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Abstract

Regenerating codes provide an efficient way to recover data at failed nodes in distributed storage

systems. It has been shown that regenerating codes can be designed to minimize the per-node storage

(called MSR) or minimize the communication overhead for regeneration (called MBR). In this work,

we propose new encoding schemes for[n, d] error-correcting MSR and MBR codes that generalize

our earlier work on error-correcting regenerating codes. We show that by choosing a suitable diagonal

matrix, any generator matrix of the[n, α] Reed-Solomon (RS) code can be integrated into the encoding

matrix. Hence, MSR codes with the least update complexity can be found. By using the coefficients

of generator polynomials of[n, k] and [n, d] RS codes, we present a least-update-complexity encoding

scheme for MBR codes. A decoding scheme is proposed that utilizes the[n, α] RS code to perform

data reconstruction for MSR codes. The proposed decoding scheme has better error correction capability

and incurs the least number of node accesses when errors are present. A new decoding scheme is also

proposed for MBR codes that can correct more error-patterns.
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I. INTRODUCTION

Cloud storage is gaining popularity as an alternative to enterprise storage where data is stored

in virtualized pools of storage typically hosted by third-party data centers. Reliability is a key

challenge in the design of distributed storage systems thatprovide cloud storage. Both crash-

stop and Byzantine failures (as a result of software bugs andmalicious attacks) are likely to be

present during data retrieval. A crash-stop failure makes astorage node unresponsive to access

requests. In contrast, a Byzantine failure responds to access requests with erroneous data. To

achieve better reliability, one common approach is to replicate data files on multiple storage

nodes in a network. There are two kinds of approaches: duplication (Google) [1] and erasure

coding [2], [3]. Duplication makes an exact copy of each dataand needs lots of storage space.

The advantage of this approach is that only one storage node needs to be accessed to obtain

the original data. In contrast, in the second approach, erasure coding is employed to encode the

original data and then the encoded data is distributed to storage nodes. Typically, multiple storage

nodes need to be accessed to recover the original data. One popular class of erasure codes is

the maximum-distance-separable (MDS) codes. With[n, k] MDS codes such as Reed-Solomon

(RS) codes,k data items are encoded and then distributed to and stored atn storage nodes. A

user or a data collector can retrieve the original data by accessingany k of the storage nodes,

a process referred to asdata reconstruction.

Any storage node can fail due to hardware or software damage.Data stored at the failed

nodes need to be recovered (regenerated) to remain functional to perform data reconstruction.

The process to recover the stored (encoded) data at a storagenode is calleddata regeneration.

A simple way for data regeneration is to first reconstruct theoriginal data and then recover the

data stored at the failed node. However, it is not efficient toretrieve the entireB symbols of the

original file to recover a much smaller fraction of data stored at the failed node.Regenerating

codes, first introduced in the pioneer works by Dimakiset al. in [4], [5], allow efficient data

regeneration. To facilitate data regeneration, each storage node storesα symbols and a total

of d surviving nodes are accessed to retrieveβ ≤ α symbols from each node. A trade-off
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exists between the storage overhead and the regeneration (repair) bandwidth needed for data

regeneration. Minimum Storage Regenerating (MSR) codes first minimize the amount of data

stored per node, and then the repair bandwidth, while Minimum Bandwidth Regenerating (MBR)

codes carry out the minimization in the reverse order. Therehave been many works that focus on

the design of regenerating codes [6]–[13]. There are two categories of approaches to regenerate

data at a failed node. If the replacement data is exactly the same as that previously stored at the

failed node, we call itexact regeneration. Otherwise, if the replacement data only guarantees the

correctness of data reconstruction and regeneration properties, it is calledfunctional regeneration.

In practice, exact regeneration is more desirable since there is no need to inform each node in

the network regarding the replacement. Furthermore, it is easy to keep the codes systematic via

exact regeneration, where partial data can be retrieved without accessing allk nodes. It has been

proved that no linear code performing exact regeneration can achieve the MSR point for any

[n, k, d < 2k − 3] whenβ is normalized to 1 [14]. However, whenB approaches infinity, this

is achievable for anyk ≤ d ≤ n− 1 [15]. In this work, we only consider exact regeneration.

There are several existing code constructions of regenerating codes for exact regeneration

[9], [13], [15], [16]. In [9], Wu and Dimakis apply ideas frominterference alignment [17],

[18] to construct the codes forn = 4 and k = 2. The idea was extended to the more general

case ofk < max{3, n/2} in [16]. In [13], Rashmiet al. used product-matrix construction to

design optimal[n, k, d ≥ 2k − 2] MSR codes and[n, k, d] MBR codes for exact regeneration.

These constructions of exact-regenerating codes are the first for which the code lengthn can be

chosen independently of other parameters. However, only crash-stop failures of storage nodes

are considered in [13].

The problem of the security of regenerating codes was considered in [11] and in [12], [19],

[20]. In [11], the security problem against eavesdropping and adversarial attack during the

data reconstruction and regeneration processes was considered. Upper bounds on the maximum

amount of information that can be stored safely were derived. Pawaret al. also gave an explicit

code construction ford = n − 1 in the bandwidth-limited regime. The problem of Byzantine

fault tolerance for regenerating codes was considered in [12]. Oggier and Datta investigated

the resilience of regenerating codes when supporting multi-repairs. By collaboration among

newcomers, they derived upper bounds on the resilience capability of regenerating codes. Our

work deals with Byzantine failures for product-matrix regenerating codes and it does not need
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to have multiple newcomers to recover the failures.

