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Abstract—Compressed sensing (CS) is an emerging paradigm topic [2] borrows from the theory of sparse representations
for acquisition of compressed representations of a sparseghal. ~derive a two-description coding scheme through a frame syn-
Its low complexity is appealing for resource-constrained eenarios thesis operator. However, the work does not consider random

like sensor networks. However, such scenarios are often cpled ecti Th K inf13 t thod t ¢
with unreliable communication channels and providing robust projections. e work in[[3] presents a method to generate

transmission of the acquired data to a receiver is an issue. descriptions of an image by sensing each of them separately,
Multiple description coding (MDC) effectively combats chanel i.e., preprocessing the image to split it into two sub-images
losses for systems without feedback, thus raising the intest in  and then sense the wavelet coefficients of each separately. W
developing MDC methods explicitly designed for the CS frame iy not consider this kind of approach in the paper because
work, and exploiting its properties. We propose a method cééd . - . .
Graded Quantization (CS-GQ) that leverages the democratic we want to .e>.(pI|C|tIy avoid any prepr.ocessmg of the signal
property of Compressive measurements to effective|y impment befOI’e aCQUISItIOI’I. Indeed, CompreSS|Ve measuremenﬂd cou
MDC, and we provide methods to optimize its performance. A be directly obtained by specialized hardwaeeg( [4]-[6]),
novel decoding algorithm based on the alternating directios thys hindering any preprocessing of the data. Dengal.,
method of multipliers is derived to reconstruct signals fran [7] argue that the democratic property of random projetion

a limited number of received descriptions. Simulations are . o .
performed to assess the performance of CS-GQ against other makes compressive sensing image coding robust to channel

methods in presence of packet losses. The proposed method id0SSeS. They just partition the measurements into packets s
successful at providing robust coding of CS measurements dn that the quality of the decoded image will depend on the

outperforms other schemes for the considered test metrics. number of received packets. However, they do not consider
a practical packetization problem, as they employ very kmal
. INTRODUCTION packets containing few measurements for each transmission

Compressed sensing (CSJ [1] is a novel theory for Sar%uch system is actually not sensible due to the high packeti-

. > ; . ation overhead.
pllng.and acquls_mon of sparse and cpmpre§3|ble S|gndd§. v This paper builds on the MDC mechanism called graded
traditional paradigm based on sampling a signal according t

the Nyquist/Shannon theorem followed by compression ¢ Hantlzatlon (.CS'GQ)’ originally prop(_)sed nl [8], expiog
be replaced by the acquisition of a small number of line e democratic property of compressive measurements. The

r. . . . .
measurements, in the form of random projections. This [Iasrlnmple behind CS-GQis that muIUpIg copies of the measur
very appealing for low-complexity systems, such as Iow&mowment vec_tpr can be used as descriptions. Each dgscnptm_n IS
sensor motes, where classic acquisition followed by compréh.en partitioned into sets of samples, and each set is qeanti

sion could be expensive in terms of energy consumption aW(IJIh different quality. The principle is similar to [9]=[19but
Has never been applied in conjunction with CS.

computational demands. Such systems typically need ts-tran ; : L .
: . ; ; In this paper, we give several novel contributions with
mit the acquired data to a receiver over unreliable channels

thus raising the issue of robustness of the transmissioilmitgareSpect to. [8]. First, we discuss how methods ba:_:,ed on
gmentanon of measurements suchlas [7] are special cases

channel losses .and at the same time imposing a constr%(‘fw CS-GQ and, contrary to the present literature on MDC
on the complexity of the adopted methods. The framewo][ ) R
or CS, we carefully consider packetization issues. The use

of multiple description coding (MDC) allows to increase the

X ; . of CS for low-complexity and low-energy sensor networks
robustness by creating multiple correlated represemsitaf otivates us to bav particular attention to the use of the
the data to be transmitted. The quality of the decoded dals pay p

will then depend on the number of descriptions available groposed method with common data link layer protocols such

the receiver, wherside decodergan recover a lower quality as IEEE 802.15.4. Moreover, we propose techniques to im-

. . - grove the performance of CS-GQ, to optimize its parameters,
version of the data from few received descriptions, whereas ) . i

i . . and we introduce a novel algorithm based on the alternating

the central decodercan achieve the maximum quality when .~ " - :

directions method of multipliers (ADMM)_[20] to implement

all the descriptions are received. A few works studied t . : . .
problem of MDC in the CS framework. An early work on thre}ﬁe side decoder. On the theoretical side, perfomance sisaly

is conducted by providing reconstruction guarantees fer th
The authors are with the Department of Electronics and ®etecuni- Side decoder, using both the actual decoder and an ideal
cations of Politecnico di Torino. Their work has receivechding from yarsion based on the oracle decoder. which serves as a limit
the European Research Council under the European ComrisuBityenth i £ O’ h . I sid
Framework Programme (FP7/2007-2013) / ERC Grant agreememtber case for performance assessment. On the experimental side,

279848. simulations are performed for various scenarios. The paper
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is organized as follows: SeCl Il explains some introductory

background concepts, Séc] Ill introduces CS-GQ and[Séc. IV | Side decoder L o iy
the side decoding algorithm based on ADMM. Sek. V presents Output 1
theorems guaranteeing stable side decoding and discimses t Descripton 1

performance of oracle-based side and central decoder$VBec -

deals with the optimization of the CS-GQ parameters as func- | V°° &% | et decoder I ity
tion of the channel loss probability and discusses packiidia Description 2 - output

issues. Finally, Sed_MIl reports the results of simulation
comparing various MDC methods, the performance of CS- ,

GQ in presence of channel losses using two different channel | S e o iy
models and shows that the robustness of multiple desaniptio ouput

can improve scene recognition accuracy in a sensor networkig. 1: Block diagram of a two-description MDC system.

application.
bbb/ description 1

b
B|B|B | B | description2
m
74’

Il. BACKGROUND B B B
A. Compressed sensing b b b

In the standard CS framework, introduced lin [1].][21], a
signalx € R**! which has a sparse representation in some 1
basis¥ € R"*", i.e.x = V0, |0]o=%k, k< ncanbe
recovered from a smaller vector of noisy linear measuresment
y = ®x+e, y € R andk < m < n, where® € R™*"

is thesensing matrixande € R™*! is the vector representing ) )
additive noise such thate|» < ¢, using [22] identify the so-calleccentral decoder and thside decoders.

