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An Algorithm for Global Maximization of
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Abstract

Optimal signaling for secrecy rate maximization in Gaussian MIMO wiretap channels is considered.

While this channel has attracted a significant attention recently and a number of results have been

obtained, including the proof of the optimality of Gaussiansignalling, an optimal transmit covariance

matrix is known for some special cases only and the general case remains an open problem. An

iterative custom-made algorithm to find a globally-optimaltransmit covariance matrix in the general

case is developed in this paper, with guaranteed convergence to aglobal optimum. While the original

optimization problem is not convex and hence difficult to solve, its minimax reformulation can be

solved via the convex optimization tools, which is exploited here. The proposed algorithm is based

on the barrier method extended to deal with a minimax problemat hand. Its convergence to a global

optimum is proved for the general case (degraded or not) and abound for the optimality gap is given

for each step of the barrier method. The performance of the algorithm is demonstrated via numerical

examples. In particular, 20 to 40 Newton steps are already sufficient to solve the sufficient optimality

conditions with very high precision (up to the machine precision level), even for large systems. Even

fewer steps are required if the secrecy capacity is the only quantity of interest. The algorithm can be

significantly simplified for the degraded channel case and can also be adopted to include the per-antenna

power constraints (instead or in addition to the total powerconstraint). It also solves the dual problem

of minimizing the total power subject to the secrecy rate constraint.
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I. INTRODUCTION

Wide-spread use of wireless systems has initiated significant interest in their security and

related information-theoretic studies [1]. Secrecy capacity has emerged as a key performance

metric, which extends the regular channel capacity to accommodate the secrecy requirement.

Wyner’s wire-tap channel (WTC) [1]-[3] is the most popular model to accommodate secrecy,

which was extended to the Gaussian channel [4] and subsequently to the Gaussian multiple-input

multiple-output (MIMO) setting [5]-[8]; the reader is referred to [1] for a detailed discussion of

this model and extensive literature review. The Gaussian MIMO WTC has been recently a subject

of intense study and a number of results have been obtained, including the proof of optimality

of Gaussian signaling [1], [5]-[8]. While the functional form of the optimal (capacity-achieving)

distribution has been established, significantly less is known about its optimal covariance matrix

(the only remaining parameter to completely characterize the distribution since the mean is

always zero).

The optimal transmit covariance matrix under the total power constraint has been obtained

for some special cases, e.g. low/high SNR, multiple-input single-output (MISO) channels, full-

rank, rank-1 or weak eavesdropper cases, or the parallel channel [5]-[19], but the general case

remains illusive. The main difficulty lies in the fact that the underlying optimization problem is

in general not a convex problem. It was conjectured in [7] andproved in [6] using an indirect

approach (via the degraded channel) that the optimal signaling is on the positive directions of

the difference channel (where the legitimate channel is stronger than the eavesdropper one). A

direct proof based on the necessary Karush-Kuhn-Tucker (KKT) optimality conditions has been

obtained in [14]. A weaker form of this result (non-negativeinstead of positive directions) has

been obtained earlier in [9]. In the general case, the rank ofan optimal covariance matrix does

not exceed the number of positive eigenvalues of the difference channel matrix [14]. An exact

full-rank solution for the optimal covariance has been obtained in [14] and its properties have

been characterized. In particular, unlike the regular channel (no eavesdropper), the optimal power

allocation does not converge to uniform one at high SNR and the latter remains sub-optimal at

any finite SNR. In the case of weak eavesdropper (its singularvalues are much smaller than

those of the legitimate channel), the optimal signaling mimics the conventional one (water-filling

over the channel eigenmodes) with an adjustment for the eavesdropper channel. The rank-one
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solution in combination with the full-rank one provides a complete solution for the case of two

transmit antennas and any number of receive/eavesdropper antennas. The 2-2-1 case (2 transmit,

2 receive, 1 eavesdropper antenna) has been studied earlierin [10] and the MISO case (single-

antenna receiver) has been considered in [11][12] and settled in [13][5], for which beamforming

is optimal and which is also the case for a MIMO-WTC in the low SNR regime. The case of

isotropic eavesdropper is studied in detail in [15], including the optimal signaling in an explicit

closed form and its properties. This case is shown to be the worst-case MIMO wire-tap channel.

Based on this, lower and upper (tight) capacity bounds have been obtained for the general case,

which are achievable by an isotropic eavesdropper. The set of channels for which isotropic

signaling is optimal has been fully characterized [15]. It turns out to be more richer than that of

the conventional (no eavesdropper) MIMO channel. A closed-form solution was obtained in [16]

for the case of weak eavesdropper but otherwise arbitrary channel; its optimal power allocation

somewhat resembles the water-filling but is not identical toit. For the case of parallel channels,

independent signaling is optimal [17][18], which implies that the optimal covariance matrix is

diagonal; the corresponding optimal power allocation can be found in [18]. This also implies that

the eigenvectors of optimal covariance matrix are the same as the right singular vectors of the

legitimate or eavesdropper channels when the latter two arethe same [16] and the corresponding

power allocation is the same as in [18]. The low-SNR regime has been studied in detail in [19].

In particular, signaling on the strongest eigenmode(s) of the difference channel matrix is optimal.

Little is known beyond these special cases and the general case is still an open problem.

While numerical algorithms have been proposed in [20], [21]to compute a transmit covariance

matrix for the MIMO-WTC, their convergence to aglobal optimum has not been proved. The

main difficulty lies in the fact that the underlying optimization problems are not convex and

hence KKT conditions are not sufficient for optimality [24].In particular, while the alternating

optimization algorithm in [20] is shown to convergence to a KKT (stationary) point, it is not

necessarily a global maximum (due to the above reason); it may, in fact, be a saddle point or a

local rather thanglobal maximum of the secrecy rate1 and it is not known how far away it is

from the global maximum. This remark also applies to the algorithms considered in [21], [22].

1For non-convex problems, KKT point can also be a local minimum rather than maximum. This is ruled out in [20] by the

non-decreasing nature of the generated sequence of objective values.
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The purpose of this paper is to develop a numerical algorithmfor computing aglobally-optimal

covariance matrix in the general case, i.e. for the general Gaussian MIMO-WTC (degraded or

not), with guaranteed convergence to aglobal optimum, and to prove its convergence. This is a

challenging task as the underlying optimization problem isnot convex so that standard tools of

convex optimization cannot be used; in general, non-convexproblems are much harder to solve

[23]. We deal with this challenge by using the minimax representation of the secrecy capacity

found in [6]. While this representation appears to be more complicated than the standard one (the

former involves two conflicting optimizations while the latter - only one), it turns out to be much

easier to solve, at least numerically, as we demonstrate using the primal-dual representation of

Newton method in combination with the barrier method. The main advantage of this approach

is that each of the two problems is convex, the saddle-point property holds and hence the

respective KKT conditions are sufficient for global optimality (Slater’s condition holds as well).

