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Abstract—Iterative decoding is an efficient error-correction
tool based on the exchange of extrinsic probabilities betves
the constituent decoders. In this paper, the properties of he
mutual information between the extrinsic LLR at the output
of two constituent decoders are analyzed with application d
turbo and LDPC codes. This is a bridge between information-
theoretic analysis and practical implementations. It is poved
here that the mutual information between extrinsics is a lover
bound of the mutual information between each extrinsic and he
transmitted message. In addition, an efficient online evalation is
provided in the paper with accuracy validated through numeiical
experiments. As an application, the mutual information betveen
extrinsics is used for designing efficient stopping critelon and
error detection rules at the decoder side. Two online methasl
for the estimation of optimal scaling factor to be applied tothe
extrinsic LLR are also derived. In contrast with most references,
an analytical expression is obtained that does not requiregtima-
tion of the actual transmitted bits. All results in the paper are
derived for Gaussian distributed LLR with independent mean
and variance.

Index Terms—Mutual Information, Iterative Decoding, Stop-
ping Rule, EXIT Charts.

|. INTRODUCTION

some limit value. In addition, the mutual informatidtL, X)
which is the performance indicator in the Exit Charts is not
easily computable at the receiver. Thus, different clasges
approximations and rules have been developed for error de-
tection and stopping criteria. One important class of stogpp
criteria is concerned with the detection of a stationarynpoi
This class encompasses cross entropy [7] stopping rule, sig
change rule [8], [9] or hard-decision-aided [10] rule ascigle
cases. These rules have difficulties stopping the decoding i
the iterative process enters an oscillatory behavior [ht]] @
not have any error detection capability. Another class seba
on a performance evaluation like in [12] where the stopping
rule is based on the mean of the absolute values of the log-
likelihood ratios at the output of the component decoders or
on the instantaneous values as in [13]. It is well-known that
the reliability of a solution is connected with the magneud
of the LLR however the choice of the threshold is not trivial.
Independently, several publications such as [14], [155] [1
considered the issue of optimal LLR scaling. Indeed, it was
frequently observed in turbo-codes and LDPC codes that the
imperfections in the receiver can substantially lower tedqr-
mance of the decoder. Linear LLR correction can potentially

Extrinsic information transfer (EXIT) charts were first in-compensate the degradation. The LLR-distribution is arealy

troduced in [1] for the analysis of iterative decoding. Théor both LDPC and turbo-decoder in [17], [18]. It is pointed
principle is quite general and has been applied to turb@sodut that the LLR are well approximated by Gaussian distribu-
[2], LDPC codes [3] or repeat-accumulate codes [4] and efiens but it is inappropriate to use the mean of the density on
tended to non-binary iterative decoding in [5]. In EXIT analto model the iterative decoding process. Using this retust,
ysis, the mutual informatiord (L, X) between the extrinsic LLR are modelled in this paper using Gaussian distribution
log-likelihood ratios (LLR) L and the binary messag¥ is including a scaling factor which is equivalent to considgri
computed for performance evaluation. This is an offline toagiddependent mean and variance.

which allows to compute a performance rating on the reliabil This paper shows that the two issues (stopping rule and
ity of a solution and is usually intended to design capacitpptimal scaling) can be addressed jointly by introducinga n
approaching codes before implementing them. In an actyedrformance indicator. This indicator is the mutual infarm
transmission, the receiver decodes the transmitted mes$ag tion between extrinsicd(L,, L.) where L, and L, denote

an iterative turbo decoding process based on extrinsicggrophe extrinsic LLRs at the output of two individual compo-
gation [6]. In this iterative receiver, the extrinsic infioation is nent decoders. The contributions of the paper are listealbel
updated within each individual decoding block and passed The mutual information between extrinsics is proved to be a
the other decoder over many iterations. This is a pragmaliover bound of the mutual information between the extrigsic
approach since iterative decoding was not originally intrd.LR and the messag& to be retrieved. As a consequence,
duced as the solution to an optimization problem renderidgL,, L.) is an indicator for a successful/unsuccessful de-
its analysis difficult. As a consequence, the stoppingrioite coding and a good metric for stopping criterion. The mutual
of the iterative process can not easily be derived from tlformation between extrinsics can be measured offline via
evaluation of an objective function which would converge tan histogram method as in Exit Charts. A single curve Exit



YorZ

Chart [19] is used here since this configuration is suitabte f* Encoder ¢ o
tracking the evolution of a given system as a whole and esable ecoder ||
an easy evaluation df(L,, L.). In parallel, an efficient online s |
computation ofI(L,, L.) is derived. Comparison with the !

results of the Exit Charts shows a good accuracy of the online :
estimation. In addition to the previous results, two method

are proposed for the online estimation of the optimal sgali
factor. These methods allow closed-form expression and
not require an estimation of the actual message bits as in

[16], [20]. It should be mentioned however that the latter 4

references do not require Gaussian assumption and are ntigeoder and give&/ t") as an output. We then focus on the
general than the methods proposed here. It will be showvafatistical properties of the extrinsic LLR. In other wardsg ;.
through simulations that, in the context of Gaussian LLR, tHor L. ;) is considered as an outcome of random varidhje
methods proposed here outperform [16] in particular inyeador L.). In the following, index% will be omitted (except
iterations and at low SNR. The connection between the optimvehen needed for clarification) and we will use simpl,
scaling factor and the mutual information between extemsiL,, L. or evenL when an equation or a property hold for
is also emphasized. It is well understood that the optimabth L, and L.. Unless stated otherwise, the next properties
scaling factor depends on the SNR, the iteration number ameld [22]: Symmetry: pr,(¢|X) = pr(—¢| — X), General-

the code structure. The evolution of the mutual informatiomed Consistency % = e with o € R*, Range
between extrinsics shares the same characteristics. We Wik] — co; +o0ol. In the seminal works on EXIT Charts and
see in this paper that the optimal scaling factor can be \dewdensity evolution [2], [19], [23], the assumptions cons&te

as a function of a single parameter: the mutual informatiare symmetry and consistency which corresponds o1 in
I(L,, L,) between extrinsics. The main contribution of thehe Generalized Consistency property above. This comes fro
paper is thus to provide a theoretical analysis and a pedctithe assumption that is a noisy version oX with expression:
method for the full exploitation of the information contathin )

the extrinsics for a proper design of the receiver enableify s =2 x +on (1)
diagnosis (successful decoding, early stop) and wellrméa 2
choices (scaling factor). The proposed methodology isequ'Umth n~N(0,1)
general and rely partially on the assumption that the LLR & analysis ’
Gaussian distributed and that the symmetry property holds

A priori

Channel

L, orL.

rIla'gure 1. General Encoding/Decoding model

. In that case 2£UX=1.

