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Abstract

Optimal signaling for secrecy rate maximization in Gaus$iiMO wiretap channels is considered.
While this channel has attracted a significant attentioremtlg and a number of results have been
obtained, including the proof of the optimality of Gaussggnalling, an optimal transmit covariance
matrix is known for some special cases only and the geneis# camains an open problem. An
iterative custom-made algorithm to find a globally-optinr@nsmit covariance matrix in the general
case is developed in this paper, with guaranteed conveegenaglobal optimum. While the original
optimization problem is not convex and hence difficult toveolits minimax reformulation can be
solved via the convex optimization tools, which is explditeere. The proposed algorithm is based
on the barrier method extended to deal with a minimax prokd¢rmand. Its convergence to a global
optimum is proved for the general case (degraded or not) dmouad for the optimality gap is given
for each step of the barrier method. The performance of therithm is demonstrated via numerical
examples. In particular, 20 to 40 Newton steps are alreafficiemt to solve the sufficient optimality
conditions with very high precision (up to the machine psiEgi level), even for large systems. Even
fewer steps are required if the secrecy capacity is the onéntity of interest. The algorithm can be
significantly simplified for the degraded channel case amdatso be adopted to include the per-antenna
power constraints (instead or in addition to the total poa@rstraint). It also solves the dual problem

of minimizing the total power subject to the secrecy ratest@int.
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I. INTRODUCTION

Wide-spread use of wireless systems has initiated signtficderest in their security and
related information-theoretic studi€s [1]. Secrecy cépatas emerged as a key performance
metric, which extends the regular channel capacity to accodate the secrecy requirement.
Wyner's wire-tap channel (WTC) [1]-[3] is the most populandel to accommodate secrecy,
which was extended to the Gaussian charifel [4] and subsiytethe Gaussian multiple-input
multiple-output (MIMO) setting([6]:[8]; the reader is rafed to [1] for a detailed discussion of
this model and extensive literature review. The Gaussiad®™WTC has been recently a subject
of intense study and a number of results have been obtaineldding the proof of optimality
of Gaussian signaling [1], [5]-[8]. While the functionalrfo of the optimal (capacity-achieving)
distribution has been established, significantly less manabout its optimal covariance matrix
(the only remaining parameter to completely characterige distribution since the mean is
always zero).

The optimal transmit covariance matrix under the total poa@nstraint has been obtained
for some special cases, e.g. low/high SNR, multiple-infngls-output (MISO) channels, full-
rank, rank-1 or weak eavesdropper cases, or the paralleheh&]-[19], but the general case
remains illusive. The main difficulty lies in the fact thaetinderlying optimization problem is
in general not a convex problem. It was conjectured_in [7] praked in [6] using an indirect
approach (via the degraded channel) that the optimal sign& on the positive directions of
the difference channel (where the legitimate channel mnger than the eavesdropper one). A
direct proof based on the necessary Karush-Kuhn-TuckeT{Kdptimality conditions has been
obtained in[[14]. A weaker form of this result (non-negatimetead of positive directions) has
been obtained earlier inl[9]. In the general case, the rardnodptimal covariance matrix does
not exceed the number of positive eigenvalues of the diffezechannel matrix [14]. An exact
full-rank solution for the optimal covariance has been wigd in [14] and its properties have
been characterized. In particular, unlike the regular neh(nho eavesdropper), the optimal power
allocation does not converge to uniform one at high SNR aeddtier remains sub-optimal at
any finite SNR. In the case of weak eavesdropper (its singudhres are much smaller than
those of the legitimate channel), the optimal signaling rogtthe conventional one (water-filling

over the channel eigenmodes) with an adjustment for thesdawpper channel. The rank-one
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solution in combination with the full-rank one provides argaete solution for the case of two
transmit antennas and any number of receive/eavesdropf@iras. The 2-2-1 case (2 transmit,
2 receive, 1 eavesdropper antenna) has been studied @arfi€)] and the MISO case (single-
antenna receiver) has been considered in [11][12] andedattl[13][5], for which beamforming
is optimal and which is also the case for a MIMO-WTC in the loNRSregime. The case of
isotropic eavesdropper is studied in detaillin|[15], inahgdthe optimal signaling in an explicit
closed form and its properties. This case is shown to be thstwase MIMO wire-tap channel.
Based on this, lower and upper (tight) capacity bounds haea lobtained for the general case,
which are achievable by an isotropic eavesdropper. The fsehannels for which isotropic
signaling is optimal has been fully characterized [15]utns out to be more richer than that of
the conventional (no eavesdropper) MIMO channel. A cldeedh solution was obtained in [16]
for the case of weak eavesdropper but otherwise arbitraayrodl; its optimal power allocation
somewhat resembles the water-filling but is not identicat.téor the case of parallel channels,
independent signaling is optimal [17][18], which implidsat the optimal covariance matrix is
diagonal; the corresponding optimal power allocation cafdoind in [18]. This also implies that
the eigenvectors of optimal covariance matrix are the sasnihe right singular vectors of the
legitimate or eavesdropper channels when the latter twéhareamel[16] and the corresponding
power allocation is the same as in [18]. The low-SNR regime lteen studied in detail in [19].
In particular, signaling on the strongest eigenmode(shefdifference channel matrix is optimal.
Little is known beyond these special cases and the genesalisastill an open problem.

While numerical algorithms have been proposed in [20], [ldompute a transmit covariance
matrix for the MIMO-WTC, their convergence toglobal optimum has not been proved. The
main difficulty lies in the fact that the underlying optimiman problems are not convex and
hence KKT conditions are not sufficient for optimalify [24f. particular, while the alternating
optimization algorithm in[[20] is shown to convergence to KTK(stationary) point, it is not
necessarily a global maximum (due to the above reason);yt mdact, be a saddle point or a
local rather thanglobal maximum of the secrecy rﬁ&and it is not known how far away it is

from the global maximum. This remark also applies to the @lgms considered in [21]/ [22].