A conceptually-similar approach has been used before for optimizing the transmitter with per-

antenna power constraints in the regular (no secrecy) MIMO broadcast channel in [25]. Our

custom-made algorithm essentially solves the KKT optimality conditions (see e.g. [23] for a

background on these conditions), which are sufficient for the minimax problem at hand, in an

iterative way using the primal-dual representation of Newton method in combination with the

barrier method (to accommodate inequality constraints) adopted to the MIMO WTC setting, see

Section V. A proof of the algorithm’s convergence to aglobal optimum is also provided for

the general case. While we formulate the algorithm for the total power constraint, it can be

easily modified to accommodate other forms of power constraint, e.g. maximum per-antenna

constraint (instead or in addition to the total power constraint), and also to solve a dual problem

of minimizing the total transmit power under the secrecy rate constraint.

A key part of the convergence proof for our algorithm involves a proof of non-singularity of

the KKT matrix2, so that Newton steps are well-defined for all iterations of the algorithms and

they generate a sequence of norm-decreasing residuals and hence converge to a globally-optimal

point (i.e. a solution of the KKT conditions which corresponds to zero residual). This is a difficult

task since the underlining optimization problems involve both maximization and minimization

2A singular KKT matrix would imply that the corresponding Newton step is not defined and thus the algorithm would terminate

without converging to a global optimum.
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and the corresponding KKT matrix is indefinite so that the regular tools developed for positive

semi-definite matrices [26] do not apply. A block-partitioned factorization of the KKT matrix is

used to accomplish it. This is explained in Section V, which also gives a bound on the optimality

gap for each step of the barrier method. Numerical examples in Section VII demonstrate fast

convergence of the algorithm: 20 to 40 Newton steps are already sufficient to achieve a very high

precision (up to the machine precision level), even for large system. Even less steps are required

if the secrecy capacity is the only quantity of interest. Section VI demonstrates that significant

simplifications in the algorithm are possible for a degradedchannel. Section IV gives a brief

review of the barrier and Newton methods for inequality-constrained optimization, and presents

an algorithm for minimax problems with guaranteed convergence to a global optimum. Section

III summarizes the minimax representation of the secrecy capacity on which our algorithm is

based. Section 2 reviews the Gaussian MIMO-WTC model and itssecrecy capacity.

II. W IRE-TAP GAUSSIAN MIMO CHANNEL MODEL

Let us consider the standard Gaussian MIMO wire-tap channelmodel,

y1 = H1x+ ξ1, y2 = H2x+ ξ2 (1)

wherex = [x1, x2, ...xm]
′ ∈ Rm,1 is the (real) transmitted signal vector of dimensionm × 1, ′

denotes transposition,y1(2) ∈ Rn1(2),1 are the (real) received vectors at the receiver (eavesdrop-

per), ξ1(2) is the additive white Gaussian noise at the receiver (eavesdropper) (normalized to

unit variance in each dimension),H1(2) ∈ Rn1(2),m is then1(2) ×m matrix of the channel gains

between each Tx and each receive (eavesdropper) antenna,n1(2) andm are the number of Rx

(eavesdropper) and Tx antennas respectively. The channelsH1(2) are assumed to be quasistatic

(i.e., constant for a sufficiently long period of time so thatthe infinite horizon information theory

assumption holds) and frequency-flat, with full channel state information (CSI) at the Rx and

Tx ends. A secrecy rate is achievable for this channel if (i) the receiver is able to recover the

message with arbitrary low error probability (reliabilitycriterion) and (ii) the information leaked

to the eavesdropper approaches zero asymptotically (secrecy criterion) [1].

For a given transmit covariance matrixR = E{xx′}, whereE{·} is statistical expectation,

the maximum achievable secrecy rate between the Tx and Rx (sothat the rate between the Tx

October 19, 2021 DRAFT
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Fig. 1. A block diagram of the Gaussian MIMO wiretap channel.Full channel state information is available at the transmitter.

H1(2) is the channel matrix to the legitimate receiver (eavesdropper); x is the transmitted signal andy1(2) is the received

(eavesdropper) signal;ξ1(2) is the AWGN at the receiver (eavesdropper). The informationleakage to the eavesdropper is

required to approach zero asymptotically.

and eavesdropper is zero) is [6]-[8]

C(R) =
1

2
ln

|I+W1R|

|I+W2R|
= C1(R)− C2(R) (2)

where negativeC(R) is interpreted as zero rate,Wi = H′
iHi, and the secrecy capacity subject

to the total Tx power constraint is

Cs = max
R≥0

C(R) s.t. trR ≤ PT (3)

wherePT is the total transmit power (also the SNR since the noise is normalized). It is well-

known that the problem in (3) is not convex and hence very difficult to solve in general and

explicit solutions for the optimal Tx covariance is not known for the general case, but only for

some special cases, e.g. low/high SNR, MISO channels, full-rank or rank-1 case [5]-[9] or for

the parallel channel [17][18].

Since (3) is not a convex problem in the general case, not onlywidely-used Karush-Kuhn-

Tucker optimality conditions are not sufficient, but also the convergence of a numerical algorithm

to a global optimum is very difficult if not impossible to insure since the standard tools of convex

optimization fail to work and, in general, non-convex problems are much harder to deal with

[23]. Thus, (3) is very difficult to solve either analytically or numerically in the general case.

Even whenC(R) is concave so that the problem becomes convex (when the channel is degraded,

W1 ≥ W2), its analytical solution is not known, except for the special cases noted above, and

the known convex solvers [30]-[32] are not able to solve the problem, even in this convex setting

so that a custom-made algorithm has to be developed.

October 19, 2021 DRAFT
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To go around this difficulty, we use the following minimax representation of the secrecy

capacity.

III. M INIMAX REPRESENTATION OFSECRECY CAPACITY

A minimax representation of the secrecy capacity was obtained in [6] via a channel enhance-

ment argument and a clever bounding technique, which is instrumental for our algorithm and is

summarized below.

