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Abstract—Iterative decoding is an efficient error-correction
tool based on the exchange of extrinsic probabilities between
the constituent decoders. In this paper, the properties of the
mutual information between the extrinsic LLR at the output
of two constituent decoders are analyzed with application to
turbo and LDPC codes. This is a bridge between information-
theoretic analysis and practical implementations. It is proved
here that the mutual information between extrinsics is a lower
bound of the mutual information between each extrinsic and the
transmitted message. In addition, an efficient online evaluation is
provided in the paper with accuracy validated through numerical
experiments. As an application, the mutual information between
extrinsics is used for designing efficient stopping criterion and
error detection rules at the decoder side. Two online methods
for the estimation of optimal scaling factor to be applied tothe
extrinsic LLR are also derived. In contrast with most references,
an analytical expression is obtained that does not require estima-
tion of the actual transmitted bits. All results in the paper are
derived for Gaussian distributed LLR with independent mean
and variance.

Index Terms—Mutual Information, Iterative Decoding, Stop-
ping Rule, EXIT Charts.

I. I NTRODUCTION

Extrinsic information transfer (EXIT) charts were first in-
troduced in [1] for the analysis of iterative decoding. The
principle is quite general and has been applied to turbo-codes
[2], LDPC codes [3] or repeat-accumulate codes [4] and ex-
tended to non-binary iterative decoding in [5]. In EXIT anal-
ysis, the mutual informationI(L,X) between the extrinsic
log-likelihood ratios (LLR)L and the binary messageX is
computed for performance evaluation. This is an offline tool
which allows to compute a performance rating on the reliabil-
ity of a solution and is usually intended to design capacity-
approaching codes before implementing them. In an actual
transmission, the receiver decodes the transmitted message via
an iterative turbo decoding process based on extrinsic propa-
gation [6]. In this iterative receiver, the extrinsic information is
updated within each individual decoding block and passed to
the other decoder over many iterations. This is a pragmatic
approach since iterative decoding was not originally intro-
duced as the solution to an optimization problem rendering
its analysis difficult. As a consequence, the stopping criterion
of the iterative process can not easily be derived from the
evaluation of an objective function which would converge to

some limit value. In addition, the mutual informationI(L,X)
which is the performance indicator in the Exit Charts is not
easily computable at the receiver. Thus, different classesof
approximations and rules have been developed for error de-
tection and stopping criteria. One important class of stopping
criteria is concerned with the detection of a stationary point.
This class encompasses cross entropy [7] stopping rule, sign
change rule [8], [9] or hard-decision-aided [10] rule as special
cases. These rules have difficulties stopping the decoding if
the iterative process enters an oscillatory behavior [11] and do
not have any error detection capability. Another class is based
on a performance evaluation like in [12] where the stopping
rule is based on the mean of the absolute values of the log-
likelihood ratios at the output of the component decoders or
on the instantaneous values as in [13]. It is well-known that
the reliability of a solution is connected with the magnitude
of the LLR however the choice of the threshold is not trivial.

Independently, several publications such as [14], [15], [16]
considered the issue of optimal LLR scaling. Indeed, it was
frequently observed in turbo-codes and LDPC codes that the
imperfections in the receiver can substantially lower the perfor-
mance of the decoder. Linear LLR correction can potentially
compensate the degradation. The LLR-distribution is analyzed
for both LDPC and turbo-decoder in [17], [18]. It is pointed
out that the LLR are well approximated by Gaussian distribu-
tions but it is inappropriate to use the mean of the density only
to model the iterative decoding process. Using this result,the
LLR are modelled in this paper using Gaussian distribution
including a scaling factor which is equivalent to considering
independent mean and variance.

This paper shows that the two issues (stopping rule and
optimal scaling) can be addressed jointly by introducing a new
performance indicator. This indicator is the mutual informa-
tion between extrinsicsI(Ly, Lz) whereLy and Lz denote
the extrinsic LLRs at the output of two individual compo-
nent decoders. The contributions of the paper are listed below.
The mutual information between extrinsics is proved to be a
lower bound of the mutual information between the extrinsics
LLR and the messageX to be retrieved. As a consequence,
I(Ly, Lz) is an indicator for a successful/unsuccessful de-
coding and a good metric for stopping criterion. The mutual
information between extrinsics can be measured offline via
an histogram method as in Exit Charts. A single curve Exit
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Chart [19] is used here since this configuration is suitable for
tracking the evolution of a given system as a whole and enables
an easy evaluation ofI(Ly, Lz). In parallel, an efficient online
computation ofI(Ly, Lz) is derived. Comparison with the
results of the Exit Charts shows a good accuracy of the online
estimation. In addition to the previous results, two methods
are proposed for the online estimation of the optimal scaling
factor. These methods allow closed-form expression and do
not require an estimation of the actual message bits as in
[16], [20]. It should be mentioned however that the latter
references do not require Gaussian assumption and are more
general than the methods proposed here. It will be shown,
through simulations that, in the context of Gaussian LLR, the
methods proposed here outperform [16] in particular in early
iterations and at low SNR. The connection between the optimal
scaling factor and the mutual information between extrinsics
is also emphasized. It is well understood that the optimal
scaling factor depends on the SNR, the iteration number and
the code structure. The evolution of the mutual information
between extrinsics shares the same characteristics. We will
see in this paper that the optimal scaling factor can be viewed
as a function of a single parameter: the mutual information
I(Ly, Lz) between extrinsics. The main contribution of the
paper is thus to provide a theoretical analysis and a practical
method for the full exploitation of the information contained in
the extrinsics for a proper design of the receiver enabling self-
diagnosis (successful decoding, early stop) and well-informed
choices (scaling factor). The proposed methodology is quite
general and rely partially on the assumption that the LLR are
Gaussian distributed and that the symmetry property holds.