The role of the central decoder is to decode the source
0 = argmin ||0]; st [|PVO -y << (1) Wwhen all descriptions have been received, thus achievieg th
o so-called central distortion. The side decoder recovees th
andx = W@, known as Basis Pursuit DeNoising, provided thatource with a lower fidelity (side distortion) since only a
m = O(klog(n/k)) [21] and that each submatrix consistingubset of the descriptions has been received. This scheme
of k columns of d¥ is (almost) distance preserving [23/S depicted in Fig[Il for the simple two-description case.
Definition 1.3]. The latter condition is thRestricted Isometry One may seek to create balanced or unbalanced descriptions

Property (RIP). Formally, the matrixd¥ satisfies the RIP of depending on their individual contribution to the final dtyal

vz o| | oo

Fig. 2: CS-GQ

orderk if 35, € (0,1] such that, for any with [|0]|o < of the recovered source. Several approaches to MDC have
) ) ) N been studied in the literature. Among others, it is possible
(L=0di)[6]lz < [|2VO[|z < (1+46x)[012, identify approaches based on transforms, such as the Bairwi

where 4}, is the RIP constant of order. It has been shown Correlating Transforml]27], approaches based on channel
in [24] that when® is an i.i.d. random matrix drawn from ¢0ding, such as Unequal Error Protectidn|[28] and appraache
any subgaussian distribution arid is an orthogonal matrix, based_on guantization, notably the Multiple Descriptioal&c

PV satisfies the RIP with overwhelming probability. More Quantizer (MDSQ)[[11].

over, using a random matrix as sensing matrix, ensures the

democratic propertyof compressive measuremerys [25]. I1l. GRADED QUANTIZATION FORMULATION

Indeed, it can be seen that each measurement has rough
the same importance as the others, in the sense that nong Q

them improves or degrades the quality of the reconstructi R Q,. Two different quantization step sizes (coarse and

significantly more than the others. This property is the keTYne) are chosen and assigned to each set to generate the first

ggézg% of our proposed CS-GQ technique, as descrlbedd'gscription. The dual assignment is performed for the sgcon

description. This is graphically shown in Fig. 2, where wa-co
_ o _ sidered; = {i € [1,2]} andQy = {j € [Z +1,m]} but,
B. Multiple description coding thanks to the democratic property [25], the same performanc
MDC [26] is a way of coding an information source that iss expected for any other definition of the sets with the same
resilient to packet losses. The multiple description témpiva cardinality,e.g, the sets of even and odd indices. Before going
allows to create multiple correlated representationseftig- into further details, we remark that this scheme is amenable
inal information source, each carrying enough informatmn generalizations to an arbitrary number of sets and quditiza
decode the source with a certain fidelity. Losing a desanipti step sizes and hence of descriptions. In this paper we will no
will not make the received data unusable since each deiseriptconsider this more general case, and we will rather focus on
can be decoded separately, albeit providing a limited tpalithe analysis and usage of the two-descriptions system. The
However, the best decoding quality is obtained when all thgoposed system design may provide either balanced or-unbal
descriptions are available. In the framework of MDC, one camced descriptions, depending on how many measurements are

the simple case of two descriptions, CS-GQ partitions
indices of the measurement vecforinto two sets(;
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e L e R R R L e R '}'gghbiré?' they are regarded as computationally too complex and with
Low res. little or no performance gain, as shown [n [29].
’ ’ ‘ (b bits) An improvement over classic recovery from noisy measure-
. Central ments [[1) can be obtained if we explicitly take into account
OO R R OO partition the two different quantization noise levels. Hence, thee sid

Fig. 3: High and low resolution quantizers are staggered ggcoder solves the following optimization problem:

that the central decoder achieves higher precision. ly® —oBwg|, <ep
s =

(

v - awol <4
(
(

guantized using the high-rate and the low-rate quantizars. HY V- fI"b)‘I’@Hz
case of unbalanced descriptions, the cardinality of @etand [y® —e®we|
Qs is not the same. Balanced descriptions offer the same side _ _
decoding distortion regardless of which description isheed. Where®(”) and®®) are the appropriate submatricesiafi.e,
Otherwise, unbalanced descriptions may have significanffy"estricted to the rows corresponding to the measurements
different side distortion depending on the specific desiciip With fine and coarse quantization levels, respectively. fie

that is received. This is desirable when the descriptioes dp-NOrM constraints i {2) take into account the differentrgua
sent on separate channels having very different packet I4&tion levels in the two sets, being; ande, the expected
probabilities. In the simplest case, one description isaioed ¢2 Norm of quantization noise, which can be estimated as

in a single packete.g, when the number of measurements is A2 A?

small or there is no packet-size limitation. Issues related ep = \/mpi=2 and g, =\/mpi—2 .

packetization strategies and channel losses will be distlis " 12 12

later in Section_MI. The/..-norm constraints enforce consistency with the quan-
From now on, we consider staggered uniform scalar qudieation intervals 4.e., a reconstruction whose measurements

tizers with 28 and 2° levels, andB > b. The associated would be quantized to the same intervals as the observed mea-

guantization step sizes are, respectivAly, andA,, which are surements, allowing better dequantization performahé&g, [2

linked to the number of levels through the dynamic range [30] -, thus exploiting all the information available redarg