Based on the same code construction as given in [13], Hanet al. extended Rashmi’s work to

provide decoding algorithms that can handle Byzantine failures [19]. In [19], decoding algorithms

for both MSR and MBR error-correcting product-matrix codeswere provided. In particular,

the decoding of an[n, k, d] MBR code given in [19] can decode errors up to error correction

capability of⌊n−k+1
2
⌋ = n−k

2
sincen−k is even. In [20], the code capability and resilience were

discussed for error-correcting regenerating codes. Rashmi, et al. proved that it is possible to

decode an[n, k, d] MBR code up to⌊n−k
2
⌋ errors. The authors also claimed that any[n, k, d ≥

2k − 2] MSR code can be decoded up to⌊n−k
2
⌋ errors. However no explicit decoding (data

reconstruction) procedure was provided due to which these codes cannot be used in practice.

Thus, one contribution of this paper is to present a decodingalgorithm for MSR codes.

In addition to bandwidth efficiency and error correction capability, another desirable feature for

regenerating codes isupdate complexity [21], defined as the number of nonzero elements in the

row of the encoding matrix with the maximum Hamming weight.1 The smaller the number, the

lower the update complexity is. Low update complexity is desirable in scenarios where updates

are frequent.

One drawback of the decoding algorithms for MSR codes given in [19] is that, when one

or more storage nodes have erroneous data, the decoder needsto access extra data from many

storage nodes (at leastk more nodes) for data reconstruction. Furthermore, when onesymbol

in the original data is updated, all storage nodes need to update their respective data. Thus, the

MSR and MBR codes in [19] have the maximum possible update complexity. Both of these

issues deficiencies are addressed in this paper. First, we propose a general encoding scheme for

MSR codes. As a special case, least-update-complexity codes are designed. We also design least-

update-complexity encoding matrix for the MBR codes by using the coefficients of generator

polynomials of the[n, k] and[n, d] RS codes. The proposed codes are not only with least update

complexity but also with the smallest numbers of updated symbols while a single data symbol

is modified. This is in contrast to the existing product-matrix codes. Second, a new decoding

algorithm is presented for MSR codes. It not only exhibits better error correction capability

1The update complexity adopted from [21] is not equivalent tothe maximum number of encoded symbols that must be updated

while a single data symbol is modified.
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but also incurs low communication overhead when errors occur in the accessed data. Third, we

devise a decoding scheme for the MBR codes that can correct more error patterns compared to

the one in [19].

The main contributions of this paper beyond the existing literature are as follows:

• The general encoding schemes of product-matrix MSR and MBR codes are derived. The

encoder based on RS codes is no longer limited to the Vandermonde matrix proposed in [13]

and [19]. Any generator matrix of the corresponding RS codescan be employed for the

MSR and MBR codes. As a result, this highlights the connection between product-matrix

MSR and MBR codes and well-known RS codes in coding theory.

• The MSR and MBR codes with systematic generator matrices of the RS codes are provided.

These codes have least update complexity compared to existing codes such as systematic

MSR and MBR codes proposed by Rashmiet al. [13]. This approach also makes product-

matrix MSR and MBR codes more practical due to higher update efficiency.

• The detailed decoding algorithm of data construction of MSRcodes is provided. It is non-

trivial to extend the decoding procedure given in [13] to handle errors. The difficulty

arises from the fact that an error inYα×n will propagate into many places inP and Q.

Due to the operations involved in the decoding process, manyrows cannot be decoded

successfully or correctly. No decoding algorithm was provided in [20] that can decode up

to ⌈(n− k + 1)/2⌉ errors even though the error-correction capability was analyzed in [20].

• The decoding algorithm of MBR codes that can decode beyond error-correction capability

for some error patterns is also presented. This decoding algorithm can correct errors up to

n− k

2
+

⌊

n− k + 1− ⌊n−k+1
2
⌋

2

⌋

even though not all error patterns up to such number of errorscan be corrected.

The rest of this paper is organized as follows. Section II gives an overview of error-correcting

regenerating codes. Section III presents the least-update-complexity encoding and decoding

schemes for error-correcting MSR regenerating codes. Section IV demonstrates the least-update-

complexity encoding of MBR codes and the corresponding decoding scheme. Section V details

evaluation results for the proposed decoding schemes. Section VI concludes the paper with a

list of future work. Since only error-correcting regenerating codes are considered in this work,
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unless stated otherwise, we refer to error-correcting MSR and MBR codes as MSR and MBR

codes in the rest of the paper.

II. ERROR-CORRECTING PRODUCT-MATRIX REGENERATING CODES

In this section, we give a brief overview of regenerating codes, and the MSR and MBR

product-matrix code constructions in [13].

A. Regenerating Codes

Let α be the number of symbols stored at each storage node andβ ≤ α the number of symbols

downloaded from each storage during regeneration. To repair the stored data at the failed node,

a helper node accessesd surviving nodes. The design of regenerating codes ensures that the

total regenerating bandwidth be much less than that of the original data,B. A regenerating code

must be capable of reconstructing the original data symbolsand regenerating coded data at a

failed node. An[n, k, d] regenerating code requires at leastk nodes to ensure successful data

reconstruction, andd surviving nodes to perform regeneration [13], wheren is the number of

storage nodes andk ≤ d ≤ n− 1.

The cut-set bound given in [5], [6] provides a constraint on the repair bandwidth. By this

bound, any regenerating code must satisfy the following inequality:

B ≤

k−1
∑

i=0

min{α, (d− i)β} . (1)

From (1),α or β can be minimized achieving either the minimum storage requirement or the

minimum repair bandwidth requirement, but not both. The twoextreme points in (1) are referred

to as the minimum storage regeneration (MSR) and minimum bandwidth regeneration (MBR)

points, respectively. The values ofα andβ for the MSR point can be obtained by first minimizing

α and then minimizingβ:

α = d− k + 1

B = k(d− k + 1) = kα , (2)

where we normalizeβ and set it equal to1.2 Reversing the order of minimization we haveα

2It has been proved that when designing[n, k, d] MSR codes fork/(n+1) ≤ 1/2. it suffices to consider those withβ = 1 [13].
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for MBR as

α = d

B = kd− k(k − 1)/2 , (3)

while β = 1.

