

limit of the code-length – by using “noisy” density evolution equations – and it is also verified in the

finite-length case by Monte-Carlo simulation.

I. INTRODUCTION

In traditional models of communication or storage systems with error correction coding, it is assumed

that the operations of an error correction encoder and decoder are deterministic and that the randomness
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exists only in the transmission or storage channel. However, with the advent of nanoelectronics, the

reliability of the forthcoming circuits and computation devices is becoming questionable. It is then

becoming crucial to design and analyze error correcting decoders able to provide reliable error correction

even if they are made of unreliable components.

Except the pioneered works by Taylor and Kuznetsov on reliable memories [1]–[3], later generalized

in [4], [5] to the case of hard-decision decoders, this new paradigm of noisy decoders has merely not

been addressed until recently in the coding literature. However, over the last years, the study of error

correcting decoders, especially Low-Density Parity-Check (LDPC) decoders, running on noisy hardware

attracted more and more interest in the coding community. In[6] and [7] hardware redundancy is used

to develop fault-compensation techniques, able to protectthe decoder against the errors induced by the

noisy components of the circuit. In [8], a class of modified Turbo and LDPC decoders has been proposed,

able to deal with the noise induced by the failures of a low-power buffering memory that stores the

input soft bits of the decoder. Very recently, the characterization of the effect of noisy processing on

message-passing iterative LDPC decoders has been proposed. In [9], the concentration and convergence

properties were proved for the asymptotic performance of noisy message-passing decoders, and density

evolution equations were derived for the noisy Gallager-A and Belief-Propagation decoders. In [10]–[12],

the authors investigated the asymptotic behavior of the noisy Gallager-B decoder defined over binary and

non-binary alphabets. The Min-Sum decoding under unreliable message storage has been investigated

in [13], [14]. However, all these papers deal with very simple error models, which emulate the noisy

implementation of the decoder, by passing each of the exchanged messages through a noisy channel.

In this work we focus on the Min-Sum decoder, which is widely implemented in real communication

systems. In order to emulate the noisy implementation of thedecoder, probabilistic error models are

proposed for its arithmetic components (adders and comparators). The proposed probabilistic components

are used to build the noisy finite-precision decoders. We further analyze the asymptotic performance of

the noisy Min-Sum decoder, and provide useful regions and target-BER-thresholds [9] for a wide range

of parameters of the proposed error models. We also highlight a wide variety of more or less conventional

behaviors and reveal the existence of a specific threshold phenomenon, which is referred to asfunctional

threshold. Finally, the asymptotic results are also corroborated through finite length simulations.

The remainder of the paper is organized as follows. Section II gives a brief introduction to LDPC

codes and iterative decoding. Section III presents the error models for the arithmetic components. The

density evolution equations and asymptotic analysis of thenoisy finite-precision Min-Sum decoding are

presented in Section V and Section VI respectively. SectionVII provides the finite-length performance
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and Section VIII concludes the paper.

II. LDPC CODES AND THE M IN-SUM ALGORITHM

A. LDPC Codes

LDPC codes [15] are linear block codes defined by sparse parity-check matrices. They can be advan-

tageously represented by bipartite (Tanner) graphs [16] and decoded by message-passing (MP) iterative

algorithms. The Tanner graph of an LDPC code is a bipartite graphH, whose adjacency matrix is the

parity-check matrixH of the code. Accordingly,H contains two types of nodes:

• variable-nodes, corresponding to the columns ofH, or equivalently to the codeword bits, and

• check-nodes, corresponding to the rows ofH, or equivalently to the parity equations the codeword

bits are checked by.

We consider an LDPC code defined by a Tanner graphH, with N variable-nodes andM check-nodes.

Variable-nodes are denoted byn ∈ {1, 2, ..., N}, and check-nodes bym ∈ {1, 2, ...,M}. We denote by

H(n) andH(m) theset of neighbor nodesof the variable-noden and of the check-nodem, respectively.

The number of elements ofH(n) (or H(m)) is referred to as thenode-degree.

The Tanner graph representation allows reformulating theprobabilistic decodinginitially proposed by

Gallager [15] in terms of Belief-Propagation1 (BP): an MP algorithm proposed by J. Pearl in 1982 [17]

to perform Bayesian inference on trees, but also successfully used on general graphical models [18]. The

BP decoding is known to be optimal on cycle-free graphs (in the sense that it outputs the maximum

a posteriori estimates of the coded bits), but can also be successfully applied to decode linear codes

defined by graphs with cycles, which is actually the case of all practical codes. However, in practical

applications, the BP algorithm might be disadvantaged by its computational complexity and its sensitivity

to the channel noise density estimation (inaccurate estimation of the channel noisy density may cause

significant degradation of the BP performance).

B. Min-Sum Decoding

One way to deal with complexity and numerical instability issues is to simplify the computation

of messages exchanged within the BP decoding. The most complex step of the BP decoding is the

computation of check-to-variable messages, which makes use of computationally intensive hyperbolic

tangent functions. The Min-Sum (MS) algorithm is aimed at reducing the computational complexity of

1Also referred to as Sum-Product (SP)
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the BP, by using max-log approximations of the parity-checkto coded-bit messages [19]–[21]. The only

operations required by the MS decoding are additions, comparisons, and sign (±1) products, which solves

the complexity and numerical instability problems. The performance of the MS decoding is also known

to be independent of the channel noise density estimation, for most of the usual channel models.

For the sake of simplicity, we only consider transmissions overbinary-inputmemoryless noisy channels,

and assume that the channel input alphabet is{−1,+1}, with the usual convention that+1 corresponds

to the 0-bit, and−1 corresponds to the1-bit. We further consider a codewordx = (x1, . . . , xN ) ∈
{−1,+1}N and denote byy = (y1, . . . , yN ) the received word. The following notation will be used

throughout the paper, with respect to message passing decoders:

• γn is the log-likelihood ratio (LLR) value ofxn according to the receivedyn value; it is also referred

to as thea priori information of the decoder concerning the variable-noden;

• γ̃n is thea posteriori information(LLR value) of the decoder concerning the variable-noden;

• αm,n is the variable-to-check message sent from variable-noden to check-nodem;

• βm,n is the check-to-variable message sent from check-nodem to variable-noden.

The (infinite precision) MS decoding is described in Algorithm 1. It consists of an initialization step

(in which variable-to-check messages are initialized according to the a priori information of the decoder),

followed by an iteration loop, where each iteration comprises three main steps as follows:

• CN-processing (check-node processing step): computes the check-to-variable messagesβm,n;

• VN-processing (variable-node processing step): computes the variable-to-check messagesαm,n;

• AP-update (a posteriori information update step): computes the a posteriori informationγ̃n.

Moreover, each iteration also comprises ahard decisionstep, in which each transmitted bit is estimated

according to the sign of the a posteriori information, and asyndrome checkstep, in which the syndrome

of the estimated word is computed. The MS decoding stops whenwhether the syndrome is+1 (the

estimated word is a codeword) or a maximum number of iterations is reached.

The a priori information (LLR) of the decoder is defined byγn = log
Pr(xn = +1 | yn)
Pr(xn = −1 | yn)

, and for the

two following channel models (predominantly used in this work), it can be computed as follows:

• For the Binary Symmetric Channel (BSC),y ∈ {−1,+1}N is obtained by flipping each entry ofx

with some probabilityε, referred to as the channel’s crossover probability. Consequently:

γn = log

(
1− ε

ε

)
yn (1)

• For the Binary-Input Additive White Gaussian Noise (BI-AWGN) channel,y ∈ R
N is obtained by
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Algorithm 1 Min-Sum (MS) decoding

Input: y = (y1, . . . , yN ) ∈ YN (Y is the channel output alphabet) ⊲ received word

Output: x̂ = (x̂1, . . . , x̂N ) ∈ {−1,+1}N ⊲ estimated codeword

Initialization

for all n = 1, . . . , N do γn = log
Pr(xn = +1 | yn)
Pr(xn = −1 | yn)

;

for all n = 1, . . . , N andm ∈ H(n) do αm,n = γn;

Iteration Loop

for all m = 1, . . . ,M andn ∈ H(m) do ⊲ CN-processing

βm,n =


 ∏

n′∈H(m)\n

sgn(αm,n′)




(
min

n′∈H(m)\n
|αm,n′ |

)
;

for all n = 1, . . . , N andm ∈ H(n) do ⊲ VN-processing

αm,n = γn +
∑

m′∈H(n)\m

βm′,n;

for all n = 1, . . . , N do ⊲ AP-update

γ̃n = γn +
∑

m∈H(n)

βm,n;

for all {vn}n=1,...,N do x̂n = sgn(γ̃n); ⊲ hard decision

if x̂ is a codewordthen exit the iteration loop ⊲ syndrome check

End Iteration Loop

yn = xn + zn, wherezn is the white Gaussian noise with varianceσ2. It follows that:

γn =
2

σ2
yn (2)

Remark: It can be easily seen that if the a priori information vectorγ = (γ1, . . . , γN ) is multiplied

by a constant value, this value will factor out from all the processing steps in Algorithm 1 (throughout

the decoding iterations), and therefore it will not affect in any way the decoding process. It follows that

for both the BSC and BI-AWGN channel models, one can simply define the a priori information of the

decoder byγn = yn, ∀n = 1, . . . , N .

III. E RROR INJECTION AND PROBABILISTIC MODELS FORNOISY COMPUTING

A. Noisy Message-Passing decoders

The model for noisy MP decoders proposed in [9] incorporatestwo different sources of noise:com-

putation noisedue to noisy logic in the processing units, andmessage-passing noisedue to noisy wires

July 23, 2018 DRAFT
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(or noisy memories) used to exchange messages between neighbor nodes.

• The computation noise is modeled as a random variable, whichthe variable-node or the check-

node processing depends on. Put differently, an outgoing message from a (variable or check) node

depends not only on the incoming messages to that node (including the a priori information for the

variable-node processing), but also on the realization of arandom variable which is assumed to be

independent of the incoming messages.

• The message-passing noise is simply modeled as a noisy channel. Hence, transmitting a message

over a noisy wire is emulated by passing that message throughthe corresponding noisy channel.

However, in [9] it has been noted that“there is no essential loss of generality by combining computation

noise and message-passing noise into a single form of noise”(see also [22, Lemma 3.1]). Consequently,

the approach adopted has been to merge noisy computation into message-passing noise, and to emulate

noisy decoders by passing the exchanged messages through different noisy channel models. Thus, the

noisy Gallager-A decoder has been emulated by passing the exchanged messages over independent and

identical BSC wires, while the noisy BP decoder has been emulated by corrupting the exchanged messages

with bounded and symmetrically distributed additive noise(e.g. uniform noise or truncated Gaussian

noise).

The approach we follow in this work differs from the one in [9]in that the computation noise is

modeled at the lower level ofarithmetic and logic operationsthat compose the variable-node and check-

node processing units. This finer-grained noise modeling isaimed at determining the level of noise that

can be tolerated in each type of operation. As the main focus of this work is on computation noise,

we shall consider that messages are exchanged between neighbor nodes through error-free wires (or

memories). However, we note thatthis work can readily be extended to include different errormodels

for the message-passing noise(as defined in [9]). Alternatively, we may assume that the message-passing

noise is merged into the computation noise, in the sense thatadding noise in wires would modify the

probabilistic model of the noisy logic or arithmetic operations.