For non-convex problems, KKT point can also be a local mimimmather than maximum. This is ruled out [n[20] by the

non-decreasing nature of the generated sequence of objectiues.
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The purpose of this paper is to develop a numerical algorftiraomputing aglobally-optimal
covariance matrix in the general case, i.e. for the geneaais&an MIMO-WTC (degraded or
not), with guaranteed convergence tglabal optimum, and to prove its convergence. This is a
challenging task as the underlying optimization problemas convex so that standard tools of
convex optimization cannot be used; in general, non-copveklems are much harder to solve
[23]. We deal with this challenge by using the minimax reprgation of the secrecy capacity
found in [6]. While this representation appears to be moreg@ated than the standard one (the
former involves two conflicting optimizations while thetkat - only one), it turns out to be much
easier to solve, at least numerically, as we demonstrateyuke primal-dual representation of
Newton method in combination with the barrier method. Thenmaalvantage of this approach
is that each of the two problems is convex, the saddle-paiapgrty holds and hence the
respective KKT conditions are sufficient for global optima(Slater's condition holds as well).
A conceptually-similar approach has been used before fomapng the transmitter with per-
antenna power constraints in the regular (no secrecy) MIM@adicast channel i _[25]. Our
custom-made algorithm essentially solves the KKT optitpatonditions (see e.gl [23] for a
background on these conditions), which are sufficient fer rtiinimax problem at hand, in an
iterative way using the primal-dual representation of Newinethod in combination with the
barrier method (to accommodate inequality constrainteptat! to the MIMO WTC setting, see
Section V. A proof of the algorithm’s convergence taykbal optimum is also provided for
the general case. While we formulate the algorithm for thaltpower constraint, it can be
easily modified to accommodate other forms of power congir@.g. maximum per-antenna
constraint (instead or in addition to the total power caiat), and also to solve a dual problem
of minimizing the total transmit power under the secrecy r@nstraint.

A key part of the convergence proof for our algorithm invah\ae proof of non-singularity of
the KKT matri>H, so that Newton steps are well-defined for all iterationshef algorithms and
they generate a sequence of norm-decreasing residualsand bonverge to a globally-optimal
point (i.e. a solution of the KKT conditions which corresplsrto zero residual). This is a difficult

task since the underlining optimization problems invohahbmaximization and minimization

2A singular KKT matrix would imply that the corresponding New step is not defined and thus the algorithm would terminate

without converging to a global optimum.
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and the corresponding KKT matrix is indefinite so that theutagtools developed for positive
semi-definite matrices [26] do not apply. A block-partitiahfactorization of the KKT matrix is
used to accomplish it. This is explained in Section V, whitdoaives a bound on the optimality
gap for each step of the barrier method. Numerical exampieSection VII demonstrate fast
convergence of the algorithm: 20 to 40 Newton steps aredfrsafficient to achieve a very high
precision (up to the machine precision level), even fordagstem. Even less steps are required
if the secrecy capacity is the only quantity of interest.t®ecVIl demonstrates that significant
simplifications in the algorithm are possible for a degradbdnnel. Section IV gives a brief
review of the barrier and Newton methods for inequalitystoined optimization, and presents
an algorithm for minimax problems with guaranteed convecgeto a global optimum. Section
[l summarizes the minimax representation of the secrepaciéy on which our algorithm is

based. Section 2 reviews the Gaussian MIMO-WTC model anseitsecy capacity.

II. WIRE-TAP GAUSSIAN MIMO CHANNEL MODEL

Let us consider the standard Gaussian MIMO wire-tap chamoelel,
yi=Hix+§&, y:=Hx+¢§, 1)

wherex = [z, %, ...7,,] € R™! is the (real) transmitted signal vector of dimensianx 1, ’
denotes transpositiory; o) € 2" are the (real) received vectors at the receiver (eavesdrop-
per), &,(») is the additive white Gaussian noise at the receiver (eawppér) (normalized to
unit variance in each dimensiorf; ;) € R™®™ is then, ) x m matrix of the channel gains
between each Tx and each receive (eavesdropper) antepsnaandm are the number of Rx
(eavesdropper) and Tx antennas respectively. The chakheglsare assumed to be quasistatic
(i.e., constant for a sufficiently long period of time so ttia infinite horizon information theory
assumption holds) and frequency-flat, with full channetesiaformation (CSI) at the Rx and
Tx ends. A secrecy rate is achievable for this channel ifH@ teceiver is able to recover the
message with arbitrary low error probability (reliabilityiterion) and (ii) the information leaked
to the eavesdropper approaches zero asymptotically ¢secréerion) [1].

For a given transmit covariance matix = E{xx'}, where £{-} is statistical expectation,

the maximum achievable secrecy rate between the Tx and Rth@dhe rate between the Tx

October 19, 2021 DRAFT



Tx |— Rx

Yo

Eve

Hy %21

Fig. 1. A block diagram of the Gaussian MIMO wiretap chanelll channel state information is available at the trantamit
H, ;) is the channel matrix to the legitimate receiver (eaveguop x is the transmitted signal ang, ) is the received
(eavesdropper) signak, ,, is the AWGN at the receiver (eavesdropper). The informateakage to the eavesdropper is
required to approach zero asymptotically.

and eavesdropper is zero) s [6]-[8]

1. I+ W, R|
= —-1nNn—-———-
2 I+ WiR]

where negative”’ (R) is interpreted as zero rat¥y/; = H,H;, and the secrecy capacity subject

C(R) = Ci(R) - G5(R) (2)

to tlle tOtal X power col |Strai||t |S
CS R>( C( ) t r — T ( )

where Pr is the total transmit power (also the SNR since the noise isatized). It is well-
known that the problem in13) is not convex and hence veryaddilfito solve in general and
explicit solutions for the optimal Tx covariance is not knovor the general case, but only for
some special cases, e.g. low/high SNR, MISO channelsydaolt-or rank-1 case [5]-[9] or for
the parallel channel [17][18].