E2=D_ — ¢f, A stochas-
; . d?L( £ X=1), .

of iterative decoding is available in [17] wher

it is shown that the input-output signals in a turbo-decpder

when expressed using LLR, are indeed well approximated by a

[l. SYSTEM MODEL AND NOTATION Gaussian distribution but with independent mean and vegian

Cégéese results also hold for LDPC decoders [18]. In this paper

In this paper, random variables are denoted with upper- . )
pap bp we will consider that

letters and their corresponding realizations with lowase
letters. Sequences of random variables or vectors aresitatic o?

by boldface letters. Fig. 1 depicts the decoding model used L=aZX+on ©

in this paper and previously in [21]. The a priori channel _

models the a priori information used at the constituent d#ith n ~ A’(0,1). In that case,}% = ¢** and the
coders and the communication channel models the transnfggneralized consistency condition holds. This model iscin a
sion medium between the transmitter and the receiver. Bgi@rdance with the true LLR distribution that can be observed
serial and parallel turbo coding schemes can be seen adispet] iterative decoding of turbo or LDPC codes.

instantiations of this generic scheme. For the iterativedang

of an o_ute_r deco_c_ler in a serial concater]ati(_)n, the switch in . M UTUAL INFORMATION

Fig. 1 is in position1 and the communication channel is

inactive. When the switch is in positiop, the system can The mutual information between extrinsics is analyzed.first
be used for modeling the iterative decoding of a constituehbe statistical model in (2) is considered and an equivaenc
decoder in a parallel concatenation setting. This system cglass between LLR following model (1) and (2) is exhibited
also be used for modeling the input/output relationship #ftith mutual information as equivalence relation. Exit Ghar
the Variable Node or at the Check Node decoder in LDP@re revisited with model (2).

In both systems, the iterative decoding aims at finding the

binary sequenc& = (X3, Xs,..., Xx) with length K. A
constituent decoder takes as input an a priori informalign
(resp.L,) which denotes log-likelihood ratios (LLR) of an The mutual information betweeh, and L, is defined as
extrinsic probability. The length oL, (resp.L,) is K and oo oo

L, 1 is thek'™ element ofL,,. At iterationi, the first decoder I(L,,L.) = 1091(2) I S, L. by, L) %
receives the prior informatiof{j) and outputs the regenerated L, L. (0y,02)

prior information?!”) which comes as an input to the second IOg(pLy(éy)pLz(/zz))dgydgz ©)

A. Definition




Based on the three properties above (Symmetry, GeneraliBdOn equivalent LLR classes
Consistency and Range)(L,, L) can be written as a func-
tion of the mutual information betweel and the LLR as: Let X denote a random variable with equiprobable values
I(Ly,L.) = I(Ly, X)+ I(Ls, X)— I(Ly, + L., X) (4) in {—};+1}. Let G()_() denoFe the set of random variables
following the model in (2) witha € R™ ando € R*. Let
where (L, X) =1~ [ pp({|X =1)logy(1 + e *)dl = G,,(X) denote a subset (X such thatx = aq is a given
1—ffo°jpaL(€|X = 1)log,(1+e~%)dl. The proofis given in number inR*. Thus,G(X) = U, cp+ Gao(X). The LLR
section A of the appendix. Some interesting properties ean ¢onsidered in (2) spars(X) whereas the LLR considered in
derived in the special case wheféL, X) is a function of a (1) and in density evolution or in EXIT charts spafig(X).
single parameter. In that casg,L,, L.) is a function of two We first characterize the correspondence betw@ek) and
variables as G1(X) based on the mutual informatidi{ L, X).
_ Result 1:Let L € G(X). Let L, = oL. ThenI(L,X) =
H(Ly L) = Jlaz,) + J(az,) = J(u(ar, ar.)) () A ZE L G1<(X>)_ (L, X)
Proof: L, = aQ(’;X + aon and belongs by construc-
tion to G1(X). From (8),I(L,X) = J(ao) and from (6),

wherear, ,ar, € RT andu : R x R* — R*. Models (1)
and (2) fall under this case, this is made precise below.
Example 1[2], [19], [23]: L is the Gaussian variable in

model (1) then I(La, X) = J(a0). u
I(L,X) = J(o) (6) With the .notations ip result ;aL i§ the unique element in
_ G1(X) with mutual information withX equal to I(L, X).
with . We prove below the stability of/; (X) under addition.
Py Result 2:If L, € G1(X) andL, € G1(X) thenL,+ L, €
M| : . G4 (X).
J(o)=1- e” " 22 logy(1+e%)dl (7) , ,
oo V2TO Proof: L, = % X + 04n, and L, = - X + oyn;, where

and J is a monotonically increasing function of [24]. The n, andn; are two independentzGazussian variables with mean
mutual information/ (L, L.) is given by (5) witha,, = oz,, 0 gnd unit varianceLla +Ly = Zad% X + \/qg + qgn where
ar, = o, andu(ar,,ar,) = a2 +a? . n is a Gaussian variable with me@nand unit variance. ®

z z ? z y 2

Example 2[17]: L is the Gaussian variable in model (2) the\s a consequence, if the extrinsic LLRs of the constituent
B components are id7; (X ), the a posteriori log-ratio is also
I(L, X) = J(a0) (8) in G1(X). From result 1, it is clear that the scaling has no
where J is the function defined in (7). We can observe thampact on the mutual information of the actual LLR vector
even if L is described by two parametei,L, X) is again a with the message. However it was observed in [14], [15],
monotonically increasing function of a single parametet [16] and in many other references that, if a proper scaling
The mutual informationl (L., L.) is given by (5) withar, = is not used, sub-optimal LLRs may be obtained in future
iterations and propagated resulting in worse performahis.
The proof is given in Appendix A. As a consequence, it iBOim is illustrated below. The system under consideraisce
assumed here that is a monotonically increasing functionserially-con_catenated tgrbo-code (S.CTC) Witlﬁ5a7_)8 outer
and is thus reversible and t > _ code. The inner co_de is a convolutional code with gengrator
hatar,,ar.) 2 max(ar,,ar.) L__ This SCTC will be used through the paper as an illus-