II. SYSTEM MODEL AND NOTATION

In this paper, random variables are denoted with upper-case
letters and their corresponding realizations with lower-case
letters. Sequences of random variables or vectors are indicated
by boldface letters. Fig. 1 depicts the decoding model used
in this paper and previously in [21]. The a priori channel
models the a priori information used at the constituent de-
coders and the communication channel models the transmis-
sion medium between the transmitter and the receiver. Both
serial and parallel turbo coding schemes can be seen as specific
instantiations of this generic scheme. For the iterative decoding
of an outer decoder in a serial concatenation, the switch in
Fig. 1 is in position1 and the communication channel is
inactive. When the switch is in position2, the system can
be used for modeling the iterative decoding of a constituent
decoder in a parallel concatenation setting. This system can
also be used for modeling the input/output relationship at
the Variable Node or at the Check Node decoder in LDPC.
In both systems, the iterative decoding aims at finding the
binary sequenceX = (X1, X2, ..., XK) with length K. A
constituent decoder takes as input an a priori informationLy

(resp.Lz) which denotes log-likelihood ratios (LLR) of an
extrinsic probability. The length ofLy (resp.Lz) is K and
Ly,k is thekth element ofLy. At iteration i, the first decoder
receives the prior informationℓ(i)y and outputs the regenerated
prior informationℓ(i)z which comes as an input to the second
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Figure 1. General Encoding/Decoding model

decoder and givesℓ(i+1)
y as an output. We then focus on the

statistical properties of the extrinsic LLR. In other words, Ly,k

(or Lz,k) is considered as an outcome of random variableLy

(or Lz). In the following, indexk will be omitted (except
when needed for clarification) and we will use simplyX ,
Ly, Lz or evenL when an equation or a property hold for
bothLy andLz. Unless stated otherwise, the next properties
hold [22]: Symmetry: pL(ℓ|X) = pL(−ℓ| − X), General-
ized Consistency: pL(ℓ|X=1)

pL(−ℓ|X=1) = eαℓ with α ∈ R
+, Range:

ℓ ∈] − ∞; +∞[. In the seminal works on EXIT Charts and
density evolution [2], [19], [23], the assumptions considered
are symmetry and consistency which corresponds toα = 1 in
the Generalized Consistency property above. This comes from
the assumption thatL is a noisy version ofX with expression:

L =
σ2

2
X + σn (1)

with n ∼ N (0, 1). In that case, pL(ℓ|X=1)
pL(−ℓ|X=1) = eℓ. A stochas-

tic analysis of iterative decoding is available in [17] where
it is shown that the input-output signals in a turbo-decoder,
when expressed using LLR, are indeed well approximated by a
Gaussian distribution but with independent mean and variance.
These results also hold for LDPC decoders [18]. In this paper,
we will consider that

L = α
σ2

2
X + σn (2)

with n ∼ N (0, 1). In that case, pL(ℓ|X=1)
pL(−ℓ|X=1) = eαℓ and the

Generalized consistency condition holds. This model is in ac-
cordance with the true LLR distribution that can be observed
in iterative decoding of turbo or LDPC codes.

III. M UTUAL INFORMATION

The mutual information between extrinsics is analyzed first.
The statistical model in (2) is considered and an equivalence
class between LLR following model (1) and (2) is exhibited
with mutual information as equivalence relation. Exit Charts
are revisited with model (2).

A. Definition

The mutual information betweenLy andLz is defined as

I(Ly, Lz) =
1

log(2)

∫ +∞

−∞

∫ +∞

−∞
pLy,Lz

(ℓy, ℓz)×

log

(
pLy,Lz (ℓy,ℓz)

pLy (ℓy)pLz (ℓz)

)

dℓydℓz (3)
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Based on the three properties above (Symmetry, Generalized
Consistency and Range),I(Ly, Lz) can be written as a func-
tion of the mutual information betweenX and the LLR as:

I(Ly, Lz) = I(Ly, X) + I(Lz, X)− I(Ly + Lz, X) (4)

whereI(L,X) = 1−
∫ +∞

−∞ pL(ℓ|X = 1) log2(1 + e−αℓ)dℓ =

1−
∫ +∞

−∞
pαL(ℓ|X = 1) log2(1+e−ℓ)dℓ. The proof is given in

section A of the appendix. Some interesting properties can be
derived in the special case whereI(L,X) is a function of a
single parameter. In that case,I(Ly, Lz) is a function of two
variables as

I(Ly, Lz) = J(aLy
) + J(aLz

)− J(u(aLy
, aLz

)) (5)

whereaLy
, aLy

∈ R
+ andu : R+ × R

+ 7→ R
+. Models (1)

and (2) fall under this case, this is made precise below.
Example 1[2], [19], [23]: L is the Gaussian variable in

model (1) then
I(L,X) = J(σ) (6)

with

J(σ) = 1−
∫ +∞

−∞

1√
2πσ

e−

(

ℓ−σ2

2

)2

2σ2 log2(1 + e−ℓ)dℓ (7)

andJ is a monotonically increasing function ofσ [24]. The
mutual informationI(Ly, Lz) is given by (5) withaLy

= σLy
,

aLz
= σLz

andu(aLy
, aLz

) =
√

a2Ly
+ a2Lz

.
Example 2[17]: L is the Gaussian variable in model (2) then

I(L,X) = J(ασ) (8)

whereJ is the function defined in (7). We can observe that
even ifL is described by two parameters,I(L,X) is again a
monotonically increasing function of a single parameterασ.
The mutual informationI(Ly, Lz) is given by (5) withaLy

=

αLy
σLy

, aLz
= αLz

σLz
and u(aLy

, aLz
) =

√

a2Ly
+ a2Lz

.
The proof is given in Appendix A. As a consequence, it is
assumed here thatJ is a monotonically increasing function
and is thus reversible and thatu(aLy

, aLz
) ≥ max(aLy

, aLz
).

These two properties hold for example 1 and 2 above. The
properties ofI(Ly, Lz) are listed below.

• max(J(aLy
), J(aLz

)) ≤ J(
√

a2Ly
+ a2Lz

) ≤ J(aLy
) +

J(aLz
)

• limaLy→0 I(Ly, Lz) = limaLy→0 I(Ly, X)
• limaLy→∞ I(Ly, Lz) = I(Lz, X) for a givenaLz

• I(Ly, Lz) ≤ min(I(Ly, X), I(Lz, X))
• If I(Ly, Lz) = m then I(Ly, X) ≥ m and I(Lz, X) ≥

m.
The last property proves thatI(Ly, Lz) is a lower bound of
the mutual information between the extrinsic and the message
X . Thus if, at the end of the iterative process,I(Ly, Lz) is
almost equal to1 so areI(Ly, X) andI(Lz, X).