Since [(3) is not a convex problem in the general case, not widgly-used Karush-Kuhn-
Tucker optimality conditions are not sufficient, but alse tonvergence of a numerical algorithm
to a global optimum is very difficult if not impossible to imgusince the standard tools of convex
optimization fail to work and, in general, non-convex perbks are much harder to deal with
[23]. Thus, [3) is very difficult to solve either analyticalbr numerically in the general case.
Even whenC'(R) is concave so that the problem becomes convex (when the ehiardegraded,
W; > W,), its analytical solution is not known, except for the spécases noted above, and
the known convex solvers [30]-[32] are not able to solve ttabfem, even in this convex setting

so that a custom-made algorithm has to be developed.
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To go around this difficulty, we use the following minimax repentation of the secrecy

capacity.

[1l. M INIMAX REPRESENTATION OFSECRECY CAPACITY

A minimax representation of the secrecy capacity was obthin [€] via a channel enhance-
ment argument and a clever bounding technique, which isumsntal for our algorithm and is

summarized below.

Theorem 1 (Theorem 1 in[[6]) The secrecy capacity of Gaussian MIMO-WTC channdPin

can be presented in the following minimax form :

Cs = max min fR,K) = min max f(R,K) 4)
where
1. T+ K 'HRH/|
R,K)=-1 > C(R 5
I K! H
K= >0 H=( |, (6)
K21 1 H2

and the optimization is over the s&tof all feasibleR, K:
S={R,K):trR<P, RLK>0, Kisasin(@)}. (7)

The upper bound inf{5) vig(R, K) was obtained from a genie-aided receiver which knows
v (in addition toy;) andK represents noise covariance betwgerand&,. Minimization over
K is due to the fact that the true capacity does not depenH evhile the upper bound does so
it's natural to seek the least upper bound. This bound cantasused in a numerical algorithm
to evaluate the optimality gap with respectiingk for eachR. In fact, [4) states that letting the
receiver to knowy, in addition toy; does not increase the secrecy capacity under the worst-case

noise covariance, which is rather surprising.

Remark 1. 2nd equality in[(#) expresses the saddle-point propertychvis equivalent to the
following inequalities (see e.d. [23][35]):

f(R,K) < f(R", K") < f(R",K) (8)
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which hold for any feasibl®, K, where (R*, K*) is the optimal (saddle) point ofl(4). These
inequalities follow from von Neumann minimax Theorem singd, R) is convex inK for
any fixedR and concave iR for any fixedK (and for any channel, degraded or not), and the

feasible set in[{7) is convex.

Remark 2. It is the convex-concave nature ¢f R, K) along with the saddle-point property
in (@) and the constraints inl(7) that make the respective Kigmditions sufficient for global
optimality (see e.g.[[23] and [33] for more details; notettBéater's condition holds for these
problems). This cannot be said about the original probler@)n The sufficiency of the KKT
conditions is the key for our algorithm and a proof of its cergence to alobal maximum

(rather than just a stationary point).

While the equivalence of {3) andl(4) was established_In [@8],aaalytical solution of any
one is not known in the general case. In fact, no analytichltem is known for the latter.
Despite its more complicated appearance due to two confiiabptimizations,[(4) is in fact
easier to solve thar](3), at least numerically, since bottimopations are convex and the
respective KKT conditions are sufficient for global optimgla proof of convergence of the
corresponding numerical algorithm toghobal optimumis also within reach forany channel.
While the standard tools developed for single convex og@tion [23] do not apply directly
here due to two conflicting optimizations involved, theimpal-dual reformulation does work,
as explained below.

We proceed to solve the minimax problem [0 (4) via KKT comﬁ@. Subsequently, a
numerical algorithm is developed with guaranteed convergeto a global optimum for any
channel, degraded or not, which is not possible fdr (3) dué@stcon-convex nature in the

general case. The Lagrangian for the problenin (4) is
L= f(R,K)—trM,K + trM,R — A(trR — P)
+trA(K —1) 9)

whereM,, M, > 0 are (matrix) Lagrange multiplies responsible for the pesisemi-definite

constraintsK, R > 0, A > 0 is (scalar) Lagrange multiplier responsible for the totailvpr

3See e.g.[[23] for a background on KKT conditions.
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constrainttrR < P, and

A O
A= (20)
0 A,
is a (matrix) Lagrange multiplier responsible for the coaisit on K as in [6). There are two
sets of KKT conditions - one per optimization il (4). For thevamization overR, the KKT

conditions are (to simplify notations, we have omitted %hiactor):

Vel =T+ WR)"'W — (I+W,R)'"W, + M, — Al

=0, (11)
M,R = 0, (12)
trR < P, R,M, >0, \ >0, (13)

whereVy is the gradient (derivative) with respectBbandW = H'K~'H. The KKT conditions

for the minimization oveilK are

VkL=K+Q) ' —K*'—-M; +A =0, (14)
M;K =0, (15)
K7 Ml 2 07 (16)

and K, A are as in[(b),[(10)Q = HRH'. Here, we implicitly assume thd& > 0. While
the singular case was treated in a separate way|in [6], we tmeed a separate treatment
here since our numerical algorithm is iterative and, at estep, it produces a non-singullr
which, however, may be arbitrary close to a singular maitex,(may have arbitrary small but
positive eigenvalues). This models numerically a case mfudar K and is a standard feature
of the barrier method in general, where the boundary of thesttaint set can be approached
arbitrary closely but never achieved (see e.g. Chapter J23hfor more detail). We remark
that negligibly-small eigenvalues can be rounded off to @ trey also imply that the numerical
rank is low.

An optimal point in [(4) must satisfy both sets of KKT condit® simultaneously and these
conditions are also sufficient for global optimality, as ewtabove. An analytical solution to
these conditions is not known. Our numerical algorithm ictl®® V solves these two sets of

KKT conditions in an iterative way, with guaranteed conesrge to a globally-optimal point.
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IV. BARRIER METHOD FORMINIMAX OPTIMIZATION

In this section, we first give a brief introduction into Newtand barrier methods for inequality-
constrained optimization; the reader is referred to Chap®ell of [23] for more details and
background information. These two methods are used as kepaoents to construct an algo-
rithm for minimax optimization. Subsequently, this algbm is adapted to the secrecy problem
in (4) and its guaranteed convergence to a global optimumogeal for any channel (degraded

or not) in Section V.