These two properties hold for example 1 and 2 above. TheD* le. Th decod dered |
properties off (L, L.) are listed below. trative example. The two decoders are considered separate

5 5 Let L, i, denote the LLR at the input of a decoder with
e max(J(ag,), J(ar.)) < J( /a7 +aj ) < J(ar,) + Lprior € Go(X). The mutual information/ (Lo, X) is

z

= R 2
aL,or,, ar, = ap.or, andu(ar,,ar.) = (/a7 +aj_.

J(ar.) kept fixed while« is increased fron?.4 to 2.5. The mutual
o limg, o I(Ly,L.) = limg,, 0 I(L,, X) information is measured at the output of each decoder and
o limg, oo I(Ly, L.) = I(L., X) for a givenar, plotted as a function of in Fig. 2. We observe for the inner
o I(Ly,L.) <min(I(Ly,X),I(L.,X)) code that, independently of the fixed value It ,,io., X),
o If I(L,,L.) =m thenI(L,,X) >m andI(L.,X) > the mutual information at the output reaches a maximum when
m Lyrior € G1(X) (o = 1). For the outer code, a maximum is

The last property proves thd{(L,, L.) is a lower bound of also observed for low value af(Lp ., X) ata ~ 1. We
the mutual information between the extrinsic and the messatpn conclude that EXIT charts give a prediction of the highes
X. Thus if, at the end of the iterative proced$L,,L.) is mutual information that can be obtained at the output of a
almost equal td so arel(L,,X) andI(L.,X). decoder for a giverI (L., X) and that this value can be
From this section we can conclude that, the mutual informeeached provided that the LLR are properly scaled in order
tion between extrinsic$(L,, L.) is therefore a performanceto be in G;(X). Note that the inner decoder receives as an
indicator for the whole system and can be used as a stoppingut the LLR computed from the received data which are in
criterion or as an error-free sequence indicator at theivece G;(X) whereasL,,;, is the sole input of the outer decoder
side, provided thaf (L, L.) can efficiently be computed on-which explains the difference observed in Fig. 2 between the
line. This is addressed in section IV-A. inner and outer decoder.



‘ a.L. € Gi(X)
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: e '*ﬂﬂ, o2 o ay o o
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Figure 3. SC-EXIT Chart scheme for turbo-codes

Mutual Infarmation I(I_y

ist)

togram method. The result is denoté,%? in the following.

o6l 5 00000g : : 1
& POOAOSG .
Lo : G000,

- : OOt o The computation ofy is trivial sinceX is known. The SC-

055 Lo cf_)Q ............. SO ............... bt 0000 EXIT gives the evolution of( ) as a function ()fq2 and

o f 2 also the evolution ob? as a functlon ofo2. The system is

05 T T 15 2 25 able to recover the message if I(L,, L ) is an increasing
o function and if the maximum value is reached or equivalently

if 02 > o7 [19]. If this condition is not met an oscillatory
behaviour may be observed or convergence towards a local

' wnﬂmwmwwwmu minimum may occur. In standard EXIT Charts, the curves of

06

: : : : : : explicit in the examples of section V.
0_5_.5. . . . R 2) SC-EXIT for LDPC codesAn LDPC code withm parity-
' 5 : : : : check equations and lengfi-codewords is considered here.

A soft decision algorithm such as sum-product [25] or min-
sl : : ; ; j sum [26], [27] is assumed at the receiver. Both algorithms
05 D 05 ! 15 2 25 are based on the exchange of extrinsics across the itesation
Tracking the evolution off (L,, L) is thus also meaningful
here for performance evaluation. The decoding rule is lyriefl
recalled and connection with notatiohg andL . is also given.
Denote byR = (Ri, Rs,..., Rx) the LLR of the received
signal. Denote byl;; the extrinsic LLR from check nodg
to bit nodei and Mj; the extrinsic LLR from bit node to

This section is devoted to the offline analysis of an itemtiheck nodej. M;; and Ej;; are not defined if parity-check
decoder. The performance of the association of two comp#ede; and variable; are not connected in the Tanner graph,
nent decoders is usually evaluated by tracking the mut@herwiseM;; and E;; are updated as:
information(L, X) at the output of each decoder considered

paf © ! the individual decoders intersect. The SC-EXIT proposeé he
a I(Lp,.D,XJ 052 ' : ; is very similar to the one in [19] except thatL,, L) is not
%08 : :E'-pnurz E:j o SR considered in [19] (tracking of the variance only) and that
2 o7y o+ I(:HWX) 078 | ST ST in [19] the non-consistency of the LLR is observed without
§ e ”°r}0 0ot | ' : : further analysis. The translation of the SC-EXIT into an-effi
£ I’°"°' / cient stopping criterion is straightforward. This will beade
=

oA

Figure 2. SCTC - Inner decoder (up) - Outer decoder (dawhN0 = 2dB

C. Offline estimation : single curve exit charts

separately and for different values of the mutual infororati Initialization
at the input. For tracking the evolution di(L,, L.), both M;; = R; 9)
components decoders must be considered jointly. Following Check messages

[19], a single curve EXIT chart (SC-EXIT) is considered here .
The principle is described below for turbo and LDPC codes. Eji = 2tanh (H t‘mh(

MQ” ) ) Sum-Product (10)