From this section we can conclude that, the mutual informa-
tion between extrinsicsI(Ly, Lz) is therefore a performance
indicator for the whole system and can be used as a stopping
criterion or as an error-free sequence indicator at the receiver
side, provided thatI(Ly, Lz) can efficiently be computed on-
line. This is addressed in section IV-A.

B. On equivalent LLR classes

Let X denote a random variable with equiprobable values
in {−1;+1}. Let G(X) denote the set of random variables
following the model in (2) withα ∈ R

+ and σ ∈ R
+. Let

Gα0(X) denote a subset ofG(X) such thatα = α0 is a given
number inR+. Thus,G(X) =

⋃

α0∈R+ Gα0(X). The LLR
considered in (2) spansG(X) whereas the LLR considered in
(1) and in density evolution or in EXIT charts spansG1(X).
We first characterize the correspondence betweenG(X) and
G1(X) based on the mutual informationI(L,X).

Result 1: Let L ∈ G(X). Let Lα = αL. ThenI(L,X) =
I(Lα, X) andLα ∈ G1(X).

Proof: Lα = α2 σ2

2 X + ασn and belongs by construc-
tion to G1(X). From (8), I(L,X) = J(ασ) and from (6),
I(Lα, X) = J(ασ).

With the notations in result 1,αL is the unique element in
G1(X) with mutual information withX equal to I(L,X).
We prove below the stability ofG1(X) under addition.

Result 2: If La ∈ G1(X) andLb ∈ G1(X) thenLa+Lb ∈
G1(X).

Proof: La =
σ2
a

2 X + σana andLb =
σ2
b

2 X + σbnb where
na andnb are two independent Gaussian variables with mean
0 and unit variance.La+Lb =

σ2
a+σ2

b

2 X+
√

σ2
a + σ2

bn where
n is a Gaussian variable with mean0 and unit variance.

As a consequence, if the extrinsic LLRs of the constituent
components are inG1(X), the a posteriori log-ratio is also
in G1(X). From result 1, it is clear that the scaling has no
impact on the mutual information of the actual LLR vector
with the message. However it was observed in [14], [15],
[16] and in many other references that, if a proper scaling
is not used, sub-optimal LLRs may be obtained in future
iterations and propagated resulting in worse performance.This
point is illustrated below. The system under considerationis a
serially-concatenated turbo-code (SCTC) with a(5, 7)8 outer
code. The inner code is a convolutional code with generator

1
1+D

. This SCTC will be used through the paper as an illus-
trative example. The two decoders are considered separately.
Let Lprior denote the LLR at the input of a decoder with
Lprior ∈ Gα(X). The mutual informationI(Lprior, X) is
kept fixed whileα is increased from0.4 to 2.5. The mutual
information is measured at the output of each decoder and
plotted as a function ofα in Fig. 2. We observe for the inner
code that, independently of the fixed value ofI(Lprior, X),
the mutual information at the output reaches a maximum when
Lprior ∈ G1(X) (α = 1). For the outer code, a maximum is
also observed for low value ofI(Lprior, X) at α ≈ 1. We
can conclude that EXIT charts give a prediction of the highest
mutual information that can be obtained at the output of a
decoder for a givenI(Lprior, X) and that this value can be
reached provided that the LLR are properly scaled in order
to be inG1(X). Note that the inner decoder receives as an
input the LLR computed from the received data which are in
G1(X) whereasLprior is the sole input of the outer decoder
which explains the difference observed in Fig. 2 between the
inner and outer decoder.
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Figure 2. SCTC - Inner decoder (up) - Outer decoder (down)EbN0 = 2dB

C. Offline estimation : single curve exit charts

This section is devoted to the offline analysis of an iterative
decoder. The performance of the association of two compo-
nent decoders is usually evaluated by tracking the mutual
informationI(L,X) at the output of each decoder considered
separately and for different values of the mutual information
at the input. For tracking the evolution ofI(Ly, Lz), both
components decoders must be considered jointly. Following
[19], a single curve EXIT chart (SC-EXIT) is considered here.
The principle is described below for turbo and LDPC codes.

1) SC-EXIT for turbo-codes:The principle of SC-EXIT
is depicted in Fig. 3. The input (a priori) is modeled with
a Gaussian random variable with known mutual information
I(L,X) = J(σ) with X and is chosen inG1(X). The process
is repeated for different a priori corresponding to different
values ofσ in the range of interest. The a priori enters decoder
1. The outputLy of decoder 1 is scaled withαy such that
I(αyLy, X) = I(Ly, X) and αyLy ∈ G1(X). Then αyLy

is given as an input to decoder2. The output of decoder2
is Lz, the corresponding scaled LLR isαzLz ∈ G1(X) with
parameterσz (σ in (1)). The mutual informationI(Ly, Lz)
between the extrinsics is evaluated using (4) through an his-

Decoder 2

Evaluate

Mutual Information

(Histogram Method)

Lz

I(Ly,Lz)

Compute

Gaussian

Prior ∈ G1(X)

σ2
g

Ly Compute
αyLy

αzLz ∈ G1(X)

Decoder 1
αy αz

σ2
z

αz
αy

Figure 3. SC-EXIT Chart scheme for turbo-codes

togram method. The result is denotedI
(hist)
M in the following.

The computation ofα is trivial sinceX is known. The SC-
EXIT gives the evolution ofI(Ly, Lz) as a function ofσ2

g and
also the evolution ofσ2

z as a function ofσ2
g . The system is

able to recover the messageX if I(Ly, Lz) is an increasing
function and if the maximum value is reached or equivalently
if σ2

z > σ2
g [19]. If this condition is not met an oscillatory

behaviour may be observed or convergence towards a local
minimum may occur. In standard EXIT Charts, the curves of
the individual decoders intersect. The SC-EXIT proposed here
is very similar to the one in [19] except thatI(Ly, Lz) is not
considered in [19] (tracking of the variance only) and that
in [19] the non-consistency of the LLR is observed without
further analysis. The translation of the SC-EXIT into an effi-
cient stopping criterion is straightforward. This will be made
explicit in the examples of section V.