Ap =278 and A, = r27°. Thei-th description; = 1,2, the original unknown signal. Note that, while thg-norm

has thenmp; elements quantized with” levels andm,; constraints refer to theveragenorm of the noise, thé,.-norm

elements quantized wittf levels, such thatup ;+m;,; = m. constraintis applied individually on every linear measueat.
Staggered quantizers are quantizers whose reconstructiorf8], it is shown that explicitly considering the previdus

levels are shifted with respect to each other. In this wdrk, texplained structure of the noise in the reconstruction lerab

staggering involves the low-resolution and the high-resoh provides significant gains in the quality of the reconsiarct

guantizers and is motivated by an improvement in the reseith respect to considering an average noise norm.

lution obtained by the central decoder, which receives bothOn the other hand, when both descriptions are received, the

the high-resolution and low-resolution versions of eactaimecentral decoder outputs the vector

surement. In fact, when both descriptions are received) eac . .

measurement falls inside the intersection of the quamizat Oc = arg mm 01, st [yc— 2V, <ec, 3)

intervals defined by the two staggered quantizers, which is . . ) .

smaller or equal thar . Hence, the low-resolution quantizerVNere yc is obtained in the following manner. For each

has its bins shifted by32. The following equations describeM&asurement, the quantization bins of the high- and low-

how the measurement vectgris quantized to generate the Jesolution versions are compared to determine the correct
descriptions: bin in the central partition to be used for the dequantizatio

(see Fig[B)<s2 can be estimated as il {15) to properly take
guantizer staggering into account.

Os = argmein 18], s.t.

y B = {LJ Ap + Ap We shall also consider a special case of CS-GQ, which
Ap 2 we call CS-SPLIT. It is a simple technique that consists in

w _ | Y~ A—QB A Ay, Ap splitting the measurements vector into 2 or more segments,
yo= A, b+ 9 + o so that instead of transmitting a single packet with all the

_ _ . _ measurements, two descriptions are created by packehaing
This allows to gain some extra bins of widf when low-  of the measurements in each. Referring to Figlire 2, CS-SPLIT
resolution and high-resolution quantizers are combinédds T can be regarded as a special case of CS-GQ when 0,

is shown in Fig[B for a 4-bit high resolution quantizer and providing the best central distortion but worst side distor
2-bit low-resolution quantizer. In general, the high resioin as shown in section VIFA.

quantizer hag” bins, the low resolution quantizer h2lsbins,
while the combined quantizer ha§ —2° +1 bins of sizeAp
and2(2® — 1) bins of size&2.

In this work we do not consider more complex quantizers, In this section, we propose a method for the resolution of
e.g, the Lloyd-Max method or vector quantization, becauggoblem [[2) based on ADMM. Iri 8] problerhl(2) is solved by

IV. ADMM- BASED SIDE DECODER
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CVX [31] [32], a framework to model and solve convex optiB. Unconstrained problem and auxiliary variables
mization problems, which employs the semidefinite program-
ming (SDP) solver SeDuM[_[33]. SeDuMi uses interior point
methods to solve general SDP problems, resulting in rat
slow performance, especially for large scale problems duefP
the fact that those are second-order metfloitsthis paper, we (B) (B)
propose a significantly faster reconstruction algorithraeol H=2o"¥ and h=y

on the Alternating Directions Method of Multipliers (ADMM) L=3"¥ and 1=y® .

tailored to solve probleni]2). ADMM_[20] is a popular first-

order method that allows cheaper iterations, and that aoesbi Then,

the robustness of the method of multipliers (a method to

solve a constrained optimization problem via unconstdineds = arg mm{ 1011, + Zey (e m1m) (0) + Loy (o1 (6)
minimization of an augmented Lagrangian function, inahgdi

the constraints as penalty terms and an additiédpgenalty +Ze (e, 1) (0) + Lo ey, 1) (0) }

as augmenting term)_[35] in terms of convergence, and the .

decomposition property, similar to dual ascent][36], which — argmem{ 101l + Zea(ep.1.m) (HO) + Ty (ey.1.0) (1O)
also allows for a distributed implementation. It is partaoly
convenient to solve the side decoding probléin (2) because it +IC°O(A7B,I,h) (HO) +ICOO(%,I,1) (L6) }
allows to use alternating updates to the dual variables of an

augmented Lagrangian, projecting over the sets definedeoy where I is the identity matrix of suitable size. We now
multiple constraints. A proximal gradient method is used t®troduce auxiliary variables, z, p, q.

update the primal variabl@ at each iteration. In the following

we report the derivation of the algorithm, while the comelet w=H0, z=16, p=HO, q=16

procedure is summarized in Algorithinh 1.

It is possible to use indicator functions to transfofr (2pin
unconstrained minimization problem. First, we define the
lowing quantities

The problem can be now recast as:

A. Notation

Let us first introduce some notation that is used during te= arg min { 101, + Zes(ep.1.m) (W) + Zey(ey. ) (2)
derivation of the algorithm. First, we define the sétandC.., WZ,P.d o T
which are feasible sets defined by theand ¢, constraints +T, ap @)+, (s, (q) }
of @), as a function of generic quantities b andc, as “(T ’ ) (*’ )

subject to =H6 =16 — HO -0
Ca(A,b,c)={0€R" | |40 —Db|, < ¢} | w . Z , P . q

Coo (A,b,c) ={0 €R" | [|[A0 — bl < ¢}, We can include these new constraints by building an aug-
along with the corresponding indicator functions, namely mented Lagrangian functional:

0 if @ Cy(A Db,c)
7, 0)(0) = i
Ca(Ab.c) (6) {oo otherwise

0 if@eCx(ADb,c)
Ze.(Abe) (0) = : : . . p )
oo otherwise +s" (p— HO) +t7 (q - L6) + G |lw — HO|3
The quantities defined above will be used to replace the

constrained formulaton of problerl (2) with an unconstrdine

one. Moreover, we define the soft-thresholding operatoln wit
threshold) as Moreover, we switch to the scaled form by defining the

following residuals and scaled dual variables:

J =101l +Zey(ep,1.0) (W) + Loy ey, 1) (2) +Icw(A7B7,7h) (p)
+ICOO(%J,1) (q) +u’ (w—H@) +vT (z— LO)

p P P
+ L)z~ 16]3+ £llp — HOJ3 + Llla— LI .