Theorem 1 (Theorem 1 in [6]). The secrecy capacity of Gaussian MIMO-WTC channel in(2)

can be presented in the following minimax form :

Cs = max
R

min
K

f(R,K) = min
K

max
R

f(R,K) (4)

where

f(R,K) =
1

2
ln

|I+K−1HRH′|

|I+W2R|
≥ C(R), (5)

K =


 I K′

21

K21 I


 ≥ 0, H =


 H1

H2


 , (6)

and the optimization is over the setS of all feasibleR,K:

S = {(R,K) : trR ≤ P, R,K ≥ 0, K is as in (6)}. (7)

The upper bound in (5) viaf(R,K) was obtained from a genie-aided receiver which knows

y2 (in addition toy1) andK represents noise covariance betweenξ1 andξ2. Minimization over

K is due to the fact that the true capacity does not depend onK while the upper bound does so

it’s natural to seek the least upper bound. This bound can also be used in a numerical algorithm

to evaluate the optimality gap with respect tominK for eachR. In fact, (4) states that letting the

receiver to knowy2 in addition toy1 does not increase the secrecy capacity under the worst-case

noise covariance, which is rather surprising.

Remark 1. 2nd equality in (4) expresses the saddle-point property, which is equivalent to the

following inequalities (see e.g. [23][35]):

f(R,K∗) ≤ f(R∗,K∗) ≤ f(R∗,K) (8)

October 19, 2021 DRAFT
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which hold for any feasibleR,K, where(R∗,K∗) is the optimal (saddle) point of (4). These

inequalities follow from von Neumann minimax Theorem sincef(K,R) is convex inK for

any fixedR and concave inR for any fixedK (and for any channel, degraded or not), and the

feasible set in (7) is convex.

Remark 2. It is the convex-concave nature off(R,K) along with the saddle-point property

in (8) and the constraints in (7) that make the respective KKTconditions sufficient for global

optimality (see e.g. [23] and [33] for more details; note that Slater’s condition holds for these

problems). This cannot be said about the original problem in(3). The sufficiency of the KKT

conditions is the key for our algorithm and a proof of its convergence to aglobal maximum

(rather than just a stationary point).

While the equivalence of (3) and (4) was established in [6], an analytical solution of any

one is not known in the general case. In fact, no analytical solution is known for the latter.

Despite its more complicated appearance due to two conflicting optimizations, (4) is in fact

easier to solve than (3), at least numerically, since both optimizations are convex and the

respective KKT conditions are sufficient for global optimality; a proof of convergence of the

corresponding numerical algorithm to aglobal optimumis also within reach forany channel.

While the standard tools developed for single convex optimization [23] do not apply directly

here due to two conflicting optimizations involved, their primal-dual reformulation does work,

as explained below.

We proceed to solve the minimax problem in (4) via KKT conditions3. Subsequently, a

numerical algorithm is developed with guaranteed convergence to a global optimum for any

channel, degraded or not, which is not possible for (3) due toits non-convex nature in the

general case. The Lagrangian for the problem in (4) is

L = f(R,K)− trM1K+ trM2R− λ(trR− P )

+ trΛ(K − I) (9)

whereM1,M2 ≥ 0 are (matrix) Lagrange multiplies responsible for the positive semi-definite

constraintsK,R ≥ 0, λ ≥ 0 is (scalar) Lagrange multiplier responsible for the total power

3See e.g. [23] for a background on KKT conditions.
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constrainttrR ≤ P , and

Λ =



 Λ1 0

0 Λ2



 (10)

is a (matrix) Lagrange multiplier responsible for the constraint onK as in (6). There are two

sets of KKT conditions - one per optimization in (4). For the maximization overR, the KKT

conditions are (to simplify notations, we have omitted the1
2

factor):

∇RL = (I+WR)−1W − (I+W2R)−1W2 +M2 − λI

= 0, (11)

M2R = 0, (12)

trR ≤ P, R,M2 ≥ 0, λ ≥ 0, (13)

where∇R is the gradient (derivative) with respect toR andW = H′K−1H. The KKT conditions

for the minimization overK are

∇KL = (K+Q)−1 −K−1 −M1 +Λ = 0, (14)

M1K = 0, (15)

K,M1 ≥ 0, (16)

and K, Λ are as in (6), (10);Q = HRH′. Here, we implicitly assume thatK > 0. While

the singular case was treated in a separate way in [6], we do not need a separate treatment

here since our numerical algorithm is iterative and, at eachstep, it produces a non-singularK

which, however, may be arbitrary close to a singular matrix (i.e., may have arbitrary small but

positive eigenvalues). This models numerically a case of singularK and is a standard feature

of the barrier method in general, where the boundary of the constraint set can be approached

arbitrary closely but never achieved (see e.g. Chapter 11 in[23] for more detail). We remark

that negligibly-small eigenvalues can be rounded off to 0 and they also imply that the numerical

rank is low.

An optimal point in (4) must satisfy both sets of KKT conditions simultaneously and these

conditions are also sufficient for global optimality, as noted above. An analytical solution to

these conditions is not known. Our numerical algorithm in Section V solves these two sets of

KKT conditions in an iterative way, with guaranteed convergence to a globally-optimal point.

October 19, 2021 DRAFT
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IV. BARRIER METHOD FORM INIMAX OPTIMIZATION

In this section, we first give a brief introduction into Newton and barrier methods for inequality-

constrained optimization; the reader is referred to Chapters 9-11 of [23] for more details and

background information. These two methods are used as key components to construct an algo-

rithm for minimax optimization. Subsequently, this algorithm is adapted to the secrecy problem

in (4) and its guaranteed convergence to a global optimum is proved for any channel (degraded

or not) in Section V.

A. Minimax problem via primal-dual Newton method

Newton method for an equality-constrained problem essentially transforms the problem into a

sequence of quadratic problems for which the sufficient KKT conditions are a system of linear

equations [23].

Let us consider the minimax problem of the form4

max
x

min
y
f(x,y), s.t.Axx = bx,Ayy = by (17)

where vectorsx,y represent optimization variables, the objectivef(x,y) is concave inx and

convex iny; given matricesAx,Ay and vectorsbx,by represent the equality constraints for

each variable. The KKT onditions for this problem are

∇xf +A′
xλx = 0, Axx− bx = 0,

∇yf +A′
yλy = 0, Ayy − by = 0, (18)

whereλx,λy are dual variables, and they are sufficient for global optimality.