1) SC-EXIT for turbo-codesThe principle of SC-EXIT ¥
is depicted in Fig. 3. The input (a priori) is modeled with Eji = Hs1gn<Mﬂ/) mm|Mﬂ/| Min-Sum  (11)
a Gaussian random variable with known mutual information oy
I(L, X) = J(O‘) with X and is chosen iy (X) The process Variable messages
is repeated for different a priori corresponding to diffare L Z (12)
values ofo in the range of interest. The a priori enters decoder

1. The outputl, of decoder 1 is scaled with, such that s

I(oy Ly, X) = I(Ly,X) and ay L, € G1(X). Thenoy,L, Ej can be interpreted as the check node j's opinion on the
is given as an input to decoder The output of decode2 probability that X; = 1. We will consider also herd’; =

is L., the corresponding scaled LLR is, L. € G1(X) with mi ZjeAi E;; where4; is the set of check nodes connected
parameters, (o in (1)). The mutual informatior/ (L,, L.) with bit ¢ andm; is the cardinality ofA;. Then, E; can be
between the extrinsics is evaluated using (4) through an histerpreted as the opinion of the check nodes on the prababil



R; + Gaussian

rincax) X than the observation and the a priori. The extrinsic LLR
p(Xk=1ly,¢. )
p(Xk=0ly,C. [x])
Xp=1ly,l, 1% Xp=1|Ly r=Cly .
gEXz:o:zﬁeJZB EXSOTi=r4 ) which
is equal toaL,, i, from the generalized consistency and sym-
1L, metry assumptions. Hence, Lemma 1 proves thBj, (resp
aL;) should be propagated through the iterations instead of
L, orL..
Theorem Ll:Let p.(vx) = p(Xy = xily, L.,x) represent
an ergodic random variable for ak;, in {—1;1}, then the
average mutual information betweéh and L, is given by

Vertical Step
+ Scaling

Eji
R; + Gaussian Horizontal 7
Prior € G(X) Step

" M are computed asg . Based onlemma 1, we

havelog = log(

Evaluate
Mutual Information

(Histogram Method)

Figure 4. SC-EXIT Chart scheme for LDPC

that X; = 1. In the same way); is defined asM; =

43" ica, Mji. The SC-EXIT chart is given in Fig. 4. The L
input/output of the SC-EXIT ig1;;. To guarantee that/; ; re- Ip =1+ lim - DD pa(r)logy(ps(zr)  (15)
mains inG (X)) itis sufficient to guarantee that ,, . Eji; € TR =

G1(X) since R; € G1(X) (perfect knowledge of channel o ] )
characteristics or mismatch correction) afid(X) is stable The average extrinsic information can be obtained through
under addition. This is the role of,. Let L, (respL.) denote lme-averaging over a sequenceof= BQ binary symbols.

the random variable associated | (resp. toM;) then £, Theorem 1 and (4) lead to a practical evaluatior/ gf
and L, are noisy variables on the messageAs in the turbo-

K
code case, the SC-EXIT Chart in Fig. 4 gives the evolution of I - 1 . 1 <
- g = + 1 - 2 lo 2\ Tk
I(Ly, L.) as a function ofs? and also the evolution of? as M Koo K ; ; p=(wi) logz(p (o))

H 2
a function ofc2. +  py(z)logy(py(zr))

puloelps(@) | ( py(k)p (2k) )) (16)
Sk

Sk

IV. EFFICIENT COMPUTATION FOR FINITELENGTH
SEQUENCES

A. Online computation of the mutual information wherey"  py(vx) = >, ps(vx) = Landsy = 3, py(zr)p:(Tk).

Obviously, the convergence behavior of the algorithm inthe average mutual information can be approximated by time-
volves global quantities (on the whole sequence). Theeefopveraging. The definition of the mutual information leads to
we are interested in evaluating the mutual information -avetnother expression for an efficient computation/ of.
aged over the whole sequence. As a first step, we consider

Q
Q@ frames each of lengtl® such thatK’ = BQ. The average I = % >kt few fgmp(fy,k,fz,k) X
mutual information between two extrinsics is defined as D0y 1rla )
@ log, | 5@, mptte | Uy kdlek (17)
Iny o= = I(Ly,,Lz,) (13) .
= I = % X E[10g2<p—“—’<’§y,,;§;&;’ii>ﬂ (18)

The average extrinsic information is defined as
The variableX; can be introduced in the equation above by

Q .
1
Iy = 6 ZI(Lk,Xk) (14) using the fact that
k=1

Tr|ly k)p(Tk |l

We demonstrate below that the average mutual information Py, baie) = Zp( 2 y;()fk() 2 'k)p(gvap(gz»k)
can be computed based on quantities available at the receive o
namely the extrinsics and the a posteriori probabilitigstF Thep the average mutual information reads
recall two key results from [21], [28]. These results (Lemma
1 and Theorem 1) are given in [28] for binary sequences and 18
extended to non-binary iterative decoding in [21]. They are I = — ZE[Z log, (2 Zp(kay_’k)p(zszﬂk))}
recalled below for the binary case which corresponds to our Q k=1 'k T
setting. ) ) ) ) (19)

Lemma 1:Let ¢, ;, be the log ratio of an extrinsic probabil-BY @ssuming that the random variables involvedZin are
ity at the output of a constituent decoder,dgj, denote the log €rgodic, we have
ratio of an a priori probability at the input of the same desod LK
and lety denote the observed sequence. Lef,) denote the o b &
sequencé, from which indexk is excluded. T%]en for alk}, Tna Klgnoo K glogQ <22p($k|£y’k)p(zk|gz’k)>
in {=1;1}, p(Xy = x| Ly = by 1) = p(Xi = 2|y, L2 1) K
Lemma 1 proves that the extrinsics at the output of a con- —  lim 1 ZlOgQ(QSk) (20)

k=1

Tk

stituent decoder contain the same amount of information on K—oo K



By using (16) and (20), we obtain

limg o0 % Z?:l Zikzo (pz(l’k) IOgQ(pz (xk))
+py(z1) logy (py (7k)) 107
Bl g, (i, (0)pe(0)) ) =0 (2D)

At this step, two different methods can be used for an onlit
evaluation of,,. The first method is based on equation (1€
evaluated over a sequence of finite lendth This method,
called I](Lf}), requires the knowledge of the extrinsic probabil 10
ities. The computational complexity in terms of number ¢
operations grows linearly witk’. The second method is basec

MSE
<)

(hist)_(a)
—e— MSE(I;"*"-11?)