B. Error Injection Models

We only consider the case of finite-precision operations, meaning that the inputs (operands) and the

output of the operator are assumed to be bounded integer numbers. We simulate a noisy operator by

injecting errors into the output of the noiseless one. In thefollowing, V ⊂ Z denotes a finite set consisting

of all the possible outputs of the noiseless operator.

July 23, 2018 DRAFT
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Definition 1: An error injection modelon V, denoted by(E , pE , ı | V), is given by:

• A finite error setE ⊂ Z together with a probability mass functionpE : E → [0, 1], referred to as

the error distribution;

• A function ı : V × E → V, referred to as theerror injection function.

For a given set of inputs, the output of the noisy operator is the random variable defined byı(v, e),

wherev ∈ V is the corresponding output of the noiseless operator, ande is drawn randomly fromE
according to the probability distributionpE .

The error injection probability is defined by

p0 =
1

|V|
∑

v

∑

e

δ̄vı(v,e)pE(e), (3)

where δ̄v
ı(v,e) = 0 if v = ı(v, e), and δ̄v

ı(v,e) = 1 if v 6= ı(v, e). In other word,p0 = Pr(v 6= ı(v, e)),

assuming thatv is drawn uniformly fromV ande is drawn fromE according topE .

The above definition makes some implicit assumptions which are discussed below.

• The set of possible outputs of the noisy operator is the same as the set of possible outputs of the

noiseless operator (V). This is justified by the fact that, in most common cases,V is the set of all

(signed or unsigned) integers that can be represented by a given number of bits. Thus, error injection

will usually alter the bit values, but not the number of bits.

• The injected error does not depend on the output value of the noiseless operator and, consequently,

neither on the given set of inputs. In other words, the injected error is independent on the data

processed by the noiseless operator. The validity of this assumption does actually depend on the

size of the circuit implementing the operator. Indeed, thisassumption tends to hold fairly well for

large circuits [23], but becomes more tenuous as the circuitsize decreases.

Obviously, it would be possible to define more general error injection models, in which the injected

error would depend on the data (currently and/or previously) processed by the operator. Such an error

injection model would certainly be more realistic, but it would also make it very difficult to analytically

characterize the behavior of noisy MP decoders. As a side effect, the decoding error probability would be

dependent on the transmitted codeword, which would preventthe use of thedensity evolutiontechnique

for the analysis of the asymptotic decoding performance (since the density evolution technique relies on

the all-zero codeword assumption).

However, the fact that the error injection model is data independent does not guarantee that the decoding

error probability is independent of the transmitted codeword. In order for this to happen, the error injection

model must also satisfy asymmetry conditionthat can be stated as follows.

July 23, 2018 DRAFT
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Definition 2: An error injection model(E , pE , ı | V) is said to besymmetricif V is symmetric around

the origin (meaning thatv ∈ V ⇔ −v ∈ V, but 0 does not necessarily belong toV), and the following

equality holds
∑

{e| ı(v,e)=w}

pE(e) =
∑

{e| ı(−v,e)=−w}

pE(e), ∀v,w ∈ V (4)

The meaning of the symmetry condition is as follows. LetV be a random variable onV. Let φ(ı)
V and

φ
(ı)
−V denote the probability mass functions of the random variables obtained by injecting errors in the

output ofV and−V , respectively. Then the above symmetry condition is satisfied if and only if for any

V the following equality holds

φ
(ı)
V (w) = φ

(ı)
−V (−w), ∀w ∈ V (5)

A particular case in which the symmetry condition is fulfilled is whenı(−v, e) = −ı(v, e), for all v ∈ V
ande ∈ E . In this case, the error injection model is said to behighly symmetric.

Messages exchanged within message-passing decoders are generally in belief-format, meaning that the

sign of the message indicates the bit estimate and the magnitude of the message the confidence level. As

a consequence, errors occurring on the sign of the exchangedmessages are expected to be more harmful

than those occurring on their magnitude. This motivates thefollowing definition, which will be used in

the following section (see also the discussion in Section IV-C).

Definition 3: An error injection model(E , pE , ı | V) is said to besign-preservingif for any v ∈ V and

e ∈ E , v and ı(v, e) are either both non-negative (≥ 0) or both non-positive (≤ 0).

C. Bitwise-XOR Error Injection

We focus now on the two main symmetric error injection modelsthat will be used in this work. Both

models are based on a bitwiseXOR operation between the noiseless outputv and the errore. The two

models differ in the definition of the error setE , which is chosen such that the bitwiseXOR operation

may or may not affect the sign of the noiseless output. In the first case, the bitwiseXOR error injection

model is said to befull-depth, while in the second it is said to besign-preserving. These error injection

models are rigorously defined below.

In the following, we fixθ ≥ 2 and setV = {−Θ, . . . ,−1, 0,+1, . . . ,+Θ}, whereΘ = 2θ−1 − 1 ≥ 1.

We also fix asigned number binary representation, which can be any of thesign-magnitude, one’s

complement, or two’s complementrepresentation. There are exactly2θ signed numbers that can be
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represented byθ bits in any of the above formats, one of which does not belong to V (note thatV
contains only2Θ + 1 = 2θ − 1 elements for symmetry reasons!). We denote this element byζ. Hence:

• In sign-magnitude format,ζ = −0, with binary representation10 · · · 0;

• In one’s complement format,ζ = −0, with binary representation11 · · · 1;

• In two’s complement format,ζ = −(Θ + 1), with binary representation10 · · · 0.

For anyu, v ∈ V, we denote byu ∧ v the bitwiseXOR operation betweenu and v. From the above

discussion, it follows thatu ∧ v ∈ V ∪ {ζ}.

1) Full-depth error injection: For this error model, the error set isE = V. The error injection

probability is denoted byp0, and all the possible error valuese 6= 0 are assumed to occur with the same

probability (for symmetry reasons). It follows that the error distribution function is given bypE(0) = 1−p0

andpE(e) =
p0

2Θ , ∀e 6= 0. Finally, the error injection function is defined by:

ı(v, e) =





v ∧ e, if v ∧ e ∈ V
e, if v ∧ e = ζ

(6)

2) Sign-preserving error injection:For this error model, the error set isE = {0,+1, . . . ,+Θ}. The

error injection probability is denoted byp0, and all the possible error valuese 6= 0 are assumed to occur

with the same probability (for symmetry reasons). It follows that the error distribution function is given

by pE(0) = 1− p0 andpE(e) =
p0

Θ , ∀e 6= 0. Finally, the error injection function is defined by:

ı(v, e) =





v ∧ e, if v 6= 0 andv ∧ e ∈ V
±e, if v = 0

0, if v ∧ e = ζ

(7)

In the above definition,ı(0, e) is randomly set to either−e or +e, with equal probability (this is due

once again to symmetry reasons). Note also that the last two conditions, namelyv = 0 andv ∧ e = ζ,

cannot hold simultaneously (sincee 6= ζ).

Finally, we note that both of the above models are highly symmetric, if one of the sign-magnitude or

the one’s complement representation is used. In case that the two’s complement representation is used,

they are both symmetric, but not highly symmetric.

An example of sign-preserving bitwise-XOR error injection is given in Table I. The number of bits is

θ = 5 and two’s complement binary representation is used. The sign bit of the error is not displayed, as

it is equal to zero for anye ∈ E . The positions of1’s in the binary representation ofe correspond to the

positions of the erroneous bits in the noisy output.
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Table I

EXAMPLE OF SIGN-PRESERVING BITWISE-XOR ERROR INJECTION

integer 2’s complement binary representation

noiseless output:v −11 1 0 1 0 1

error: e 6 0 1 1 0

noisy output:ı(v, e) −13 1 0 0 1 1

bit position θ=5 4 3 2 1

Remark: It is also possible to define avariable depth error injectionmodel, in which errors are injected

in only theλ least significant bits, withλ ≤ θ. Hence,λ = θ corresponds to the above full-depth model,

while λ = θ− 1 corresponds to the sign-preserving model. However, forλ < θ − 1 such a model isnot

symmetric, if the the two’s complement representation is used.

D. Output-Switching Error Injection

A particular case is represented by error injection on binary output. Assuming thatV = {0, 1}, the

bit-flipping error injection model is defined as follows. The error set isE = {0, 1}, with error distribution

function given bypE(0) = 1 − p0 and pE(1) = p0, wherep0 is the error injection probability, and the

error injection function is given byı(v, e) = v ∧ e. Put differently, the error injection model flips the

value of a bit inV with probability p0.

Clearly, the above error injection model can be applied on any setV with two elements, by switching

one value to another with probabilityp0. In this case, we shall refer to this error injection model as

output-switching, rather than bit-flipping.

Moreover, if one takesV = {−1,+1} (with the usual0,1 to ±1 conversion), it can be easily verified

that this error injection model is highly symmetric.

E. Probabilistic models for noisy adders, comparators and XOR-gates

In this section we describe the probabilistic models for noisy adders, comparators and xor-gates, built

upon the above error injection models. These probabilisticmodels will be used in the next section, in

order to emulate the noisy implementation of the quantized (finite-precision) MS decoder.

1) Noisy adder model:We consider aθ-bit adder, withθ ≥ 2. The inputs and the output of the adder

are assumed to be inV = {−Θ, . . . ,−1, 0,+1, . . . ,+Θ}, whereΘ = 2θ−1 − 1.

July 23, 2018 DRAFT
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We denote bysV : Z → V, the θ-bit saturation map, defined by:

sV(v) =





−Θ, if v < −Θ

v, if v ∈ V
+Θ, if v > +Θ

(8)

For inputs(x, y) ∈ V, the output of the noiseless adder is defined assV(x + y). Hence, for a given

error injection model(E , pE , ı | V), the output of the noisy adder is given by:

apr(x, y) = ı (sV(x+ y), e) , (9)

wheree is drawn randomly fromE according to the probability distributionpE . The error probability

of the noisy adder, assuming uniformly distributed inputs, is equal to the error injection probability

(parameterp0 defined in (3)), and will be denoted in the sequel bypa.

2) Noisy comparator model:Let lt denote the noiselessless thanoperator, defined bylt(x, y) = 1 if

x < y, andlt(x, y) = 0 otherwise. Thenoisy less thanoperator, denoted byltpr, is defined by injecting

errors on the output of the noiseless one, according to the bit-flipping model defined in Section III-D.

In other words, the output of the noiselesslt operator is flipped with some probability value, which will

be denoted in the sequel bypc.

Finally, thenoisy minimumoperator is defined by:

mpr(x, y) =





x, if ltpr(x, y) = 1

y, if ltpr(x, y) = 0
(10)

3) Noisy XOR model:The noisyXOR operator, denoted byxpr is defined by flipping the output of

the noiseless operator with some probability value, which will be denoted in the sequel bypx (according

to the bit-flipping error injection model in Section III-D).It follows that:

xpr(x, y) =





x ∧ y, with probability 1− px

x ∧ y, with probability px

(11)

Assumption: We further assume that the inputs and the output of theXOR operator may take values

in either{0, 1} or {−1,+1} (using the usual0,1 to ±1 conversion). This assumption will be implicitly

made throughout the paper.

