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Abstract

Small cell networks are regarded as a promising candidatest the exponential growth of mobile
data traffic in cellular networks. With a dense deploymeraamiess points, spatial reuse will be improved,
and uniform coverage can be provided. However, such pegbce gains cannot be achieved without
effective intercell interference management. In this papenovel interference coordination strategy,
calleduser-centric intercell interference nullings proposed for small cell networks. A main merit of the
proposed strategy is its ability to effectively identifycamitigate the dominant interference for each user.
Different from existing works, each user selects the cowtiling base stations (BSs) based on the relative
distance between the home BS and the interfering BSs, ctilksishterference nulling (IN) rangeand
thus interference nulling adapts to each user’s own inteniee situation. By adopting a random spatial
network model, we derive an approximate expression of tleeessful transmission probability to the
typical user, which is then used to determine the optimaldhge. Simulation results shall confirm the
tightness of the approximation, and demonstrate signifiparformance gains (about 35%-40%) of the
proposed coordination strategy, compared with the nometination case. Moreover, it is shown that the
proposed strategy outperforms other interference nuttiethods. Finally, the effect of imperfect channel
state information (CSI) is investigated, where CSI is as=lito be obtained via limited feedback. It is

shown that the proposed coordination strategy still presidignificant performance gains even with a
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moderate number of feedback bits.
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I. INTRODUCTION

A. Motivation

In the past few years we have witnessed an exponential grafntiobile data traffic, and this
trend will continue [[1]. Significant efforts have been spentincreasing capacity of wireless
networks to accommodate the mobile data tsunami. Howewerang already approaching the
Shannon limit of point-to-point links, and there is littlgtea radio spectrum to exploit. Recently,
small cell networks have been proposed as a promising agprmaaddress these challenges
and further boost the network capacity. By deploying moreeas points, spatial reuse can be
improved and more uniform coverage can be provided [2].

As the network gets denser, new design challenges ariseygambich intercell interference
management is a critical one. Without effective interfeeemanagement, the performance of
mobile users will be severely degraded by intercell interiee from nearby base stations (BSs).
For example, it was shown inl[3] that the outage probabilitythe typical user in a multi-
cell network with Poisson distributed single-antenna BSéigher than 40% if the signal-to-
interference-plus-noise ratio (SINR) threshold is 0 dBerewithout additive thermal noise. The
performance can be improved by deploying multi-antenna. BSsas shown in[[4] that when
each BS is equipped with 4 antennas, the outage probability the SINR threshold as 0
dB can be reduced to below 10% with maximum ratio transmis§iRT). However, without
interference management, the performance will not befaat@y when the SINR threshold
increases, i.e., as the data rate requirement increasss.ii\[4], it was shown that the outage
probability with single-user beamforming (MRT) is about4®or an SINR threshold of 10 dB,
even if each BS is equipped with 8 antennas. Therefore, \gesatisfactory user performance
in dense small cell networks, effective interference manant should be developed.

Recently, multi-cell cooperation has been proposed as fatieat way to mitigate intercell
interference[[6]+[11]. There are different types of cogpen strategies by assigning different
temporal/spectral/spatial dimensions to users amongrdift cellsIntercell interference nulling

as one particular type of multi-cell cooperation, has bdeows to be a practical and viable



approach for downlink interference suppression [12]) [M8ith interference nulling, user data
is transmitted only from one BS, while control informatiaexchanged between BSs and thus
the coordinating multi-antenna BSs can suppress intereréo users in neighboring cells with
interference nulling. Compared with joint precoding amd@fgs [6], interference nulling does
not require data sharing between BSs and thus has a lowalisigroverhead, which is more
suitable for dense networks. Although the effectivenesit#rference nulling has been well
studied in small networks [12]-[14], its application in andely deployed network requires a
detailed investigation, since there are new features wbekiig from a network level, such as
irregular BS positions. In this paper, we will endeavor tealep an efficient yet low-complexity

interference nulling strategy tailored for small cell netks and investigate its performance gain.

B. Prior Works

Most previous works on interference coordination either e Wyner model 5], [15]/[16],
or adopt the grid model [8][[12]=[14], [17] with a finite numbof cells. The Wyner model is
oversimplified and does not capture the essential charstaterof real and practical networks
[18]. For the grid model, the analysis becomes intractabl¢éha network size grows, and thus
simulation becomes a common approach to seek insights éasytstem design. Moreover, none
of the above network models captures the irregular netwatlctire in small cell networks.
Recently, a random cellular network model was proposed inWBere BSs are modeled as a
spatial Poisson point process (PPP). This model captuessrédgularity of the BSs and is about
as accurate as the grid model while being much more tracf@able

Although there have been numerous studies using the PPH toad®lyze cellular networks,
e.g., [20]-[25], most of them did not consider any intenfee coordination. This is mainly due
to the difficulty of the performance analysis with coopeyatamong different BSs. There have
been prior studies on interference management in celludawvarks [26]-[31]. In [26], [27],
all the BSs in the network are grouped into disjoint clustarsd each BS will avoid intercell

interference to users in other cells within the same clusiir interference nulling beamforming.



Joint transmission was investigated in[28],1[29], whereheaser is served by several nearby
single-antenna BSs under the assumption that the user glataaied between these BSs with
high-capacity backhaul links. In_[30], while intercell @anference was avoided by serving users
in different cells with orthogonal channels, intra-celVelisity was applied to further improve
performance.