B. Product-Matrix MSR Codes With Error Correction Capability

Next, we describe the MSR code construction originally given in [13] and adapted later in [19].

Here, we assumed = 2α.3 The information sequencem = [m0, m1, . . . , mB−1] can be arranged

into an information vectorU = [Z1Z2] with size α × d such thatZ1 and Z2 are symmetric

matrices with dimensionα × α. An [n, d = 2α] RS code is adopted to construct the MSR

code [13]. Leta be a generator ofGF (2m). In the encoding of the MSR code, we have

U ·G = C, (4)

where

G =





















1 1 · · · 1

a0 a1 · · · an−1

(a0)2 (a1)2 · · · (an−1)2

...

(a0)d−1 (a1)d−1 · · · (an−1)d−1





















,

andC is the codeword vector with dimension(α× n).

3An elegant method to extend the construction ofd > 2α based on the construction ofd = 2α has been given in [13]. Since

the same technology can be applied to the code constructionsproposed in this work, it is omitted here.
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It is possible to rewrite generator matrixG of the RS code as,

G =



















































1 1 · · · 1

a0 a1 · · · an−1

(a0)2 (a1)2 · · · (an−1)2

...

(a0)α−1 (a1)α−1 · · · (an−1)α−1

(a0)α1 (a1)α1 · · · (an−1)α1

(a0)αa0 (a1)αa1 · · · (an−1)αan−1

(a0)α(a0)2 (a1)α(a1)2 · · · (an−1)α(an−1)2

...

(a0)α(a0)α−1 (a1)α(a1)α−1 · · · (an−1)α(an−1)α−1



















































(5)

=





Ḡ

Ḡ∆



 , (6)

whereḠ contains the firstα rows inG, and∆ is a diagonal matrix with(a0)α, (a1)α, (a2)α, . . . , (an−1)α

as diagonal elements, namely,

∆ =















(a0)α 0 0 · · · 0 0

0 (a1)α 0 · · · 0 0
...

0 0 0 · · · 0 (an−1)α















. (7)

Note that if the RS code is overGF (2m) for m ≥ ⌈log2 nα⌉, then it can be shown that

(a0)α, (a1)α, (a2)α, . . . , (an−1)α are all distinct. According to the encoding procedure, the

α symbols stored in storage nodei are given by,

U ·





g
T
i

(ai−1)αgT
i



 = Z1g
T
i + (ai−1)αZ2g

T
i ,

wheregT
i is the ith column inḠ.

C. Product-Matrix MBR Codes With Error Correction Capability

In this section, we describe the MBR code constructed in [13]and reformatted later in [19].

Note that at the MBR point,α = d. Let the information sequencem = [m0, m1, . . . , mB−1] be
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arranged into an information vectorU with sizeα× d, where

U =





A1 AT
2

A2 0



 , (8)

A1 is ak× k symmetric matrix,A2 a (d− k)× k matrix,0 is the(d− k)× (d− k) zero matrix.

Note that bothA1 andU are symmetric. It is clear thatU has a dimensiond × d (or α × d).

An [n, d] RS code is chosen to encode each row ofU . The generator matrix of the RS code is

given as

G =







































1 1 · · · 1

a0 a1 · · · an−1

(a0)2 (a1)2 · · · (an−1)2

...

(a0)k−1 (a1)k−1 · · · (an−1)k−1

(a0)k (a1)k · · · (an−1)k

...

(a0)d−1 (a1)d−1 · · · (an−1)d−1







































, (9)

wherea is a generator ofGF (2m). Let C be the codeword vector with dimension(α × n). It

can be obtained as

U ·G = C.

From (9),G can be divided into two sub-matrices as

G =





Gk

S



 , (10)

where

Gk =





















1 1 · · · 1

a0 a1 · · · an−1

(a0)2 (a1)2 · · · (an−1)2

...

(a0)k−1 (a1)k−1 · · · (an−1)k−1





















(11)
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and

S =











(a0)k (a1)k · · · (an−1)k

...

(a0)d−1 (a1)d−1 · · · (an−1)d−1











.

It can be shown thatGk is a generator matrix of the[n, k] RS code and it will be used in the

decoding for data reconstruction.

III. ENCODING AND DECODING SCHEMES FORPRODUCT-MATRIX MSR CODES

In this section, we propose a new encoding scheme for[n, d] error-correcting MSR codes.

With a feasible matrix∆, Ḡ in (6) can be any generator matrix of the[n, α] RS code. The code

construction in [13], [19] is thus a special case of our proposed scheme. We can also select a

suitable generator matrix such that the update complexity of the resulting code is minimized. A

decoding scheme is then proposed that uses the subcode of the[n, d] RS code, the[n, α = k−1]

RS code generated bȳG, to perform the data reconstruction.

A. Encoding Schemes for Error-Correcting MSR Codes

RS codes are known to have very fast decoding algorithms and exhibit good error correction

capability. From (6) in Section II-B, a generator matrixG for product-matrix MSR codes needs

to satisfy:

1) G =





Ḡ

Ḡ∆



 , whereḠ contains the firstα rows in G and∆ is a diagonal matrix with

distinct elements in the diagonal.

2) Ḡ is a generator matrix of the[n, α] RS code andG is a generator matrix of the[n, d = 2α]

RS code.