Remark: As a general rule, we shall refer to a noisy operator according to its underlying error injection

model. For instance, a sign-preserving (resp. full-depth or sign-preserving bitwise-XORed) noisy adder,

is a noisy adder whose underlying error injection model is sign-preserving (resp. one of the bitwise-

XOR error injection models defined in Section III-C). We shall also say that a noisy operator is(highly)

symmetricif its underlying error injection model is so.
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F. Nested Operators

As it can be observed from Algorithm 1, several arithmetic/logic operations must be nested2 in

order to compute the exchanged messages. Since all these operations (additions, comparisons,XOR) are

commutative, the way they are nested does not have any impacton the infinite-precision MS decoding.

However, this is no longer true for finite-precision decoding, especially in case of noisy operations.

Therefore, one needs an assumption about how operators extend from two to more inputs.

Our assumption is the following. Forn ≥ 2 inputs, we randomly pick any two inputs and apply the

operator on this pair. Then we replace the pair by the obtained output, and repeat the above procedure

until there is only one output (and no more inputs) left.

The formal definition goes as follows. LetΩ ⊂ Z andω : Ω×Ω → Ω be a noiseless or noisy operator

with two operands. Let{xi}i=1:n ⊂ Ω be an unordered set ofn operands. We define:

ω ({xi}i=1:n) = ω(· · · (ω(xπ(1), xπ(2)), · · · ), xπ(n)),

whereπ is a random permutation of1, . . . , n.

IV. N OISY M IN-SUM DECODING

A. Finite-Precision Min-Sum Decoder

We consider a finite-precision MS decoder, in which the a priori information (γn) and the exchanged

messages (αm,n andβm,n) are quantized onq bits. The a posteriori information (γ̃n) is quantized oñq

bits, with q̃ > q (usually q̃ = q + 1, or q̃ = q + 2). We further denote:

• M = {−Q, . . . ,−1, 0,+1, . . . , Q}, whereQ = 2q−1−1, the alphabet of both the a priori information

and the exchanged messages;

• M̃ = {−Q̃, . . . ,−1, 0,+1, . . . , Q̃}, whereQ̃ = 2q̃−1−1, the alphabet of the a posteriori information;

• q : Y → M, a quantization map, whereY denotes the channel output alphabet;

• sM : Z → M, the q-bit saturation map (defined in a similar manner as in (8));

• s
M̃

: Z → M̃, the q̃-bit saturation map

Remark: The quantization mapq determines theq-bit quantization of the decoder soft input. Sinceq is

defined on the channel input (i.e. yn values), it must also encompass the computation of the corresponding

LLR values, whenever is necessary (see also the Remark at theend of Section II-B).

2For instance,(dn − 1) additions – wheredn denotes the degree of the variable-noden – are required in order to compute

eachαm,n message. Similarly, eachβm,n message requires(dm − 2) XOR operations and(dm − 2) comparisons.
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Saturation mapssM and s
M̃

define the finite-precision saturation of the exchanged messages and of

the a posteriori information, respectively.

B. Noisy Min-Sum Decoder

The noisy (finite-precision) MS decoding is presented in Algorithm 2. We assume that̃q-bit adders

are used to compute bothαm,n messages in theVN-processing step, and̃γn values in theAP-update

processing step. This is usually the case in practical implementations3, and allows us to use the same

type of adder in both processing steps. This assumption explains as well theq-bit saturation ofαm,n

messages in theVN-processing step. Note also that the saturation ofγ̃n values is actually done within

the adder (see Equation (9)).

Finally, we note that thehard decisionand thesyndrome checksteps in Algorithm 2 are assumed to be

noiseless. We note however that the syndrome check step is optional, and if missing, the decoder stops

when the maximum number of iterations is reached.

C. Sign-Preserving Properties

Let U denote any of the VN-processing or CN-processing units of the noiseless MS decoder. We

denote byUpr the corresponding unit of the noisy MS decoder. We say thatUpr is sign-preservingif

for any incoming messages and any noise realization, the outgoing message is of the same sign as the

message obtained when the same incoming messages are supplied toU.

Clearly, CNpr is sign-preserving if and only if theXOR-operator is noiseless (px = 0). In case that the

noisy XOR-operator severely degrades the decoder performance, it ispossible to increase its reliability

by using classical fault-tolerant techniques (as for instance modular redundancy, or multi-voltage design

by increasing the supply voltage of the correspondingXOR-gate). The price to pay, when compared to

the size or the energy consumption of the whole circuit, would be reasonable.

Concerning the VN-processing, it is worth noting that the VNpr is not sign-preserving, even if the

noisy adder is. This is due to the fact that multiple adders must be nested in order to complete the VN-

processing. However, a sign-preserving adder might have several benefits. First, the error probability of

the sign of variable-node messages would be lowered, which would certainly help the decoder. Second, if

the noisy adder is sign-preserving and all the variable-node incoming messages have the same sign, then

3In practical implementation, thẽγn is computed first, and thenαm,n is obtained from̃γn by subtracting the incomingβm,n

message
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Algorithm 2 Noisy Min-Sum (Noisy-MS) decoding

Input: y = (y1, . . . , yN ) ∈ YN (Y is the channel output alphabet) ⊲ received word

Output: x̂ = (x̂1, . . . , x̂N ) ∈ {−1,+1}N ⊲ estimated codeword

Initialization

for all n = 1, . . . , N do γn = q(yn);

for all n = 1, . . . , N andm ∈ H(n) do αm,n = γn;

Iteration Loop

for all m = 1, . . . ,M andn ∈ H(m) do ⊲ CN-processing

βm,n = xpr
(
{sgn(αm,n′)}n′∈H(m)\n

)
mpr

(
{|αm,n′ |}n′∈H(m)\n

)
;

for all n = 1, . . . , N andm ∈ H(n) do ⊲ VN-processing

αm,n = apr
(
{γn} ∪ {βm′,n}m′∈H(n)\m

)
;

αm,n = sM (αm,n) ;

for all n = 1, . . . , N do ⊲ AP-update

γ̃n = apr
(
{γn} ∪ {βm,n}m∈H(n)

)
;

for all {vn}n=1,...,N do x̂n = sgn(γ̃n); ⊲ hard decision

if x̂ is a codewordthen exit the iteration loop ⊲ syndrome check

End Iteration Loop

the VNpr does preserve the sign of the outgoing message. Put differently, in case that all the incoming

messages agree on the same hard decision, the noisy VN-processing may change the confidence level, but

cannot change the decision. This may be particularly useful, especially during the last decoding iterations.

Finally, the motivation behind the sign-preserving noisy adder model is to investigate its possible

benefits on the decoder performance. If the benefits are worthit (e.g.one can ensure a target performance

of the decoder), the sign-bit of the adder could be protectedby using classical fault-tolerant solutions.

V. DENSITY EVOLUTION

A. Concentration and Convergence Properties

First, we note that our definition ofsymmetryis slightly more general than the one used in [9]. Indeed,

even if all the error injection models used within the noisy MS decoder aresymmetric, the noisy MS

decoder does not necessarily verify thesymmetry property from [9]. However, this property is verified
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in case ofhighly symmetricfault injection4. Nevertheless, the concentration and convergence properties

proved in [9] forsymmetric noisy message-passing decoders, can easily be generalizedto our definition

of symmetry.

We summarize below the most important results; the proof relies essentially on the same arguments

as in [9]. We consider anensembleof LDPC codes, with lengthN and fixed degree distribution

polynomials [24]. We choose a random codeC from this ensemble and assume that a random codeword

x ∈ {−1,+1}N is sent over a binary-input memoryless symmetric channel. We fix some number of

decoding iterationsℓ > 0, and denote byE(ℓ)
C

(x) the expected fraction of incorrectmessages5 at iteration

ℓ.

Theorem 1:Assume that all the error injection models used within the MSdecoder are symmetric.

Then, the following properties hold:

1) [Conditional Independence of Error] For any decoding iterationℓ > 0, the expected fraction of

incorrect messagesE(ℓ)
C

(x) does not depend onx. Therefore, we may defineE(ℓ)
C

:= E
(ℓ)
C

(x).

2) [Cycle-Free Case] If the graph ofC contains no cycles of length2ℓ or less, the expected fraction

of incorrect messagesE(ℓ)
C

does not depend on the codeC or the code-lengthN , but only on the

degree distribution polynomials; in this case, it will be further denoted byE(ℓ)
∞ (x).

3) [Concentration Around the Cycle-Free Case] For anyδ > 0, the probability thatE(ℓ)
C

lies outside

the interval
(
E

(ℓ)
∞ (x)− δ,E

(ℓ)
∞ (x) + δ

)
converges to zero exponentially fast inN .

B. Density Evolution Equations

In this section we derive density evolution equations for the noisy finite-precision MS decoding for

a regular(dv , dc) LDPC code. The study can be easily generalized to irregular LDPC codes, simply by

averaging according to the degree distribution polynomials.

The objective of the density evolution technique is to recursively compute the probability mass functions

of exchanged messages, through the iterative decoding process. This is done under the independence

assumption of exchanged messages, holding in the asymptotic limit of the code length, in which case the

decoding performance converges to the cycle-free case. Dueto the symmetry of the decoder, the analysis

4According to the probabilistic models introduced in Section III-E, the noisy comparator and the noisyXOR-operator are

highly symmetric, but the noisy adder does not necessarily be so!

5Here,“messages”may have any one of the three following meanings: “variable-node messages”, or “check-node messages”,

or “a posteriori information values”.
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can be further simplified by assuming that the all-zero codeword is transmitted through the channel. We

note that our analysis applies to any memoryless symmetric channel.

Let ℓ > 0 denote the decoding iteration. Superscript(ℓ) will be used to indicate the messages and the a

posteriori information computed at iterationℓ. To indicate the value of a message on a randomly selected

edge, we drop the variable and check node indexes from the notation (and we proceed in a similar manner

for the a priori and a posteriori information). The corresponding probability mass functions are denoted

as follows.
C(z) = Pr(γ = z), ∀z ∈ M

C̃(ℓ)(z̃) = Pr(γ̃(ℓ) = z̃), ∀z̃ ∈ M̃
A(ℓ)(z) = Pr

(
α(ℓ) = z

)
, ∀z ∈ M

B(ℓ)(z) = Pr
(
β(ℓ) = z

)
, ∀z ∈ M

1) Expression of the input probability mass functionC: The probability mass functionC depends

only on the channel and the quantization mapq : Y → M, whereY denotes the channel output alphabet

(Section IV-A). We also note that forℓ = 0, we haveA(0) = C.

We give below the expression ofC for the BSC and the BI-AWGN channel models (see Section II-B).

For the BSC, the channel output alphabet isY = {−1,+1}, while for the BI-AWGN channel,Y = R.