The disjoint BS clustering method [26], [27] is designednira transmitter’s point of view
and fails to consider each user’s interference situatioly @sers around the cluster center can
benefit from such coordination, while the cluster edge uselissuffer severe interference from
neighboring clusters [6]. To efficiently utilize the avdila radio resources, the coordinating BSs
should be carefully selected to meet each user's deman@8lr[B1], the set of coordinating
BSs is determined from each user’'s point of view, which cstssa fixed number of strong
interferers. To make the analysis tractable, all of theseiss assumed that each BS always
has enough resources to handle all the coordinated usevgevdg such results may not be
applicable to realistic networks, especially in small aedtworks. On one hand, each BS has
limited resources for interference suppression, e.g.h witerference nulling, the number of
interferers that can be handled is limited by the number oBBt&nnas. On the other hand, with
irregularly placed BSs, different users will have differemmbers of dominant interferers, and
thus it is inefficient to enforce a fixed number of BSs for caoation. Therefore, a new criterion
to effectively determine the coordinating BSs is neededutthér improve the performance of

interference coordination.

C. Contributions

In this paper, we will propose a novaker-centric intercell interference nullingtrategy for
small cell networks. One main advantage of this strategias it can effectively determine the
coordinating BSs for each user, which takes account of eaen'suinterference situation and
the limited resources at each BS. Specifically, each usdrseil an interference nulling (IN)

range, based on its average received information signakpodime interfering BSs within the



IN range are requested to do interference nulling for thes.LiBhe main design challenge is to
specify the IN range: if it is too large, each BS may receive teany coordination requests,
and thus it needs to spend most of its resources for intexdderaulling; if it is too small, the
user will still suffer strong interference. In this papey, &dopting a random spatial network
model, we analytically evaluate the successful transimsprobability of the proposed strategy
and determine the optimal IN range. Although the interfeesistribution becomes highly
complicated with coordination, we develop a simple yet eatmuapproximate result.

Through numerical analysis, we compare the proposed @m@r€e nulling strategy with the
non-coordination strategy, as well as other interferendkng methods, such as the random BS
clustering method proposed in_|26], and the user-centrardination but with a fixed number
of requests from each user [31]. We have the following fingdint) The proposed strategy
can greatly improve the successful transmission proltpleitimpared with the non-coordination
case, and it outperforms other coordination methods, windicates its effectiveness. 2) The
proposed strategy provides a larger performance gain wieeSINR threshold gets higher, which
implies that it is capable to meet high data rate requiren®nTo satisfy a given performance
requirement for a certain user density, the proposed girateeds much fewer BSs than the
non-coordination strategy, which implies a significantuettbn of the deployment cost.

Finally, we investigate the effect of imperfect CSI due tited feedback. The approximate
expression of the successful transmission probabilityravided. We will then show that the
performance of interference nulling depends criticallytba number of feedback bitd3] for
each channel vector. In particular, Bancreases, the performance gain from interference nulling
becomes larger. If the feedback link has limited capacitgré exists a critical number of

feedback bits below which it is better to use a non-cooribnastrategy.

D. Paper Organization

The rest of the paper is organized as follows. Sediibn |l grssthe system model and the

proposed user-centric intercell interference nullingtetyy. Section Tl derives the expression



of the successful transmission probability. In Secfioh W& investigate the effect of limited
feedback on the performance, while the numerical resultistb@ comparison between different

interference nulling methods are shown in Seckidn V. Find@kction VI concludes the paper.

II. SYSTEM MODEL

In this section, the random spatial model for small cell roeks will be firstly presented,
and then we will describe the user-centric intercell irgsghce nulling strategy. Finally, we will

introduce the performance metric used in this paper.

A. The Network Model

We consider a cellular network, where BSs and users arahdittd in R? according to two
independent PPPs, denoteddgsand V,,, respectively. The density of BSs is denoted\gsvhile
the density of users is,. We focus on the downlink transmission and assume that tlseu38
the same transmit power,. Each user is served by the nearest BS, which implies thatehe
of each BS corresponds to its Voronoi cell. Therefore, thagpsthof each cell is irregular, which
is well suited for small cell networks. We assume universadidiency reuse, and thus there will
be severe intercell interference. Due to limited backhayacity in small cell networks, joint
transmission from multiple BS$ [28], [29] is not considered

In this paper, we assume each BS serves at most one user atiraachlot, i.e., intra-cell
time division multiple access (TDMA) is adop&d)ue to the random locations of BSs and
users, the number of users in each cell is random. For cetls ma users, the BSs are called
inactive BSsand they will not transmit any signal. Otherwise, the BS| wé called anactive
BSand will randomly choose one user in its cell to serve at esuh slot. The probability that
the typical BS is active is denoted as. Equivalently,p, can be regarded as the ratio of the

1Although single-user transmission is not necessarily thst loption for multi-antenna transmission, our focus is loa t

interference nulling strategy and the derivation can bereded to other orthogonal multiple access methods, suctD&AS

23].



Active BS

Inactive BS

> O B

Served user
— Information signal link

— —> Remaining interference

— > Suppressed interference

Fig. 1. A sample network where BSs and users are distributetiva independent PPPs. The typical user is located at the
origin, and the interfering BSs in the gray region will re@eicoordination requests from the typical user, but somehemt

may not be able to suppress interference due to the degrdesedbm constraint.

number of active BSs to the total number of BSs for each rat@diz of ¥, and ¥ ,,. It has been

shown thatp,, as a function of the BS-user density ratic® j—b is given by [4], [32]

1 —Co
pawl—(l—b——) , Q)

Cop

wherecy = 3.5 is a constant related to the cell size distribution obtaitredugh data fitting.