While the standard Newton method can be used for both optimizations, a proof of its con-

vergence is challenging since the objective is not monotonous (it decreases in one step and

increases at the other). The residual form of the Newton method is preferable since, as it

was observed in [23], it reduces the norm of the residual at each step and thus generates a

monotonous sequence whose convergence to zero can be guaranteed. To introduce this method,

4A similar problem, without equality constraints, have beenbriefly considered in [23]. More details can be found in [33].Our

development here is tailored to be used for the secrecy problem in (4).

October 19, 2021 DRAFT
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let us aggregate variables, derivatives and parameters as follows:

z =



 x

y



 , λ =



 λx

λy



 , b =



 bx

by



 ,

A =



 Ax 0

0 Ay



 , (19)

∇f =


 ∇xf

∇yf


 , ∇2f =


 ∇2

xxf ∇2
xyf

∇2
yxf ∇2

yyf


 , (20)

The KKT conditions in (18) can be cast in a residual form:

r = [(∇f +A′λ)′, (Az− b)′]′ = 0. (21)

The Newton method iteratively solvesr = 0 using 1st-order approximation (Newton step):

r(w0 +∆w) = r(w0) +Dr∆w + o(∆w)

≈ r(w0) +Dr∆w (22)

wherew = [z′,λ′] is the vector of aggregated (primal/dual) variables,w0 and∆w are its initial

value and update,Dr is the derivative ofr(w):

Dr =

[
∂r

∂z′
,
∂r

∂λ′

]
=



 ∇2f(z0) A′

A 0



 = T (23)

andT is the KKT matrix. Now, settingr(w0 +∆w) = 0 and solving for∆w from (22) gives

the update

∆w : T∆w = −r(w0) (24)

We further show in Section V thatT is non-singular for our problem so that this system of

linear equations is guaranteed to have a unique solution forany set of parameters5.

Having the steps∆w = (∆z′,∆λ′)′ computed, the primal/dual variable updates are

z = z0 + s∆z,λ = λ0 + s∆λ (25)

where the step sizes is found via the backtracking line search [23] as in Algorithm 1 below.

5While ∆w = −T−1r(w0) is its analytical solution, it is not computed in practice since computingT−1 is computationally-

expensive and may result in loss of accuracy for ill-conditionedT, see e.g. [26].
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Algorithm 1 Backtracking line search
Require: w0, 0 < α < 1/2, 0 < β < 1, s = 1.

while |r(w0 + s∆w)| > (1− αs)|r(w0)| do s := βs

end while

In this Algorithm,α is a % of the linear decrease in the residual one is prepared toaccept

at each step, andβ is a parameter controlling the reduction in step size at eachiteration of the

algorithm. The Newton method in combination with the backtracking line search is guaranteed to

reduce the residual norm|r(w)| at each step according to the following residual norm-reduction

property [23]:

d

ds
|r(w0 + s∆w)| = −|r(w0)| < 0, (26)

so that, for sufficiently smalls, the residual indeed shrinks at each iteration (unless|r(w0)| = 0,

which implies thatw0 is optimal). This insures convergence of the algorithm to a global optimum

since KKT conditions are sufficient for optimality and any locally-optimal point is automatically

globally-optimal as the problem is convex.

Algorithm 2 Newton method for minimax optimization
Require: z0,λ0, α, β, ǫ

repeat

1. Find∆z,∆λ using Newton step in (24).

2. Find s using the backtracking line search (Algorithm 1).

3. Update variables:zk+1 = zk + s∆z,λk+1 = λk + s∆λ.

until |r(zk+1,λk+1)| ≤ ǫ.

Based on this, the Newton method for minimax optimization isas in Algorithm 2. The

convergence of this algorithm to a global optimum is insuredby the convex/concave nature

of the objective, sufficiency of the KKT conditions in (18), non-singularity of the KKT matrix

T at each step (as proved in Section V) and the norm-decreasingresidual property in (26),

which ensures that the method generates a sequence of sub-optimal solutions with monotonically

decreasing residuals, for which the stationary point has zero residual and thus solves the sufficient

October 19, 2021 DRAFT



13

KKT conditions. While the global optimum point correspondsto zero residual,|r| = 0 (this is

equivalent to the KKT conditions in (18)), the practical version |r| ≤ ǫ of this condition is used

in Algorithm 2 as a stopping criterion. This form of the stopping criteria is justified by not

only the residual form|r| = 0 of the KKT conditions, but also by the norm-decreasing residual

property in (26).

As a side remark, we note that this algorithm can also be used to solve the problem in (17)

with max andmin interchanged, due to the saddle point property.

B. Barrier method for inequality-constrained problems

Let us now combine the barrier method and the minimax method above to construct an algo-

rithm for minimax optimization with equality and inequality constraints. Consider the following

problem with inequality constraints:

max
x

min
y
f(x,y), s.t.Axx = bx, Ayy = by,

f1(x) ≤ 0, f2(y) ≤ 0 (27)

wheref1 andf2 are the constraint functions. The key idea of the barrier method is to use a soft

instead of hard constraints by augmenting the objective with the barrier functions responsible

for the inequality constraints so that the new objective forthe problem in (27) becomes:

ft(x,y) = f(x,y) + ψt(f1(x))− ψt(f2(y)) (28)

where we use the logarithmic barrier function:

ψt(x) =
1

t
ln(−x) (29)

and wheret is the barrier parameter. The barrier method transforms theinequality-constrained

problem in (27) into the following problem without inequality constraints:

max
x

min
y
ft(x,y), s.t.Axx = bx,Ayy = by (30)

The optimality gap due to this transformation can be upper bounded as follows.

Proposition 1. The optimality gap of the barrier method in(30) applied to the minimax problem

in (27) is as follows:

|f(x∗(t),y∗(t))− p∗| ≤ 1/t (31)

October 19, 2021 DRAFT
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wherep∗ is an optimal value of the original problem in(27) and (x∗(t),y∗(t)) is an optimal

point for the modified problem in(30).

Proof: This is a special case of Proposition 3 below withm = n1 = n2 = 1.

Thus, by selecting sufficiently hight, one can obtain arbitrary small gap. Newton method is

used to solve the modified problem with any desired accuracy.

In practice, the modified problem is solved in an iterative way by selecting first a moderately-

large value oft, solving the problem, increasingt and using the previous solution as a starting

point for a new one. In this way, the total number of Newton steps required to achieve certain

accuracy is minimized [23]. The algorithm is as follows.