Let µ be a positive number, such thatµ ≤ Q. The quantization mapqµ is defined as follows:

qµ : Y → M, qµ(y) = sM([µ·y]), (12)

where [µ·y] denotes the nearest integer toµ·y, and sM is the saturation map (Section IV-A). For the

BSC, we will further assume thatµ is an integer. It follows thatqµ(y) = µ·y, ∀y ∈ Y = {−1,+1}.

Considering the all-zero (+1) codeword assumption, the probability mass functionC can be computed

as follows.

• For the BSC with crossover probabilityε:

C(z) =





1− ε, if z = µ

ε, if z = −µ

0, otherwise

(13)

• For the BI-AWGN channel with noise varianceσ2:

C(z) =





1− q
(
−Q+0.5−µ

µσ

)
, if z = −Q

q
(
z−0.5−µ

µσ

)
− q

(
z+0.5−µ

µσ

)
, if −Q < z < +Q

q
(
Q−0.5−µ

µσ

)
, if z = +Q

(14)
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whereq(x) =
1√
2π

∫ +∞

x

exp

(
−u2

2

)
du is the tail probability of the standard normal distribution

(also known as theQ-function).

2) Expression ofB(ℓ) as a function ofA(ℓ−1):

In the sequel, we make the convention thatPr(sgn(0) = 1) = Pr(sgn(0) = −1) = 1/2. The following

notation will be used:

• A[x,y] =

y∑

z=x

A(z), for x ≤ y ∈ M

• A[0+,y] =
1

2
A(0) +

y∑

z=1

A(z), for y ∈ M, y > 0

• A[x,0−] =
1

2
A(0) +

−1∑

z=x

A(z), for x ∈ M, x < 0

For the sake of simplicity, we drop the iteration index, thusB := B(ℓ) andA := A(ℓ−1). We proceed

by recursion oni = 2, . . . , dc − 1, wheredc denotes the check-node degree.

Let β1 := α1, and for i = 2, . . . , dc − 1 define:

βi = xpr(sgn(βi−1), sgn(αi))mpr(|βi−1|, |αi|)

Let alsoBi−1 andBi denote the probability mass functions ofβi−1 andβi, respectively (hence,B1 = A).

First of all, for z = 0, we have:

Bi(0) = Pr(βi = 0) = A(0)Bi−1(0) + [Bi−1(0)(1 −A(0)) +A(0)(1 −Bi−1(0))] (1− pc).

For z 6= 0, we proceed in several steps as follows:
For z > 0:

F ′
i (z)

def
= Pr(βi ≥ z | px = 0)

=
[
Bi−1[0+,z−1]A[z,Q−1] +A[0+,z−1]Bi−1[z,Q−1]

]
pc

+
[
Bi−1[1−z,0−]A[−Q,−z] +A[1−z,0−]Bi−1[−Q,−z]

]
pc

+ Bi−1[z,Q−1]A[z,Q−1] +Bi−1[−Q,−z]A[−Q,−z]

Fi(z)
def
= Pr(βi ≥ z)

= (1− px).F
′
i (z) + px.G

′
i(−z)

Bi(z) = Pr(βi = z) = Fi(z)− Fi(z + 1)

For z < 0:

G′
i(z)

def
= Pr(βi ≤ z | px = 0)

=
[
Bi−1[0+,−z−1]A[−Q,z] +A[0+,−z−1]Bi−1[−Q,z]

]
pc

+
[
Bi−1[−z,Q−1]A[z+1,0−] +A[−z,Q−1]Bi−1[z+1,0−]

]
pc

+ Bi−1[−z,Q−1]A[−Q,z] +A[−z,Q−1]Bi−1[−Q,z]

Gi(z)
def
= Pr(βi ≥ z)

= (1− px).G
′
i(z) + px.F

′
i (−z)

Bi(z) = Pr(βi = z) = Gi(z)−Gi(z + 1)

Finally, we have thatB = Bdc−1.

3) Expression ofA(ℓ) as a function ofB(ℓ) andC: We derive at the same time theexpression of̃C(ℓ)

as a function ofB(ℓ) andC.

For simplicity, we drop the iteration index, soA := A(ℓ), B := B(ℓ), and C̃ := C̃(ℓ). We denote

by
(
E , pE , ı | M̃

)
the error injection model used to define the noisy adder. We decompose each noisy
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addition into three steps (noiseless infinite-precision addition, saturation, and error injection), and proceed

by recursion oni = 0, 1, . . . , dv, wheredv denotes the variable-node degree:

• For i = 0:

Ω0
def
= γ ∈ M ⊆ M̃, C̃0(z̃)

def
= Pr(Ω0 = z̃) =





C(z̃), if z̃ ∈ M
0, if z̃ ∈ M̃ \M

• For i = 1, . . . , dv :

ωi
def
= Ωi−1 + βmi,n ∈ Z, ci(w)

def
= Pr(ωi = w) =

∑
u C̃i−1(u)B(w − u),∀w ∈ Z

ω̃i
def
= s

M̃
(ωi) ∈ M̃, c̃i(w̃)

def
= Pr(ω̃i = w̃) =





ci(w̃), if w̃ ∈ M̃ \ {±Q̃}
∑

w≤−Q̃
ci(w), if w̃ = −Q̃

∑
w≥+Q̃

ci(w), if w̃ = +Q̃

Ωi
def
= ı(ω̃i, e) ∈ M̃, C̃i(z̃)

def
= Pr(Ωi = z̃) =

∑
ω̃

∑
e δ

z̃
ı(ω̃,e)pE(e)c̃i(ω̃),∀z̃ ∈ M̃

whereδyx = 1 if x = y, andδyx = 0 if x 6= y.

Note that in the definition ofΩi above,e denotes an error drown from the error setE according to the

error probability distributionpE .

Finally, we have:

• A = sM

(
C̃dv−1

)

• C̃ = C̃dv

In the first equation above, applying the saturation operator sM on the probability mass functioñCdv−1

means that all the probability weights corresponding to valuesw̃ outsideM must be accumulated to the

probability of the corresponding boundary value ofM (that is, either−Q or +Q, according to whether

w̃ < −Q or w̃ < +Q).

Remark: If the noisy adder is defined by one of the bitwise-XOR error injection models (Section III-C),

then the third equation from the above recursion (expression of C̃i as a function of̃ci) may be rewritten

as follows:

• Sign-preserving bitwise-XORed noisy adder

C̃i(z̃) =





(1− pa)c̃i(z̃) +
1

Q̃
pa

(
c̃i [≤ 0−] − c̃i(z)

)
, if z̃ < 0

(1− pa)c̃i(0) +
1

Q̃
pa (1− c̃i(0)) , if z̃ = 0

(1− pa)c̃i(z̃) +
1

Q̃
pa

(
c̃i [≥ 0+] − c̃i(z)

)
, if z̃ > 0

(15)
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wherec̃i [≤ 0−] =
∑

ω̃<0 c̃i(ω̃) +
1
2 c̃i(0), and c̃i [≥ 0+] =

1
2 c̃i(0) +

∑
ω̃>0 c̃i(ω̃).

• Full-depth bitwise-XORed noisy adder

C̃i(z̃) = (1− pa)c̃i(z̃) +
1

2Q̃
pa (1− c̃i(z̃)) (16)

Finally, we note that the density evolution equations for the noiseless finite-precision MS decoder can

be obtained by settingpa = pc = px = 0.

C. Error Probability and Useful and Target-BER regions

1) Decoding Error Probability:The error probability at decoding iterationℓ, is defined by:

P (ℓ)
e =

−1∑

z̃=−Q̃

C̃(ℓ)(z̃) +
C̃(ℓ)(0)

2
(17)

Proposition 1: The error probability at decoding iterationℓ is lower-bounded as follows:

(a) For the sign-preserving bitwise-XORed noisy adder:P (ℓ)
e ≥ 1

2Q̃
pa.

(b) For the full-depth bitwise-XORed noisy adder:P (ℓ)
e ≥ 1

2
pa +

1

4Q̃
pa.

Proof. (a) Using C̃ = C̃dv
and equations (17) and (15), it follows thatP (ℓ)

e = (1 − pa)c̃dv [≤ 0−] +

1
2Q̃

pa

(
1− 2c̃dv [≤ 0−]

)
+ pa

(
c̃dv [≤ 0−] − 1

2 c̃dv
(0)

)
≥ (1 − pa)c̃dv [≤ 0−] +

1
2Q̃

pa

(
1− 2c̃dv [≤ 0−]

)
≥ 1

2Q̃
pa,

since the function(1− pa)x+ 1
2Q̃

pa (1− 2x) is an increasing function ofx ∈ [0, 1].

(b) Equations (17) and (16) imply thatP (ℓ)
e = 1

2pa+(1−pa)c̃dv [≤ 0−]+
1
4Q̃

pa
(
1− 2c̃dv [≤ 0−]

)
≥ 1

2pa+
1
4Q̃

pa

�

Note that the above lower bounds are actually inferred from the error injection in thelast (thedv-th)

additionperformed when computing the a posteriori information value. Therefore, these lower bounds are

not expected to be tight. However, if the channel error probability is small enough, the sign-preserving

lower bound proves to be tight in the asymptotic limit ofℓ (this will be discussed in more details in

Section VI). Note also that by protecting the sign of the noisy adder, the bound is lowered by a factor

of roughly Q̃, which represents an exponential improvement with respectto the number of bits of the

adder.

In the asymptotic limit of the code-length,P (ℓ)
e gives the probability of the hard bit estimates being

in error at decoding iterationℓ. For the (noiseless, infinite-precision) BP decoder, the error probability

is usually a decreasing function ofℓ. This is no longer true for the noiseless, infinite-precision MS

decoder, for which the error probability may increase withℓ. However, both decoders exhibit athreshold
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phenomenon, separating the region where error probability goes to zero(as the number of decoding

iterations goes to infinity), from that where it is bounded above zero [24].

Things get more complicated for the noisy (finite-precision) MS decoder. First, the error probability

have a more unpredictable behavior. It does not always converge and it may become periodic6 when

the number of iterations goes to infinity. Second, the error probability is always bounded above zero

(Proposition 1), since there is a non-zero probability of fault injection at any decoding iteration. Hence,

a decoding threshold, similar to the noiseless case, cannotlonger be defined.

Following [9], we define below the notions of useful decoder and target error rate threshold. We

consider a channel model depending on a channel parameterχ, such that the channel is degraded by

increasingχ (for example, the crossover probability for the BSC, or the noise variance for the BI-AWGN

channel). We will use subscriptχ to indicate a quantity that depends onχ. Hence, in order to account

thatP (ℓ)
e depends also on the value of the channel parameter, it will bedenoted in the following byP (ℓ)

e,χ.

2) Useful Region:The first step is to evaluate the channel and hardware parameters yielding a final

probability of error (in the asymptotic limit of the number of iterations) less than theinput error

probability. The latter probability is given byP (0)
e,χ =

∑−1
z=−Q C(z) + 1

2C(0), whereC is the probability

mass function of the quantized a priori information of the decoder (see Section V-B1).