B. User-Centric Intercell Interference Nulling

In the following, we will propose a user-centric intercefiterference nulling strategy to
suppress intercell interference for small cell networke pYopose that each served user will
request a subset of interfering BSs for interference mguliin interfering BS will be in this
subset if the ratio of the average power received from thesri@ring BS to the average power
received from the home BS is larger than a certain threshad, its interference is strong
relative to the user’s information signal power. Since eB& uses the same transmit power,

the coordinating BSs can be determined by the relative s to the interfering BSs and



the home BS. Specifically, considering the typical user wligtancer, to its home BS, it will
request all the interfering BSs within distanee, (wherey > 1) for interference nulling. In the
following, we will call iy the IN range and the parameter the IN range coefficientNote that
as the distance information is relatively easy to obtaie, phoposed method to determine the
IN range for each user incurs much less overhead than thebasesl on instantaneous channel
information. Moreover, as only the dominant interferingisies will be suppressed, it will lead
to a more efficient utilization of the available radio resms, and better performance will be
achieved.

Note that once determined, the value ;0fis the same for all the users, i.e., the proposed
strategy has a single design parameter. However, due tartem locations of BSs and users, the
signal transmission distaneg is different in different cells, which means the area of ifgeence
coordination regions will be different for different usefsig. [ illustrates the BSs who will
receive requests from the typical user, and all of them atbinvihe annulus (the gray area)
from radiusr, to ury. Thus, the number of coordination requests received by asBSrandom
variable, i.e., a BS may belong to multiple annuluses cedtaround different users. We denote
the number of requests received by the BS located at codedinas K, and denote the number
of antennas at each BS a¢. As K, is random and unbounded, it is possible thgt > M.
Due to the limited spatial degrees of freedom, each BS cadldéat mostM/ — 1 requests[[6].

If a BS receivesk, > M requests, we assume it will randomly chodde- 1 users to suppress
interferencg. This implies that it is possible for the requesting usereceive interference from
the BSs within the annulus (as shown in Hi§. 1).

Remark 1 (The effect of the IN range coefficiefityning the value of: has conflicting ef-
fects: Increasing: can suppress more nearby intercell interference. But tre &% have less
degrees of freedom for their own signal links, which will vee the received information signal
power. As a special case, = 1 implies anon-coordination scenarjoi.e., no interference

2Note that more sophisticated schemes to handle excessstequm be developed to further improve performance, but fro

the results shown in Sectiénl V, the improvement would be malgince the value of(, is typically small for most BSs.



nulling is employed in the network, and each active BS wiliveeits own user by single
user beamforming. Our objective is to analytically evatutite performance of the proposed

coordination strategy and find the optimako achieve the best performance.

C. Channel Model and Precoding Vectors

We consider the typical user located at the origiserved by its home BS at locatiog. This
user will receive interference from the BSs outside the amand probably also from the BSs
within the annulus. Leﬂlgl) denote the set of interfering BSs farther that, wherery = ||zo||
and ||-|| is the vector norm. Leﬂff) denote the set of BSs who receive the request from the
typical user but are unable to mitigate interference fos tiser. We assume Rayleigh fading
channels, and denote the small-scale fading from the BScatitmx ash, € CN (07«1, Iy).

The large-scale path loss is modeled|a§ ™%, wherea > 2 represents the path loss exponent.

Then, the received signal of this user is given by

1 _a 1 _a
Yo = P?ry 2l Wy 8., + Z P2 ||z||” % hiw,s, + no, 2)

o

vewMuw(?

wheres, ~ CN (0,1) denotes the information symbol from the BSaatn, ~ (0,0%) is the
additive white Gaussian noise (AWGN), amd. is the M x 1 precoding vector for the BS at

In this paper we will adopt linear beamforming for interfiece nulling [12], [33]. We will
first assume that the home BS and the interfering BSs that teedippress interference to
the user have perfect CSI, while the effect of imperfect C8l be investigated in Section
[Vl We assume the typical user's home BS recei¥es requests, and thus this BS will help
min (K,,, M — 1) users to suppress interference. Denoting the channel®sé tiequested users

asf;,....f

Ko (Kag 111 then the precoding vectav,, is given by

(I — F (F*F) "' F*) h,

" (0 = F (FF) " F) by, || )

W

wherel,, is the M x M identity matrix, andF = [fl, R § (K,O,M_1)]-

7 Tmin



From [2) and[(B), the receive SINR of the typical user is gilgn

PtQOTO_a

Zze\pgnu\pf) Pyge x| + o

SINR = 4)

A

where go = h;;owm\2 is the information signal channel gaip, £ |h;§,vvg[,,|2 is the interfering

channel gain from the BS at, and 0% is the noise power. It is shown in[33] that in the
perfect CSI casey, is gamma distributed with shape parametér— min (K,,, M — 1), i.e.,
go ~ Gamma max (M — K,,,1),1], and the interfering channel gaiyp. is exponential with

mean 1.

D. Performance Metric and Key Approximations

In this paper, we use the successful transmission probatmlithe typical user as the network
performance metric, which is defined as= P (SINR > 4), where# is the SINR threshold.
However, for the typical user, the distribution of receiM&lR depends o, i.e., the number
of coordination requests received by its home BS. Thus, wetéethe successful transmission

probability to the user whose home BS receierequests as
ps (k) =P (SINR > 4 | Ky, = k). (5)
Therefore, the average performance of the typical uservisngby

Ps = EKIO [ S (KI())] = Zps (k> Pk (k) ) (6)

wherepg (k) is the probability mass function ok ,,.