Algorithm 3 Barrier method
Require: z,λ, ǫ > 0, t > 0, µ > 1

repeat

1. Solve the problem in (30) using Newton method (Algorithm 2) starting atz,λ.

2. Update variables:z := z∗(t),λ := λ∗(t), t := µt.

until 1/t < ǫ.

V. BARRIER METHOD FORSECRECY RATE MAXIMIZATION

In this section, we use the minimax barrier method above to solve the optimal covariance

problem in (4) iteratively with guaranteed convergence to aglobal optimum, which is also

optimal for (3).

A. Choice of variables

Since the original variables are positive semi-definite matricesR,K and the barrier method

above requires vectors, we have two options:

1. Use all entries ofR,K as independent variables viax = vec(R), y = vec(K), where

operatorvec stacks all columns into a single vector. Enforce the symmetry constraintsR′ =

R, K′ = K and the equality constraint onK in (6) via extra equality constraints.

2. Use only lower-triangular entries ofR as independent variables viax = vech(R), where

vech stacks column-wise all lower-triangular entries into a single column vector, and use only

K21: y = vec(K21).
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It can be shown that these two options are mathematically equivalent, i.e. produce exactly the

same solutions at each step of Newton method. Option 2 is a preferable choice for implementation

since the number of variables and constraints is reduced so that it is more efficient. Therefore, we

use Option 2 for further exposition. Gradient and Hessian can be evaluated either numerically (in

a standard way) or analytically as given below. We find the analytical evaluation to be preferable

as numerical one entails a loss of precision while approaching an optimal point (this is especially

pronounced at high SNR, larget and for large systems).

Since the algorithm requires initial point to begin with, weuse the following point:

R0 =
P

m
I → x0 = vech(R0), (32)

K0 = I → y0 = 0, (33)

λ0 = 0 (34)

As can be easily verified, the initial point above is feasible(i.e. satisfies the constraints). The

choice ofR0 is motivated by the fact that isotropic signalling does not prefer any direction and

thus is equally good a priori for any channel.K0 corresponds to isotropic noise and is motivated

by the same reason. It should be emphasized that the algorithm converges for any (feasible)

initial point, due to the convex nature of the problem, to a global optimum; the difference is in

how fast.

To account for the positive semi-definite constraintsR,K ≥ 0, the following barrier function

is used

ψt(R) =
1

t
ln |R| (35)

so that the modified objectiveft is

ft(R,K) = f(R,K) + ψt(R)− ψt(K) (36)

Note that this requiresK,R > 0, i.e. they are strictly inside of the feasible set but can approach

the boundary arbitrary closely ast increases, so that some eigenvalues may become arbitrary

close to zero (and the numerical rank may be deficient); this models numerically the case of

singularR and/orK and is a standard feature of the barrier method in general [23]. The inequality

in (53) makes sure that the optimality gap due to this can be made as small as desired. In a
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practical implementation, one can round off negligibly-small eigenvalues ofR to zero to simplify

implementation.

After some manipulations (see Appendix for details), the gradients and Hessians can be

expressed as:

∇xft = D′
mvec(∇Rft), ∇yft = D̃′

nvec(∇Kft), (37)

∇2
xxft = −D′

m(Z1 ⊗ Z1 − Z2 ⊗ Z2

+ t−1R−1 ⊗R−1)Dm, (38)

∇2
yyft = D̃′

n(−(K+Q)−1 ⊗ (K+Q)−1

+ (1 + t−1)K−1 ⊗K−1)D̃n, (39)

∇2
xyft = −D′

m(H
′(K+Q)−1 ⊗H′(K+Q)−1)D̃n, (40)

where

∇Rft = Z1 − Z2 + t−1R−1, (41)

∇Kft = (K+Q)−1 − (1 + t−1)K−1, (42)

Z1 = (I+WR)−1W, (43)

Z2 = (I+W2R)−1W2, (44)

and ⊗ is a Kronecker product,Dm is a m2 × m(m + 1)/2 duplication matrix defined from

vec(R) = Dmvech(R) [27][28], D̃n is a n2 × n1n2 reduced duplication matrix defined from

dk = D̃ndk̃, where

dk = vec(dK), dk̃ = vec(dK21),

dK =


 0 dK′

21

dK21 0


 (45)

and n = n1 + n2. It can be obtained fromDn by removing its columns corresponding to all

entries ofK but those inK21.
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It can be shown (see e.g. [14]) that using the full available power is optimal. Therefore,

one can use the equality constrainttrR = P instead of the inequalitytrR ≤ P . The equality

constraint matrixA and vectorb take the following form:

A = [a′, 0′], b = P (46)

whereIm is m ×m identity matrix,a = vech(Im), and0 is n1n2 × 1 zero vector, i.e.A is a

row vector andb is a scalar in our setting.

With this choice of variables and initial points, Algorithm3, in combinations with Algorithms

1 and 2, can now be used to solve numerically the minimax problem in (4).

B. Convergence of the algorithm

Here, we provide a proof of convergence of the proposed algorithm to a global optimum. First,

one has to insure that Newton step is well defined for allt,R,K > 0. This, in turn, insures

that the Newton method produces a sequence of decreasing-norm residuals (according to (26)),

which converge to zero for eacht. Consequently, the minimax barrier method applied to our

problem generates a sequence of sub-optimal pointsz∗(t) that converges to a global optimum (a

solution of the sufficient KKT conditions in (11)-(16)) ast increases, sinceft(R,K) is convex

in K and concave inR and also twice continuously differentiable for eachR > 0, K > 0

(more details can be found in [23]).

To make sure that Newton step is well defined for eacht,R,K > 0, we demonstrate that the

KKT matrix for the modified objectiveft is non-singular, so that the Newton equations have a

well-defined solution as in (24).

Proposition 2. Consider the minimax problem in(17) for the objective in(36) under the equality

constraint parameters as in(46). Its KKT matrix

T =



 ∇2ft A′

A 0



 (47)

is non-singular for eacht > 0, R,K > 0.

Proof: The proof is based on the following three Lemmas.
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Lemma 1. The Hessian

∇2ft = H̆ =



 −H11 H12

H21 H22



 (48)

is non-singular if partial HessiansH11,H22 are non-singular, i.e. ifH11,H22 > 0, whereH11 =

−∇2
xxft, H12 = ∇2

xyft, H21 = H′
12 = ∇2

yxft, H22 = ∇2
yyft. Furthermore, block(1, 1) [H̆−1]11

of the inverseH̆−1 is also non-singular.