2) SC-EXIT for LDPC codes:An LDPC code withm parity-
check equations and length-K codewords is considered here.
A soft decision algorithm such as sum-product [25] or min-
sum [26], [27] is assumed at the receiver. Both algorithms
are based on the exchange of extrinsics across the iterations.
Tracking the evolution ofI(Ly, Lz) is thus also meaningful
here for performance evaluation. The decoding rule is briefly
recalled and connection with notationsLy andLz is also given.
Denote byR = (R1, R2, ..., RK) the LLR of the received
signal. Denote byEji the extrinsic LLR from check nodej
to bit nodei andMji the extrinsic LLR from bit nodei to
check nodej. Mji and Eji are not defined if parity-check
nodej and variablei are not connected in the Tanner graph,
otherwiseMji andEji are updated as:

Initialization

Mj,i = Ri (9)

Check messages

Eji = 2tanh−1

(
∏

i′ 6=i

tanh

(
Mji′

2

))

Sum-Product (10)

Eji =
∏

i′ 6=i

sign

(

Mji′

)

min
i′ 6=i

|Mji′ | Min-Sum (11)

Variable messages

Mji =
∑

j′ 6=j

Ej′,i +Ri (12)

Eji can be interpreted as the check node j’s opinion on the
probability thatXi = 1. We will consider also hereEi =
1
mi

∑

j∈Ai
Eji whereAi is the set of check nodes connected

with bit i andmi is the cardinality ofAi. Then,Ei can be
interpreted as the opinion of the check nodes on the probability
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Figure 4. SC-EXIT Chart scheme for LDPC

that Xi = 1. In the same way,Mi is defined asMi =
1
mi

∑

j∈Ai
Mji. The SC-EXIT chart is given in Fig. 4. The

input/output of the SC-EXIT isMji. To guarantee thatMj,i re-
mains inG1(X) it is sufficient to guarantee that

∑

j′ 6=j Ej′i ∈
G1(X) since Ri ∈ G1(X) (perfect knowledge of channel
characteristics or mismatch correction) andG1(X) is stable
under addition. This is the role ofαy. LetLy (respLz) denote
the random variable associated toEi (resp. toMi) thenLy

andLz are noisy variables on the messageX . As in the turbo-
code case, the SC-EXIT Chart in Fig. 4 gives the evolution of
I(Ly, Lz) as a function ofσ2

g and also the evolution ofσ2
z as

a function ofσ2
g .

IV. EFFICIENT COMPUTATION FOR FINITE-LENGTH

SEQUENCES

A. Online computation of the mutual information

Obviously, the convergence behavior of the algorithm in-
volves global quantities (on the whole sequence). Therefore,
we are interested in evaluating the mutual information aver-
aged over the whole sequence. As a first step, we consider
Q frames each of lengthB such thatK = BQ. The average
mutual information between two extrinsics is defined as

IM :=
1

Q

Q
∑

k=1

I(LYk
, LZk

) (13)

The average extrinsic information is defined as

IE :=
1

Q

Q
∑

k=1

I(Lk, Xk) (14)

We demonstrate below that the average mutual information
can be computed based on quantities available at the receiver,
namely the extrinsics and the a posteriori probabilities. First
recall two key results from [21], [28]. These results (Lemma
1 and Theorem 1) are given in [28] for binary sequences and
extended to non-binary iterative decoding in [21]. They are
recalled below for the binary case which corresponds to our
setting.

Lemma 1:Let ℓy,k be the log ratio of an extrinsic probabil-
ity at the output of a constituent decoder, letℓz,k denote the log
ratio of an a priori probability at the input of the same decoder
and lety denote the observed sequence. Letℓz,[k] denote the
sequenceℓz from which indexk is excluded. Then for allXk

in {−1; 1}, p(Xk = xk|LY,k = ℓy,k) = p(Xk = xk|y, ℓz,[k]).
Lemma 1 proves that the extrinsics at the output of a con-
stituent decoder contain the same amount of information on

Xk than the observation and the a priori. The extrinsic LLR

are computed aslog

(

p(Xk=1|y,ℓz,[k])

p(Xk=0|y,ℓz,[k])

)

. Based on lemma 1, we

havelog

(

p(Xk=1|y,ℓz,[k])

p(Xk=0|y,ℓz,[k])

)

= log

(

p(Xk=1|LY,k=ℓy,k)
p(Xk=0|LY,k=ℓy,k)

)

which

is equal toαLy,k from the generalized consistency and sym-
metry assumptions. Hence, Lemma 1 proves thatαLy (resp
αLz) should be propagated through the iterations instead of
Ly or Lz.

Theorem 1:Let pz(xk) = p(Xk = xk|y, ℓz,[k]) represent
an ergodic random variable for allXk in {−1; 1}, then the
average mutual information betweenX andLz is given by

IE = 1 + lim
K→∞

1

K

K∑

k=1

∑

xk

pz(xk) log2(pz(xk)) (15)

The average extrinsic information can be obtained through
time-averaging over a sequence ofK = BQ binary symbols.
Theorem 1 and (4) lead to a practical evaluation ofIM :

IM = 1 + lim
K→∞

1

K

K∑

k=1

∑

xk

(

pz(xk) log2(pz(xk))

+ py(xk) log2(py(xk))

− py(xk)pz(xk)

sk
log2

(
py(xk)pz(xk)

sk

))

(16)

where
∑

xk
py(xk) =

∑

xk
pz(xk) = 1 andsk =

∑

xk
py(xk)pz(xk).

The average mutual information can be approximated by time-
averaging. The definition of the mutual information leads to
another expression for an efficient computation ofIM .