Next, we present a sufficient condition for̄G and∆ such thatG is a generator matrix of an[n, d]

RS code. We first introduce some notations. Letg0y(x) =
∏n−y−1

i=0 (x−ai) and the[n, y] RS code

generated byg0y(x) beC0y. Similarly, letg1y(x) =
∏n−y

i=1 (x−a
i) and the[n, y] RS code generated

by g1y(x) beC1y. Clearly,a0, a1, a2, . . . , an−y−1 are roots ofg0y(x), anda1, a2, . . . , an−y are roots

of g1y(x). Thus,C0y andC1y are equivalent RS codes.

Theorem 1: Let Ḡ be a generator matrix of the[n, α] RS codeC0α. Let the diagonal elements

of ∆ be b0, b1, . . . , bn−1 such thatbi 6= bj for all i 6= j, and (b0, b1, . . . , bn−1) is a codeword in
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C1(α+1) but notC1α. In other words,(b0, b1, . . . , bn−1) ∈ C1(α+1)\C1α. Then,G =





Ḡ

Ḡ∆



 is a

generator matrix of the[n, d] RS codeC0d.

Proof: We need to prove that each row of̄G∆ is a codeword ofC0d and all rows inG

are linearly independent. Let̂C0α be the dual code ofC0α. It is well-known thatĈ0α is an

[n, n − α] RS code [22], [23]. Similarly, letĈ0d be the dual code ofC0d and its generator

matrix beHd. Note thatHd is a parity-check matrix ofC0d. Let hd(x) = (xn − 1)/g0d(x)

andhα(x) = (xn − 1)/g0α(x). Then, the roots ofhd(x) andhα(x) are an−d, an−d+1, . . . , an−1

andan−α, an−α+1, . . . , an−1, respectively. Since an RS code is also a cyclic code, the generator

polynomials ofĈ0d andĈ0α are ĥd(x) and ĥα(x), respectively, wherêhd(x) = xn−dhd(x
−1) and

ĥα(x) = xn−αhα(x
−1). Clearly, the roots of̂hd(x) are a−(n−d), a−(n−d+1), . . . , a−(n−1) that are

equivalent toad, ad−1, . . . , a1. Similarly, the roots of̂hα(x) areaα, aα−1, . . . , a1. Sinceĥd(x) has

roots ofad, ad−1, . . . , a1, we can choose

Hd =





















1 1 · · · 1

a0 a1 · · · an−1

(a0)2 (a1)2 · · · (an−1)2

...

(a0)n−d−1 (a1)n−d−1 · · · (an−1)n−d−1





















(12)

as the generator matrix of̂C0d. To prove that each row of̄G∆ is a codeword of the RS codeC0d

generated byG, it is sufficient to show that̄G∆HT
d = 0. From the symmetry of∆, we have

Ḡ∆HT
d = Ḡ (Hd∆)T .

Thus, we only need to prove that each row ofHd∆ is a codeword inĈ0α. Let the diagonal

elements of∆ be b0, b1, . . . , bn−1. The ith row of Hd∆ is thusri(x) =
∑n−1

j=0 bj(a
j)i−1xj in the

polynomial representation. Let(b0, b1, . . . , bn−1) be a codeword inC1(α+1). Then, we have

n−1
∑

j=0

bj(a
ℓ′)j = 0 for 1 ≤ ℓ′ ≤ n− α− 1 . (13)

Substitutingx = aℓ, for 1 ≤ ℓ ≤ α, into ri(x), it becomes

ri(a
ℓ) =

n−1
∑

j=0

bj(a
j)i−1(aℓ)j =

n−1
∑

j=0

bj(a
i−1+ℓ)j . (14)
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Let ℓ′ = i− 1+ ℓ. Since1 ≤ i ≤ n− d and1 ≤ ℓ ≤ α, 1 ≤ ℓ′ ≤ n−α− 1. By (13), ri(aℓ) = 0

for 1 ≤ i ≤ n− d and1 ≤ ℓ ≤ α. Hence, each row ofHd∆ is a codeword inĈ0α.

The bis need to make all rows inG linearly independent. Since all rows in̄G or those inḠ∆

are linearly independent, it is sufficient to prove thatC0α ∩ C∆ = {0}, whereC∆ is the code

generated byḠ∆. Let c′ be a codeword inC∆. c′ = c∆ for somec ∈ C0α. It can be shown

that, by the Mattson-Solomon polynomial [24], we can choose

Ḡ =















(a0)1 (a1)1 · · · (an−1)1

(a0)2 (a1)2 · · · (an−1)2

...

(a0)α (a1)α · · · (an−1)α















(15)

as the generator matrix ofC0α. Then

c
′ = uḠ∆

for someu = [u0, u1, . . . , uα]. Evaluatingc′(x) at a0, a1, . . . , an−α−1 and putting them into a

matrix form, we have

uḠ∆G̃ = z , (16)

where

G̃ =















(a0)0 (a1)0 · · · (an−α−1)0

(a0)1 (a1)1 · · · (an−α−1)1

...