Proof: The proof is complicated by the fact that∇2ft is indefinite matrix, sinceft is

concave inx and convex iny (i.e. ∇2
xxft ≤ 0, ∇2

yyft ≥ 0), so that the standard proofs tailored

for positive definite matrices [26] do not apply here. However, sinceH11,H22 > 0, it follows

that

S22 = −H11 −H′
21H

−1
22 H21 < 0,

S11 = H22 +H21H
−1
11 H

′
21 > 0, (49)

where S11(22) is Schur complement of−H11(H22), so that the matrix inversion Lemma in

Proposition 2.8.7 of [34] applies and one can invertH̆ as follows6

H̆−1 =


 −H11 H′

21

H21 H22




−1

=


 S−1

22 −S−1
22 H

′
21H

−1
22

S−1
11 H21H

−1
11 S−1

11


 (50)

which implies thatH̆ is non-singular and that[H̆−1]11 = S−1
22 < 0.

Lemma 2. The KKT matrix in Proposition 2 is non-singular under the conditions of Lemma 1.

Proof: We proceed as follows. Since the Hessian∇2ft = H̆ is non-singular (under condi-

tions of Lemma 1), let us apply the following transformationthat preserves the determinant of

6This idea of the proof was suggested by a reviewer.
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T:

T̃ =


 H̆ A′

A 0




 I −H̆−1A′

0 I




=


 H̆ 0

A −AH̆−1A′


 , (51)

and observe that

|T̃| = |T| = |H̆|(−AH̆−1A′) (52)

(this follows from the properties of block-partitioned matrices and their determinants, see e.g.

[29]). From Lemma 1,|H̆| 6= 0. Further notice thatAH̆−1A′ = a′[H̆−1]11a < 0, since[H̆−1]11 <

0 from Lemma 1 anda 6= 0. Using (52),|T| = |H̆|(−AH̆−1A′) 6= 0 so that the KKT matrix

T is non-singular.

Thus, Lemmas 1 and 2 establish the non-singularity of KKT matrix provided that partial

Hessians∇2
xxft, ∇2

yyft are non-singular. This is indeed the case as Lemma 3 below shows.

Lemma 3. Partial Hessian∇2
xxft, ∇2

yyft in (38) and (39) are non-singular for eacht >

0, R,K > 0.

Proof: See Appendix.

Combining Lemmas 1-3, Proposition 2 follows.

Thus, Proposition 2 insures that Newton step is always well-defined and hence generates a

sequence of decreasing-norm residuals (according to (26))which converges to zero for each

t > 0. The next proposition specifies the optimality gap of the minimax barrier method for a

given t.

Proposition 3. For eacht > 0, the optimality gap of the barrier method applied to the minimax

problem in(4) can be upper bounded as follows:

|f(R∗(t),K∗(t))− Cs| ≤ max(m,n1 + n2)/t (53)

whereR∗(t),K∗(t) are the optimal signal and noise covariance matrices returned by the barrier

method for a givent.
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Proof: Using the bounds for the minimax problem in [33] and adoptingthem to the problem

in (4), one obtains

max
R

f(R,K∗(t))−m/t ≤ f(R∗(t),K∗(t)) (54)

≤ min
K

f(R∗(t),K) + (n1 + n2)/t

so that

f(R∗(t),K∗(t)) ≤ min
K

f(R∗(t),K) + (n1 + n2)/t

≤ max
R

min
K

f(R,K) + (n1 + n2)/t

= Cs + (n1 + n2)/t, (55)

f(R∗(t),K∗(t)) ≥ max
R

f(R,K∗(t))−m/t (56)

≥ min
K

max
R

f(R,K)−m/t = Cs −m/t

from which (53) follows.

Therefore, using sufficiently large barrier parametert insures any desired accuracy, andf(R∗(t),K∗(t)) →

Cs as t → ∞. If desired accuracy isǫ, then the stopping criterion in Algorithm 3 should

be max(m,n1 + n2)/t < ǫ (assuming that the Newton method produces sufficiently-accurate

solution, which is always the case in practice due to its quadratic convergence, see [23]).

C. Dual Problem

While the algorithm above is designed to maximize the secrecy rate, its optimal covariance

also solves the dual problem of minimizing the total transmit power subject to the secrecy rate

constraintC(R) ≥ Rs, i.e.

min trR s.t. C(R) ≥ Rs, R ≥ 0 (57)

This can be easily shown by contradiction and observing that1st inequality in (57) always

holds with equality, or by comparing the respective KKT conditions (which are necessary for

optimality in both problems), both under the conditionRs = Cs.
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D. Per-antenna Power Constraints

Different forms of power constraint can also be incorporated into the proposed algorithm in

a straightforward way. In particular, the per-antenna power constraintrii ≤ Pi, whererii is i-th

diagonal entry ofR (power in antennai) andPi is the maximum power ofi-th antenna, can

be adopted by eliminating matrixA from the KKT equations and addingm extra barrier terms

t−1 ln(Pi − rii) representing new power constraints in (36). As a starting point, one can use e.g.

rii = Pi/2.

In fact, these new constraints can be added to the existing ones as well, representing the

scenario where not only the total power budget is limited butalso the per-antenna powers are

limited due to e.g. limited dynamic range of power amplifiers.

The convergence of this modified algorithm to a global optimum can be proved in the same

way as above (with minor modifications). In particular, one can observe that the new barrier

terms preserve the non-singularity of the KKT matrix and theconvex nature of the problem.

VI. DEGRADED CHANNEL

If the channel is degraded,W1 ≥ W2, thenC(R) is concave and the corresponding op-

timization problem in (3) is convex. Therefore, the barriermethod can be applied directly

to this problem with guaranteed convergence to a global optimum. This reduces the problem

complexity since there is no minimization overK so that the number of variables reduces from

m(m+ 1)/2 + n1n2 to m(m+ 1)/2, which is a significant improvement whenn1n2 is large.

The modified objective (with the barrier term) becomes

ft(R) = C(R) + ψt(R), (58)

the variables arez = x = vech(R) (no y) and the equality constraint parameters are

A = a′ = vech(I), b = P, (59)

Non-singularity of the KKT matrix, which guarantees well-defined Newton steps, can be

established following the lines of the analysis in Section V. In particular, one observes that

Lemmas 1-3 hold. Lemma 3 holds since

∇2
xxft < 0 (60)
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Lemma 1 holds since the Hessian in this case isH̆ = ∇2
xxft. Lemma 2 holds since

a′H̆−1a < 0 (61)

so that the KKT matrix is non-singular and thus KKT conditions have a well-defined solution

at each step of the barrier method.