IM = 1
Q

∑Q

k=1

∫

ℓy,k

∫

ℓz,k
p(ℓy,k, ℓz,k)×

log2

(

p(ℓy,k,ℓz,k)
p(ℓy,k)p(ℓz,k)

)

dℓy,kdℓz,k (17)

IM = 1
Q

∑Q
k=1 E

[

log2

(

p(ℓy,k,ℓz,k)
p(ℓy,k)p(ℓz,k)

)]

(18)

The variableXk can be introduced in the equation above by
using the fact that

p(ℓy,k, ℓz,k) =
∑

xk

p(xk|ℓy,k)p(xk|ℓz,k)
p(xk)

p(ℓy,k)p(ℓz,k)

Then the average mutual information reads

IM =
1

Q

Q
∑

k=1

E

[
∑

xk

log2

(

2
∑

xk

p(xk|ℓy,k)p(xk|ℓz,k)
)]

(19)
By assuming that the random variables involved inIM are
ergodic, we have

IM = lim
K→∞

1

K

K∑

k=1

log2

(

2
∑

xk

p(xk|ℓy,k)p(xk|ℓz,k)
)

= lim
K→∞

1

K

K∑

k=1

log2(2sk) (20)
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By using (16) and (20), we obtain

limK→∞
1
K

∑K

k=1

∑1
xk=0

(

pz(xk) log2(pz(xk))

+py(xk) log2(py(xk))

− py(xk)pz(xk)
sk

log2

(

py(xk)pz(xk)

))

= 0 (21)

At this step, two different methods can be used for an online
evaluation ofIM . The first method is based on equation (16)
evaluated over a sequence of finite lengthK. This method,
called I

(a)
M , requires the knowledge of the extrinsic probabil-

ities. The computational complexity in terms of number of
operations grows linearly withK. The second method is based
on equation (20) evaluated over a sequence of finite lengthK.
This method, calledI(b)M , has the same characteristics thanI

(a)
M

with the additional advantage of a lower complexity.
The accuracy of these estimators is addressed here through

an example. The system under consideration is the serially-
concatenated turbo-code (SCTC) of section III-B. The block-
lengthK is a parameter which is increased from500 to 8000.
In this example,EbN0 = 1dB or EbN0 = 2dB (bounds
of the waterfall region). We use as a reference the exact ex-
pression ofIM in (4) evaluated through a standard histogram
method as in section III-C1 and denotedI(hist)M . The compar-
ison involvesI(a)M and I

(b)
M . The Mean Square Error (MSE)

is plotted in Fig. 5. It can be observed that (20) is a better
approximation ofIM than (16) which is impaired by the slow
convergence of (21). If a precision of10−2 is required onIM ,
(20) is an accurate approximation provided thatK ≥ 1500.
This precision can not be reached with (16) as long asK ≤
10000. For all these reasons,IM will be approximated at the
receiver side byI(b)M with

IM ≈ I
(b)
M = 1 +

1

K

K∑

k=1

log2(sk) (22)

The standard average mutual informationIE could also be
computed online through approximation (15) givingI(a)E . This
approximation is compared with the value given by a his-
togram method (I(hist)E ). The MSE is also plotted in Fig. 5.
We can again observe the slower convergence of (15) with the
block-length compared to (20).

We proved in this section that the mutual informationI(Ly, Lz)
can be efficiently estimated online (at the receiver) through
(22) without requiring estimation ofXi (hard decisions). The
computational complexity of this approximation is linear with
K. The mutual informationI(L,X) can also be estimated
online in a similar manner but with lower accuracy. It is clear
that the stopping rule and error detection device should be
based onI(Ly, Lz) rather than onI(L,X). Note that the
results in this section hold for both Gaussian and non-Gaussian
distributed LLRs.

B. Online estimation ofα and σ

The scaling factor and its estimation was considered in [14],
[15], [16] and in many other references. In most of them,
the optimal scaling factor is computed offline and for a given
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Figure 5. MSE of the difference betweenI(hist)
M

and I
(a)
M

or I(b)
M

. MSE

of the difference betweenI(hist)
E

andI(a)
E

at the output of the inner decoder
with EbN0 = 1dB (up) orEbN0 = 2dB (down).

SNR value. These methods are not applicable if the channel
conditions are not known with sufficient accuracy at the re-
ceiver. Recently, an online estimation method was proposed
in [16] for BICM requiring an online numerical search. This
method is general and does not require the LLR to be Gaussian
distributed or symmetric. In [20], online LLR scaling is also
derived for SNR mismatch compensation. The effectiveness
of these two methods depend on the reliability of the decoder
decisions which may be inaccurate during the first iteration.
In the following result, an online estimation method forα and
σ is provided. In contrast with most references, closed-form
expressions are derived that do not require accurate decoder
decisions. Our method is designed to be efficient in the whole
range of SNR and at any stage of the iterative process.

Result 3: Let L ∈ G(X) with parametersα and σ. Let
I = I(L,X) then

σ2 = V (L)

1+0.25

(

J−1(I)

)2 (23)

α = J−1(I)
σ

(24)
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whereJ−1 is the inverse function ofJ in (7) andV (L) stands
for the variance ofL.

Proof: From (2), and considering thatX andn are in-
dependent random variables,V (L) = α2 σ4

4 + σ2. SinceI =
J(ασ) andJ is reversible,ασ = J−1(I) leading toV (L) =(

(J−1(I))2

4 + 1

)

σ2 which completes the proof.

The method in result 3 can be extended to non-Gaussian situ-
ation provided thatI(L,X) is a non-decreasing function of a
single variable and provided thatL is given by (2) in which
n is not necessarily Gaussian. In the Gaussian case,J−1(I)
can be approximated as in [29].

V. NUMERICAL EXPERIMENTS

A. Example 1 : Turbo-Code

As an example, the SCTC described in section III-B is again
considered here. It is explained how the mutual information
can help for choosing efficiently a stopping criterion. Then, the
online estimation of the scaling factor is applied to the SCTC
with comparison to alternative methods from the literature.
Finally, both scaling factor estimation and stopping rule are
included at the decoder, the performance of the decoder is
evaluated in terms of BER and number of iterations.