The reason of adopting, as the performance metric is that it can directly measure the
average link reliability in the network. Moreover, the irogement of the successful transmission
probability also reflects the improvement of the networlotlghput. Note that there are different
types of throughput metrics focusing on different transiois schemes. For example, for the
fixed rate transmission, the spatial throughput is given\fpyp; log (1 4+ 7). On the other hand,
if the BS can react quickly to the SINR condition and adjust#te of transmission, then another

type of spatial throughput, called the Shannon throughipudefined as\;p,E [log (1 + SINR)]
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[34]. For given BS and user densities, increasing the ss@wesransmission probability,
improves the throughput, no matter which metric is used.sTke will focus on the successful
transmission probability in this paper.

As the performance analysis of the studied network is quit@lenging, in the following
we make a few key approximations. Firstly, since we consgteall cell networks, which
are interference-limited, we ignore the additive noiseha theoretical analysis. Secondly, we
assume the numbers of users in different cells are indepér{ttee same approximation has
been used inJ4],[32]), and the numbers of requests recdiyedifferent BSs are independent
(i.e., {K,: z € U} are independent random variables). These approximationglify the
analysis since the independent thinning of a PPP can beedpipecifically, under such
approximations, the set of active BSs is an independennitignof ¥,. Thus, the density of
\Ifgl) is A1 (z) = parpl (J|z|| > pro), wherel (||z|| > pro) is the indicator function that equals
1if ||z|| > wro and O otherwise. Let denote the probability that the BS has received the
request from the user but is unable to null interference litr tiser. The density of” is then
Ao (z) = epa Mol (||z]| € [ro, pro)). TO Obtain an analytical expressionafconsider an interfering
BS from the annulu$r, ure] chosen uniformly at random. Besides the request from thiedyp
user, assume it receivds more requests from other users.Af = k > M — 1, then with

% this BS will not perform interference nulling for the typlcaser, as in

probability
this case this BS will randomly pick/ — 1 from k+ 1 requests for interference nulling. To make
the analysis tractable, we assume that the request fronypieat user to this BS is independent
of other users’ situations, so that the probability masstion of & is approximated ag; (k).

It follows thates can be approximated as

o0

N k+1— (M—1)
6~k§_1 T px (k). (7)

With the above approximations, the receive SINR of the @gipicser in [(4) is simplified as

SINR = 070 — (8)
2 pewup® 9a 17l




TABLE |

KEY NOTATIONS AND SYMBOLS USED IN THE PAPER
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vector

Symbol | Definition/Explanation Symbol | Definition/Explanation

Ab, Au | BS density, user density \I/f)l) Set of interfering BSs farther than IN range
p BS-user density ratio, i.e.i—z \1122) Set of BSs who receive the request from the typical u
M # of antennas in a BS but are unable to mitigate interference to this user
e Path loss exponent & 2/«) \1123) Set of BSs who mitigate interference to the typical use
o SINR threshold € Probability that a BS receives the request from a user
0 Distance to the home BS but is unable to mitigate interference for this user
I IN range coefficient Da BS activity probability, determined by
K. # of requests received by the BSat| px (k) | The probability mass function ok,
B # of feedback bits for one channel | ps (k) | The successful transmission probability to the user,

whose home BS receivésrequests

Ber,

pr

In Section1ll, we will use[(B) to analyze the successful sraission probability. The accuracy

of the approximations will be tested via simulations. Fonv@nience, the key notations and

symbols used in the paper are listed in Tdble I.

[1l. ANALYSIS OF SUCCESSFULTRANSMISSION PROBABILITY - THE PERFECTCSI CASE

It is shown from [(6) that the successful transmission prditylis composed ofp, (k) and

the distribution of K, i.e., px (k). In this section, we will first derive, (k) andpg (k), which

will then give an approximate expression of the successéusmission probability.

A. The Expression af; (k)

In this subsection, we focus on the successful transmigsimiability to the user whose home

BS receives: requests. From the SINR expression[ih (8)(k) is given by

Ds <k> =P

—Q
goTg

Exe‘ljl()l)qul()2) g:B ||x’

==

9)

Sincegy ~ Gamma [max (M — k, 1), 1], using the cumulative distribution function of, ps (k)

can be written as

(10)
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wheres £ 4r§ and £ ermél)quém g2 ||lz||”*. Note that for a fixeds, E; [e=*'] is the Laplace
transform of 7, denoted as; (s). Following the property of the Laplace transform, we have

E; [I"e™®] = (—1)" £ (s), where£{™ (s) is thenth derivative ofZ; (s). Then, we get

max(M—k,1)—1

p(k)=E, | Y <_;!)n£§"> (s)] . (11)

n=0

The major difficulty in the following derivation is to simfji the nth derivative of £; (s),
which is a common issue when dealing with multi-antennasiraasion in the PPP network
model [24]. In [4], a novel method was proposed to obtain gnexpression of the successful
transmission probability. We follow a similar approach atetive the successful transmission
probability p, (k), presented in the following proposition.

Proposition 1: The successful transmission probability to the user whaseehBS receives

k requests is given by

ps (k) = ||[[L + p. Qi 7"

(12)

17

where ||-||, is the L; matrix norm (i.e.,

All, = maxicjcn Y |ag| for A € R™™), [ =

max (M — k, 1), I, is thel x [ identity matrix, andQ; is a lower triangular Toeplitz matrix given

by
qo0
—q1 qo0
Q = —42 —q1 Qo
| -1 —qQ—2 - —q1 qo |
The elements of), are given by
o du WA
~6 20
= ——+¢ S — 13
=17 /um{é 14 ul/d ey /4;5 14 ul/d (13)

whereé £ 2/a, and fori > 1,

242—96

s [ du Y du
qi = 75/ 7 + 575/ 7 (14)
st (ra B (L) e () (L )

Proof: See Appendix_A. [
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B. The Approximate Expression @f

Based on the expression pf (k) in Propositior[ 1L, the successful transmission probabitity

the typical user can be obtained by substitutind (12) injo K&nce,

[e.e]

M—1
P =D [0+ puQuis] ™, pxc (B) + +1p " > ok (k). (15)
k=0 atl p=m

However, the probability mass function df, is difficult to obtain. In this subsection, we
approximate the distribution o, as Poisson by matching the mean. Note that even if the
distribution of K, can be derived exactly, probably in a complicated form, tkecesuccessful
transmission probability is still difficult to obtain. Thefore, we resort to seeking a simple but
tight approximation, which helps us to obtain a tractableregsion of the successful transmission
probability. Then, we can numerically obtain the optimalrdhge coefficienj..