-S| | —e— MsE((I-1)

=p— - MSE(IT")—1®) (inner decoder)

on equation (20) evaluated over a sequence of finite leAgth 10°5 = .
This method, called](\z), has the same characteristics tﬁéﬁ " K(blolglength) "
with the additional advantage of a lower complexity.

The accuracy of these estimators is addressed here thro 107 1

an example. The system under consideration is the serial
concatenated turbo-code (SCTC) of section IlI-B. The blocl
length K is a parameter which is increased fré®0 to 8000. 107°}
In this example,FbNO = 1dB or EbNO = 2dB (bounds
of the waterfall region). We use as a reference the exact ¢
pression off,; in (4) evaluated through a standard histograi
method as in section I1I-C1 and denoté&f"*" . The compar-
ison invoIvesI](\Z) and II(J}). The Mean Square Error (MSE)
is plotted in Fig. 5. It can be observed that (20) is a bett
approximation off; than (16) which is impaired by the slow
convergence of (21). If a precision o6 2 is required onl,,
(20) is an accurate approximation provided ti#at> 1500.
This precision can not be reached with (16) as long<as 102 153 10¢
10000. For all these reasons,,; will be approximated at the K (blocklength)

receiver side b)lj(\z) with

MSE
)

(hist) (a)
—o— MSE("*-1)

L (hist) (b)
—o— MSE("-1)

=p—  MSE({"™-1) (inner decoder)

Figure 5. MSE of the difference betwedi ’;m) and I](C;) or I](J}). MSE

®) 1 K of the difference betweeﬂgbm) and Ig) at the output of the inner decoder
Iy~1,, =1+ Ve Z log, (sk) (22) with EbNO = 1dB (up) or EbNO = 2dB (down).
k=1

The standard average mutual informatibn could also be

computed online through approximation (15) giviry@. This SNR value. These methods are not applicable if the channel
approximation is compared with the value given by a hiconditions are not known with sufficient accuracy at the re-
togram method]@hist)) The MSE is also plotted in Fig. 5 ceiver. Recently, an online estimation method was proposed

We can again observe the slower convergence of (15) with flll?e[m] fgr BICM requiring an onIine.numericaI search. Thig
block-length compared to (20). method is general and does not require the LLR to be Gaussian

We proved in this section that the mutual informatmgrﬂy,Lz)d'smb”ted or symmetric. In [20], online LLR scaling is als

can be efficiently estimated online (at the receiver) thmuéjerived for SNR mismatch compensati(_)n._'_l'he effectiveness
(22) without requiring estimation ok, (hard decisions). The of these two methods depend on the reliability of the decoder

computational complexity of this approximation is lineaithw decisions which may be inaccurate during the first iteration

K. The mutual information/(L, X) can also be estimated'n,the follpwmg result, an onI_lne estimation method foand
o is provided. In contrast with most references, closed-form

online in a similar manner but with lower accuracy. It is cled : ) )

that the stopping rule and error detection device should gépressmns are derived that do not require accurate decode

based onI(L,,L.) rather than onl(L,X). Note that the ecisions. Our method is designed to be efficient in the whole
Y z I . . .

results in this section hold for both Gaussian and non-Ganss'2"9€ of SNR and at any Stage of the iteraiive process.

distributed LLRs. Result 3:Let L € G(X) with parametersy and o. Let

I'=1I(L,X) then

B. Online estimation ofv and o PR 1 C) E— (23)
The scaling factor and its estimation was considered in, [14] 140.25 Jl(f))
[15], [16] and in many other references. In most of them,

the optimal scaling factor is computed offline and for a given a=2"0 (24)



whereJ ! is the inverse function of in (7) andV (L) stands
for the variance ofL.

60

. . ) —©— EbN0=1dB
Proof: From (2), and considering tha andn are in- 5| | —4 EDNO=2dB |
dependent random variablé§(L) = o?%- + ¢%. Sincel = | |- of=o

J(ao) and J is reversibleo = J~1(I) leading toV (L) =
_ 40+
w + 1 )o? which completes the proof. [ ]

The method in result 3 can be extended to non-Gaussian's " sof
ation provided thaf (L, X)) is a non-decreasing function of a
single variable and provided thét is given by (2) in which 20}
n is not necessarily Gaussian. In the Gaussian casé(l)
can be approximated as in [29]. 1ol

V. NUMERICAL EXPERIMENTS

A. Example 1 : Turbo-Code

As an example, the SCTC described in section 1I-B is aga 15 ; ;
considered here. It is explained how the mutual informatic + o EbNO=1db |
can help for choosing efficiently a stopping criterion. Thte TAp) 0 ey EBND=1db 1
online estimation of the scaling factor is applied to the 8CT + oy, EbND=2ds |
with comparison to alternative methods from the literaturn B o e EoND=2d0 |
Finally, both scaling factor estimation and stopping rute a N oy, EBND =340 ) -
included at the decoder, the performance of the decoder 3 O Gy ENO=dd
evaluated in terms of BER and number of iterations. T I S TS NS
1) SC-EXIT chart and early stopping criterionithe SC- : : :
EXIT, for this particular system, are given in Fig. 6 whet Tk
EbNO = 1dB or EbNO = 2dB. We observe the following. gpie #Hp TE
Wheno? > 5, the convergence conditiomy > o7) towards 09 OO%%@%)gm
the correct decision is fulfiled even whelbNO = 1dB A :
whereas an oscillatory behavior may be observed wifesi 5 "% 67 02 03 04 05 08 07 08 08 i
preventing the convergence of the iterative process. Btlteat I, L)

opposite, if this thresholdof > 5) is reached the iterative

process is likely to converge in few iterations. We take adva\f'sg}’('i 6-L ?C'EX'T Chart for the SCTC, ups2 vs o, down: oy anda.
tage of this fact and propose an accurate stopping crit@son yrmEn

follows. The iterative process for this SCTC should be s&gpp

when either (SC1) or (SC2) below are met:

(SC1) I(Ly,L.)>1—¢ or i>imaes 25) Let Ly, L. € Gi(X). If I(Ly,L.) >1—ethenl(L,,X)>
(SC2)  i=iwyy  and o.<v5  (26) TN X)>1-e
Proof: Eq. (28) is equivalent to (27) becausés a strictly

where e is a threshold to be fixedi,q, is the maximum increasing function. Whetl, € G;(X), simple computation
number of iterations and..r;, is the number of iterations |eads to £(|L|) = M(c) where M is a strictly increasing
for deciding of an early stop. The first condition (SC1) isunction which proves the equivalence between (29) and (27)
designed to detect error free sequences whereas (SC2) istiRe equivalence between (30) and (27) is obvious. The latter
tended to stop the process at an early stage when the algoritiiatement comes from the propertiesioL.,, L.). m

is unlikely to converge to the global solution. The equinake Result 4 h val b . .
between different forms of the stopping rule is given below., esult 4 proves the equivalence between various stopping cr

Result 4:Let L € G1(X) with parametew, the following Lerlor:jcomgonlyl.uztlal.? n fp:ﬁctlfi.RSt?r;Emg r;JIe? (?7'3@.) ar
inequalities are equivalent : ased on the reliability of the at the output of a given

decoder. Alternative methods such as Cross-entropy [7} mea

o> oo (27) sure the similarity of the distributions at the output of the
two decoders. Once the system has converged to the correct
I(L,X)>J 28 , : .
( ) (90) .2 (28) solution, the magnitude of the LLRs has reached a high level
E(|L|) > M(00) with M(og) = ogV2me ™" (reliability) and the two decoders agree on the decisioins-(s
o2 o2 ilarity). It is proved below that',, the estimator off (L,, L.)
+7Oerf (\/ go) (29) reaches its maximum if and only if the two conditions are met.

oh Result 5: I(L,, L,) ~ Ip; = 1 if and only if sign(L, ;) =
B(L?) > 7} + 03 (30) sign(L.,;) and|L, | = |L.| = +oo Vi € {1,2..., K}.



Proof: Iy =1+ L 5K 1o %) and are given in Appendix B.
_ M_ Tx sz iz f”eLy’l)(”eL“) 2) Scaling factor estimationTwo methods for an online
In; = 1is equivalent to@ﬁﬁ =1Vie {1,2..,K}. estimation of the scaling factar are proposed in this pa-
This condition is met if and only ifign(L,,i) = sign(L,,7) per. The efficiency of these methods is measured here for the
and|L,| = |L,| = +oo Vi € {1,2..., K}. m SCTC. Comparison is also provided with two other methods
As an illustration, the shape df; and of cross-entropy({E) from the literature:

are compared in Fig. 7 for a single bit with probability mea- , Generalized Mutual Information (GMI) [16]. The optimal

suresp, anfp.. We can seen thdt—CE reaches its maximum scaling factors reads:

when p,(zx) = p.(x) (similarity) whereasl), reaches its 1

maximum wherp, (zx) = p.(zx) = 0 or p,(zx) = p.(x) = & = argmin{l — — ZlogQ(l + exp(—sign(X;L;ia)))}
1 (reliability and similarity). “ K i=1

where X; is the hard decision of the decoder that pro-
vides an estimate foK;. This online method maximizes
the generalized mutual information and is proved to be
equivalent to offline explicit method for deriving the scal-
ing factor. The method does not require the Gaussian
assumption to hold. The scaling factor is obtained from
online numerical search (iterative method). The accuracy
depends on decoder decision and may be inaccurate at
low SNR and at the beginning of the iterative process.

o LLR absolute value [30]. It is assumed here thatis
Gaussian distributed as in (2). The scaling factor is ob-
tained by measuring the meai{|L|) and variancé’ (| L|)
of the absolute value of the LLR and by solving the
system of equations below :

1-CrogsEntropy

V(L|) = & +o” (31)

A second order polynomial is found in [30] to approxi-

V(|L])

E2[|L]]
merical integration.

o Mutual information (MI). This is the method in result 3
where! reads (Eqg. (15)):

mate h !

in the ranged — 6dB avoiding nu-

K

1 L;eki
I=ILX)~1 : —log(1+eri
(L, X) +10g(2)K;(1+eLi og(l+e ))

This method holds as long ak is a strictly increasing
function of the variablexo. In this paper,/ is obtained

by ) Pl by assuming Gaussian distributed LLR add'(I) is
computed with the approximation in the appendix of ref-
Figure 7. Comparison betwedn— C'E (up) andI,; (down). erence [29].
) o SC-EXIT. The scaling factor is estimated with (39) for
From the SC-EXIT, the typical values af, and a. can the inner code and (40) for the outer code. From Eq. (22),

also be obtained. T_hey are plotted in Fig. 6 as a function of o nutual informatiorf (L, L) reads:

I(L,,L.) and for different values of the SNR. We observe

that the value ofx varies with the iteration number and with 1 K 1+ elwvitlei

the SNR but this inforrr_lation is c_aptured Ir_QLy,LZ). A_s a I(Ly, Lz) =~ 1+ K Zlog2((1 Telvi)(1+ eLm))
consequence, the scaling facteris a function of a single =1

parameter (L,, L.). We conclude that an alternative method’he accuracy of the proposed methods is quantified with the
for estimating the value oé consists in evaluating online normalized mean error aE(‘O‘f:a‘) where & is the estimate
the mutual information/(L,, L.) with (22) and using Fig. provided by one of the methods under consideration and
6 to obtain the corresponding, and «.. The coefficients is the desired scaling factor. The latter is obtained assgmi
of the polynomials that fits each of the two curveg = true transmitted bits are available. The MSE is plotted in
fI(Ly,L,)) anda, = g(I(Ly, L.)) in the least square senseFig. 8 as a function of the mutual information in order to
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Figure 8. Scaling factor estimation - Output of inner codp) (uOutput of
outer code (down).

evaluate the efficiency of the method for various SNR and
different stages of the iterative process. As expected, GMI
not sufficiently accurate for low values of the mutual inf@rm
tion and is dismissed here since accurate estimation f
mandatory in early iterations (see Fig. 2). The method if [3
is very sensitive to violation of the Gaussian assumptidrs T
may occur in early iterations especially at the outer coa tr
does not admit the channel observations as an input. At |
opposite, we observe that the two methods proposed in t
paper are valid over the whole range of SNR and are robu
to a certain extent, to non-Gaussian data. It can be notied t
the Gaussian assumption is not required in the derivation
(15) and (22).