1) SC-EXIT chart and early stopping criterion:The SC-
EXIT, for this particular system, are given in Fig. 6 when
EbN0 = 1dB or EbN0 = 2dB. We observe the following.
Whenσ2

g > 5, the convergence condition (σ2
z > σ2

g ) towards
the correct decision is fulfilled even whenEbN0 = 1dB
whereas an oscillatory behavior may be observed whenσ2

g ≤ 5
preventing the convergence of the iterative process. But atthe
opposite, if this threshold (σ2

z > 5) is reached the iterative
process is likely to converge in few iterations. We take advan-
tage of this fact and propose an accurate stopping criterionas
follows. The iterative process for this SCTC should be stopped
when either (SC1) or (SC2) below are met:

(SC1) I(Ly, Lz) > 1− ǫ or i > imax (25)

(SC2) i = iearly and σz <
√
5 (26)

where ǫ is a threshold to be fixed,imax is the maximum
number of iterations andiearly is the number of iterations
for deciding of an early stop. The first condition (SC1) is
designed to detect error free sequences whereas (SC2) is in-
tended to stop the process at an early stage when the algorithm
is unlikely to converge to the global solution. The equivalence
between different forms of the stopping rule is given below.

Result 4: Let L ∈ G1(X) with parameterσ, the following
inequalities are equivalent :

σ > σ0 (27)

I(L,X) > J(σ0) (28)

E(|L|) > M(σ0) with M(σ0) = σ0

√
2πe

−σ2
0

8

+
σ2
0

2
erf

(√

σ2
0

8

)

(29)

E(L2) >
σ4
0

4
+ σ2

0 (30)
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Figure 6. SC-EXIT Chart for the SCTC, up :σ2
z vs σ2

g , down:αy andαz

vs I(Ly , Lz).

Let Ly, Lz ∈ G1(X). If I(Ly, Lz) > 1 − ǫ thenI(Ly, X) >
1− ǫ andI(Lz, X) > 1− ǫ.

Proof: Eq. (28) is equivalent to (27) becauseJ is a strictly
increasing function. WhenL ∈ G1(X), simple computation
leads toE(|L|) = M(σ) whereM is a strictly increasing
function which proves the equivalence between (29) and (27).
The equivalence between (30) and (27) is obvious. The latter
statement comes from the properties ofI(Ly, Lz).

Result 4 proves the equivalence between various stopping cri-
terion commonly used in practice. Stopping rules (27-30) are
based on the reliability of the LLR at the output of a given
decoder. Alternative methods such as Cross-entropy [7] mea-
sure the similarity of the distributions at the output of the
two decoders. Once the system has converged to the correct
solution, the magnitude of the LLRs has reached a high level
(reliability) and the two decoders agree on the decisions (sim-
ilarity). It is proved below thatIM the estimator ofI(Ly, Lz)
reaches its maximum if and only if the two conditions are met.

Result 5: I(Ly, Lz) ≈ IM = 1 if and only if sign(Ly,i) =
sign(Lz,i) and |Ly,i| = |Lz,i| = +∞ ∀i ∈ {1, 2...,K}.
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Proof: IM = 1 + 1
K

∑K

i=1 log2

(

1+e
Ly,i+Lz,i

(1+e
Ly,i )(1+e

Lz,i )

)

and

IM = 1 is equivalent to 1+e
Ly,i+Lz,i

(1+e
Ly,i )(1+e

Lz,i )
= 1 ∀i ∈ {1, 2...,K}.

This condition is met if and only ifsign(Ly, i) = sign(Lz, i)
and |Ly| = |Lz| = +∞ ∀i ∈ {1, 2...,K}.
As an illustration, the shape ofIM and of cross-entropy (CE)
are compared in Fig. 7 for a single bit with probability mea-
surespy anfpz. We can seen that1−CE reaches its maximum
when py(xk) = pz(xk) (similarity) whereasIM reaches its
maximum whenpy(xk) = pz(xk) = 0 or py(xk) = pz(xk) =
1 (reliability and similarity).

Figure 7. Comparison between1− CE (up) andIM (down).

From the SC-EXIT, the typical values ofαy and αz can
also be obtained. They are plotted in Fig. 6 as a function of
I(Ly, Lz) and for different values of the SNR. We observe
that the value ofα varies with the iteration number and with
the SNR but this information is captured inI(Ly, Lz). As a
consequence, the scaling factorα is a function of a single
parameterI(Ly, Lz). We conclude that an alternative method
for estimating the value ofα consists in evaluating online
the mutual informationI(Ly, Lz) with (22) and using Fig.
6 to obtain the correspondingαy and αz. The coefficients
of the polynomials that fits each of the two curvesαy =
f(I(Ly, Lz)) andαz = g(I(Ly, Lz)) in the least square sense

are given in Appendix B.
2) Scaling factor estimation:Two methods for an online

estimation of the scaling factorα are proposed in this pa-
per. The efficiency of these methods is measured here for the
SCTC. Comparison is also provided with two other methods
from the literature:

• Generalized Mutual Information (GMI) [16]. The optimal
scaling factor̂s reads:

α̂ = argmin
α

{1− 1

K

∑

i=1

log2(1+exp(−sign(X̂iLiα)))}

where X̂i is the hard decision of the decoder that pro-
vides an estimate forXi. This online method maximizes
the generalized mutual information and is proved to be
equivalent to offline explicit method for deriving the scal-
ing factor. The method does not require the Gaussian
assumption to hold. The scaling factor is obtained from
online numerical search (iterative method). The accuracy
depends on decoder decision and may be inaccurate at
low SNR and at the beginning of the iterative process.