A. Minimax problem via primal-dual Newton method

Newton method for an equality-constrained problem esaliyntransforms the problem into a
sequence of quadratic problems for which the sufficient Kikhditions are a system of linear

equations([23].
Let us consider the minimax problem of the f&m

max min f(x,y), s.t. A,x =b,,A)y =b, a7
x y

where vectors,y represent optimization variables, the objectiif,y) is concave inx and
convex iny; given matricesA,, A, and vectorsb,, b, represent the equality constraints for

each variable. The KKT onditions for this problem are
Vof + AN, =0, A, x—b, =0,
Vyf+A N =0, Ayy —b, =0, (18)
where,, A, are dual variables, and they are sufficient for global opityna
While the standard Newton method can be used for both omimizs, a proof of its con-
vergence is challenging since the objective is not monaisn@ decreases in one step and
increases at the other). The residual form of the Newton atkis preferable since, as it

was observed in[[23], it reduces the norm of the residual ah esiep and thus generates a

monotonous sequence whose convergence to zero can be tgedrafo introduce this method,

4A similar problem, without equality constraints, have béeiefly considered in[23]. More details can be found[in] [33r

development here is tailored to be used for the secrecy emoloh [4).
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11

let us aggregate variables, derivatives and parametersaw$:

Z = ) A - ) b - )
i y Ay b,
A, O
A= : (19)
0 A,
[ Va \%s \%
vi— | Voo | Ve Vel 20)
L Vyf vy:vf vyyf
The KKT conditions in[(IB) can be cast in a residual form:
r=[(Vf+AX, (Az—b)] = 0. (21)

The Newton method iteratively solves= 0 using 1st-order approximation (Newton step):
r(wo + Aw) = r(wg) + DrAw + o(Aw)
~ r(wg) + DrAw (22)

wherew = [z’ \'] is the vector of aggregated (primal/dual) variables,and Aw are its initial

value and updatelr is the derivative ofr(w):

or 8r]: V2f(zg) A’

o0’ ON T 23)

Dr = [
and T is the KKT matrix. Now, setting:(wy, + Aw) = 0 and solving forAw from (22) gives
the update

Aw : TAw = —r(wy) (24)

We further show in Section V thdl' is non-singular for our problem so that this system of
linear equations is guaranteed to have a unique solutioarfgrset of parameters

Having the stepf\w = (Az’, AX’)’ computed, the primal/dual variable updates are
Z = 7o + sAz, A = Ay + SAX (25)

where the step size is found via the backtracking line sear¢ch[[23] as in Algariti below.

*While Aw = —T~'r(wy) is its analytical solution, it is not computed in practicecg computingl ~* is computationally-

expensive and may result in loss of accuracy for ill-condiéid T, see e.g.[126].
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12

Algorithm 1 Backtracking line search
Require: wo, 0 <a<1/2, 0<p <1, s=1.

while |r(wo + sAw)| > (1 — as)|r(wg)| do s:=fs

end while

In this Algorithm, o is a % of the linear decrease in the residual one is prepareddept
at each step, and is a parameter controlling the reduction in step size at éachtion of the
algorithm. The Newton method in combination with the baag&king line search is guaranteed to

reduce the residual norha(w)| at each step according to the following residual norm-rédoc

property [23]:

d
£|r(wo + sAw)| = —|r(wy)| <0, (26)

so that, for sufficiently smakli, the residual indeed shrinks at each iteration (unjess,)| = 0,
which implies thatw is optimal). This insures convergence of the algorithm téoba optimum
since KKT conditions are sufficient for optimality and angddly-optimal point is automatically
globally-optimal as the problem is convex.

Algorithm 2 Newton method for minimax optimization
Require: zg, Ao, a0, 3, €

repeat
1. Find Az, AX using Newton step in_(24).
2. Find s using the backtracking line search (Algorithm 1).
3. Update variablesz,, 1 = z, + sAz, A\ry1 = A + sAA.

until |r(z1, Ars1)| < e

Based on this, the Newton method for minimax optimizationass in Algorithm 2. The
convergence of this algorithm to a global optimum is insubgdthe convex/concave nature
of the objective, sufficiency of the KKT conditions in_{18msingularity of the KKT matrix
T at each step (as proved in Section V) and the norm-decreassidual property in[(26),
which ensures that the method generates a sequence of sotaiggolutions with monotonically

decreasing residuals, for which the stationary point has msidual and thus solves the sufficient
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13

KKT conditions. While the global optimum point corresportdszero residual|r| = 0 (this is
equivalent to the KKT conditions i _(18)), the practical sien |r| < ¢ of this condition is used
in Algorithm 2 as a stopping criterion. This form of the stopp criteria is justified by not
only the residual formjr| = 0 of the KKT conditions, but also by the norm-decreasing nesid
property in [26).

As a side remark, we note that this algorithm can also be usetlve the problem in(17)

with max andmin interchanged, due to the saddle point property.

B. Barrier method for inequality-constrained problems

Let us now combine the barrier method and the minimax metihodeto construct an algo-
rithm for minimax optimization with equality and inequalitonstraints. Consider the following

problem with inequality constraints:
maxmin f(x,y), s.t. A,x =b,, Ayy =b,,
X y

fi(x) <0, foly) <0 (27)

where f; and f, are the constraint functions. The key idea of the barriefhois to use a soft
instead of hard constraints by augmenting the objectivé wie barrier functions responsible

for the inequality constraints so that the new objectivetha problem in[(2]7) becomes:

fixy) = f(x,y) + ¥e(fi(x)) = u(f2(y)) (28)
where we use the logarithmic barrier function:
Ui(2) =+ In(—a) (29)

t
and wheret is the barrier parameter. The barrier method transformsntbguality-constrained

problem in [27) into the following problem without inequgliconstraints:
maxmin f;(x,y), s.t. A, x=b,, Ay =b, (30)
x y

The optimality gap due to this transformation can be uppemded as follows.

Proposition 1. The optimality gap of the barrier method @0) applied to the minimax problem

in (22) is as follows:

[fO(@), y* () = p[ < 1/t (31)
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wherep* is an optimal value of the original problem i@27) and (x*(¢),y*(¢)) is an optimal

point for the modified problem i@0).