Remark 2:Moment matching is a common method to obtain a tractableesspyn for com-
plicated distributions since the exact results are usudiffjcult to obtain in the PPP network
model. For example, in[22], the authors used the first momeithing to approximate the area
of a cell in heterogeneous cellular networks. [In|[26],/ [28F], [36], the Gamma distribution
was used for approximating the residual interference bprsgorder moment matching. It is a
practical approach, and the results are tight in general.

To approximate the distribution of,, we first obtain the first moment df,, i.e., K, which
is provided in the following lemma.

Lemma 1:The expected number of requests received by a BS is p, (1> — 1).

Proof: See AppendiXB. [

Based on Lemmall, the probability mass function/6f is then approximated using the

Poisson distribution as

—\ k
pr (k) =P (K, = k) ~ (I;) e K. (16)

Note that from [(1B), the distribution oK, only depends on the BS-user density ragti@and

the IN range coefficient. In Fig.[2, we demonstrate the accuracy of the approximatod it
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O 7 T T T T T T T
J? —6e— Simulation Results
0.8 , , , | = € - Poisson approximatiaj

=

Probability p, (K)

MR
The number of requests received by a BS

Fig. 2. The probability mass function df,, i.e., px (k), with p = 0.1.

is shown that the approximation is more accurate for smaillesof ;.. In Section VY, we will
further test the impact of this approximation.

By substituting [(IB) into[(15), the approximate expressadnthe successful transmission

probability to the typical user is given by

M-1 k
sy PP = DF ey | v [Mopa (02 — 1))
ps & kz:; T+ paQu] 7|, e ) T

where~ (a,b) is the lower incomplete Gamma function.

Remark 3 (The effect of the BS and user densitikts¥ apparent from[(17) that the effect of
Ay, and )\, on p, is determined by the BS-user density ration the following of this paper, we
will changep to investigate the effect of the BS density or the user dgnisitreasingy can be
viewed as increasing the BS density for a given user derwitgquivalently, as decreasing the
user density with a certain BS density.

Remark 4 (The non-coordination strategyyote that wheny = 1, (I7) becomes the exact

expression, i.eps = || [Iar + p.Qus]'||,, Whereq andg; are given in[(IB) and (14) with = 1
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o
©

0.85r

| —8— Simulation result
| | —6— Approximation

- - = Non-coordination
0.45 . .

The successful transmission probabil'pg/

1 12 14 16 18 2 22 24 26 28 3
The IN range coefficieni

Fig. 3. The successful transmission probability as a fonctf 1, with A, = 10 °m ™2, A\, = 1072m ™2, M =8, « =4 and

4 = 10. The maximum performance gain of 37% is the relative impnoset from 60% to 82%.

ande = 0. The result for this special case was obtained in [4]. In & of the paper, we refer

the performance of the non-coordination strategp.am (17) for . = 1.

C. Performance Evaluation

By now, we have obtained an approximation of the successtokimission probability using
the user-centric intercell interference nulling strategih a fixed .. We can then search for the
optimal « numerically, which is the: that maximizes the successful transmission probability,
ie.,

W= arg mjxx Ds- (18)

In the rest of the paper, we will use” and ji* to denote the optimal values obtained through
simulation and based on the approximatiorlin (17), resypagtiA main benefit of our analytical

approach is thaji* can be found much more efficiently thart, which requires extensive
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simulations. Next, we would like to examine the effectivemef the proposed strategy and
the tightness of the approximation.

In Fig.[3, we compare the simulation results with the appmation results, where the BS
density is\, = 0.001 perm?, user density is\, = 0.01 perm? and the SINR threshold i = 10.
From Fig.[3, we can infer that selecting a proper IN range fmeft ;. can greatly improve
the network performance and that there exists an optintal achieve the maximum successful
transmission probability. Particularly, compared witk tion-coordination scenario (i.e.,= 1),
using the user-centric intercell interference nullinghnthe optimaly can improve the relative
performance by about 37%, which indicates the effectiveioéshe proposed method. Moreover,
by comparing the simulation results with the approximatige find that the approximation result
is lower than the simulation, and the approximation errareases with.. This is because the
approximate (k) is less accurate whemis large. However, it is also shown that the optimal
IN range coefficien, obtained from the approximatiom{ ~ 1.9) is close to the optimal value
from simulation [i* =~ 2.1). As the curve ofy is quite flat neay.*, a small deviation ofi* will
only slightly affectp,, and thus we can obtain a near-optimalia the approximate expression.

More results will be shown in Sectidnl V to confirm the tighthed the approximation.