• LLR absolute value [30]. It is assumed here thatL is
Gaussian distributed as in (2). The scaling factor is ob-
tained by measuring the meanE(|L|) and varianceV (|L|)
of the absolute value of the LLR and by solving the
system of equations below :

V (|L|) = α2σ4

4 + σ2 (31)

V (|L|)
E2[|L|] =

1+α2σ2

4(√
2
π
e
− α2σ2

8 +ασ
2 erf( ασ

2
√

2
)

)2 = h(ασ) (32)

A second order polynomial is found in [30] to approxi-

mateh−1

(

V (|L|)
E2[|L|]

)

in the range0 − 6dB avoiding nu-

merical integration.
• Mutual information (MI). This is the method in result 3

whereI reads (Eq. (15)):

I = I(L,X) ≈ 1+
1

log(2)K

K∑

i=1

(
Lie

Li

1 + eLi
−log(1+eLi)

)

This method holds as long asJ is a strictly increasing
function of the variableασ. In this paper,J is obtained
by assuming Gaussian distributed LLR andJ−1(I) is
computed with the approximation in the appendix of ref-
erence [29].

• SC-EXIT. The scaling factor is estimated with (39) for
the inner code and (40) for the outer code. From Eq. (22),
the mutual informationI(Ly, Lz) reads:

I(Ly, Lz) ≈ 1 +
1

K

K∑

i=1

log2

(
1 + eLy,i+Lz,i

(1 + eLy,i)(1 + eLz,i)

)

The accuracy of the proposed methods is quantified with the
normalized mean error asE( |α̂−α|

α
) whereα̂ is the estimate

provided by one of the methods under consideration andα

is the desired scaling factor. The latter is obtained assuming
true transmitted bits are available. The MSE is plotted in
Fig. 8 as a function of the mutual information in order to
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Figure 8. Scaling factor estimation - Output of inner code (up) - Output of
outer code (down).

evaluate the efficiency of the method for various SNR and at
different stages of the iterative process. As expected, GMIis
not sufficiently accurate for low values of the mutual informa-
tion and is dismissed here since accurate estimation ofα is
mandatory in early iterations (see Fig. 2). The method in [30]
is very sensitive to violation of the Gaussian assumption. This
may occur in early iterations especially at the outer code that
does not admit the channel observations as an input. At the
opposite, we observe that the two methods proposed in this
paper are valid over the whole range of SNR and are robust,
to a certain extent, to non-Gaussian data. It can be noticed that
the Gaussian assumption is not required in the derivation of
(15) and (22).

3) BER curves:The optimal parameters deduced from the
SC-EXIT are now included at the decoder side. Precisely, we
now consider as stopping criterion (SC1) in (25) combined
with the early stopping criterion (SC2) in (26) withiearly =
15. We proved in the previous section that stopping rules
can take several equivalent expressions. Two configurations
are considered here:(a) (SC1) and (SC2) involveI(Ly, Lz)
as stopping indicator andαy andαz are estimated with the
method called SC-EXIT in the previous section,(b) (SC1)

and (SC2) involveσ as stopping indicator andαy and αz

are estimated with the method in (24). The thresholds for
(SC2) are based on the EXIT curve (σ ≤

√
5, I(Ly, Lz) ≤

0.4) whereas the thresholds in (SC1) are chosen in order to
obtain the same performance in terms of BER for the two
methods (ǫ = 10−2 and

√

σ2
y + σ2

z > 20). The performance
is evaluated in terms of BER and WER and is plotted in
Fig. 9 with labelSCTCoptim. Comparison is given with the
standard decoder (SCTCstandard) with unscaled LLR and a
fixed number of iterations (n = 15). Two different codeword
lengths are considered:K = 1000 and K = 8000. In both
cases, we observe a slight improvement in the performance
with SCTCoptim. This is due to the propagation of scaled
LLR and also to a better repartition of the iterations thanks
to the stopping criterion. The average number of iterations
is reported in Fig. 9 confirming the validity of (SC1) as an
accurate stopping rule based on a performance criterion (error
free). At lowEbN0, stopping rule (SC2) maintains the average
number of iterations at a reasonable level even if the maximum
number of iterations allowed is large (imax = 50 here) with a
better efficiency when (SC2) is based onI(Ly, Lz).

Figure 9. SCTC withK = 1000 or K = 8000 - Up: BER (solid line),
WER (dotted line)- Down: Average number of iterations.
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B. Example 2 : LDPC codes

In this section, a (3-6) regular LDPC code and a (4,8)
regular LDPC are considered. The SC-Exit charts are given
in the section below.

1) SC-Exit chart: The SC-EXIT Chart in Fig. 4 is ap-
plied to regular LDPC codes. The evolution ofI(Ly, Lz) is
plotted in Fig. 10 when either Sum-Product of Min-Sum is
implemented. We observe that the curves obtained with Sum-
Product and Min-Sum are superimposed when an optimal scal-
ing factor is applied meaning that the two implementations
yield the same performance. In several publications, Min-Sum
with scaling factor is compared to Sum-Product without scal-
ing for which a slightly worse performance is noted at low
SNR. The comparison is unfair, optimal scaling with Sum-
Product must correct this phenomenon. The value of the

Figure 10. SC-EXIT Chart,I(Ly , Lz) vs σ2
g for (3-6)-LDPC (up) and for

(4-8)-LDPC (down)- Solid line: Sum-Product, Dotted line: Min-Sum.

scaling factorαy is given in Fig. 11. We can see again thatαy

is a function of the single variableI(Ly, Lz) since the value
obtained forαy always falls on the same curve independently
of EbN0 and of the iteration number. From Fig. 11, we can
conclude that LLR-scaling is mandatory when using Min-Sum
at the decoder side. In addition, we can observe thatαy is
not in the immediate vicinity of1 even when Sum-Product is

implemented at the decoder. As with Min-Sum, the LLR are
overestimated in the first iterations and should be scaled to
improve the performance. The performance of (3-6) and (4-8)-
LDPC codes are now evaluated with different implementations
at the decoder. We consider Sum-Product with either unscaled
LLR (SP,α = 1) or optimally scaled LLR (SP,αoptim). We
also consider Min-Sum either with unscaled LLR (MS,α = 1)
or with a fixed scaling factor (SP,α = 0.8). The value of the
scale factor (α = 0.8) is obtained from the literature [14],
[15] where its optimality is assessed for regular (3-6)-LDPC
codes. In this experiment, the codeword-length isK = 1000.
The stopping criterion isHĉ = 0 or i = itmax whereH is the
parity-check matrix,̂c is the hard-decision on the encoded bits
and itmax = 50. The BER is plotted as a function ofEbN0
in Fig. 12. We observe the following, scaling LLR always
improves the BER. The gain is more important whenα is
far from 1 and at highEbN0. When properly scaled, Min-
Sum and Sum-product exhibit the same performance. We can
observe thatα = 0.8 is indeed optimal with (3-6)-LDPC and
is close to be optimal with (4-8)-LDPC.