3) BER curves:The optimal parameters deduced from th
SC-EXIT are now included at the decoder side. Precisely, \
now consider as stopping criterion (SC1) in (25) combine
with the early stopping criterion (SC2) in (26) with,,.;y, =
15. We proved in the previous section that stopping rule

and (SC2) involves as stopping indicator and, and o

are estimated with the method in (24). The thresholds for
(SC2) are based on the EXIT curve € /5, I(L,,L.) <

0.4) whereas the thresholds in (SC1) are chosen in order to
obtain the same performance in terms of BER for the two
methods ¢ = 107 and /02 + ¢2 > 20). The performance

is evaluated in terms of BER and WER and is plotted in
Fig. 9 with labelSCT Cypiin,. Comparison is given with the
standard decodelSCT Csiundaara) With unscaled LLR and a
fixed number of iterationsn(= 15). Two different codeword
lengths are considered{ = 1000 and K = 8000. In both
cases, we observe a slight improvement in the performance
with SCT Coptim. This is due to the propagation of scaled
LLR and also to a better repartition of the iterations thanks
to the stopping criterion. The average number of iterations
is reported in Fig. 9 confirming the validity of (SC1) as an
accurate stopping rule based on a performance criterioar(er
free). At low EbNO0, stopping rule (SC2) maintains the average
number of iterations at a reasonable level even if the maximu
number of iterations allowed is largé,{,.. = 50 here) with a
better efficiency when (SC2) is based H(L,, L.).

—e—K=1000, SCTC,_
—B— K=1000, 5CTC

—t— K=E000, SCTC
K=8000, SCTC

optim
standard

&

optim

Error rate

1 12 14 16 18 2 22 24 2B 28 3
EbMO
20 T T T T T T T
49, 5 : : ¢ | —e—K=1000, 1L, L)
18 I\‘ =& - k=1000, variance [|
; : ¢ | ——K=B000, IL,,.L)
LN B b
N | — 4 - K=B000, variance

lterations (average)

can take several equivalent expressions. Two configuation

are considered herga) (SC1) and (SC2) involvd(L,, L)
as stopping indicator and, and o are estimated with the
method called SC-EXIT in the previous sectidib) (SC1)

Figure 9. SCTC withK = 1000 or K = 8000 - Up: BER (solid line),

WER (dotted line)- Down: Average number of iterations.
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B. Example 2 : LDPC codes implemented at the decoder. As with Min-Sum, the LLR are
In this section, a (3-6) regular LDPC code and a (4,29verestimated in the first iterations and should be scaled to

regular LDPC are considered. The SC-Exit charts are givBRProve the performance. The performance of (3-6) and ¢4-8)

in the section below. LDPC codes are now evaluated with different implementation
1) SC-Exit chart: The SC-EXIT Chart in Fig. 4 is ap- at the decoder. We consider Sum-Product with either undcale

plied to regular LDPC codes. The evolution bfL,, L.) is LLR (SP,a = 1) or optimally scaled LLR (SPy,prim). We
plotted in Fig. 10 when either Sum-Product of Min-Sum i§lso consider Min-Sum either with unscaled LLR (MS&+ 1)
implemented. We observe that the curves obtained with Sufi-with a fixed scaling factor (S” = 0.8). The value of the
Product and Min-Sum are superimposed when an optimal sciale factor ¢ = 0.8) is obtained from the literature [14],
ing factor is applied meaning that the two implementatiod>] where its optimality is assessed for regular (3-6)-DP
yield the same performance. In several publications, MimS codes. In this experiment, the codeword-lengttiis= 1000.
with scaling factor is compared to Sum-Product without-scal he stopping criterion i#l¢c = 0 or i = ity... WhereH is the
ing for which a slightly worse performance is noted at lovparity-check matrix¢ is the hard-decision on the encoded bits
SNR. The comparison is unfair, optimal scaling with Sunnditma. = 50. The BER is plotted as a function &b N0

Product must correct this phenomenon. The value of tHe Fig. 12. We observe the following, scaling LLR always
improves the BER. The gain is more important whens

far from 1 and at highEbN0. When properly scaled, Min-
i Sum and Sum-product exhibit the same performance. We can

G+ +ok OO

I o e = = e [ e observe thatr = 0.8 is indeed optimal with (3-6)-LDPC and
DBl i eS| T EeN0m2SE) is close to be optimal with (4-8)-LDPC.
: e : : : —4— EbND=3dB
07be o o SUUUE ST PN SOUU ORI
1.4 :
3k o Eono=2aB ... S N — b ]
+  EBMD=2.548 : : : §
: 12k | # EbNI=3dB |..... T SR S e
T ........ ..... 4
RS N TSRS SSSTONS NS S — I ST S S R S S ]
: : : : : : : o5 Sum;-Produc:t : : :
0 2 4 6 B aﬁa& : i