Following [9], the decoder is said to beusefulif
(
P

(ℓ)
e,χ

)
ℓ>0

is convergent, and:

P (∞)
e,χ

def
= lim

ℓ→∞
P (ℓ)
e,χ < P (0)

e,χ (18)

The ensemble of the parameters that satisfy this condition constitutes theuseful regionof the decoder.

3) Target Error Rate Threshold:For noiseless-decoders, the decoding threshold is defined as the

supremum channel noise, such that the error probability converges to zero as the number of decoding

iterations goes to infinity. However, for noisy decoders this error probability does not converge to zero,

and an alternative definition of the decoding threshold has been introduced in [9]. Accordingly, for a

target bit-error rateη, the η-threshold is defined7 by:

χ∗(η) = sup
{
χ | P (∞)

e,χ′ exists andP (∞)
e,χ′ < η, ∀χ′ ∈ [0, χ]

}
(19)

6In fact, for both BSC and BI-AWGN channels, the only cases we observed, in which the sequence
(
P

(ℓ)
e

)

ℓ>0
does not

converge, are those cases in which this sequence becomes periodic for ℓ large enough.

7In [9], the η-threshold is defined byχ∗(η) = sup
{
χ | P

(∞)
e,χ exists andP (∞)

e,χ < η
}

, and consequently, there might exist a

channel parameter valueχ′ < χ∗(η), for whichP
(∞)
e,χ′ does not exist. In order to avoid this happening, our definition is slightly

different from the one in [9].
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D. Functional Threshold

Although theη-threshold definition allows determining the maximum channel noise for which the bit

error probability can be reduced below a target value, thereis not significant change in the behavior of

the decoder when the channel noise parameterλ increases beyond the value ofχ∗(η). In this section, a

new threshold definition is introduced in order to identify the channel and hardware parameters yielding

to a sharp change in the decoder behavior, similar to the change that occurs around the threshold of the

noiseless decoder. This threshold will be referred to as thefunctional threshold. The aim is to detect a

sharp increase (e.g. discontinuity) in the error probability of the noisy decoder, whenλ goes beyond this

functional threshold value. The threshold definition we propose make use of the Lipschitz constant of the

function χ 7→ P
(∞)
e (χ) in order to detect a sharp change ofP

(∞)
e (χ) with respect toχ. The definition

of the Lipschitz constant is first restated for the sake of clarity.

Definition 4: Let f : I → R be a function defined on an intervalI ⊆ R. The Lipschitz constantof f

in I is defined as

L(f, I) = sup
x 6=y∈I

|f(x)− f(y)|
|x− y| ∈ R+ ∪ {+∞} (20)

For a ∈ I and δ > 0, let Ia(δ) = I ∩ (a − δ, a + δ). The (local) Lipschitz constantof f in a ∈ I is

defined by:

L(f, a) = inf
δ>0

L(f, Ia(δ)) ∈ R+ ∪ {+∞} (21)

Note that ifa is a discontinuity point off , thenL(f, a) = +∞. On the opposite, iff is differentiable

in a, then the Lipschitz constant ina corresponds to the absolute value of the derivative. Furthermore, if

L(f, I) < +∞, thenf is uniformly continuous onI and almost everywhere differentiable. In this case,

f is said to beLipschitz continuouson I.

The functional threshold is then defined as follows.

Definition 5: For given hardware parameters and a channel parameterχ, the decoder is said to be

functional if

(a) The functionx 7→ P
(∞)
e (x) is defined on[0, χ]

(b) P
(∞)
e is Lipschitz continuous on[0, χ]

(c) L
(
P

(∞)
e , x

)
is an increasing function ofx ∈ [0, χ]

Then, the functional threshold̄χ is defined as:

χ̄ = sup{χ | conditions(a), (b) and (c) are satisfied} (22)
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The use of the Lipschitz constant allows a rigorous definition of the functional threshold, while avoiding

the use of the derivative (which would requireP (∞)
e (λ) to be a piecewise differentiable function ofλ). As

it will be further illustrated in Section VI, the functionalthreshold corresponds to a transition between two

modes. The first mode corresponds to the channel parameters leading to a low level of error probability,

i.e., for which the decoder can correct most of the errors from thechannel. In the second mode, the

channel parameters lead to a much higher error probability level. If L
(
P

(∞)
e , χ̄

)
= +∞, then χ̄ is a

discontinuity point ofP (∞)
e and the transition between the two levels is sharp. IfL

(
P

(∞)
e , χ̄

)
< +∞,

then χ̄ is an inflection point ofP (∞)
e and the transition is smooth. With the Lipschitz constant, one can

characterize the transition in both cases. However, the second case corresponds to a degenerated one, in

which the hardware noise is too high and leads to a non-standard asymptotic behavior of the decoder.

That is why a set of admissible hardware noise parameters is defined as follows.

Definition 6: The set ofadmissible hardware parametersis the set of hardware noise parameters

(pa, pc, px) for which L
(
P

(∞)
e , χ̄

)
= +∞.

In the following, as each threshold definition helps at illustrating different effects, one or the other

definition will be used, depending on the context.

VI. A SYMPTOTIC ANALYSIS OF THE NOISYM IN-SUM DECODER

In this section, the density evolution equations derived previously are used to analyze the asymptotic

performance (i.e. in the asymptotic limit of both the code length and number of iterations) of the noisy

MS decoder.

Unless specified otherwise, the following parameters are used throughout this section:

Code parameters:

• We consider the ensemble of regular LDPC codes with variable-node degreedv = 3 and check-node

degreedc = 6

Quantization parameters:

• The a priori information and exchanged messages are quantized onq = 4 bits; hence,Q = 7 and

M = {−7, . . . ,+7}.

• The a posteriori information is quantized onq̃ = 5 bits; hence,Q̃ = 15 andM̃ = {−15, . . . ,+15}.

We analyze the decoding performance depending on:

• The quantization mapqµ : Y → M, defined in Equation (12). The factorµ will be referred to as

the channel-output scale factor, or simply thechannel scale factor.
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• The parameters of the noisy adder, comparator, andXOR-operator, defined respectively in Equations

(9), (10), and (11).

A. Numerical results for the BSC

For the BSC, the channel output alphabet isY = {−1,+1} and the quantization map is defined by

qµ(−1) = −µ andqµ(+1) = +µ, with µ ∈ {1, . . . , Q}.

The infinite-precision MS decoder (Algorithm 1), is known tobe independent of the scale factorµ.

This is becauseµ factors out from all the processing steps in Algorithm 1, andtherefore does not

affect in any way the decoding process. This is no longer truefor the finite precision decoder (due to

saturation effects), and we will show in this section that, even in the noiseless case, the scale factorµ

can significantly impact the performance of the finite precision MS decoder.

We start by analyzing the performance of the MS decoder with quantization mapq1, and then we will

analyze its performance with an optimized quantization mapqµ.

1) Min-Sum decoder with quantization mapq1: The caseµ = 1 leads to an “unconventional” behavior,

as in some particular cases the noise introduced by the device can help the MS decoder to escape from

fixed points attractors, and may actually result in an increased correction capacity with respect to the

noiseless decoder. This behavior will be discussed in more details in this section.

We start with the noiseless decoder case. Figure 1 shows the asymptotic error probabilityP (∞)
e as

a function of p0. It can be seen thatP (∞)
e decreases slightly withp0, until p0 reaches a threshold

valuepth = 0.039, whereP (∞)
e drops to zero. This is theclassicalthreshold phenomenon mentioned in

Section V-C: forp0 > pth, the decoding error probability is bounded far above zero (P
(∞)
e > 0.31), while

for p0 < pth, one hasP (∞)
e = 0.

Now, we consider ap0 value slightly greater than the threshold of the noiseless decoder, and investigate

the effect of the noisy adder on the decoder performance. Letus fix p0 = 0.06. Figure 2(a) shows the

decoding error probability at iterationℓ, for different parameterspa ∈ {10−30, 10−15, 10−5} of the noisy

adder. For eachpa value, there are two superimposed curves, corresponding tothe full-depth (“fd”, solid

curve) and sign-preserving (“sp”, dashed curve) error models of the noisy adder.

The error probability of the noiseless decoder is also plotted (solid black curve): it can be seen that it

increases rapidly from the initial valueP (0)
e = p0 and closely approaches the limit valueP (∞)

e = 0.323

after a few number of iterations. When the adder is noisy, theerror probability increases during the first

decoding iterations, and behaves similarly as in the noiseless case. It may approach the limit value from

the noiseless case, but starts decreasing after some numberof decoding iterations. However, it remains
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Figure 1. Asymptotic error probabilityP (∞)
e of the noiseless MS decoder as a function ofp0
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Figure 2. Effect of the noisy adder on the asymptotic performance of the MS decoder (p0 = 0.06)

bounded above zero, according to the lower bounds from Proposition 1. This can be seen in Figure 2(b),

whereP (ℓ)
e plotted in logarithmic scale. The asymptotic valuesP

(∞)
e and the corresponding lower-bounds

values from Proposition 1 are shown in Table II. It can be seenthat these bounds are tight, especially in

the sign-preserving case.

The above behavior of the MS decoder is explained by the fact that the noise present in the adder

helps the MS decoder to escape from fixed points attractors. Figure 3 illustrates the evolution of the

probability mass functioñC(ℓ) for the noiseless decoder. At iterationℓ = 0, C̃(0) is supported in±1,

with C̃(0)(−1) = p0 andC̃(0)(+1) = 1−p0. It evolves during the iterative decoding, and reaches a fixed

point of the density evolution forℓ = 20. Note that since all variable-nodes are of degreedv = 3, it can
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Table II

ASYMPTOTIC ERROR PROBABILITY OF THEMS DECODING WITH NOISY ADDER (p0 = 0.06)

pa 10−30 10−15 10−5

full P
(∞)
e 8.500 × 10−31 8.500 × 10−16 8.507 × 10−6

depth lower-bound 5.167 × 10−31 5.167 × 10−16 5.167 × 10−6

sign P
(∞)
e 3.333 × 10−32 3.333 × 10−17 3.333 × 10−7

preserving lower-bound 3.333 × 10−32 3.333 × 10−17 3.333 × 10−7
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Figure 3. Probability mass function of the a posteriori information C̃(ℓ) (noiseless MS decoder)
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Figure 4. Probability mass function of the a posteriori informationC̃(ℓ) (MS decoder with full-depth noisy adder,pa = 10−15)

be easily seen that, forℓ ≥ 1, C̃(ℓ) is supported only on even values. These “gaps” in the probability

mass function seem lead to favorable conditions for the occurrence of density-evolution fixed-points.

Figure 4 illustrates the evolution of the probability mass functionC̃(ℓ) when the full-depth noisy adder

with pa = 10−15 is used within the MS decoder. At iterationℓ = 20, C̃(ℓ) is virtually the same as in

the noiseless case. However, the noisy adder allows the decoder to escape from this fixed-point, as it

can be seen for iterationsℓ = 23 and ℓ = 30. For ℓ > 30, the C̃(ℓ) moves further on the right, until the

corresponding error probabilityP (ℓ)
e reaches the limit valueP (∞)

e = 8.5× 10−16.
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It is worth noting that neither the noisy comparator nor theXOR-operator can help the decoder to

escape from fixed-point distributions, as they do not allow “filling the gaps” in the support of̃C(ℓ).