Proof: This is a special case of Proposition 3 below with=n; = n, = 1. [ |
Thus, by selecting sufficiently high one can obtain arbitrary small gap. Newton method is
used to solve the modified problem with any desired accuracy.
In practice, the modified problem is solved in an iterativg/Wwg selecting first a moderately-
large value oft, solving the problem, increasingand using the previous solution as a starting
point for a new one. In this way, the total number of Newtorpsteequired to achieve certain

accuracy is minimized_ [23]. The algorithm is as follows.

Algorithm 3 Barrier method
Require: z, X\, e > 0,t>0,u>1

repeat
1. Solve the problem i (30) using Newton method (Algorithjrstarting atz, .
2. Update variablesz := z*(t), A := X*(t), t := pt.

until 1/t < e.

V. BARRIER METHOD FORSECRECY RATE MAXIMIZATION

In this section, we use the minimax barrier method above teesthe optimal covariance
problem in [4) iteratively with guaranteed convergence tglabal optimum, which is also

optimal for (3).

A. Choice of variables

Since the original variables are positive semi-definiterioes R, K and the barrier method
above requires vectors, we have two options:

1. Use all entries oR, K as independent variables via= vec(R), y = vec(K), where
operatorvec stacks all columns into a single vector. Enforce the symynetinstraintsR’ =
R, K’ = K and the equality constraint d{ in (6) via extra equality constraints.

2. Use only lower-triangular entries & as independent variables via= vech(R), where
vech stacks column-wise all lower-triangular entries into agncolumn vector, and use only
Koty = vec(Ky).
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It can be shown that these two options are mathematicallivaignt, i.e. produce exactly the
same solutions at each step of Newton method. Option 2 isfarplde choice for implementation
since the number of variables and constraints is reducelasat is more efficient. Therefore, we
use Option 2 for further exposition. Gradient and Hessianlbemaevaluated either numerically (in
a standard way) or analytically as given below. We find thdyaical evaluation to be preferable
as numerical one entails a loss of precision while approgchn optimal point (this is especially
pronounced at high SNR, largeand for large systems).

Since the algorithm requires initial point to begin with, wse the following point:

P
Ry = EI — xg = vech(Ry), (32)
KOII—>yO:O, (33)
X=0 (34)

As can be easily verified, the initial point above is feasifple. satisfies the constraints). The
choice ofR, is motivated by the fact that isotropic signalling does nafg@r any direction and
thus is equally good a priori for any channBly corresponds to isotropic noise and is motivated
by the same reason. It should be emphasized that the algodtimverges for any (feasible)
initial point, due to the convex nature of the problem, to abgl optimum; the difference is in
how fast.

To account for the positive semi-definite constraiRtK > 0, the following barrier function

is used
G(R) = n[R] 39)
s0 that the modified objectivg is
AR K) = [(RK) + 4 (R) = 4 (K) (36)

Note that this requireK, R > 0, i.e. they are strictly inside of the feasible set but canreagh

the boundary arbitrary closely dsincreases, so that some eigenvalues may become arbitrary
close to zero (and the numerical rank may be deficient); thoglels numerically the case of
singularR and/orK and is a standard feature of the barrier method in gerierhl T2® inequality

in (63) makes sure that the optimality gap due to this can bden@s small as desired. In a
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practical implementation, one can round off negligiblyadineigenvalues oR to zero to simplify
implementation.

After some manipulations (see Appendix for details), thadgnts and Hessians can be
expressed as:

Vi = D’mvec(Vth), Vyfe= D;UGC(VKft)a (37)

V2 fi=-D,(Z1®RZ —Zy R Zy

+t 'R @R D, (38)

Vifi=D,(-(K+Q '®K+Q)™"

+ 1+t HK "o KD, (39)
V2, fi=-D,(H(K+Q) ' o H(K+Q)™")D,, (40)
where
Vefi =2 —Zs+t 'R, (41)
Vifi=K+Q) ™' —(1+tHK™, (42)
Z, = (I+WR)'W, (43)
Zy = (I+ W,R)"'W,, (44)

and ® is a Kronecker productD,, is a m? x m(m + 1)/2 duplication matrix defined from
vec(R) = D,,vech(R) [27][28], D,, is an? x nyn, reduced duplication matrix defined from
dk = D, dk, where

dk = vec(dK), dk = vec(dKay),

0 dK),
dK = (45)
dK21 0

andn = n; + ne. It can be obtained fronD,, by removing its columns corresponding to all
entries of K but those inKs;.
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It can be shown (see e.d. [14]) that using the full availabbevgr is optimal. Therefore,
one can use the equality constrainR = P instead of the inequalityrR < P. The equality

constraint matrixA and vectorb take the following form:
A=[a0], b=P (46)

wherel,, is m x m identity matrix,a = vech(I,,), and0 is nyns x 1 zero vector, i.eA is a
row vector andb is a scalar in our setting.
With this choice of variables and initial points, AlgorithBain combinations with Algorithms

1 and 2, can now be used to solve numerically the minimax probh [4).

B. Convergence of the algorithm

Here, we provide a proof of convergence of the proposed itifigoito a global optimum. First,
one has to insure that Newton step is well defined fortdR, K > 0. This, in turn, insures
that the Newton method produces a sequence of decreasingrasiduals (according td_(26)),
which converge to zero for each Consequently, the minimax barrier method applied to our
problem generates a sequence of sub-optimal pairits that converges to a global optimum (a
solution of the sufficient KKT conditions in_(11)-(IL6)) asncreases, sincé (R, K) is convex
in K and concave iR and also twice continuously differentiable for eaBh> 0, K > 0
(more details can be found in [23]).

To make sure that Newton step is well defined for eadd, K > 0, we demonstrate that the
KKT matrix for the modified objectivef; is non-singular, so that the Newton equations have a
well-defined solution as if(24).

Proposition 2. Consider the minimax problem {f17) for the objective in(36) under the equality
constraint parameters as i@@6). Its KKT matrix
v2ft A/

T — 47)
A 0

is non-singular for each > 0, R, K > 0.