Sx (v) =sgnv) ©@ max{o, [v| — A} ,

where| - | denotes the vector containing the absolute values ofu = w—H6 r,=2z—L6 rs=p—H6 r;=q—L0
- and ® denotes the elementwise product, and the operatorg, = p tu v, = p v sp = p s t, = o't
performing projection ovef, ball

b+c” Vt?H if |[v—b|2>c Hence, the augmented Lagrangian can be rewritten as:
Pesb,e) (V) = N
’ v otherwise
S =116l + Tesen ) (W) + Loy i (2) + I (a5 (P)
and/, ball p p"’" 2
2 2

Clip[—c,+c] (v) = sgr(v) ® min {|v/,c} , +ICOO(%JJ) (q) + §Hru +u,ll; - §Hup||2
wheremin{-} andmax{-} have to be intended as elementwise + gHru |2 = EIv 2 + Llrs + 5,012
operators.

p 2 P 2_ P 2
- £ £ t,012 — Lt |12 . 4
1gee [34] for details. 2HSPH2+ 2||I't+ PH2 2” P||2 ( )
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Algorithm 1 CS-GQ side decoder.

Require: a, A\, p, H, L, h,1

0)

0% 0, w(® =p© 0,20 = q© + 0, uﬁ}” = sEJ 0, vf)O) = tf;o) «~0

while Outer stopping criterion is not meto
while Inner stopping criterion is not meio

eUi+D) — g, (gux,j) —ap [ HT ( HOD) _ ) _ ug)) LT ( Lo _ () _ V/(;))
+HT (Hg(i.,j) —p® _ Sg)) LT (Le(i,j) —q® - tg’i))D

JjeJ+1
end while _ N
After stopping;0(1+170) — glid)
HOUHLO _u) _h
O HOCT) —uf) b2
HOU0 — 4l otherwise
LOUTHO v 1
(L6 v
L6 _ v otherwise

X h
W(7’+1) _ +EB

X 1
Z(7’+1) _ +é&p

if HHG(iJrl,O)

if ||L0(i+1,0)

—U.,(j) —hH2 > €

(5)

— V,(f) —1lj2 > e

(6)

P = dlip_ay 59 (1610 —s() — 1) +h (7)

2 2

_Zb
202

q(i+1) = Cllp{ A ﬂ} (LO(”l’O) — tg) — 1) +1

u/(j+1) _ ug) 4wt _ feli+1.0)

VE)z‘+1) _ Vgi) 1 gD _ 1gli+1.0)

SE)Hl) _ Sg) + p(i+1) _ gelitL0
i+1) _ 40 i+1 (i4+1,0)

t() =t 4+ 0D — Lo

14— 1+ 1

end While _
Ensure: s « 040

(8)

C. Alternating directions minimization

qi+D = argmén{lcx(%ml) (q)

It is now possible to minimize[{4) in an iterative fashion
using alternating directiongge., minimizing over one variable
at a time. This constitutes the outer loop of Algorithin 1.

6+ = argmin{ 6],
P i i Py G i
+ §||w( )~ HO+ul) |3+ §||z( )~ L8+ |3

14 i i Py (G i
+ 1P — HO+ 503 + £)1a — 8 + )13}

P i i
+ Llla— LoD +¢0)3} (13)
ul(jﬂ) _ ug) 1wt _ elith)
Vl()i+1) _ Vl()i) 1) _ pglitD)

g(i+1) sg‘) 4 plth — gelitD

P
i+1) _ (i i+1 (i+1)
t0) =t + g0 — Lo

wlith — arg m“i,n{lcz(ag,l,h) (w)
e )
7+ — arg mzin{Icz(ab,I,l) (z)
p i ’
+ Lz - Lo + w3}
(i+1) _ i
p = arg Insn{lcoc (%2.1.h) (P)

+ 2o~ HOTD 4503

)

It can be seen thaf](9) involves minimizing a functional

(10) composed of two main parts: a smooth (differentiable) part

1(0) = 8w —HO+ug” |3+5 |2~ Lo+vy |3+ 5]p
HO + |2+ £]q? — L6 + t||2 whose gradient can be
computed analytically and a non-smooth (non-differeréipb
partg(#) = ||@||,. Functionals of this kind can be minimized
using the proximal gradient method [37]e., an iterative
method that takes a step towards the negative gradient of the
(12) smooth component and then computes the proximal mapping

over the non-smooth part. It is easy to show that the gradient

(11)
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of the smooth parff(9) is: Proof: We are interested in deriving a bound
Vol (0) = for |dllz = [6s — 6|,. We know that & ¢
07 {Ca(ep, H,h) NCs (e4, L,1) N Coo (A2, H,h) N Coo (52, L, 1)}

= pHT Hé)(i)—w(i)—ug)) + pL” (L0<i>—z<i>—v§j>) (see Sec[ IV for notation). Moreover, the solution & (2) is
either @ or one with lowerl; norm, so that we can say that

+pHT (HG(Z)—P@_SS)) +pL” (L0<”—q(”—t2’)) » ||6s]l, < 11]l1. Using [23, Lemma 1.6] we know that
while the proximity operator of non-smooth parte) is the ok (0), | (Ady, Ad) |
soft-thresholding function. Hence, one can iterativelgeta [dll2 < Co N +C [dall
step in the gradient direction and apply the soft thresngldi Al
function in order to eventually fin@“*)| i.e, the minimizer whereC; = ﬁ A = Ay U A4, beingAg the set of
of (). This constitutes the inner loop of Algorithmh 1. the kK components W|tl’21klargest magnitude@®fand A; the set