We focus now on the useful region of the noisy MS decoder. We assume that only the adder is noisy,

while the comparator and theXOR-operator are noiseless.
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Figure 5. Useful and non-convergence regions of the MS decoder with sign-preserving noisy adder

The useful region for the sign-preserving noisy adder modelis shown in Figure 5. The useful region

is shaded in gray and delimited by either a solid black curve or a dashed red curve. Although one would

expect thatP (∞)
e = p0 on the border of the useful region, this equality only holds on the solid black

border. On the dashed red border, one hasP
(∞)
e < p0. The reason why the useful region does not extend

beyond the dashed red border is that for points located on theother side of this border the sequence

(P
(ℓ)
e )ℓ>0 is periodic, and hence it does not converge! The region shaded in brown in Figure 5 is the

non-convergence regionof the decoder. Note that the non-convergence region gradually narrows in the

upper part, and there is a small portion of the useful region delimited by the non-convergence region on

the left and the black border on the right. Finally, we note that points withpa = 0 (noiseless decoder)

andp0 > 0.039 (threshold of the noiseless decoder) – represented by the solid red line superimposed on

the vertical axis in Figure 5 – are excluded from the useful region. Indeed, for such pointsP (∞)
e > p0;

however, forpa greater than but close to zero, we haveP
(∞)
e ≈ pa

2Q̃
(see Figure 2 and related discussion).

We exemplify the decoder behavior on four points located on one side and the other of the left and

right boundaries of the non-convergence region. These points are indicated in Figure 5 byA,B,C, and

D. For all the four pointsp0 = 0.03, while pa = 0.027, 0.03, 0.039, and0.042, respectively. The error
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(c) PointC(p0 = 0.03, pa = 0.039)
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Figure 6. Decoding error probabilityP (ℓ)
e of the noisy MS decoder, forp0 = 0.03 and sign-preserving noisy adder with

variouspa values

probability (P
(ℓ)
e )ℓ>0 is plotted for each one of these points in Figure 6. The pointA belongs to the

useful region, and it can be seen from Figure 6(a) that(P
(ℓ)
e )ℓ>0 converges toP (∞)

e = 9.11×10−4 < p0.

For the pointB, located just on the other side of the dashed red border of theuseful region,(P (ℓ)
e )ℓ>0

exhibits a periodic behavior (although we only plotted the first 500 iterations, we verified the periodic

behavior on the first5× 104 iterations). Crossing the non-convergence region from left to the right, the

amplitude between the inferior and superior limits of(P
(ℓ)
e )ℓ>0 decreases (point C), until it reaches again

a convergent behavior (point D). Note thatD is outside the useful region, as(P (ℓ)
e )ℓ>0 converges to

P
(∞)
e = 0.0605 > p0.

The non-convergence region gradually narrows in the upper part, and for0 ≤ pa < 0.01 it takes the

form of adiscontinuity line: P (∞)
e takes values close to10−4 just below this line, and values greater than

0.05 above this line.

Note that points(pa, p0) with p0 < pa

2Q̃
= pa

30 cannot belong to the useful region, since from Proposi-
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tion 1 we haveP (∞)
e ≥ pa

2Q̃
> p0. Moreover, we note that the bottom border of the useful region (solid

black curve) is virtually identical to, but slightly above,the line defined byp0 =
pa

2Q̃
.

2) Optimization of the quantization map:In this section we show that the decoder performance can be

significantly improved by using an appropriate choice of thechannel scale factorµ. Figure 7 shows the

threshold values for the noiseless and several noisy decoders with channel scale factorsµ ∈ {1, 2, . . . , 7}.

For the noisy decoders, the threshold values are computed for a target error probabilityη = 10−5 (see

Equation (19)).
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Figure 7. Threshold values of noiseless and noisy MS decoders with various channel scale factors (for noisy decoders, threshold

values correspond to a target error probabilityη = 10−5)

The solid black curve in Figure 7 correspond to the noiselessdecoder. The solid red curve and the

dotted blue curve correspond to the MS decoder with sign-preserving noisy adder and full-depth noisy

adder, respectively. The adder error probability ispa = 10−4 for the sign-preserving noisy adder, and

pa = 10−5 for the full-depth adder8. The two curves are superimposed for1 ≤ µ ≤ 6, and differ only

for µ = 7. The corresponding threshold values are equal to those obtained in the noiseless case for

µ ∈ {2, 4, 6}. For µ ∈ {1, 3, 5}, the MS decoders with noisy-adders exhibit better thresholds than the

noiseless decoder. This is due to the fact that the messages alphabetM is underused by the noiseless

decoder, since all the exchanged messages are necessarily odd (recall that all variable-nodes are of degree

8Note that according to Proposition 1, a necessary conditionto achieve a target error probabilityP (∞)
e ≤ η = 10−5 is

pa ≤ 2Q̃η = 3× 10−4 for the signed-preserving adder, andpa ≤ 2η 2Q̃+1

2Q̃
= 2.07 × 10−5 for the full-depth adder.
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dv = 3). For the MS decoders with noisy adders, the noise present inthe adders leads to a more efficient

use of the messages alphabet, which allows the decoder to escape from fixed-point attractors and hence

results in better thresholds (Section VI-A1).

Figure 7 also shows a curve corresponding to the MS decoder with a noisy comparator havingpc =

0.005, and two curves for the MS decoder with noisyXOR-operators, having respectivelypx = 2× 10−4

andpx = 3× 10−4.

Concerning the noisyXOR-operator, it can be seen that the threshold values corresponding to px =

2 × 10−4 are very close to those obtained in the noiseless case, except for µ = 7 (the same holds for

valuespx < 2×10−4). However, a significant degradation of the threshold can beobserved when slightly

increasing theXOR error probability topx = 3× 10−4. Moreover, although not shown in the figure, it is

worth mentioning that forpx ≥ 5× 10−4, the target error probabilityη = 10−5 can no longer be reached

(thus, all threshold values are equal to zero).

Finally, we note that except for the noisyXOR-operator withpx = 3 × 10−4, the best choice of the

channel scale factor isµ = 6. For the noisyXOR-operator withpx = 3 × 10−4, the best choice of the

channel scale factor isµ = 3. This is rather surprising, as in this case the messages alphabet is underused

by the decoder: all the exchanged messages are odd, and the fact that theXOR-operator is noisy does

not change their parity.

Assumption: In the following sections, we will investigate the impact ofthe noisy adder, comparator

and XOR-operator on the MS decoder performance, assuming that the channel scale factor isµ = 6.

3) Study of the impact of the noisy adder (quantization mapq6): In order to evaluate the impact

of the noisy adder on the MS decoder performance, the useful region and theη-threshold regions have

been computed, assuming that only the adders within the VN-processing step are noisy (pa > 0), while

the CN-processing step is noiseless (px = pc = 0). This regions are represented in Figure 8, for both

sign-preserving and full-depth noisy adder models.

The useful region is delimited by the solid black curve. The vertical lines delimit theη-threshold

regions, forη = 10−3, 10−4, 10−5, 10−6 (from right to the left).

Note that unlike the caseµ = 1 (Section VI-A1), there is no non-convergence region when the channel

scale factor is set toµ = 6. Hence, the border of the useful region corresponds to points (pa, p0) for which

P
(∞)
e = p0. However, it can be observed that there is still adiscontinuity line(dashed red curve) inside

the useful region. This discontinuity line does not hide a periodic (non-convergent) behavior, but it is due

to the occurrence of anearly plateau phenomenonin the convergence of(P (ℓ)
e )ℓ. This phenomenon is
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illustrated in Figure 9, where the error probability(P (ℓ)
e )ℓ is plotted as a function of the iteration number

ℓ, for the two points A and B from Figure 8(a). For point A, it canbe observed that the error probability

P
(ℓ)
e reaches a first plateau forℓ ≈ 50, then drops to3.33× 10−6 for ℓ ≥ 250. For point B,P (ℓ)

e behaves

in a similar manner during the first iterations, but it does not decrease below the plateau value asℓ goes

to infinity. Although we have no analytic proof of this fact, it was numerically verified forℓ ≤ 5× 105.
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Figure 8. Useful andη-threshold regions of the MS decoder with noisy adder
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Figure 10. Asymptotic error probabilityP (∞)
e as a function ofp0; noiseless and noisy MS decoder with sign-preserving noisy

adder

In Figure 10, we plotted the asymptotic error probabilityP
(∞)
e as a function ofp0, for the noiseless

decoder (pa = 0), and for the sign-preserving noisy adder with error probability values pa = 10−4 and

pa = 0.05. In each plot we have also represented two pointsp
(U)
0 andp(FT)

0 , corresponding respectively

to the values ofp0 on the upper-border of the useful region, and on the discontinuity line. Hence,p(FT)
0

coincides with the classical threshold of the MS decoder in the noiseless case, and it is equal to the

functional threshold defined in Section V-D in case of noisy decoders. In the following, the sub-region

of the useful region located below the discontinuity line will be referred to as thefunctional region.

Within this region, if the adder error probability is small enough, it can be observed that:

(a) For the sign-preserving adder:P (∞)
e ≈ pa

30 , for pa / 3× 10−2, which corresponds to the value given

by the lower-bound (1
2Q̃

pa = 1
30pa) from Proposition 1.

(b) For the full-depth adder:P (∞)
e ≈ 1.17pa, for pa / 10−3, which is about twice higher than the value

given by the lower-bound (12pa +
1
4Q̃

pa = 0.52pa) from Proposition 1.
Finally, we note that by protecting the sign of the noisy adder, the useful region is expanded by a

factor of roughly2Q̃, representing an exponential improvement with respect to the number of bits of the

adder (see also the discussion following the proof of Proposition 1).

4) Study of the impact of the noisy XOR-operator (quantization mapq6): The useful region and the

η-threshold regions of the decoder, assuming that only theXOR-operator used within the CN-processing

step is noisy, are plotted in Fig. 11. Similar to the noisy-adder case, a discontinuity (functional threshold)

line can be observed inside the useful region, which delimits thefunctional regionof the decoder.

Comparing theη-threshold regions from Figure 8 and Figure 11, it can be observed that in order to

achieve a target error probabilityP (∞)
e ≤ 10−6, the error probability parameters of the noisy adder and

of the noisyXOR-operator must satisfy:
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• pa < 1.17 × 10−6, for the full-depth noisy-adder;

• pa < 3× 10−5, for the sign-preserving noisy-adder;

• px < 7× 10−5, for the noisyXOR-operator.

(moreover, values ofpx up to 1.4× 10−4 are tolerable ifp0 is sufficiently small)

The most stringent requirement concerns the error probability of the full-depth noisy-adder, thus we may

consider that it has the most negative impact on the decoder performance. On the other hand, the less

stringent requirement concerns the error probability of the noisyXOR-operator.