V. THE SUCCESSFULTRANSMISSION PROBABILITY WITH LIMITED FEEDBACK

The results in Section_lIl were derived assuming perfect. E®wever, there will always be
inaccuracy in the available CSI, which will degrade the perfance. In this section, we consider
the case where the active BSs will obtain quantized CSI tiirdimited feedback, which is a

common technique to provide CSI at the transmitter dide. [37]

A. Limited Feedback Model

With limited feedback, the channel direction informati@i)]) is fed back using a quantization
codebook known at both the transmitter and receiver [37 §bantization is chosen from

a codebook of unit norm vectors of siZ#, where B is the number of feedback bits for
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each channel. We assume that each user uses a differentood&bavoid getting the same
quantization vector for different channels. The codebawkilie typical user is denoted s =
{¢;:j=1,2,...,28}, where the codewords are generated using random vectotizatam
(RVQ), i.e., each quantization vectey is independently chosen from the isotropic distribution on
the M dimensional unit spheré [112], [B8]. It has been shownr in [£8F] that RVQ can facilitate
the analysis and provide performance close to the optimahtigation. Each user quantizes its

CDI to the closest codeword, measured by the inner produrefore, the quantized CDI is

~

h, = arg max }fl;éj} , (29)

C]‘ECU

whereh, £ Hﬁil\ is the actual CDI. Then, the index of the quantized GDlis fed back withB
bits. In this paper, we assume the feedback channel is e®rand without delay. Thus, each
active BS will use the quantized CDI of both the signal aneriigrence channels to design its
transmission vector.

For user-centric intercell interference nulling, eachrus# only needs to feed back CDI to its
home BS, but also to the coordinating BSs. We assume thatusaclieeds back all the quantized
CDI to its home BS, and then the home BS forwards the assdc@id to the corresponding
BSs through backhaul connection. With the imperfect CSlaaheBS, the received signal for
the typical user (at the origin) is given by

Vo= Py T Wapsin + > P S Wi, + o, (20)

eew{M P up?

Where\Ifff’) denotes the set of interfering BSs who help this user to sgsgnterference. It can be
shown thaﬂfl(f’) is a non-homogeneous PPP with dengifyz) = (1 — ¢) p. Ao (||z]| € [ro, ro))-
Note that in the perfect CSI case, the BSsIfifi) do not cause interference to the user. However,
with limited feedback, there is residual interference fritiese BSs due to the quantization error.
Moreover, the precoding vector of the BS:gtdenoted asv,, has the same expression Bk (3)
but is designed based on quantized CDI. Therefore, theve@&NR can be written as
goro ©

SINR = -
Zme\I/,()”U\I/,()Q)U\I/,(f’) 9a |||

(21)

™
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where the equivalent channel gain is giverjas- |hj;vizx|2. Compared with the SINR expression
@) in the perfect CSI case, it is clear that due to limiteddfesck, there is another part of
interference, which igﬂf) g« ||z||”*. Moreover,g, no longer follows the gamma distribution
with scale parameter 1, and its parameter will depend on timeber of feedback bitg3. In

the next subsection, we will derive the distribution of tHeacnel gains and then obtain the

expression of the successful transmission probabilitgdam (21).

B. Expression op, with Limited Feedback

To determine the successful transmission probability, wa& fieed to get the distribution
of channel gains with limited feedback. Since the precodmgtor w, is independent with
the channel from the BS at € \Ifgl) U \Iff), g, 1s still exponential, i.e.g, ~ Exp (1) for
T € \Ifl(,l) U \Iféz). However, due to the quantization error, the distributiofghe information
channel gainj, and the residual interference channel gainfor x € \If}f’) will change, which
are given in the following lemma.

Lemma 2:Given the number of feedback bits for one channel vectoBaghe distribution

of the information channel gaify can be approximated dg ~ Gamma [max (M — k, 1), ko),

where M is the number of BS antennals,is the number of requests received by this BS, and

Ko 21— 283 (28, ;24-) whereg (z,y) = Fr(?;)iifﬁ) is the Beta function.

Moreover, the residual interference channel gainfor x € \Ifg?’) can be approximated as
g ~ Exp (1/kr), wherex; = 253 (2, 55 ) = 1 — K, is the quantization distortion.
Proof: The proof is similar to Lemma 5 in [12]. [ ]
Based on the SINR expressidn{21), the successful tranemipsobability is given by
Pp— )
psir (k) =P ( 9% = > 7) : (22)

erwil)uq/f)u‘l/ff’) 9o ||

where “LF” represents limited feedback. Then, following ttame procedure of Propositioh 1
and using the distributions @f and g, in Lemmal2, the successful transmission probability to

the typical user is given in the following proposition.
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Proposition 2: With limited feedback, the successful transmission prdibakto the user

whose home BS receivdsrequests is given by

psrr (k) = ||[L + Qi) 7Y, (23)

where! = max (M — k,1) and Q, has the same structure as in Proposifibn 1, witland ¢;

replaced by

A d N () g 5 2 (29) 7 g
war = (2) [0 e () [ e () [ e
0 u2(3—0) 14 us Ko (%) 14+ us Ko (ﬂa) 14 us

AN u 7\ ) u
wr = () Loy <1+uz§ (Hu;)i”(;) iy (HU;SZQM;)"

Proof: See Appendix . [
By substituting [(2B) into[(6), we can obtain the final expi@sof the successful transmission
probability with limited feedback.

Remark 5:By comparing the expressions of the successful transmigsiobability of the
perfect CSI case and the limited feedback case, we can @b#eav the only terms changed
are g, andg;. Moreover, the quantization distortiorny decreases when increasing the number of
feedback bitsB, andx; — 0 when B — oo. This means tha, r andg¢; .r in (24) and [(Zb)

will converge tog, andg; of the perfect CSI case a3 increases.