(a0)n−1 (a1)n−1 · · · (an−α−1)n−1















andz is an(n−α)-dimensional vector. Ifz = 0, thenc∆ ∈ C0α; otherwise,c∆ 6∈ C0α. Taking

transpose on both sizes of (16), it becomes

G̃T∆ḠT
u

T

=















∑n−1
j=0 bja

j
∑n−1

j=0 bj(a
2)j · · ·

∑n−1
j=0 bj(a

α)j

∑n−1
j=0 bj(a

2)j
∑n−1

j=0 bj(a
3)j · · ·

∑n−1
j=0 bj(a

α+1)j

...
∑n−1

j=0 bj(a
n−α)j

∑n−1
j=0 bj(a

n−α+1)j · · ·
∑n−1

j=0 bj(a
n−1)j





























u0

u1

...

uα−1















= z
T .(17)

Since(b0, b1, . . . , bn−1) ∈ C1(α+1),

n−1
∑

j=0

bj(a
ℓ)j = 0 for 1 ≤ ℓ ≤ n− α− 1 . (18)
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Substituting (18) into (17) and taking out rows with all zeros, we have
















0 0 · · · 0
∑n−1

j=0
bj(a

n−α)j

0 0 · · ·
∑n−1

j=0
bj(a

n−α)j
∑n−1

j=0
bj(a

n−α+1)j

...
∑n−1

j=0
bj(a

n−α)j
∑n−1

j=0
bj(a

n−α+1)j · · ·
∑n−2

j=0
bj(a

n−2)j
∑n−1

j=0
bj(a

n−1)j

































u0

u1

...

uα−1

















=

















zn−2α

zn−2α+1

...

znα−1

















= z̃ . (19)

If
∑n−1

j=0 bj(a
n−α)j = 0, i.e., an−α is a root of

∑n−1
j=0 bjx

j , thenc
′ = [1, 0, . . . , 0]Ḡ∆ ∈ C0α

due to the fact thatu = [1, 0, . . . , 0] makesz̃ = 0 in (19). Thus, we need to exclude the

codewords inC1(α+1) that havean−α as a root. These codewords turn out to be inC1α. If
∑n−1

j=0 bj(a
n−α)j 6= 0, then it is clear that the onlyu makingz̃ = 0 in (19) is the all-zero vector.

Hence, any(b0, b1, . . . , bn−1) ∈ C1(α+1)\C1α does not makẽz zero exceptu = 0.

Corollary 1: Under the condition that the RS code is overGF (2m) for m ≥ ⌈log2 n⌉ and

gcd(2m − 1, α) = 1, the diagonal elements of∆, b0, b1, . . . , bn−1, can be

γ(a0)α, γ(a)α, γ(a2)α, . . . , γ(an−1)α ,

whereγ ∈ GF (2m)\{0}.

Proof: Note that one valid generator matrix ofC1(α+1) is




















1 1 · · · 1

a0 a1 · · · an−1

(a0)2 (a1)2 · · · (an−1)2

...

(a0)α (a1)α · · · (an−1)α





















. (20)

(b0, b1, . . . , bn−1) ∈ C1(α+1)\C1α can be represented asbi = γ(ai)α+fi, where(f0, f1, . . . , fn−1) ∈

C1,α. Now choose(f0, f1, . . . , fn−1) to be all-zero codeword. Under the condition that the RS

code is overGF (2m) for m ≥ ⌈log2 n⌉ andgcd(2m−1, α) = 1, γ(a0)α, γ(a)α, γ(a2)α, . . . , γ(an−1)α

is equivalent toγ(aα)0, γ(aα)1, γ(aα)2, . . . , γ(aα)n−1. If aα is a generator ofGF (2m), then

all elements ofγ(aα)0, γ(aα)1, γ(aα)2, . . . , γ(aα)n−1 are distinct. It is well-known thataα is

a generator ifgcd(2m − 1, α) = 1.
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It is clear that by settingγ = 1 in Corollary 1, we obtain the generator matrixG given in (6)

first proposed in [13], [19] as a special case.4

One advantage of the proposed scheme is that it can now operate on a smaller finite field than

that of the scheme in [13], [19]. Another advantage is that one can choosēG (and∆ accordingly)

freely as long as̄G is the generator matrix of an[n, α] RS code. In particular, as discussed in

Section I, to minimize the update complexity, it is desirable to choose a generator matrix that

has the least row-wise maximum Hamming weight. Next, we present a least-update-complexity

generator matrix that satisfies (6).

Corollary 2: Suppose∆ is chosen according to Corollary 1. Let̄G be the generator matrix

associated with a systematic[n, α] RS code. That is,

Ḡ =





















b00 b01 b02 · · · b0(n−α−1) 1 0 0 · · · 0

b10 b11 b12 · · · b1(n−α−1) 0 1 0 · · · 0

b20 b21 b22 · · · b2(n−α−1) 0 1 · · · 0
...

...
...

b(α−1)0 b(α−1)1 b(α−1)2 · · · b(α−1)(n−α−1) 0 0 0 · · · 1





















, (21)

where

xn−α+i = ui(x)g(x) + bi(x) for 0 ≤ i ≤ α− 1

and

bi(x) = bi0 + bi1x+ · · ·+ bi(n−α−1)x
n−α−1 .

Then,G =





Ḡ

Ḡ∆



 is a least-update-complexity generator matrix.

Proof: The result holds since each row of̄G is a nonzero codeword with the minimum

Hamming weightn− α + 1.

The update complexity adopted from [21] is not equivalent tothe maximum number of encoded

symbols that must be updated when a single data symbol is modified. If the modified data symbol

is located in the diagonal ofZ1 orZ2, (n−α+1) encoded symbols need to be updated; otherwise,

there are two corresponding encoding symbols inU modified such that2(n − α + 1) encoded

symbols need to be updated.

4Even though the roots inG given in (6) are different from those for the proposed generator matrix, they generate equivalent

RS codes.
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B. Decoding Scheme for MSR Codes

Unlike the decoding scheme in [19] that uses[n, d] RS code, we propose to use the subcode of

the[n, d] RS code, i.e., the[n, α = k−1] RS code generated bȳG, to perform data reconstruction.

The advantage of using the[n, k − 1] RS code is two-fold. First, its error correction capability

is higher. Specifically, it can tolerate⌊n−k
2
⌋ instead of⌊n−d

2
⌋ errors. Second, it only requires the

access of two additional storage nodes (as opposed tod− k+2 = k nodes) for each extra error.