Figure 11. SC-EXIT Chart,αy vs I(Ly , Lz) for (3-6)-LDPC (up) and
(4-8)-LDPC (down).
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Figure 12. BER curves (3-6)-LDPC (up) and for (4-8)-LDPC (down).

VI. CONCLUSION

In this paper, we studied the properties of the mutual infor-
mation between the extrinsics involved in an iterative decoding
process. Our framework is quite general and encompasses
serially or parallel concatenated turbo-codes or LDPC codes as
special cases. We proved that the mutual information between
extrinsics is a pertinent performance measure that can be used
at the receiver side for error detection purpose. In addition, an
offline evaluation, reminiscent of EXIT Charts, gives guide-
lines for defining efficient stopping rules. Two methods for an
online efficient estimation of scaling factors are also derived.
Numerical example highlighted the benefits and the generality
of the proposed approach.
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APPENDIX

A. Proof of Eq. (4):

In the following, we consider that the three properties (Sym-
metry, Generalized Consistency and Range) hold forLy and

Lz. We will used the notationαY (resp.αZ ) in the Generalized
Consistency property when applied toLy (resp.Lz) and α

otherwise (ie the result hold for both and is given forL which
stands forLy or Lz).

The expression ofpL(ℓ) is given bypL(ℓ) = 1
2

∑

x pL(ℓ|x).
SinceLy andLz are independent when conditioned onX , we
have

log

(
pLy,Lz (ℓy,ℓz)

pLy (ℓy)pLz (ℓz)

)

= log(2)

+ log

(
∑

x

pLy
(ℓY |x)pLz

(ℓZ |x)
)

︸ ︷︷ ︸

ULy,Lz

− log

(
∑

x

pLy
(ℓy|x)

)

︸ ︷︷ ︸

ULy

− log

(
∑

x

pLz
(ℓz |x)

)

︸ ︷︷ ︸

ULz

(33)

ULy
andULz

have similar expressionUL = log

(

pL(ℓ|x)
)

+

log

(

1+e−αxℓ

)

whereasULy,Lz
= log

(

pLy
(ℓy|x)pLz

(ℓz|x)
)

+

log

(

1 + e−x(αyℓy+αzℓz)

)

. The mutual information reads

I(Ly, Lz) = 1 +

1
log2(2)

(∫ +∞

−∞

∫ +∞

−∞

pLy,Lz
(ℓy, ℓz)ULy,Lz

dlydlz

︸ ︷︷ ︸

ALy,Lz

−
∫ +∞

−∞

pLy
(ℓy)ULy

dly

︸ ︷︷ ︸

ALy

−
∫ +∞

−∞

pLz
(ℓz)ULz

dlz

︸ ︷︷ ︸

ALz

)

(34)

whereAL = 1
2

∑

x

∫ +∞

−∞
pL(ℓ|x) log(pL(ℓ|x))dℓ+

∫ +∞

−∞
pL(ℓ|X =

1) log

(

1 + e−αℓ

)

dℓ and

ALy,Lz
= 1

2

∑

x

∫ +∞

−∞
pLy

(ℓy|x) log(pLy
(ℓy|x))dℓy

+ 1
2

∑

x

∫ +∞

−∞
pLz

(ℓz|x) log(pLz
(ℓz|x))dℓz

+
∫ +∞

−∞

∫ +∞

−∞ pLy
(ℓy|X = 1)pLz

(ℓz|X = 1)×
log(1 + e−(αyℓy+αzℓz))dℓydℓz (35)

Then the mutual information reads

I(Ly, Lz) = I(Ly, X) + I(Lz, X)

+
∫ +∞

−∞

∫ +∞

−∞
pLy

(ℓy|X = 1)pLz
(ℓz|X = 1)×

log(1 + e−(αyℓy+αzℓz))dℓydℓz − 1 (36)

We prove now that the last term in (36) is the mutual infor-
mation betweenLy + Lz and X . We can first remark that
(substitution in the integral)

∫ +∞

−∞

∫ +∞

−∞
pLy

(ℓy|X = 1)pLz
(ℓz|X = 1)×

log(1 + e−(αyℓy+αzℓz))dℓydℓz =
∫ +∞

−∞

∫ +∞

−∞
pαyLy

(ℓy|X = 1)pαzLz
(ℓz|X = 1)×

log(1 + e−(ℓy+ℓz))dℓydℓz (37)
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Let u = ℓy + ℓz and t = ℓz, we have
∫ +∞

−∞

∫ +∞

−∞
pαyLy

(ℓy|X = 1)pαzLz
(ℓz|X = 1)×

log(1 + e−(ℓy+ℓz))dℓydℓz =
∫ +∞

−∞

(
∫ +∞

−∞
pαyLy

(u− t|X = 1)pαzLz
(t|X = 1)dt

)

×

log(1 + e−u)du

The convolution leads to

I(Ly, Lz) = I(Ly, X) + I(Lz, X) +
∫ +∞

−∞
pαyLy+αzLz

(ℓy + ℓz|1) log2(1 + e−ℓy−ℓz )dℓydℓz − 1

= I(Ly, X) + I(Lz, X)− I(Ly + Lz, X) (38)

which concludes the proof.

B. Approximation ofα = f(I(Ly, Lz) for the SCTC

The two curves in Fig. 6 can be approximated with the
polynomials below:

αy = 5.6574x6 − 12.3492x5 + 10.3204x4 − 3.7379x3

+0.5703x2 + 0.0671x+ 0.9461 (39)

αz = −9.1055x5 + 24.933x4 − 26.7916x3

+14.8465x2 − 3.8655x+ 1.2148 (40)

wherex = I(Ly, Lz).
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