The optimality gap in this case becomes

|C(R∗(t))− Cs| ≤ m/t (62)

whereR∗(t) is an optimalR returned by the Newton method for a givent, i.e. it is smaller

for the samet than in the non-degraded case (53), which is an extra advantage (in addition to

having less variables). For desired accuracyǫ, the stopping criterion in Algorithm 3 ism/t < ǫ.

As a side remark, we note that even though the problem is convex in this case, existing

convex solvers (see e.g. [30]-[32]) cannot be used to solve it directly since they do not allow

difference of logarithms or matrix powers in objective/constraint functions, while the algorithm

above solves it with guaranteed convergence to a global optimum.

VII. N UMERICAL EXPERIMENTS

To validate the algorithm and analysis and to demonstrate the performance of the algorithm,

extensive numerical experiments have been carried out. Some of the representative results are

shown below.

Convergence of the Newton method for different values of thebarrier parametert is demon-

strated in Fig.2 for

H1 =


 0.77 −0.30

−0.32 −0.64


 ,

H2 =


 0.54 −0.11

−0.93 −1.71


 , (63)

which shows the residualr Euclidian norm versus Newton steps. Even though this channel is not

degraded, since the eigenvalues ofW1 −W2 are{0.395,−3.293}, the algorithm does find the

global optimum (this particular channel was selected because it is ”difficult” for optimization).

Note the presence of two convergence phases: linear and quadratic, which is typical for Newton

method in general. After the quadratic phase is reached, theconvergence is very fast (water-fall
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Fig. 2. Convergence of the Newton method for different values of t; m = 2, P = 10, α = 0.3, β = 0.5, H1,H2 as in (63).

Note the presence of two convergence phases: linear and quadratic. It takes only about 10 to 20 Newton steps to reach the

machine precision level.
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Fig. 3. Secrecy rates for the same setting as in Fig. 2. Solid line - via the upper bound in (5) (the lines coincide for different

t), dashed - viaC(R) in (2).

region). It takes about 10-20 Newton steps to reach very low residual (at the level of machine

precision). This is in agreement with the observations in [23] (although obtained for different

problems).

Fig. 3 shows the corresponding secrecy rate evaluated via the upper bound in (5) and the actual
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Fig. 4. Convergence of the barrier method (incrementally increasingt); m = 5, n1 = n2 = 10, P = 10, α = 0.3, β = 0.5,

µ = 5, H1,H2 are randomly generated (i.i.d. Gaussian entries of zero mean and unit variance). It takes about 5 to 10 steps to

reduce the residual to a very low value of10−10 for eacht.

achievable rate viaC(R(t)) in (2), whereR(t) is an optimal covariance at a particular step of

the Newton method and for a givent. As the algorithm converges, they become almost equal if

t is sufficiently large (in this case, about104...105). While t has negligible impact on the upper

bound, it does affect significantly the correspondingC(R(t)) (since the optimal covarianceR(t)

returned by the barrier method depends ont andC(R) is sensitive toR), so that the choice of

t is not critical if the secrecy capacity is the only quantity of interest (since the upper bound

is quite tight even for moderatet). However, if a transmitter is implemented with the optimal

covarianceR(t) returned by the algorithm, it isC(R(t)) that determines the achievable rate and

this choice is important. We attribute this fact to higher sensitivity of C(R) to R compared to

that off(R,K). Similar observations apply to the number of Newton steps required to achieve a

certain performance: ifCs is the quantity of interest, the upper bound converges to it in about 3-5

steps. However, if implementingR is involved, one should useC(R) and, in addition to proper

choice oft, it takes about 5...10 steps to achieve the convergence. Note that, in both cases, the

number of steps is not large and the execution time is small (afew seconds). In general, larger

t andm,n1, n2 require more steps to achieve the same accuracy. As expected, the behavior of

upper bound is not monotonic while the residual norm does decrease monotonically in each step.

Fig. 4 and 5 demonstrate the convergence of the minimax barrier method (incrementally
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Fig. 5. Secrecy rates for the same setting as in Fig. 4. Solid line - via the upper bound in (5), dashed - viaC(R) in (2). Note

that while the capacity value evaluated via the upper bound converges very fast, significantly more iterations are required for

convergence of the secrecy rateC(R). We attribute this to the fact thatC(R) is more sensitive toR than f(R,K) is. Also

note the significantly non-monotonique behavior of the former.

increasingt) for a larger system (m = 5, n1 = n2 = 10). Note that a very low residual value of

10−10 is achieved after about 7 Newton steps for each value oft. Using incrementally-increasing

t as opposed to a fixed large value results in a smaller number ofthe total Newton steps required

to achieve a given residual value and is less sensitive to system parameters and size. Also observe

from Fig. 5 that while the upper bound converges quite fast (in a few Newton steps), it takes

significantly more steps forC(R) to converge and the convergence process is significantly non-

monotonic.

To demonstrate the convergence performance for different channel realizations, Fig. 6 and 7

show the distribution (histograms) of the number of steps required to achieve the residual of

10−10 and10−8 for 100 randomly-generated channels (with i.i.d. Gaussianentries of zero mean

and unit variance) form = 4, n1 = n2 = 3 andm = 5, n1 = n2 = 10 systems. While the actual

number of required steps depends on a particular channel realization, 20 to 40 steps are sufficient

in most cases. We attribute this to the two-phase behaviour of the algorithm’s convergence: once

the quadratic (water-fall) phase is reached, it takes just afew steps to reduce the residual to a very

low value (which is consistent with similar observations in[23], albeit for different problems).
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Fig. 6. A histogram showing the distribution of the number ofNewton steps needed to achieve the residual of10−10 via the

minimax barrier method for 100 randomly generated channels(i.i.d. Gaussian entries of zero mean and unit variance);P = 10,

α = 0.3, β = 0.5, m = 4, n1 = n2 = 3, t0 = 100, tmax = 105, µ = 10.
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Fig. 7. A histogram showing the distribution of the number ofNewton steps needed to achieve the residual of10−8

for 100 randomly generated channels (i.i.d. Gaussian entries of zero mean and unit variance);m = 5, n1 = n2 = 10,

t0 = 100, tmax = 105, µ = 10, P = 10, α = 0.3, β = 0.5.