Proof: The proof is based on the following three Lemmas.
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Lemma 1. The Hessian
_Hll H12
H21 H22

Vf,=H (48)

is non-singular if partial HessianHl;;, Hy, are non-singular, i.e. iH;;, Hy; > 0, whereH;; =
~V2, fi, Hiy = V2, f,, Hy = H), = V2 f,, Hy, = V2 f,. Furthermore, block1,1) [H'];,

of the inversel ! is also non-singular.

Proof: The proof is complicated by the fact that?f, is indefinite matrix, sincef; is
concave inx and convex iny (i.e. V2_f; <0, szft > 0), so that the standard proofs tailored
for positive definite matrices [26] do not apply here. HowewinceH,;, Hy, > 0, it follows
that

Syy = —H;; — H) H,,'Hyy < 0,
Si; = Hy + Hy H ' HY, > 0, (49)

where Sy;(22) is Schur complement of-H;;(Hj,), so that the matrix inversion Lemma in

Proposition 2.8.7 of [34] applies and one can invdras follow
- -1

IV_I_l _ _Hll Hl21
| H21 H22
_ 185; 1 —8521H’211H5; (50)
| SitHaHy Sy
which implies thatH is non-singular and thgH'];; = S3;' < 0. u

Lemma 2. The KKT matrix in Proposition 2 is non-singular under the diions of Lemma 1.

Proof: We proceed as follows. Since the Hesskff; = H is non-singular (under condi-

tions of Lemma 1), let us apply the following transformatitwat preserves the determinant of

®This idea of the proof was suggested by a reviewer.
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. H A’ I —H A’
T =
A 0 0 I
H 0
= y (51)
A —AH'A’
and observe that
IT| = |T| = [H|(-AH'A) (52)

(this follows from the properties of block-partitioned me¢s and their determinants, see e.g.
[29]). From Lemma 1}H| # 0. Further notice thaAH A’ = a/[H !];;a < 0, since[H ']}, <
0 from Lemma 1 anch # 0. Using [52),|T| = |H|(—AH'A’) # 0 so that the KKT matrix

T is non-singular. [ |

Thus, Lemmas 1 and 2 establish the non-singularity of KKTrixgtrovided that partial

HessiansVZ, f;, V3, fi are non-singular. This is indeed the case as Lemma 3 belowssho

Lemma 3. Partial HessianV?, f;, V2, f, in (38) and (39) are non-singular for eacht >
0, R,K > 0.

Proof: See Appendix. [ |
Combining Lemmas 1-3, Proposition 2 follows. [ ]
Thus, Proposition 2 insures that Newton step is always defihed and hence generates a

sequence of decreasing-norm residuals (accordinf _fio (#6i)jh converges to zero for each
t > 0. The next proposition specifies the optimality gap of theimax barrier method for a

givent.

Proposition 3. For eacht > 0, the optimality gap of the barrier method applied to the mmaxk

problem in(4)) can be upper bounded as follows:
|fR* (), K (1)) — Cs| < max(m, ny + na)/t (53)

whereR*(t), K*(¢) are the optimal signal and noise covariance matrices re¢arby the barrier

method for a giver.
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Proof: Using the bounds for the minimax problem [in [33] and adopthm to the problem

in @), one obtains
max f(R, K*(t)) —m/t < f(R*(), K"(1)) (54)

< min f(R*(1), K) + (ny + o) /2

so that
FR(2), K (1)) < min f(R"(2), K) + (1 +7n2) /1
< maxmin f(R, K) + (n +n2) /¢
= C\+ (n +ma) 8, (55)
FRY(1), K*(t)) > max f(R, K*(t)) — m/t (56)
> minmax (R, K) —m/t = C; = m/t
from which [53) follows. 0

Therefore, using sufficiently large barrier parametieisures any desired accuracy, gfi®*(¢), K*(¢)) —
Cs, ast — oo. If desired accuracy ig, then the stopping criterion in Algorithm 3 should
be max(m,n; + ng)/t < e (assuming that the Newton method produces sufficientlyrate

solution, which is always the case in practice due to its catadiconvergence, see [23]).

C. Dual Problem

While the algorithm above is designed to maximize the sgcrate, its optimal covariance
also solves the dual problem of minimizing the total trartgpower subject to the secrecy rate
constraintC(R) > R;, i.e.

min trR s.t. C(R) > R, R>0 (57)

This can be easily shown by contradiction and observing isatinequality in [(5l7) always
holds with equality, or by comparing the respective KKT ciods (which are necessary for

optimality in both problems), both under the conditifip = C.
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D. Per-antenna Power Constraints

Different forms of power constraint can also be incorpatateo the proposed algorithm in
a straightforward way. In particular, the per-antenna posemstraintr;; < P;, wherer;; is i-th
diagonal entry ofR (power in antennad) and P; is the maximum power of-th antenna, can
be adopted by eliminating matriX from the KKT equations and adding extra barrier terms
t~*In(P; — ry) representing new power constraints[inl(36). As a startirigtpone can use e.g.
i = Pi/2.

In fact, these new constraints can be added to the existieg as well, representing the
scenario where not only the total power budget is limited dlgb the per-antenna powers are
limited due to e.g. limited dynamic range of power amplifiers

The convergence of this modified algorithm to a global optimean be proved in the same
way as above (with minor modifications). In particular, ora @bserve that the new barrier

terms preserve the non-singularity of the KKT matrix and ¢baevex nature of the problem.

VI. DEGRADED CHANNEL

If the channel is degradedV; > W,, thenC(R) is concave and the corresponding op-
timization problem in [(B) is convex. Therefore, the barrieethod can be applied directly
to this problem with guaranteed convergence to a globahupti. This reduces the problem
complexity since there is no minimization ovK&r so that the number of variables reduces from
m(m + 1)/2 4+ niny to m(m + 1)/2, which is a significant improvement whenn, is large.