Without loss of generality, we assume that the data collector retrieves encoded symbols from

k+2v (v ≥ 0) storage nodes,j0, j1, . . . , jk+2v−1. We also assume that there arev storage nodes

whose received symbols are erroneous. The stored information on thek + 2v storage nodes

are collected as thek + 2v columns inYα×(k+2v). The k + 2v columns ofG corresponding to

storage nodesj0, j1, . . . , jk+2v−1 are denoted as the columns ofGk+2v. First, we discuss data

reconstruction whenv = 0. The decoding procedure is similar to that in [13].

No Error: In this case,v = 0 and there is no error inY . Then,

Yα×k = UGk

= [Z1Z2]





Ḡk

Ḡk∆





= [Z1Ḡk + Z2Ḡk∆] . (22)

Multiplying ḠT
k to both sides of (22), we have [13],

ḠT

k
Yα×k = ḠT

k
UGk

= [ḠT

k Z1Ḡk + ḠT

k Z2Ḡk∆]

= P +Q∆ . (23)

SinceZ1 and Z2 are symmetric,P and Q are symmetric as well. The(i, j)th element of

P +Q∆, 1 ≤ i, j ≤ k and i 6= j, is

pij + qija
(j−1)α , (24)

and the(j, i)th element is given by

pji + qjia
(i−1)α . (25)
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Sincea(j−1)α 6= a(i−1)α for all i 6= j, pij = pji, and qij = qji, combining (24) and (25), the

values ofpij andqij can be obtained. Note that we only obtaink − 1 values for each row ofP

andQ since no elements in the diagonal ofP or Q are obtained.

To decodeP , recall thatP = ḠT
kZ1Ḡk. P can be treated as a portion of the codeword

vector,ḠT
kZ1Ḡ. By the construction of̄G, it is easy to see that̄G is a generator matrix of the

[n, k− 1] RS code. Hence, each row in the matrixḠT
kZ1Ḡ is a codeword. Since we knowk− 1

components in each row ofP , it is possible to decodēGT
kZ1Ḡ by the error-and-erasure decoder

of the [n, k − 1] RS code.5

Since one cannot locate any erroneous position from the decoded rows ofP , the decodedα

codewords are accepted as̄GT
kZ1Ḡ. By collecting the lastα columns ofḠ as Ḡα to find its

inverse (here it is an identity matrix), one can recoverḠT
kZ1 from ḠT

kZ1Ḡ. Since anyα rows

in ḠT
k are independent and thus invertible, we can pick anyα of them to recoverZ1. Z2 can be

obtained similarly byQ.

It is not trivial to extend the above decoding procedure to the case of errors. The difficulty is

raised from the fact that for any error inYα×n, this error will propagate into many places inP

andQ, due to operations involved in (23), (24), and (25), such that many rows of them cannot

be decoded successfully or correctly (Please refer to Lemma1). In the following we present

how to locate erroneous columns inY based on RS decoder.

Single Error: In this case,v = 1 and only one column ofYα×(k+2) is erroneous. Without loss

of generality, we assume the erroneous column is the first column in Y . That is, the symbols

received from storage nodej0 contain error. LetE =
[

e
T
1 |0

]

be the error matrix, wheree1 =

[e11, e12,, . . . , e1α] and0 is all-zero matrix with dimensionα× (k + 1). Then

Yα×(k+2) = UGk+2 + E

= [Z1Z2]





Ḡk+2

Ḡk+2∆



+ E

= [Z1Ḡk+2 + Z2Ḡk+2∆] + E . (26)

5 The error-and-erasure decoder of an[n, k − 1] RS code can successfully decode a received vector ifs+ 2v < n− k + 2,

wheres is the number of erasure (no symbol) positions,v is the number of errors in the received portion of the received vector,

andn− k + 2 is the minimum Hamming distance of the[n, k − 1] RS code.
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Multiplying ḠT
k+2 to both sides of (26), we have

ḠT
k+2Yα×(k+2) = ḠT

k+2UGk+2 + ḠT
k+2E

= [ḠT
k+2Z1Ḡk+2 + ḠT

k+2Z2Ḡk+2∆] + ḠT
k+2E

= P +Q∆+
[

ḠT
k+2e

T
1 |0

]

= P̃ + Q̃∆ . (27)

It is easy to see that the errors only affect the first column ofP̃ + Q̃∆ since the nonzero

elements are all in the first column of
[

ḠT
k+2e

T
1 |0

]

. Similar to (24) and (25), the values ofp̃ij and

q̃ij , wherei 6= j, are obtained fromḠT
k+2Yα×(k+2) even though there are some errors in them.

Note that we only obtaink + 1 values for each row of̃P and Q̃. Since the(j, 1)th elements of

ḠT
k+2Yα×(k+2) may be erroneous for1 ≤ j ≤ k + 2, the values calculated from them contain

errors as well. Then the first column and the first row ofP̃ (Q̃) have errors. Note that each row

of P̃ (Q̃) has only at most one error except the first row.

First, we decodẽP . Recall thatP = ḠT
k+2Z1Ḡk+2. As mentioned earlier,P can be treated as

a portion of the codeword vector̄GT
k+2Z1Ḡ, and thenP̃ can be decoded by the[n, k − 1] RS

code. Since we have obtainedk + 1 components in each row of̃P , it is possible to correctly

decode each row of̄GT
k+2Z1Ḡ, except for the first row of̃P , using the error-and-erasure decoder

of the RS code.