The subsequent minimization problems [in](10).] (1L)J] (12 the ¥ components with largest magnitudedf. (subscript
and [I38) all involve projections over the sets defined usinfinotes restriction to the components indexed by the sipbscr
the indicator functions. It can be seen that](10) and (1%gt). Notice that
correspond to projections over thie balls of radiieg and R .
¢, centered ah and1 respectively. Similarly,[12) and (L3) llAdll2 = [|A8s — 48|, = |[46s —y +y — A8,
correspond to projections over thg, balls of diameters ‘ [ dB) W ] [ y(B) }

Ap and A, centered ath and 1 respectively. The results = ‘b(b)‘l/és b)
of the projections are[{5)[1(6)[](7) andl (8). Notice that the
projection operations and the update of the dual varialdes ¢ [ y(B) ISRV
be performed in parallel. y(® } - { OR T’ }

As stopping criteria of the inner and outer loops, we check ] R R
the distance between two successive iterations. Hence, two < “P(B)‘If@s —y(B)H2 + H‘P(b)‘lf@s —y(b)H2
constantss$™? and sj.t°p are properly chosen such that the
stopping conditions are

y(

[oman—ym a0
2 2

gliit1) _ glind) _ . . Ap . A,
” 1607 L <&5*®  (Inner stopping criterion) S 2minq €, 5=ymp o+ 2min €, 57V
I .
[6¢HL0) — g0, Using the Cauchy-Schwarz inequality we write
0) s1P_ (Outer stopping criterion)
1o [ (Ady, Ad) | < [[Ady [l2]|Ad]2
A A
V. THEORETICAL GUARANTEES < 2||da|l2v/ 1402k (Inin {aB, TB’ /—m3}+min {Eb’ 7b\/m—b})

In this section we present some theoretical results concern
ing CS-GQ. First, Theorelln 1 provides a guarantee of stafilaus,
recovery of signals from single descriptions, using theesid
decoder presented ifl(2). As it is common in the literature d]fs < Coak (0),
about CS (see for example [23]), this kind of bounds is used B Vk

as a guarantee that the error does not explode, rather than . Ap . Ay

giving an exact characterization of the error itself. + Oz | min (e, 5= Vme - min | £, 55y

Theorem 1. (Stable side recoveryBSuppose thad = d¥ [ ]
satisfies the RIP of orde?k with §;, < v/2 — 1 and lety = Next, we characterize the performance of an oracle side
A0 + e where, without loss of generalitg, = [ei]g, e'—bT]T with decoder for sparse signals so that the result can be used to

lesllz < e, |lesllz < &b lles]le < %, lleslloo < %, Then provide an oracle optimality condition for the optimizatio
the solution to(2) obeys of the CS-GQ parameters, as shown in $ed. VI. The oracle
decoder is an ideal decoder that knows perfectly the support
H@S _ 0”2 < Cp o (0), S of the sparse signal. For such systems, recovery amounts
vk to computingd = ALy, where A% is the Moore-Penrose

c . Ap . Ap pseudoinverse of matrid restricted to the columns indexed
+ 02 | minqes, 2 Vs min g £, 2 Ve by S. Often, the oracle receiver is used to evaluate the exact
performance of CS reconstruction algorithms, since CSdaleco
ing involves a nonlinear reconstruction step, whose distor
performance is hard to characterize exactly.

whereoy, (0), is thel;-norm of the error incurred by approx-
imating 6 with its k£ largest-magnitude components,z and
my are the number of rows of matriceB®) ¥ and &) ¥

respectively and the constants are Theorem 2. (Oracle recovery)Suppose tha® is k-sparse
d that & has i.i.d. Gaussian zero-mean entries having
1-(1- 26 N and
Cy = 2(—\/_2’“) Cy = 41;52’“ vanance%. Lety = ®¥0 be the vector of measurements to be

1— (1 + \/55%)

1- (1 + \/55%) ' guantized using staggered low- and high-resolution quznsi.
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Suppose the oracle decoder is used for CS recovery. Then, theand b provide different tradeoffs between the distortion at

expected side distortion in the high-rate regime is: the central decoder and the distortion at the side decoder,
X 9 k2 m for a fixed total rate for both descriptiond? = B + b.
E {HOS - GH } = ———— (272 4+ 27%) Moreover, the packet loss rate on the communication links
2 (m—k—1)24 will also affect the expected distortion. On the other hand,
and the expected central distortion is: the limit caseb = 0, which we called CS-SPLIT, simply
. 2 Er2 m__ 2Bt —2b 41 splits the meas_ur_ement_s into two sets without _inserting any
E [HOC - OHJ = mﬂ 9B 120 1 redundancy. This is equivalent to the segmentation peddrm

_ ~ by any network protocol when the packet size exceeds the
Proof: According to [38, Theorem 5], the following maximum size. It is clear that this is the optimal strategy
relation holds: when there are no packet losses, because it is equivalent to
E {Ilé—OH%} _ k E [eTe] (14) generating a single de_scription anc_zl no bit_s are wasted in
—k—-1 redundancy. However, if one description fails to reach the
wheree = Q(y) — y is the error introduced by quantizationreceiV?ra only half _of j[he measurements will be gvailqble fo
Q(+) In case of side decoding, the receiver has only a singl&coding, hence significantly degrading the quality or ilegd
descriptioni with mp; high resolution measurements ando recovery failure when their number is too low. Hig. 4 shows
ms; low resolution measurements. The average error nofff Various operating points enabled by CS-GQ on the side
is obtained as the mean of the norm of the expected erfligtortion vs. central distortion plane.
when description 1 is received,() and when description 2 is It is of interest to study the optimal value of the parameters
received ¢3). Notice thatmp 1 = mp 2 andmy1 = mp2 by B andb when the description loss probability is known. In
design. Hence, in the high-rate regime the following relati this scenario, one wishes to find the quantization step sizes
holds: providing the lowest expected distortion for a given bit et