The modified objective (with the barrier term) becomes
fi(R) = C(R) + ¢4 (R), (58)
the variables are = x = vech(R) (no y) and the equality constraint parameters are
A =a' =vech(I), b= P, (59)

Non-singularity of the KKT matrix, which guarantees we#fthed Newton steps, can be
established following the lines of the analysis in SectianI/ particular, one observes that

Lemmas 1-3 hold. Lemma 3 holds since

Vi.f <0 (60)
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Lemma 1 holds since the Hessian in this cas#lis- V2_f,. Lemma 2 holds since
aH 'a<0 (61)

so that the KKT matrix is non-singular and thus KKT condisdmave a well-defined solution
at each step of the barrier method.

The optimality gap in this case becomes
|C(R*(t)) = Cs| <m/t (62)

whereR*(t) is an optimalR returned by the Newton method for a giveni.e. it is smaller
for the same than in the non-degraded cage](53), which is an extra adyarfa addition to
having less variables). For desired accuracthe stopping criterion in Algorithm 3 g1/t < e.
As a side remark, we note that even though the problem is gomvéehis case, existing
convex solvers (see e.d. [30]-[32]) cannot be used to saldirectly since they do not allow
difference of logarithms or matrix powers in objective/straint functions, while the algorithm

above solves it with guaranteed convergence to a globainojpti.

VII. NUMERICAL EXPERIMENTS

To validate the algorithm and analysis and to demonstragérformance of the algorithm,
extensive numerical experiments have been carried outeSunthe representative results are
shown below.

Convergence of the Newton method for different values oflzaeier parametet is demon-
strated in Fig.2 for

0.77 —0.30
Hl - 9
—-0.32 —0.64
0.54 —0.11
H, = , (63)
—-0.93 —-1.71

which shows the residual Euclidian norm versus Newton steps. Even though this cHasimet
degraded, since the eigenvaluesWwf, — W, are {0.395, —3.293}, the algorithm does find the
global optimum (this particular channel was selected beealis "difficult” for optimization).
Note the presence of two convergence phases: linear andatgaevhich is typical for Newton

method in general. After the quadratic phase is reached;dheergence is very fast (water-fall
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Fig. 2. Convergence of the Newton method for different valoét; m = 2, P = 10, o = 0.3, 3 = 0.5, Hy, H> as in [G3).

Note the presence of two convergence phases: linear andagicadt takes only about 10 to 20 Newton steps to reach the
machine precision level.
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Fig. 3. Secrecy rates for the same setting as in Fig. 2. Siokd-lvia the upper bound ifJ(5) (the lines coincide for diffietr
t), dashed - viaC'(R) in (2).

region). It takes about 10-20 Newton steps to reach very Esidual (at the level of machine

precision). This is in agreement with the observationd i8] [&lthough obtained for different

problems).

Fig. 3 shows the corresponding secrecy rate evaluated @iagher bound irL {5) and the actual
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Residual norm

Newton step

Fig. 4. Convergence of the barrier method (incrementaltydasingt); m = 5,n1 = no = 10, P = 10, « = 0.3, 8 = 0.5,
u=>5, Hi,H, are randomly generated (i.i.d. Gaussian entries of zerommraed unit variance). It takes about 5 to 10 steps to

reduce the residual to a very low value 1 ~'° for eacht.

achievable rate vi@'(R(¢)) in (Z), whereR(t) is an optimal covariance at a particular step of
the Newton method and for a giveénAs the algorithm converges, they become almost equal if
t is sufficiently large (in this case, aboii*...10°). While ¢ has negligible impact on the upper
bound, it does affect significantly the correspondind(¢)) (since the optimal covariande(t)
returned by the barrier method dependstand C'(R) is sensitive taR), so that the choice of

t is not critical if the secrecy capacity is the only quantifyimterest (since the upper bound
is quite tight even for moderat§. However, if a transmitter is implemented with the optimal
covarianceR () returned by the algorithm, it i€'(R(¢)) that determines the achievable rate and
this choice is important. We attribute this fact to highensgvity of C'(R) to R compared to
that of f(R, K). Similar observations apply to the number of Newton stepsired to achieve a
certain performance: if’; is the quantity of interest, the upper bound converges toabiout 3-5
steps. However, if implementinB. is involved, one should us€(R) and, in addition to proper
choice oft, it takes about 5...10 steps to achieve the convergence. tRat, in both cases, the
number of steps is not large and the execution time is smd#waseconds). In general, larger
t andm, ny, no require more steps to achieve the same accuracy. As expdiatetehavior of
upper bound is not monotonic while the residual norm doesedse monotonically in each step.

Fig. 4 and 5 demonstrate the convergence of the minimaxedpamiethod (incrementally
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Fig. 5. Secrecy rates for the same setting as in Fig. 4. Siokd-Ivia the upper bound if](5), dashed - G4R) in (). Note
that while the capacity value evaluated via the upper bowrbearges very fast, significantly more iterations are neglifor
convergence of the secrecy raiéR). We attribute this to the fact that'(R) is more sensitive t®R than f(R, K) is. Also

note the significantly non-monotonique behavior of the ferm

increasingt) for a larger systemn = 5, n; = no, = 10). Note that a very low residual value of
1019 is achieved after about 7 Newton steps for each value diing incrementally-increasing

t as opposed to a fixed large value results in a smaller numkeedbtal Newton steps required
to achieve a given residual value and is less sensitive tesygarameters and size. Also observe
from Fig. 5 that while the upper bound converges quite fasta(ifew Newton steps), it takes
significantly more steps faf'(R) to converge and the convergence process is significantly non
monotonic.

To demonstrate the convergence performance for differeabmel realizations, Fig. 6 and 7
show the distribution (histograms) of the number of stegpiired to achieve the residual of
10719 and10~® for 100 randomly-generated channels (with i.i.d. Gaussianies of zero mean
and unit variance) forn = 4,n; = n, = 3 andm = 5,n; = ny = 10 systems. While the actual
number of required steps depends on a particular chanreatsan, 20 to 40 steps are sufficient
in most cases. We attribute this to the two-phase behaviotirecalgorithm’s convergence: once
the quadratic (water-fall) phase is reached, it takes jfisivasteps to reduce the residual to a very

low value (which is consistent with similar observationg23], albeit for different problems).
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Fig. 6. A histogram showing the distribution of the numbeMafwton steps needed to achieve the residual0of'® via the
minimax barrier method for 100 randomly generated chanfield. Gaussian entries of zero mean and unit varianBe); 10,
a=03,8=05 m=4,n =na =3, to = 100, tmar = 10°, = 10.
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Fig. 7. A histogram showing the distribution of the numberéwton steps needed to achieve the residual @f®
for 100 randomly generated channels (i.i.d. Gaussianemnwi zero mean and unit variance); = 5,n1 = n2 = 10,

to = 100, tmaes = 10°, =10, P =10, a = 0.3, 8 = 0.5.