Finally, it is worth noting that in practical cases the valueof px should be significantly lower than

the value ofpa (given the high number of elementary gates contained in the adder). Moreover, since the

XOR-operators used to compute the signs of CN messages represent only a small part of the decoder,

this part of the circuit could be made reliable by using classical fault-tolerant methods, with a limited

impact on the overall decoder design.
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Figure 11. Useful andη-threshold regions of the MS decoder with noisyXOR-operator

5) Study of the impact of the noisy comparator (quantizationmapq6): This section investigates the

case when comparators used within the CN-processing step are noisy (pc > 0), butpa = px = 0. Contrary

to the previous cases, this case exhibits a “classical” threshold phenomenon, similar to the noiseless case:

for a givenpc > 0, there exists ap0-threshold value, denoted byp(TH)
0 , such thatP (∞)

e = 0 for any

p0 < p(TH)
0 .

The threshold valuep(TH)
0 is plotted as a function ofpc in Figure 12. The functional region of the decoder

is located below the threshold curve, andP
(∞)
e = 0 for any point within this region. In particular, it can
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Figure 12. Useful region and threshold curve of the MS decoder with noisy comparator

be seen thatP (∞)
e = 0 for any p0 / 0.039 and anypc > 0. Although such a threshold phenomenon

might seem surprising for a noisy decoder, it can be easily explained. The idea behind is that in this case

the crossover probability of the channel is small enough, sothat in the CN-processing step only the sign

of check-to-variable messages is important, but not their amplitudes. In other words a decoder that only

computes (reliably) the signs of check-node messages and randomly chooses their amplitudes, would be

able to perfectly decode the received word.

Finally, we note that the useful region of the decoder extends slightly above the threshold curve: for

pc close to0, there exists a small region above the threshold curve, within which 0 < P
(∞)
e < p0.

B. Numerical results for the BI-AWGN channel

For the BI-AWGN, the channel output is given byy = x + z, wherex ∈ {±1} is the channel input

andz is the additive white Gaussian noise with varianceσ2. Threshold values and useful regions of the

decoder will be described in terms of Signal to Noise Ratio (SNR), defined by SNR= −10 log10(σ
2).

For a given channel scale factorµ, the quantization mapqµ is defined byqµ(y) = sM([µ·y]), where

[µ·y] denotes the nearest integer toµ·y, andsM is the saturation map (see also Equation (12)).

Similar to the BSC case, the choice of the channel scale factor µ may significantly impact the decoder

performance. Hence, we start first by optimizing the channelscale factor value, and then we investigate

the impact of the different noisy components on the decoder performance.

Remark: For the BI-AWGN channel we denote byp0
def
= P

(0)
e the error probability at iteration0,

which is, by definition, the probability of thea priori information γ = qµ(y) being in error. Hence,
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p0 =
∑−1

z=−QC(z) + 1
2C(0). Using Equation (14) it follows that:

p0 = 1− 1

2

[
q

(−0.5− µ

µσ

)
+ q

(
0.5− µ

µσ

)]
(23)

1) Optimization of the quantization map:The goal of this section is to provide an optimal choice

of the channel scale factorµ. Figure 13 shows the threshold SNR values for the noiseless and several

noisy decoders for channel scale factorsµ varying within the interval[1, 7]. For the noisy decoders, the

threshold values are computed for a target error probability η = 10−5 (see Equation (19)).
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Figure 13. Threshold SNR values of noiseless and noisy decoders with various channel scale factors (for noisy decoders,

threshold values correspond to a target error probabilityη = 10−5)

The solid black curve in Figure 13 correspond to the noiseless decoder. The dashed red curve and the

dotted blue curve correspond to the MS decoder with sign-preserving noisy adder and full-depth noisy

adder, respectively. The adder error probability ispa = 2×10−4 for the sign-preserving noisy adder, and

pa = 10−5 for the full-depth adder9. These three curves are virtually indistinguishable.

Figure 13 also shows two curves corresponding respectivelyto the MS decoder with a noisyXOR-

operator (px = 2× 10−4) and to the MS decoder with a noisy comparator (pc = 0.005). Finally, we note

that in all cases the best choice of the channel scale factor is µ ≈ 5.5.

Assumption: In the following sections, we will investigate the impact ofthe noisy adder, comparator

and XOR-operator on the MS decoder performance, assuming that the channel scale factor isµ = 5.5.

9Note that according to Proposition 1, a necessary conditionto achieve a target error probabilityP (∞)
e ≤ η = 10−5 is

pa ≤ 2Q̃η = 3× 10−4 for the signed-preserving adder, andpa ≤ 2η 2Q̃+1

2Q̃
= 2.07 × 10−5 for the full-depth adder.

July 23, 2018 DRAFT



35

2) Study of the impact of the noisy adder:Useful andη-regions of the MS decoder with noisy adders

are represented in Figure 14, for both sign-preserving and full-depth noisy adder models. The useful

region is delimited by the solid black curve, while verticallines delimit theη-threshold regions, for

η = 10−3, 10−4, 10−5, 10−6 (from right to the left). Thefunctional thresholdof the decoder is also

displayed by a red dashed curve.

Figure 15 shows the input and output error probabilities of the decoder (p0 andP
(∞)
e ) as functions

of the SNR value, for the sign-preserving and full-depth noisy adder models withpa = 10−4. The two

intersection points between the two curves correspond to the points on the lower and upper borders of

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

2

4

6

8

10

12

14

16

Adder Error Probability (p
a
)

S
N

R
 (

dB
)

(3,6)−regular LDPC; (4,5)−quantization, sign−protected noisy adder

10
−4

 <
 P

e(∞
)  <

 1
0−3

10
−5

 <
 P

e(∞
)  <

 1
0−4

10
−6

 <
 P

e(∞
)  <

 1
0−5

P
e(∞

)  <
 1

0−6

 

 

Useful Reg Border (P
e
(∞) = p

0
)

Functional Threshold

P
e
(∞) > p

0

P
e
(∞) < p

0

(a) Sign-preserving noisy adder

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

0

2

4

6

8

10

12

14

16

Adder Error Probability (p
a
)

S
N

R
 (

dB
)

(3,6)−regular LDPC; (4,5)−quantization, full−depth noisy adder

10
−4

 <
 P

e(∞
)  <

 1
0−3

10
−5

 <
 P

e(∞
)  <

 1
0−4

10
−6

 <
 P

e(∞
)  <

 1
0−5

P
e(∞

)  <
 1

0−6

 

 

Useful Reg Border (P
e
(∞) = p

0
)

Functional Threshold

P
e
(∞) < p

0

P
e
(∞) > p

0

(b) Full-depth noisy adder

Figure 14. Useful andη-threshold regions of the MS decoder with noisy adder (BI-AWGN)

0 2 4 6 8 10 12 14 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

E
rr

or
 P

ro
ba

bi
lit

y

(3,6)−regular LDPC; (4,5)−quantization, sign−protected noisy adder

 

 

S
N

R
(F

T
)  =

 1
.6

45

p
0

P
e
(∞)

P
e
(∞) ≈ 3.33 E−6

p
0

(a) sign-preserving noisy adder,pa = 10−4

0 2 4 6 8 10 12 14 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

E
rr

or
 P

ro
ba

bi
lit

y

(3,6)−regular LDPC; (4,5)−quantization, full−depth noisy adder

 

 

S
N

R
(F

T
)  =

 1
.6

56

p
0

P
e
(∞)

p
0

P
e
(∞) ≈ 8.6 E−5

(b) full-depth noisy adder,pa = 10−4

Figure 15. Asymptotic error probabilityP (∞)
e of the MS decoder with noisy-adder as a function of the SNR

July 23, 2018 DRAFT



36

the useful region in Figure 14, forpa = 10−4. The discontinuity point of theP (∞)
e curve corresponds to

the functional threshold value in Figure 14, forpa = 10−4.

3) Study of the impact of the noisy XOR-operator and noisy comparator: The useful region and theη-

threshold regions of the MS decoder, assuming that only theXOR-operator used within the CN-processing

step is noisy, are plotted in Fig. 16. Thefunctional thresholdof the decoder is also displayed by a red

dashed curve.

The case of a noisy comparator is illustrated in Figure 17. Similar to the BSC channel, this case

exhibits a “classical” threshold phenomenon: for any SNR value above the functional threshold curve,

one hasP (∞)
e = 0.
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VII. F INITE LENGTH PERFORMANCE OFM IN-SUM BASED DECODERS

The goal of this section is twofold:

(1) To corroborate the asymptotic analysis through finite-length simulations;

(2) To investigate ways of increasing the robustness of the MS decoder to hardware noise.

Assumption: Unless otherwise stated, the(3, 6)-regular LDPC code with lengthN = 1008 bits from

[25] will be used for finite length simulations throughout this section.

A. Practical implementation and early stopping criterion

First of all, we note that the practical implementation of the noisy MS decoder differs slightly from

the one presented in Algorithm 2:

• The order of theVN-processing andAP-update steps is inverted;

• The variable-to-check node messages are computed by subtracting the incoming check-to-variable

message from the corresponding a posteriori information value:
for all n = 1, . . . , N do ⊲ AP-update

γ̃n = apr
(
{γn} ∪ {βm,n}m∈H(n)

)
;

for all n = 1, . . . , N andm ∈ H(n) do ⊲ VN-processing

αm,n = apr (γ̃n,−βm,n) ;

αm,n = sM (αm,n) ;

For floating-point noiseless decoders, the two ways of computing the variable-to-check messages

are completely equivalent. However, this equivalence doesnot hold anymore for finite-precision (noisy

or noiseless) decoders, because of saturation effects and,in case of noisy decoders, of probabilistic

computations. We note that the practical implementation might result in a degradation of the decoder

performance compared to the “Density-Evolution like” implementation (Algorithm 2), since each variable-

to-check node messageencompassesdv +1 additions (dv additions to computẽγn and one subtraction).

Finally, it is worth noting that the density-evolution analysis cannot be applied to the practical imple-

mentation, due to the fact that in the VN-processing step, the computation of variable-to-check messages

αm,n = apr ({γn},−βm,n) involves two correlated variables, namelyγn andβm,n.

1) Early stopping criterion (syndrome check):As described in Algorithm 2, each decoding iteration

also comprises ahard decisionstep, in which each transmitted bit is estimated according to the sign of

the a posteriori information, and asyndrome checkstep, in which the syndrome of the estimated word

is computed.
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Both steps are assumed to benoiseless, and the syndrome check step acts as anearly stopping criterion:

the decoder stops when whether the syndrome is+1 (the estimated word is a codeword) or a maximum

number of iterations is reached. We note however that the syndrome check step is optional and, if missing,

the decoder stops when the maximum number of iterations is reached.

Remark: The reason why we stress the difference between the MS decoder with and without the syndrome

check step is because, as we will see shortly, thenoiselessearly stopping criterion may significantly

improve the bit error rate performance of thenoisydecoder in the error floor region.

Assumptions:

• Unless otherwise stated, the MS decoder is assumed to implement thenoiselessstopping criterion

(syndrome check step).

• The maximum number of decoding iterations is fixed to 100 throughout this section.