Different channel realizations result in a different number of required steps for the linear phase,

before the quadratic phase is reached, but do not affect muchthe latter.
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VIII. C ONCLUSION

Global secrecy rate maximization for (non-degraded) Gaussian MIMO-WTC has been dis-

cussed. The problem is challenging due to its non-convex nature and no analytical solution is

known for this setting. While the known numerical algorithms converge to a stationary point

(which may be a local rather than global maximum or just a saddle point), the algorithm proposed

herein is guaranteed to converge to aglobal rather thanlocal maximum. The algorithm is based

on the minimax reformulation of the secrecy capacity problem (to insure global convergence)

and the primal-dual reformulation of the Newton method in combination with the barrier method.

A proof of its global convergence is also given. Numerical experiments indicate that 20 to 40

Newton steps are sufficient for convergence with high precision (up to the machine precision

level). Extra power constraints (e.g. maximum per-antennapower) can be easily incorporated in

the algorithm. The dual problem of total power minimizationsubject to the secrecy rate constraint

can also be solved.
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X. APPENDIX

A. Gradients and Hessians

To derive the gradient and Hessian expressions, we use the tools of matrix differential calculus

[27][28]. Let us considerf(X) = ln |X|, whereX > 0 is n× n positive definite matrix. Using

the perturbation method,

f(X+ dX) = ln |X|+ ln |I+X−1dX| (64)

= f(X) +
∑

i

λi(X
−1dX)−

1

2
λ2i (X

−1dX) + o(λ2i )

= f(X) + tr(X−1dX)−
1

2
tr(X−1dXX−1dX) + o({λ2i })

Using

tr(X−1dX) = vec(dX)′vec(X−1)

= dx′D′
nvec(X

−1) (65)
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wheredx = vech(dX), one obtains the gradient∇xf = D′
nvec(X

−1). Applying this to

f(K) = ln |I+K−1Q| = ln |K+Q| − ln |K|, (66)

∇yft follows. Using

tr(X−1dXX−1dX) = vec(dX)′(X−1 ⊗X−1)vec(dX)

= dx′D′
n(X

−1 ⊗X−1)Dndx (67)

the Hessian∇2
xxf can be identified as

∇2
xxf = −D′

n(X
−1 ⊗X−1)Dn (68)

Applying this tof(K), ∇2
yft follows.

To derive∇xft and∇2
xft, use a modification of (64) forf(R) = ln |I+WR|:

f(R+ dR) = f(R) + tr(ZdR)−
1

2
tr(ZdRZdR)

+
∑

i

o(λ2i ) (69)

whereZ = (I+WR)−1W, so that

∇rft = D′
mvec(Z) (70)

wherer = vech(R), and

∇2
rft = −D′

m(Z⊗ Z)Dm (71)

from which (37), (38) follow, where we have used the following identities [27]:

tr(AB) = vec(A′)′vec(B),

tr(ABCD) = (vecD)′(A⊗C′)vec(B′) (72)

and the fact thatZ is symmetric,Z′ = Z. To derive∇2
xyft, observe that

∇2
krf(R,K) = ∇2

kr ln |K+HRH′| (73)

wheredk = vec(dK), so that one needs to consider only

f̃(R,K) = ln |K+HRH′| (74)
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for which the perturbation method gives

f̃(R+ dR,K+ dK) = f̃(R,K)

− tr(H′(K+Q)−1dK(K+Q)−1HdR) + ∆f̃ (75)

where∆f̃ denotes all other terms (which do not affect the mixed derivatives), from which (40)

follows by usingvec operator inside the trace.

B. Proof of Lemma 3

Observe thatQ ≥ 0 so that(K+Q)−1 ≤ K−1 and thus

K−1 ⊗K−1 − (K+Q)−1 ⊗ (K+Q)−1 ≥ 0 (76)

(this follows from the properties of Kronecker products, see e.g. [29]) and

(1 + t−1)K−1 ⊗K−1 − (K+Q)−1 ⊗ (K+Q)−1

≥ t−1K−1 ⊗K−1 > 0 (77)

Now consider the following quadratic form for anyy 6= 0:

y′∇2
yyfty = ỹ′((1 + t−1)K−1 ⊗K−1 (78)

− (K+Q)−1 ⊗ (K+Q)−1)ỹ > 0

sinceỹ = D̃ny 6= 0 (this follows from the fact that all columns of̃Dn are linearly independent,

which in turn is implied by linear independence of columns ofDn since it has a full column

rank [27]). Therefore,∇2
yyft > 0. Non-singularity of∇2

xxft can be proved in a similar way.

First, one observes thatW ≥ W2:

W = H′K−1H (79)

= [H′
1H

′
2]



 I K′
21

K21 I




−1 

 H1

H2



 (80)

= H′
2H2 + (H1 −K′

21H2)
′(I−K′

21K21)
−1

× (H1 −K′
21H2) (81)

≥ H′
2H2 = W2 (82)
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since 2nd term in (81) is positive semi-definite, where we have used the matrix inversion Lemma:

K−1 =


 I K′

21

K21 I




−1

(83)

=


 (I−K′

21K21)
−1 K′

21(K21K
′
21 − I)−1

(K21K
′
21 − I)−1K21 (I−K21K

′
21)

−1




and the fact thatK′
21K21 < I, K21K

′
21 < I, which follows fromK > 0 (since this implies

|K21|2 < 1, where| · |2 is the spectral norm, see e.g. [29]). Therefore,Z1 ≥ Z2, which follows

from the following argument whenW, W2 are non-singular:

W ≥ W2 ⇒ W−1 ≤ W−1
2 (84)

⇒ W−1 +R ≤ W−1
2 +R (85)

⇒ Z1 = (W−1 +R)−1

≥ (W−1
2 +R)−1 = Z2 (86)

WhenW and/orW2 are singular, one can use the continuity argument [29]: useWǫ = W+ǫI >

0, W2ǫ = W2 + ǫI > 0 with ǫ > 0, instead ofW, W2 and then takeǫ → 0; since both sides

of the inequality are continuous functions, the result follows. SinceZ1 ≥ Z2, it follows that

Z1 ⊗ Z1 ≥ Z2 ⊗ Z2 and thus

Z1 ⊗ Z1 − Z2 ⊗ Z2 + t−1R−1 ⊗R−1 > 0 (87)

(sinceR−1 ⊗R−1 > 0) from which it follows that∇2
xxft < 0.
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