C. Performance Evaluation

In Fig.[4, we show the effect of the number of feedback Bitsn the successful transmission
probability. We see that with limited feedback, the sucfitdgsansmission probability is still a
guasi-concave function with respect to the IN range coeftfiici, i.e., ps will first increase and
then decrease whem increases. Moreover, similar to the perfect CSI case, tipeoxpnation

is more accurate whep is small, but for different values oB, the optimaly. obtained via
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Fig. 4. The successful transmission probability as a fonctf 1, with Ay = 107>m~2, A\, =107 2m~2, M =8, a =4 and

4 = 10. The dashed lines are the approximation resultsHot 8, 20, 40, and the perfect CSI case, respectively.

the approximation is close to the one via simulation. Thhe, dpproximate result can help to

optimize the proposed interference nulling strategy.

V. NUMERICAL RESULTS

In this section, we will compare the proposed strategy witteointerference nulling methods,

and then present some numerical results to provide guakelor practical system design.

A. Performance Comparison of Different Interference MgjliStrategies

First, we will compare the proposed interference nullingtsgy with other interference nulling
methods. One method for comparison is similar to that us¢8lh where each user will request
a fixed-number ) of BSs for interference nulling, denoted msmber based ICINParticularly,
each user request¥ nearest interfering BSs to suppress interference. ButefBB receives
more thanM — 1 requests, it will randomly choos&/ — 1 users to mitigate interference. The

other method for comparison is the random BS clustering atgthroposed in [26].
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Fig. 5. The successful transmission probability with difet BS-user density ratios, with, = 107°m ™2, M =8, a = 4
and4 = 10, where “ICIN” stands for intercell interference nullingh& dashed line is obtained through simulation using the
approximated optimal (i.e., 2*) from (I4), while the square is obtained by using the optimdi.e., 1*) in simulation.

Fig. 8 shows the comparison results for different BS-usarsity ratios. Note that for all
methods, we use the optimal value of the key parameterfaorethe proposed strategy, we use
the optimal IN range coefficient. For the fixed-number based ICIN, we optimixeto obtain
the maximump,. And for random BS clustering, we find the optimal Cluste&izwloreover,
the successful transmission probability without coortiorais presented as the baseline. From
Fig.[ , we can find that: 1) User-centric coordination methsinificantly outperform the BS
clustering method, and the proposed method performs kietdearthe fixed-number based ICIN.
2) Using the approximated optimal (denoted agi*) provides performance very close to that

using simulation to search the optimal(denoted ag.*), so it can be used in practice. 3) As

3The optimal N of the number based ICIN and the optimal cluster size for sand$S clustering can only be obtained via

simulation as no analytical expressionf is available for these two cases.
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increas% the successful transmission probability increases, taagpears that the performance
gaps between different methods stay constant.

The superior performance of the proposed coordinatedeglyas because it can more effec-
tively identify the dominant interference for each userjlesthe other two coordination methods
are not adaptive to each user’s interference situationthBtmore, we find that the optimal
in Fig.[3 is about2, from which we can derive the average number of requ&sts be around
2 ~ 3, so most BSs can well handle the requests with the availgiaigas degrees of freedom.
This also confirms that our proposed method is practicalesthe IN range is not large, and

thus the amount of signaling overhead will be acceptable.

B. Guidelines for Practical Network Deployment

Next, we shall provide some design guidelines for the ptattietwork deployment with our
proposed interference nulling strategy. We will consideo different options to improve the
network performance, i.e., to deploy more BSs or to increasenumber of BS antennas. The
effects of these two approaches are shown in Big. 6. In thigdigfor a given value of\/,
we obtain the minimal BS-user density raporequired to achieve the successful transmission
probability of 0.9 with the SINR threshold as 0 dB, 5 dB and B) tespectively. The approx-
imated optimalu (i.e., 1*) is used for the proposed interference nulling strategy flowing
interesting and insightful observations can be made: 1)Whe SINR threshold is small, the
performance of the proposed strategy is similar with thégperance of the non-coordination
strategy. It can be found that the optimaltends to 1 whery decreases. 2) When is large,
the advantage of the proposed interference nulling styategignificant. For example, with
M = 6 and4 = 10 dB, it can achieve the same performance as the non-coaanstrategy
with only 1/3 of the BS density; while with the BS-user density ratio ast 2chieves the same

performance at\/ = 5 instead ofM = 12. It means that the deployment cost can be greatly

“Note that previous works such &s [26]9[31] focused on the gas= 1, which could not capture the effect of the user

distribution.



23

—8— Proposed strateg
—— Non-coordinatio

3.5

The BS-user density ratip)
R

o
3]

o

9
The number of BS antennad

Fig. 6. The minimal BS-user density ratio required to achigy= 0.9, with different numbers of BS antennas, with= 4.
For the proposed strategy, the approximated optiméi.e., /i*) is used to obtairps, then we find the minimap to achieve

ps = 0.9. The dashed line is the reference line, on which all the pdiaive the same value af p.

reduced with the proposed interference nulling strategyeet the requirement of high data rate
transmission. 3) The number of BS antennas plays a more tamgaole than the BS density.
If we fix the total number of antennas per unit area, e.g.pfik = 6 as in Fig.[6, it is shown
that increasingV/ can improve the supported SINR threshold, which implies tioalocated BS

antennas can support higher data rate requing'nent

C. The Impact of Imperfect CSI

So far we have demonstrated the effectiveness of the prdposar-centric intercell interfer-
ence nulling strategy, especially for the high SINR requeeat (i.e.,y is high). Next, we will
investigate the effect of the limited feedback on the pentamce.

®This conclusion depends on the actual transmission syaied a full comparison between co-located and distribatgenna

deployment is left to future work.
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In Fig.[d, we evaluate the effect of the number of feedback Bitwhere the performances
of cooperative and non-cooperative systems are compardddifierent values ofB. We find
that when the number of feedback bitsincreases, the successful transmission probability will
approach the perfect CSI case. However3ifs not sufficiently large, using interference nulling
has a similar performance with the non-coordination sgat&his is because wheh is small,
the quantization error is large, which will limit the penfoance of interference nulling. Thus,
a sufficient number of bits are required to quantize each radlavector in order to exploit the

performance gains of interference nulling, e.> 10 for the network considered in Figl 7.