B. Corroboration of the asymptotic analysis through finite-length simulations

We start by analyzing the finite-length decoder performanceover the BSC channel. Figure 18 shows

the bit error rate (BER) performance of the finite-precisionMS decoder (both noiseless and noisy) with

various channel scale factors. For comparison purposes, wealso included the BER performance of the

Belief-Propagation decoder (solid black curve, no markers) and of the infinite-precision MS decoder

(dashed blue curve, no markers).

It can be observed that the worst performance is achieved by the infinite-precision MS decoder (!)

and the finite-precision noiseless MS decoder with channel scale factorµ = 1 (both curves are virtually

indistinguishable). The BER performance of the latter improves significantly when using a sign-preserving

noisy adder with error probabilitypa = 0.001 (dashed red curve with empty circles).

For a channel scale factorµ = 6, both noiseless and noisy decoders have almost the same performance

(solid and dashed green curves, with triangular markers). Remarkably, the achieved BER is very close

to the one achieved by the Belief-Propagation decoder!

These results corroborate the asymptotic analysis from Section VI-A concerning the channel scale

factor optimization.

1) Error floor performance:Surprisingly, the BER curves of the noisy decoders from Figure 18 do not

show any error floor down to10−7. However, according to Proposition 1, the decoding error probability

should be lower-bounded byP (ℓ)
e ≥ 1

2Q̃
pa = 3.33×10−5 (see also theη-threshold regions in Figure 8(a)).

The fact that the observed decoding error probability may decrease below the above lower-bound is

due to the early stopping criterion (syndrome check step) implemented within the MS decoder. Indeed,
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Figure 18. BER performance of noiseless and noisy MS decoders with various channel scale factors

as we observed in the previous section, the above lower-bound is tight, whenℓ (the iteration number)

is sufficiently large. Therefore, as the iteration number increases, the expected number of erroneous bits

gets closer and closer to1
2Q̃

paN = 0.034, and the probability of not having any erroneous bit within

one iteration approaches
(
1− 1

2Q̃
pa

)N

= 0.967. As the decoder performs more and more iterations, it

will eventually reach an error free iteration. The absence of errors is at once detected by the noiseless

syndrome check step, and the decoder stops.
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To illustrate this behavior, we plotted the Figure 19 the BERperformance of the noisy MS decoder,

with and without early stopping criterion. The noisy MS decoder comprises a sign-preserving noisy adder

with pa = 0.001, while the comparator and theXOR-operator are assumed to be noiseless (pc = px = 0).

Two codes are simulated, the first with lengthN = 1008 bits, and the second with lengthN = 10000

bits. In case that the noiseless early stopping criterion isimplemented (solid curves), it can be seen that

none of the BER curves show any error floor down to10−8. However, if the early stopping criterion is

not implemented (dashed curves), corresponding BER curvesexhibit an error floor at≈ 3.33× 10−5, as

predicted by Proposition 1.

In Figure 20 we plotted the average number of decoding iterations in case that the early stopping

criterion is implemented. It can be seen that the average number of decoding iterations decreases with

the channel crossover probabilityp0, or equivalently, with the achieved bit error rate. However, for a fixed

BER – say BER= 10−6, achieved either atp0 ≈ 0.04 for the code withN = 1008, or atp0 ≈ 0.063 for

the code withN = 10000 – the average number of iterations is about8 for the first code and about21

for the second. Note that in case the early stopping criterion is not implemented, both codes have nearly

the same performance for the abovep0 values. Thus, when the early stopping criterion is implemented,

the decoder needs to perform more iterations to eventually reach an error free iteration whenN = 10000,

which explains the increased average number of decoding iterations.

2) Further results on the finite-length performance:In this section we investigate the finite-length

performance when all the MS components (adder, comparator,and XOR-operator) are noisy. In order to

reduce the number of simulations, we assume thatpa = pc ≥ px. Concerning the noisy adder, we evaluate

the BER performance for both the sign-preserving and the full-depth error models. Simulation results are

presented in Figure 21. The error probability of theXOR-operator ispx = 0.0001 in sub-figures 21(a)

and 21(b), andpx = 0.001 in sub-figures 21(c) and 21(d). The noisy adder is sign-preserving in sub-

figures 21(a) and 21(c), and full-depth in sub-figures 21(b) and 21(d).

In case the noisy-adder is sign-preserving, it can be seen that the MS decoder can provide reliable

error protection for all the noise parameters that have beensimulated. Of course, depending on the

error probability parameters of the noisy components, there is a more or less important degradation of

the achieved BER with respect to the noiseless case. But in all cases the noisy decoder can achieve

a BER less than10−7. This is no longer true for the full-depth noisy adder: it canbe seen that for

pc = pa ≥ 0.005, the noisy decoder cannot achieve bit error rates below10−2.
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Figure 21. BER performance of the noisy MS decoder with various noise parameters

C. Noisy Self-Corrected Min-Sum decoder

In this section we investigate the finite-length performance of the Self-Corrected Min-Sum (SCMS)

decoder [26]. The objective is to determine if a correction circuit “plugged into” the noisy MS decoder

can improve the robustness of the decoder to hardware noise.

The specificity of the SCMS decoder is toerase(i.e. set to zero) any variable-to-check message that

changes its sign between two consecutive iterations. However, in order to avoid erasures propagation, a

message cannot be erased if it has also been erased at the previous iteration. Hence, the SCMS decoder

performs the same computations as the noisy MS, except that the VN processing step further includes
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a correction step, as follows10:

for all n = 1, . . . , N andm ∈ H(n) do ⊲ VN-processing

α
(ℓ)
m,n = sM

(
apr

(
γ̃
(ℓ)
n ,−β

(ℓ)
m,n

))
;

if sgn
(
α
(ℓ)
m,n

)
6= sgn

(
α
(ℓ−1)
m,n

)
andα(ℓ−1)

m,n 6= 0

α
(ℓ)
m,n = 0 ;

end

The body enclosed between theif condition and the matchingend is referred to as thecorrection step.

In practical implementations, one needs to store the signs of the variable-to-check node messages and

to keep a record of messages that have been erased by the self-correction step. We use the following

notation:

• s
(ℓ)
m,n = sgn

(
α
(ℓ)
m,n

)
, the sign of the messageα(ℓ)

m,n;

• e
(ℓ)
m,n ∈ {0, 1}, with e

(ℓ)
m,n = 1 if and only if the corresponding variable-to-check messagehas been

erased at iterationℓ; for ℓ = 0, these values are all initialized as zero.

• SCU(s1, s2, e)
def
= (s1 ⊕ s2)⊗ (1⊕ e), for anys1, s2, e ∈ {0, 1}, where⊕ denotes theXOR operation

(sum modulo2) and⊗ denotes theAND operation (product). ClearlySCU(s1, s2, e) = 1 if and only

if s1 6= s2 ande = 0.

Therefore, the VN-processing step of the SCMS decoder can berewritten as follows:

for all n = 1, . . . , N andm ∈ H(n) do ⊲ VN-processing

α
(ℓ)
m,n = sM

(
apr

(
γ̃
(ℓ)
n ,−β

(ℓ)
m,n

))
;

e
(ℓ)
m,n = SCU

(
s
(ℓ)
m,n, s

(ℓ−1)
m,n , e

(ℓ−1)
m,n

)
;

if e
(ℓ)
m,n = 1 then α

(ℓ)
m,n = 0 ; end

This reformulation of the VN-processing step allows defining a noisy self-correctionstep, by injecting

errors in the output of theSCU operator. The noisySCU operator with error probabilitypscu is defined

by:

SCUpr(s1, s2, e) =





SCU(s1, s2, e), with probability 1− pscu

1− SCU(s1, s2, e), with probability pscu

(24)

This error model captures the effect of the noisy logic or of the noisy storage ofsm,n andem,n values

on theSCU operator. The SCMS decoder with noisy self-correction stepis detailed in Algorithm 3.

10Superscript(ℓ) used to denote the iteration number
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Algorithm 3 Noisy Self-Corrected Min-Sum (Noisy-SCMS) decoding

Input: y = (y1, . . . , yN ) ∈ YN (Y is the channel output alphabet) ⊲ received word

Output: x̂ = (x̂1, . . . , x̂N ) ∈ {−1,+1}N ⊲ estimated codeword

Initialization

for all n = 1, . . . , N do γn = q(yn);

for all n = 1, . . . , N andm ∈ H(n) do { αm,n = γn; sm,n = sgn(γn); em,n = 0; }

Iteration Loop

for all m = 1, . . . ,M andn ∈ H(m) do ⊲ CN-processing

βm,n = xpr
(
{sgn(αm,n′)}n′∈H(m)\n

)
mpr

(
{|αm,n′ |}n′∈H(m)\n

)
;

for all n = 1, . . . , N do ⊲ AP-update

γ̃n = apr
(
{γn} ∪ {βm,n}m∈H(n)

)
;

for all n = 1, . . . , N andm ∈ H(n) do ⊲ VN-processing

αm,n = sM
(
apr (γ̃n,−βm,n)

)
;

em,n = SCUpr (sgn(αm,n), sm,n, em,n) ;

sm,n = sgn(αm,n);
if em,n = 1 then αm,n = 0;

for all {vn}n=1,...,N do x̂n = sgn(γ̃n); ⊲ hard decision

if x̂ is a codewordthen exit the iteration loop ⊲ syndrome check

End Iteration Loop
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Figure 22. BER performance comparison between noisy MS and noisy SCMS decoders
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The finite length performance of the noisy SCMS decoder is presented in Figure 22, for both BSC

and BI-AWGN channels. For comparison purposes, Figure 22 also shows the performance of the noisy

MS decoder. The parameters of the different noisy components are as follows:

[P1] sign-preserving adder withpa = 0.01, pc = 0.01, px = pscu= 0.001 (red curves, diamond markers);

[P2] full-depth adder withpa = 0.001, pc = 0.001, px = pscu= 0.001 (blue curves, circle markers).

Solid and dashed curves correspond respectively to the MS and SCMS performance. While the hardware

noise alters the performance of the MS decoder, it can be seenthat the noisy SCMS decoder exhibits

very good performance, very close to that of the noiseless decoder. Therefore, one can think of the self-

correction circuit as anoisy patchapplied to the noisy MS decoder, in order to improve its robustness to

hardware noise. The robustness of the SCMS decoder to hardware noise is explained by the fact that it

has an intrinsic capability to detect unreliable messages,and discards them from the iterative decoding

process [26].

VIII. C ONCLUSION

This paper investigated the asymptotic and finite length behavior of the noisy MS decoder. We

demonstrated the impact of the channel scale factor on the decoder performance, both for the noiseless and

for the noisy decoder. We also highlighted the fact that an inappropriate choice the channel scale factor

may lead to anunconventionalbehavior, in the sense that the noise introduce by the devicemay actually

result in an increased correction capacity with respect to the noiseless decoder. We analyzed the asymptotic

performance of the noisy MS decoder in terms of useful regions and target-BER thresholds, and further

revealed the existence of a different threshold phenomenon, which was referred to as functional threshold.

Finally, we also corroborated the asymptotic analysis through finite-length simulations, and highlighted

the excellent performance of the noisy SCMS decoder, which provides virtually the same performance

as the noiseless decoder, for a wide range of values of the hardware noise parameters.
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