Different channel realizations result in a different numbgrequired steps for the linear phase,

before the quadratic phase is reached, but do not affect teclatter.
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VIIl. CONCLUSION

Global secrecy rate maximization for (non-degraded) GaosBIIMO-WTC has been dis-
cussed. The problem is challenging due to its non-convesreaind no analytical solution is
known for this setting. While the known numerical algorithrmonverge to a stationary point
(which may be a local rather than global maximum or just a kggdint), the algorithm proposed
herein is guaranteed to converge tglabal rather thardocal maximum. The algorithm is based
on the minimax reformulation of the secrecy capacity problgo insure global convergence)
and the primal-dual reformulation of the Newton method imbanation with the barrier method.
A proof of its global convergence is also given. Numericgbenments indicate that 20 to 40
Newton steps are sufficient for convergence with high precigup to the machine precision
level). Extra power constraints (e.g. maximum per-antgrmaer) can be easily incorporated in
the algorithm. The dual problem of total power minimizatgubject to the secrecy rate constraint

can also be solved.

IX. ACKNOWLEDGEMENT

The authors would like to thank A.Khisti for numerous stiatuig and insightful discussions,

and the reviewers for constructive comments and suggestion

X. APPENDIX
A. Gradients and Hessians

To derive the gradient and Hessian expressions, we usedltseaiomatrix differential calculus
[27][28]. Let us considerf(X) = In|X|, whereX > 0 is n x n positive definite matrix. Using

the perturbation method,
f(X +dX)=In|X|+In|I+ X dX] (64)

= f(X)+ > (X 1dX) - %A?(X‘ldX) +0(\2)

— F(X) + (X dX) — %tr(X‘ldXX‘ldX) Fo({A2))
Using
tr(X~1dX) = vec(dX) vee(X 1)

= dx'D/vec(X1) (65)
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wheredx = vech(dX), one obtains the gradief, f = D/ vec(X~!). Applying this to
fK)=In|I+K'Q|=In|K+ Q| —In|K]|,
V., fi follows. Using
tr(X1aXX1dX) = vee(dX) (X1 @ X Hwec(dX)
=dx'D/ (X' ® X )D,dx
the HessiarvZ, f can be identified as
Vi.f=-D,(X'®X "D,

Applying this to f(K), V3 f; follows.
To deriveV, f; and V2 f;, use a modification of(64) fof(R) = In |[I + WR:

F(R+dR) = f(R) + tr(ZdR) — %tr(ZdRZdR)
+3 o(A)
whereZ = (I+ WR)~'W, so that
V. fi = D! vec(Z)
wherer = vech(R), and
Vifi=-D,(Z®Z)D,,
from which [37), [38) follow, where we have used the follogiidentities [27]:
tr(AB) = vec(A") vec(B),
tr(ABCD) = (vecD)' (A @ C')vec(B’)
and the fact tha% is symmetric,Z’' = Z. To derivevfcyft, observe that
Vi f(R,K)=V; In|K+HRH
wheredk = vec(dK), so that one needs to consider only

fR,K)=In|K + HRH/|
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for which the perturbation method gives

f(R+dR,K + dK) = f(R,K)
—tr(H'(K + Q) YWK(K + Q)"'HdR) + Af (75)

where A f denotes all other terms (which do not affect the mixed déviga), from which [@D)

follows by usingvec operator inside the trace.

B. Proof of Lemma 3
Observe tha) > 0 so that(K + Q)~! < K~ ! and thus
K'oK'-(K+Q) '9(K+Q)'>0 (76)
(this follows from the properties of Kronecker productse &eg. [29]) and
I+t HK'oK!'—(K+Q) '@ (K+Q)™!
>tK'oK'>0 (77)
Now consider the following quadratic form for aryy= 0:
YV fey =y (1 +tHK @K™ (78)
- K+Q ' ®(K+Q) )y >0

sincey = D,y # 0 (this follows from the fact that all columns @, are linearly independent,
which in turn is implied by linear independence of columnsIdf since it has a full column
rank [27]). Therefore,Vnyt > 0. Non-singularity of V2_f, can be proved in a similar way.
First, one observes thaV > W:

W =HK 'H (79)

-1

I K
Ky 1

H,
H,

= [H{H,)] (80)

= HyH, + (Hy — K5 Hy)'(T - K5 Koy) ™'
X (Hl — K/21H2) (81)

> HyH, = W, (82)
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since 2nd term in(81) is positive semi-definite, where weehased the matrix inversion Lemma:

- -1

I K

K= . (83)
Ky 1

(I-KyKo)™' K (KuKy —I)7!
(KK —I)7'Ky  (I-KyKjh)™!

and the fact thaK/, K, < I, Ky K/, < I, which follows fromK > 0 (since this implies
|K21]2 < 1, where| - |5 is the spectral norm, see e.g.[29]). Therefdfe,> Z,, which follows

from the following argument whe®W, W, are non-singular:
W>W,=W!<W,! (84)
W1 1+R<W;'4+R (85)
=7 =(W'+R)™"!
> (W' +R)™! =7, (86)
WhenW and/orW, are singular, one can use the continuity argument [29]Wse= W +el >
0, Wy, = W, + el > 0 with € > 0, instead of W, W, and then take — 0; since both sides

of the inequality are continuous functions, the resultdal. SinceZ, > Z,, it follows that
71 R71y > 1o %7 and thus

71 RZ —ZoRZs+t ' RTTQ@R >0 (87)

(sinceR~! ® R~' > 0) from which it follows thatV2_f, < 0.
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