R 2 k 1 T T Hence we define the average distortion as
E |: 05 —0H2:| = m . 5 (E [el el] +E [8282})
2 2
= _’W_i(ms,ﬂ‘w +mpa2” % D=p*+2p(1=p)-Ds+(1—=p)" De
m—k—124

9—2B 2—%) . . . .
+ms.2 + M2 wherep is the probability of losing a description, ade; and

kr? m (2723 N 2,%) D, are the distortions incurred by the side and central decoder

C(m—k—1)24 respectively defined as
The central decoder exploits the staggering of the low agl hi
resolution quantizers to obtain a non-uniform central gaan 6 — 9s|\2 6 — 9C”2
having2? —2° + 1 bins of sizeA and2(2” — 1) bins of size D; = e and D, = o
4% as explained in SeEJIl. Thus the expected error norm is: 2 2
E [eTe] = . . . .
9 A2 The main problem in the optimization of the parameters is
—___Mm™ |9 (Qb — 1) Ab + (23 L 1) =B the lack of closed-form expressions for the distortion & th
28 +2b -1 48

12 central and side decoders. There are two possible wayswf sol
ing this problem. The first way is to resort to an operational
= 2 (15) : . . :
24 28 420 -1 curve, in which the operating points on thB.D.) plane are
Substituting it into [[T4) we obtain the desired expressiam. known in advanceg(.g, as a result of experiments).
In this case, for a fixed total rat®, every choice of the
VI. RATE-DISTORTION OPTIMIZATION AND low-resolution rateb generates &D;(b), D.(b)) point, for a
PACKETIZATION total of | £ ] + 1 points. The optimal choice df is therefore:
A. Optimizing CS-GQ
In this sectipn, we focus our analysis on the scenarip v_vher]; =argmin [p® +2p- (1 — p)Ds(b) + (1 — p)* - De(b)]
one employs identical channel models for both descriptions belo, £]
e.g, the loss probabilityp is the same for both descriptions. (Operational Optimality)
Under this scenario, balanced descriptions are optiméi bot
instance-wise and on averages. the distortion incurred by
either side decoder is the same. On the other hand, unbdlanceThe other possible method is to employ some bounds on
descriptions provide the same average performance, but the reconstruction performance. We can use the performance
distortion incurred by a specific instance depends on whidi the oracle decoder, as described in Theokém 2, to derive
description is received and can be either lower or highen tha simple expression that does not require any operational
the distortion in the balanced case. Hereafter, we thus omhformation and can be used to optimize the paramegers
consider the balanced case. Different values of the pasmepriori. Hence, the minimization of the average distortion

mr? _oB 2B+l _9b 4 1
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Fig. 4: Operating points for CS-GQ (different values Bfand b) and for CS-MDSQ (different values d¥/, refer to [19]).

n = 256, k = 10.
becomes:

b = argmin [p2 +2p(1—

belo, £]
kr? m
= argmin |2p (1 — p) ————— (2728 4272
be[O,%] (m—k—l) 24( )
+(1—p)2 kr? m _,p2Btt—20 41
(m—Fk—1)24 28 +2b -1
= argmin | 2p (2723 + 272b)
bel0, 2]
. )27232“1 —20+1
P 28 120 — 1
= argmin | 2p (272(R7b) + 272b)
belo. 4]

+(1-p27?

the latter.

p)-Dut(1-p)*- D]

(R—b) 2R—b+1 _ 2b 41
2R-b 420 —1

(Oracle Optimality)

1
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Fig. 5: Segmenting a long measurements vector.

B. Packetization for high number of measurements

It may happen that the MDC system needs to deal with a
large scale problem in which the number of measurements to
be acquired is fairly large. In this scenario, the transmitt
cannot create packets that are arbitrarly large as theér siz
is capped by the MTU (Maximum Transmission Unit) size
of the adopted communication protocol. As an example, the
IEEE 802.15.4 protocol, popular in sensor network applica-
tions, specifies an MTU equal to 127 bytes with an effective

Exhaustive search over the feasible integer valuels @in  maximum payload size of 104 bytes.
be employed to determine the optimal one. We remark that thisAs far as CS-GQ is concerned, a careful segmentation
search just involves evaluating the distortion expresg@n operation must be performed whenever the size of a de-
L%J + 1 values ofb (e.g, 5 values wherR = 8), thus having scription exceeds the MTU. The goal is to keep the packets
very low complexity. Unfortunately, the optimality woulahly  balanced, in order to always get useful information wheneve
hold if we had an oracle decoder, so this choice might kze packet is received. Fig._bb graphically shows a way to
suboptimal. Sectiof VII-A shows a comparison between tlassign quantization step sizes and performing segmentatio
average distortion obtained with operational optimizatgmd Every packet contains an alternating sequence of measure-
with oracle optimization in order to show the effectiveness ments quantized wittB bits andb bits and has a dual packet
with the opposite alternation pattern. Therefore, evecgired
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packet is informative, in the sense that it is able to improve  10°
the current set of measurements, whether by adding new
measurements or by improving their accuracy. To fix ideas,
Fig.[5a shows a wrong way to perform segmentation, where the
packets containing only low-resolution measurements ate n
informative if the high resolution dual set is already aahblé. 10k
In case of loss of a packet, one could potentially lose more