12 14 16 18 20 Gk Lo :
gk ......... ................. . 461'& ............................ J
e rooeey ob. Minsum ot |
o : : :
[ T 7 o S g : : ‘ : : :
Y Lo S RN e - e S 2o ]
O fie —+—EbNO=2.5dB | "] ne ; ; ‘ i ; i . i
. —4EbNO=3dB | | W2 03 04 05 0B 07 08 08 1 11
- I,
1.4 _ : :
g ©  EbNO=2dB i
+ EbND=25dB
12F- EbND:SdB ........................................ 4
11k .
1 F 4
® sl o fta +Q#0+¢ﬂ-o# g ]
0af |
L L
Figure 10. SC-EXIT Chart/(L,, L) vs ag for (3-6)-LDPC (up) and for o7k b _.'_.Oq.o%l. tUR P RV SO J
(4-8)-LDPC (down)- Solid line: Sum-Product, Dotted lineirfvSum. ME"-SUT_ s ; : 5 : 5
. . . . . . o : : : : : :
scaling factory, is given in Fig. 11. We can see again thagt . ; ; ‘ ; ; ; ; ;

is a function of the single variabl&(L,, L.) since the value bz 03 04 D5 OB 07 0805 1A
obtained foro,, always falls on the same curve independentl,
of EbNO and of the iteration number. From Fig. 11, we €8P ire 11 SC-EXIT Chartay vs I(Ly, I..) for (3-6)-LDPC (up) and
conclude that LLR-scaling is mandatory when using Min-Su-g)-Lopc (down).

at the decoder side. In addition, we can observe thais

not in the immediate vicinity ol even when Sum-Product is
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L. We will used the notationy (resp.az) in the Generalized
Consistency property when applied 1g, (resp.L.) and «

otherwise ie the result hold for both and is given férwhich
stands forL, or L.).
The expression of, (¢) is given byp., (¢) = 3 > pr({|z).
SinceL, and L. are independent when conditioned &n we
have
% PLy, z(ly722)
—— (3.5)-LDPC, SP, o=1 1Og<p[fl (éLy)pLz(éz)> = log(2)
=k (36-LDPC, MS, a=1 ‘
—p— (3B)-LDPC. 5P, o B
@EFLDPC, WS, a=08 | +log <Z b, (by|2)pr. (€Z|z)> log (Z PL, (€y|$))
RSO o o | ULy.L. ULy
10° ‘
' ’ EbMO * ’ —log <Z pr. (L |33)) (33)
i’ UL

UL, andUr_ have similar expressioti;, = 1og<pL(€|a:)) +
log 1+e’”l> wheread/r,, 1. = 1og<pLy (¢y|z)pr. (€Z|z)>+

log( 1+ e—f(%fﬁaz"z)). The mutual information reads

010
m
107 I(Ly,L,)=1+
: +(4 HFLDRC, 5P, =1 +00 +oo
=<k - (4-8)}-LDPC, M3, =1
L +(48) LDFC, 8P, oy 1092(2 (/ / PLy,L. (by, - )ULy’delydlz
: 4.8)-LDPC, MS, u=0.8
K ALy, L.
r
s 2 25 3 oo +oo
EbMD - pr, (y)UL, dl, — pr.(¢,)Ur.dl, | (34)
— 00 — 00
Figure 12. BER curves (3-6)-LDPC (up) and for (4-8)-LDPCwd. AL, Ar,

whereA, = 150 [T p, (¢)2) log(pr, (¢]2))de+ [*2° pr (0] X =

VI. CONCLUSION 1>10g<1 +ea4)d6 and
In this paper, we studied the properties of the mutual infor-

mation between the extrinsics involved in an iterative dittg 1 oo

R . — 1 1
process. Our framework is quite general and encompasses * “v%= — 2 Z:L S pry by |2) log(pr, (Ey[2)
serially or parallel concatenated turbo-codes or LDPC sade +3 >0 [ o pr. (C|x) log(pr. (L:]x))de.

special cases. We proved that the mutual information betwee n f+oo f+oo pr (01X = D)pp. (£:]X = 1) x
extrinsics is a pertinent performance measure that candx us Y e
at the receiver side for error detection purpose. In addizm log(1 + e~ (wlvto=t))d, d. (35)
offline evaluation, reminiscent of EXIT Charts, gives guidernan the mutual information reads

lines for defining efficient stopping rules. Two methods for a

online efficient estimation of scaling factors are also i I(L,,L,)=I(Ly,X)+I(L,,X)
Numerical example highlighted the benefits and the gerterali + f+°0 f+0° pr, ()| X = D)pp_ (L. |X =1)x
of the proposed approach. ' :
log(1 + e~ (wtutaztz))qg, de., (36)
ACKNOWLEDGEMENT We prove now that the last term in (36) is the mutual infor-
Thanks to Pierre Duhamel for fruitful discussions and corration betweenl, + L. and X. We can first remark that
structive criticism. (substitution in the integral)
+oo p+oo _ o
APPENDIX Coo Jooo P, (G| X = 1)pp (€] X =1) X

7(D‘y2y+azlz) _—
A. Proof of Eq. (4): log(1+e )dl,de, =

+oo p4oo
In the following, we consider that the three properties (Sym J2d 2 pay, (G| X = Dpa . (€] X = 1) x
metry, Generalized Consistency and Range) holdZfprand log(1 + e*(“ﬁez))dﬁydﬁz (37)
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Letu =¢,+ ¢, andt = £,, we have [15]
fj;: f:r;: Pa,L, (€y|X = Dpa.r.(l| X =1) x [16]
log(1 + e_(éyHZ))dﬁydfz =

FE2 (2 P = X = Dpop, (WX =it )
log(1 4+ e *)du [18]

The convolution leads to
I(Ly, L) = I(Ly, X) + I(L., X) + (29]
S22 Payprat(ly + L) logy (1 e )dbydt, =1

= I(Ly, X)+I(L.,X)—I(L, + L., X) (38)

which concludes the proof. [21]
B. Approximation otx = f(I(L,, L) for the SCTC [22]

The two curves in Fig. 6 can be approximated with the
polynomials below:

[23]
Qy = 5.65742% — 12.34922° + 10.32042* — 3.737923
+0.570322 + 0.0671z + 0.9461 (39) [24
[25]
a, = —9.10552° + 24.933z* — 26.79162>
+14.84652% — 3.8655x + 1.2148 (40) |26
wherex = I(L,, L.).
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