Let P̂ be the corresponding portion of decoded codeword vector toP̃ andEP = P̂ ⊕ P̃ be

the error pattern vector. Next we describe how to locate the incorrect row after decoding every

row (in this case we assume that the error occurs in the first row). Now suppose that there are

more than two errors in the first column of̃P .6 Let these errors be in(j1, 1)th, (j2, 1)th,· · · , and

(jℓ, 1)th positions inP̃ . After decoding all rows ofP̃ , it is easy to see that all rows but the first

row can be decoded correctly due to at most one error occurring in each row. Then one can

confirm that the number of nonzero elements inEP in the first column is at least three since

only the error in the first position of the first column can be decoded incorrectly. Other than the

first column inEP there is at most one nonzero element in rest of the columns. Then the first

column in P̂ has correct elements except the one in the first row. Just copyall elements in the

first column ofP̂ to those corresponding positions of its first row to makeP̂ a symmetric matrix.

6It will be shown later that the number of errors in the first column of P̃ is at least three.
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We then collect anyα columns ofP̂ except the first column aŝPα and find its corresponding

Ḡα. By multiplying the inverse ofḠα to P̂α, one can recover̄GT
k+2Z1. Since anyα rows in

ḠT
k+2 are independent and thus invertible, we can pick anyα of them to recoverZ1. Z2 can be

obtained similarly byQ.

Multiple Errors: Before presenting the proposed decoding algorithm, we firstprove that a

decoding procedure can always successfully decodeZ1 and Z2 if v ≤ ⌊n−k
2
⌋ and all storage

nodes are accessed. Assume the storage nodes with errors correspond to theℓ0th, ℓ1th, . . ., ℓv−1th

columns in the received matrixYα×n. Then,

ḠTYα×n

= ḠTUG + ḠTE

= ḠT [Z1Z2]





Ḡ

Ḡ∆



+ ḠTE

= [ḠTZ1Ḡ+ ḠTZ2Ḡ∆] + ḠTE , (28)

where

E =
[

0α×(ℓ0−1)|e
T

ℓ0
|0α×(ℓ1−ℓ0−1)| · · · |e

T

ℓv−1
|0α×(n−ℓv−1)

]

.

Lemma 1: There are at leastn − k + 2 errors in each of theℓ0th, ℓ1th, . . ., ℓv−1th columns

of ḠTYα×n.

Proof: From (28), we have

ḠTYα×n = P +Q∆+ ḠTE.

The error vector inℓjth column is then

ḠT
e
T
ℓj
=

(

eℓj Ḡ
)T

. (29)

SinceḠ is a generator matrix of the[n, k− 1] RS code,eℓj Ḡ in (29) is a nonzero codeword in

the RS code. Hence, the number of nonzero symbols ineℓj Ḡ is at leastn−k+2, the minimum

Hamming distance of the RS code.

We next have the main theorem to perform data reconstruction.

Theorem 2: Let ḠTYα×n = P̃ + Q̃∆. Furthermore, letP̂ be the corresponding portion of

decoded codeword vector tõP andEP = P̂ ⊕ P̃ be the error pattern vector. Assume that the
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data collector accesses all storage nodes and there arev, 1 ≤ v ≤ ⌊n−k
2
⌋, of them with errors.

Then, there are at leastn− k + 2− v nonzero elements inℓj th column ofEP , 0 ≤ j ≤ v − 1,

and at mostv nonzero elements in the rest of the columns ofEP .

Proof: Let us focus on theℓjth column ofEP . By Lemma 1, there are at leastn− k + 2

errors in theℓj th column ofḠTYα×n. P̃ is constructed fromḠTYα×n based on (24) and (25).

If there is only one value of (24) and (25) that is in error, then the constructedpij andqij will

be in error. However, when both values are in error,pij and qij might accidentally be correct.

Among thosen− k + 2 erroneous positions, there are at leastn− k + 2− v positions in error

after constructingP̃ since at mostv errors can be corrected in constructing̃P . It is easy to

see that at leastn − k + 2 − v positions are in error that are not among any of theℓ0th, ℓ1th,

. . ., ℓv−1th elements in theℓjth column. These errors are in rows that can be decoded correctly.

Hence, there are at leastn− k+ 2− v errors that can be located inℓjth column ofP̃ such that

there are at leastn− k + 2− v nonzero elements in theℓjth column ofEP . There are at most

v rows in P̃ that cannot be decode correctly due to having more thanv errors in each of them.

Hence, other than those columns with errors in the original matrix ḠTYα×n, at mostv errors

will be found in each of the rest of the columns ofP̃ .

The above theorem allows us to design a decoding algorithm that can correct up to⌊n−k
2
⌋ errors.7

In particular, we need to examine the erroneous positions inḠTE. Since1 ≤ v ≤ ⌊n−k
2
⌋, we

haven− k + 2− v ≥ ⌊n−k
2
⌋+ 1 > v. Thus, the way to locate all erroneous columns inP̃ is to

find out all columns inEP where the number of nonzero elements in them are greater thanor

equal to⌊n−k
2
⌋ + 1. After we locate all erroneous columns we can follow a procedure similar

to that given in the no error (or single error) case to recoverZ1 from P̂ .

The above decoding procedure guarantees to recoverZ1 (Z2) when alln storage nodes are

accessed. However, it is not very efficient in terms of bandwidth usage. Next, we present a

progressive decoding version of the proposed algorithm that only accesses enough extra nodes

when necessary. Before presenting it, we need the followingcorollary.

Corollary 3: Consider that one accessesk + 2v storage nodes, among whichv nodes are

erroneous and1 ≤ v ≤ ⌊n−k
2
⌋. There are at leastv + 2 nonzero elements in theℓJ th column of

7 In constructingP̃ we only getn−1 values (excluding the diagonal). Since the minimum Hammingdistance of an[n, k−1]

RS code isn− k + 2, the error-and-erasure decoding can only correct up to⌊n−1−k+2−1

2
⌋ errors.
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EP , 0 ≤ j ≤ v − 1, and at mostv among the remaining columns ofEP .