high resolution measurements with respect to the casetddpic

in Fig.[5D. o

VIlI. NUMERICAL EXPERIMENTS AND APPLICATIONS

Numerical simulations have been performed to evaluate the 10
performance of the proposed technique against other method
to implement MDC for CS and to show the advantages for
some practical usage scenarios, inspired by sensor network
applications. All the results requiring side decoding hbgen
obtained using the side decoder presented in Gec. IV. We 3 ; ; ; ; ; ; ; ; ;
remark that the algorithm solves problefd (2) and that the 0 01 02 03 04 05 06 07 08 09 1
solution returned by the proposed algorithm is the same as P
the one returned by a solver of convex problems such Big. 6: Average distortion over a memoryless lossy channel
CVX. However, the proposed algorithm is specialized for thaith packet loss probability. Parameter$ and B are opti-
particular problem considered in this paper and can be siized via oracle/operational formulas. = 256, m = 120,
nificantly faster than CVX. The SeDuMi solver employed by = 10.
CVX uses second-order methods, such as Newton’s method,
and the complexity per iteration grows &¥n%). ADMM
on the other hand is a first order method, thus much leggantization. Thus, we compare CS-GQ, CS-SPLIT and CS-
expensive per iteration than a second order method, althowgDSQ, where CS-MDSQ is an application of the multiple
in principle having slower convergence. Nevertheless, ADM description scalar quantizer (MDSQ) as introduced[in [11]
enjoys linear convergence rates under mild conditions en tiy the quantization of compressive measurements. Although
cost function, as shown i [39]. As a practical example,isglv MDSQ is a powerful and popular solution for MDC, and
a problem withn = 1024, £ = 150 non-zero components, provides asymptotic performance close to the rate-distort
m = 600 measurements obtained by a Gaussian sensijgund, its use in CS is not straightforward. In fact, CS recon
matrix, B = 6 bits, b = 4 bits requires 104 seconds usingstruction is a nonlinear process, with no guarantee thaéfow
CVX, while only 9.1 seconds are needed by the proposegtortion on the measurements results in better recartitru
algorithm based on ADMM, thus achieving a tenfold speeduality. Hence, the choice of the number of measurements and
up. Moreover, whenever quantization cells are uniform, de& aquantization step size is a trade-off in order to achieve the
to the reconstruction problem &g, constraint in addition to best performance after recovery. In our simulations, we use
the ¢, constraint presented ial(1). This is to enforce consisteiffe index assignment technique developed in [19]. As a first

Operational opt.
Oracle opt.

-2 /.-

reconstruction as discussed in Sed. Il comparison we fix the number of measurements and obtain
) o ) the tradeoff points on the side/central distortion plarrebiath
A. Effectiveness of optimization via oracle formula CS-GQ and CS-MDSQ. In Figl 4 it is observed that fixing

We present an experiment that shows the average dister= 120 for an = 256-long, & = 10-sparse signal allows CS-
tion obtained via optimization of the parameters with th&Q to provide better tradeoff points than CS-MDSQ. However,
operational method and with the oracle method discussed@$-MDSQ outperfroms CS-GQ when a lower number of mea-
Sed.VI-A. The curves shown in Fig] 6 are obtained for theurements is chosen. We remark that, theoretically, CS-®IDS
same system parameters of [ibi.g, m = 120 measurements allows 27*! tradeoff points by modulating the redundancy,
for an = 256-long, k£ = 10-sparse signal and a memorylessvhile CS-GQ admits{%J +1 points only. However, observing
channel with packet loss probabiligy It is observed that the Fig.[4 we can notice that the redundancy of many tradeoff
optimization via the oracle method provides a good estimhtepoints of CS-MDSQ is so high that the resulting side distorti
the parameters, only yielding slightly higher distortiohem is severe€.g, above 0.4). We remark that the MDSQ can also
the packet loss probability is very small. This is due to th&ccomodate the zero-redundancy case when all the entries of
ideality of oracle decoding, which estimates lower distm$ the index assignment matrix are used, corresponding to CS-
than actually achieved by practical algorithms suchlas SPLIT. Both zero-redundancy CS-MDSQ and CS-SPLIT ob-
minimization. tain the same central distortion. However, side distortimay

be different. CS-SPLIT represents half of the measurements
B. Comparison with other quantization-based MDC schemgfth a fine quantization rate, while CS-MDSQ represents all

In this section we compare the performance of CS-GtQe measurements with a coarser quantization rate. Thet effe

against other methods generating multiple descriptioisgus on CS recovery is that when there are plenty of measurements
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(depending onn and on the sparsity of the signal), the 0.5 ‘ ‘ ‘ ‘
side distortion after recovery is quantization-limited, even 0.45) — CS-GQ
though CS-MDSQ provides more measurements, their coarse ' —+—— CS-MDSQ

guantization limits the performance. We also notice that th 0.4}t
full-redundancy caseH = b) corresponds to a CS-MDSQ
with staggered side quantizers and equal size intervalken t
central partition. 0.3l
A further experiment evaluates the dependency of the sidt 3
and central distortion on the number of measurements. Henct a° 0.25]
we fix the number of measurements and an operating poin 0.0l
and we analyse how central and side distortion change as
function of the number of measurements. K. 7 is obtainec 0.15¢
with the same signal as in Fif] 4 and choosing= 120,

(B,b) = (6,2) as the operating point of CS-GQ and = 2 as 0.1

the redundancy of the MDSQ witR = 8 total rate (namely, 0.05-

the ratio between the step size of the side quantizer and c

the central quantizer ig8); refer to [19] for further details). Q0 80 100 120 140 160 180 200
We observe that the distortion of CS-GQ decreases faster the m

the distortion of CS-MDSQ as the number of measurement (a) Side Distortion

increases, while central distortion decreases at the satee r

although CS-GQ is marginally better. The reason behind thic .45, ‘ ‘ ‘ ‘ ‘ ‘
performance is that CS-MDSQ is more guantization-limited —  CS-GQ
than CS-GQ when the number of measurements is high 0.04 — +— CS-MDSQ
Viceversa, for a very low number of measurements, CS-GQ
is measurement-limited. The previous experiment consitler
a rather generous overall budget equalRor = 960 bits.
Indeed, we considered a fixed number of measurements ar
chose the rate according to the budget. It must be notice:
that one could optimize both the value wf and the value of