VI. CONCLUSIONS

In this paper, we proposed a novel interference nullingtesgsa for downlink small cell
networks, which we refer to as user-centric intercell ifgiemce nulling. By comparing the

interference power with the received information signalvpn the dominant interfering BSs for
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each user can be identified effectively, which brings pentoice gains compared with other
coordination methods, such as random BS clustering. Spaltyfi it was demonstrated that
satisfactory user performance can be achieved in smalheglNorks, with intercell interference
suppressed by effective coordination strategies, supgdry a sufficient number of antennas at
each BS and with accurate CSI. Moreover, random spatialarktwodels were proved to be
a powerful tool to analyze and design cooperative celluktwvorks, in which it is critical to
consider the spatial distributions of both BSs and users.

With a low implementation complexity and a higher performargain, the proposed in-
terference coordination strategy will have wide applmasi in cellular networks. The user-
centric approach can be easily applied to other interferemanagement methods that are
performed in the time or frequency domain. One limitationtle¢ current work is that we
only considered the same type of BSs. The extension to marergleheterogeneous cellular
networks (HetNets) therefore requires further investigatMoreover, the consideration of other

transmission techniques, such as multiuser MIMO, will baraaresting research direction.

APPENDIX

A. Proof of Propositiorf 1
To derivep; (k) based on[(1l1), we start from the Laplace transforn? aonditioning on a
fixed s, given by

Lr()=Elexp|—s > gola|™||s]. (26)

zcw{Muwl?

Since the channel gaing are independent and identically distributed (i.i.d.) exgatial random

variables overr, the above equality can be written as

Lis)=E| ]] L (27)

_a .
2erDuu? 1+ s
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Then, the Laplace transform df can be derived using the probability generating functional

(PGFL) [34], which is given as

> 1 wrg 1
L = —TApPa 1——+)d - d . 28
1(s) = exp AP /Mg,% < 1+ 5u‘2) v 8/,2 < 1+ 5u‘2> “ (28)

0

Based on[(28), thexth derivative of £; (s) with respect tos can be written according to the

following recursive form

n—1

-1\ . o (—u_%)n_i du wrg (—u=2)""du
L6 = S | 2% n—z!/ . +g/ | (29
I ( ) bp; ; I( )( ) y,%«%(l—}—ﬁu_%)n_l—’_l 7"(2) (1+5u_%)n—2+1 ( )

Denotea,, = (_s)nﬁf,”) (s) and substitute = 4r§ into (28), then we have

n!

ag = L1 (s) = exp (=T A\palio) , (30)

whereg, is given in [13). Similarly, by substituting = 4r§ into (29), we get fom > 1,

n—1 .
n—1
n — A a i n—iQi, 31
Uy = TAPaT ; il (31)
whereg; is presented i (14). Note thas andg; can be expressed as the Gauss hypergeometric
functions [4]. Sincea, and a; have the same recursive structure aslin [4], using the eesult

derived in [4], the successful transmission probabilitp b& obtained, as shown in_(12).

B. Proof of Lemmall

Denote the number of requests sent from the served useetbasj asN,, which is a random
variable due to the random distance between users and B&sb&ic equality is that the total
number of requests sent by all served users should be equbkttotal number of requests
received by all active BSs. Since one active BS will only seone user at each time slot, the
expectation ofV, is equal with the expectation df,, i.e., N = K. Therefore, to obtair, we
can instead derive the distribution 8f, and obtain\V.

Assuming the distance from the typical user to its home Bg,ithen the number of interfering

BSs (V,) in the annulus from radius, to ury is Poisson distributed because interfering BSs
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follow a PPP with density, \,. Denote the area of the annulusdswhichisA =7 (,uro)2—7r7“§,

then the distribution ofV, for a fixedr, is given by

[)‘bpa-A]n o MopaA

P(N,=n|ry) = y (32)
On the other hand, the transmission distancéas the following distribution [39],
fro (1) = 27?)\1)7“6_“)‘”2. (33)
Therefore, the unconditional distribution of, is written as
P(N, = n) /OOIP’(N n | 7o) f (ro) d {1+ ! }_n ! (34)
o= = o= T o) Arg = .
0 e pa(p?—1)] 1+pa(p*—1)

Furthermore, the expectation &f, can be derived a8/ = p, (u? — 1), which also givesk.

C. Proof of Proposition 2

The successful transmission probability in1(22) can be esged as

A . max(M—k,1)—1 (QILF)H e
psir (k) = P(go > Arglir) = Es Z Er e ¢

max(M—k,1)—1 (

= L Z n! ‘CILF

n=0

3. 93

S—

3
—~
2
—~
o>
S—

, (35)

g £ erqjél)quémqugg> g. ||z)|”%, and ﬁ.(rZ)F (s) denotes thenth derivative of
Laplace transform ofyr with respect to a fixed. Similar to (27),£,, .. (5) is given by
»CILF (§> = E H M% H “;—a % . (36)
zewVuw? 4l ccv® s ]
Using the PGFL[[34], the Laplace transform Bf: is then written as
. * su2du W8 su=5 du WS g rsuT 3 du
L, (8) =exp{ —TAppa / ﬁ"“g/ ﬁ"‘(l_g)/ .
uzrgl—i—su 2 r2 14 su™> r2 14+ Kksu™2
(37)

Then, following the same procedure as in Apperdix A, we caaintihe successful transmission

probability shown in[(23).
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