R under the overall budget constraint and this could lead tc©® 0.025}
different choices for CS-GQ and CS-MDSQ. Although we do
not report the results for brevity, we observed that if thddet 0.02¢
is very large as in the previous case, CS-MDSQ generally
provides better tradeoff curves than CS-GQ by using fewel 515!
measurements and a finer quantization rate. However, sesul
change under a tight budget constraint. A minimum number of 0.0 ‘ ‘ ‘ ‘ ‘ ‘
measurements has to be acquired in order to ensure sudcess ’ 160 80 100 120 140 160 180 200
reconstruction and due to the tight budget constraint itos n m

possible to use high quantization rates. [Big.8 compares the (b) Central Distortion

tradeoff curves of CS-GQ and CS-MDSQ for the two operatiqgg_ 7: Comparison of CS-GQ and CS-MDS@, b) = (6, 2)

pointsm = 50 and R = 8 and form = 100, R = 4. Those ¢/ CS-GQ andM = 2, R = 8 for CS-MDSQ.n = 256
two choices ofmm and R are optimal for CS-MDSQ and CS-, _ 4, ’ ' ’

GQ respectively under a budget 8fn = 400 bits. We notice
that CS-GQ outperforms CS-MDSQ despite choosing the best
combination ofm and R. We therefore conclude that CS-GQ

can be advantageous with respect to CS-MDSQ when the ggmmunication link can be in either of two states, that we
budget is low. label Good (G) and Bad (B) with a probability of moving

from G to B and probability; of moving from B to G. When
C. Simulations over MTU-limited memoryless and Gilbeih B state the link will drop any packet transmitted. This is a
channels popular model for channels exhibiting burst errcgyy, due

In this section we perform some simulations to assess tfefading in a wireless system. In both cases we assume that
gain achieved by using CS-GQ when the communication chahlimit to the maximum packet size is present and it is equal
nel is prone to packet loss. We consider two channel modé,100 bytes, as in the MTU of IEEE 802.15.4.
which are significant for the performance assessment of CSThe simulations over the memoryless channel have been
GQ in a packetization scenario: the memoryless channel,garformed with a signal of length = 256, k£ = 40 non-zero
which the loss trace is a Bernoulli process, and the Gilbedmponentsyn = 160 measurements and a total rate= 10
channel [[40], [[41], where memory is modelled as a twdits per measurement over the two descriptions. CS-GQ has
state Markov chain, as shown in Figl 9. In this model theeen implemented to create two packets of 100 bytes each, in
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Fig. 8: Comparison under a tight budg&m = 400 bits. Fig. 10: Simulations over memoryless channel.
Optimal choice for CS-MDSQ isn = 50,R = 8. Optimal
choice for CS-GQ isn = 100,R = 4. TABLE I: Average distortion over the Gilbert-Elliot charine
P q Segmentation CS-GQ
1-p 1-q 005 05 0.0257 0.0192
p > 0.05 03 0.0762 0.0496
G B 0.05 0.15 0.1820 0.1205
001 03 0.0160 0.0102
~ 001 0.15 0.0451 0.0324

q

Fig. 9: The Gilbert-Elliot channel modep is the transition
probability from good to bad state.

improvement. The purpose is to show the effectiveness of CS-
GQ in a practical scenario. In this application, a smart game
platform, such as CITRIC [44], computes histograms of image
the same fashion of Fig. bb, and compared against a standéedcriptors to be used as features in a scene classificatikn t
segmentation of the measuremerits, splitting half of the Image descriptors are compact representations of an image
measurements into the two packets of 100 bytes. The tesfat provide a certain degree of invariance to transforonati
measured the distortion in the reconstructed signal aeeraguch as rotation, scaling, etc., and are widely used in the
over 10° runs. The values ofB and b are automatically computer vision field for visual search or scene recognition
optimized using the oracle method (see $ec. VI-A). Eid. ¥asks. The most popular descriptors are the Scale-Invarian
shows that CS-GQ has superior performance, yielding a lowesature Transform (SIFT)_[45], which describe each image
average distortion than segmentation of the measuremedts Reypoint,i.e., a signficant point of the image to be included in
the gain is more significant when the packet loss probabilitlie descriptor, through a vector of= 128 entries. Each image
is high. i has a variable numbe¥; of keypoints, and thus associated
The simulations over the Gilbert channel have been pefescriptors. A clustering algorithm, such msneans, is used
formed using a longer signal, in order to correctly test th® identify « clusters inR* from the IV; original descriptors.
effect of the memory of the channel. We suppose that a bai&histogram of descriptors is obtained by counting how many
of Ny = 1000 vectors of measurements have to be transmitt&eypoint descriptors fall in each cluster. [n[42], the auth
in sequence. The length of the signalsiis= 1000, £k = 200 leverage the sparsity of such histograms to compress them
non-zero componentspy = 720 measurements and a totaby means of random projections, and transmit them to a
rate R = 10 bits per measurement. Talfle | reports the averagemote fusion center. The authors do not consider the prable
distortion for some values of the transition probabilitieand of quantization of the measurements, nor the possibility of
g. It can be noticed that the proposed scheme allows to achiésing channel losses. However, we remark that those are
lower distortion with respect to the segmentation approachkey problems for this application. In fact, transmittingeth
random projections as floating point values requires vegela
bandwidth, hence quantization could reduce such requimeme
and save a sizeable amount of the scarce energy of the mobile
In this section we consider an application recently progoselatform. Also, channel losses may occur and retransnmissio
in [42] and [43] as a possible scenario in which the techréquef packets may not be feasible due to real-time constraints,
proposed in this paper could provide a significant perfomeanand it would indeed require further energy consumption on

D. Simulations of object recognition over lossy channel
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