Proof: This is a direct result from Theorem 2 when we deleten−(k+2v) elements in each

column ofEP according to the size ofYα×(k+2v) andn−k+2− v−{n− (k+2v)} = v+2.

Based on Corollary 3, we can design a progressive decoding algorithm [25] that retrieves extra

data from the remaining storage nodes when necessary. To handle Byzantine fault tolerance, it

is necessary to perform integrity check after the original data is reconstructed. Two verification

mechanisms have been suggested in [19]: cyclic redundancy check (CRC) and cryptographic hash

function. Both mechanisms introduce redundancy to the original data before they are encoded

and are suitable to be used in combination with the decoding algorithm.

The progressive decoding algorithm starts by accessingk storage nodes. Error-and-erasure

decoding succeeds only when there is no error. If the integrity check passes, then the data

collector recovers the original data. If the decoding procedure fails or the integrity check fails,

then the data collector retrieves two more blocks of data from the remaining storage nodes. Since

the data collector hask+2 blocks of data, the error-and-erasure decoding can correctly recover

the original data if there is only one erroneous storage nodeamong thek + 1 nodes accessed.

If the integrity check passes, then the data collector recovers the original data. If the decoding

procedure fails or the integrity check fails, then the data collector retrieves two more blocks of

data from the remaining storage nodes. The data collector repeats the same procedure until it

recovers the original data or runs out of the storage nodes. The detailed decoding procedure is

summarized in Algorithm 1 and its corresponding flowchart isshown in Fig. 1.

Next, we give an example for Algorithm 1 based on a shortened RS code. Letm = 3, n = 5,

k = 3, γ = 1. Thend = 4, α = 2, and

G =















3 5 7 1 0

2 5 6 0 1

3 2 4 5 0

2 2 2 0 2















.

Let the information sequencem = [0 4 0 3 7 7]. Then

U =





0 4 3 7

4 0 7 7
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and

C =





3 1 7 4 1

0 2 5 2 5



 .

Assume that the first node is compromised and the vector that the data collector retrieves from

the first three nodes for data reconstruction is

Yα×j =





1 1 7

4 2 5



 .

At the very beginning, we assume thatv = 0 ≤ ⌊(n− k+1)/2⌋. By Equations (22) to (25), we

can construct

P̃ =











0 7 6

7 0 2

6 2 0











, Q̃ =











0 0 4

0 0 5

4 5 0











.

We then progressively decodẽP to obtain

P̂ =











4 7 6

7 3 2

6 2 0











.

Sincev = 0, we can findℓe = 0 and ℓc = 3. Due toℓe = v andℓc = k + v, we construct

P̂α =





4 7

7 3





and find

Ḡα =





3 5

2 5



 .

Finally, Z1 can be recovered andZ2 can be computed similarly as

Z1 =





5 0

0 2



 , Z2 =





5 5

5 2



 .

Therefore,m̃ = [5 5 2 5 0 2]. However, the integrity check of̃m fails because the result

of the progressive decoding is not correct. The data collector needs to assignj + 2 and v + 1
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to j andv, respectively, and retrieve data from two more nodes. By following the same step as

above, we obtain

P̃ =





















0 7 6 4 6

7 0 2 2 2

6 2 0 5 1

4 2 5 0 4

6 2 1 4 0





















, Q̃ =





















0 0 4 5 2

0 0 5 2 0

4 5 0 6 7

5 2 6 0 7

2 0 7 7 0





















, P̂ =





















7 7 6 4 6

2 0 2 2 2

6 2 0 5 1

3 2 5 0 4

7 2 1 4 0





















.

Since nowv = 1, we can findℓe = 1 and ℓc = 4. Accordingly,

P̂α =





0 2

2 0



 , Z1 =





0 4

4 0



 , Z2 =





3 7

7 7



 .

The information sequence is recovered correctly, i.e.,m̃ = [0 4 0 3 7 7].

IV. ENCODING AND DECODING SCHEMES FORPRODUCT-MATRIX MBR CODES

In this section, we will find a generator matrix of the form (10) such that the row with the

maximum Hamming weight has the least number of nonzero elements. This generator matrix

is thus a least-update-complexity matrix. A decoding scheme for MBR codes that can correct

more error patterns is also provided.

A. Encoding Scheme for MBR Codes

Let g(x) =
∏n−k

j=1 (x−aj) =
∑n−k

i=0 gix
i be the generator polynomial of the[n, k] RS code and

f(x) =
∏n−d

j=1 (x− aj) =
∑n−d

i=0 fix
i the generator polynomial of the[n, d] RS code, wherea is

a generator ofGF (2m).8 A matrix G can be constructed as

G =





Gk

S



 , (30)

where

Gk =















g0 g1 · · · gn−k 0 0 · · · 0

0 g0 · · · gn−k−1 gn−k 0 · · · 0
...

0 · · · 0 g0 g1 g2 · · · gn−k















(31)

8We assume thatn− k andn− d are even.
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Let v = 0 and select

k storage nodes

Calculate

and then

Progressively decode

No

Collect j

columns of

Yes

Construct and find

Integrity check( )=SUCCESS

No
FAIL

Yes

,

Returnm

Find
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two more nodes

,

Recover

Similarly recover and then

recover information from

No

Fig. 1. Flowchart of Algorithm 1
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and

S =















f0 f1 · · · fn−d 0 0 · · · 0 0

0 f0 · · · fn−d−1 fn−d 0 · · · 0 0
...

0 · · · 0 f0 · · · fn−d 0 · · · 0















. (32)

The dimensions ofGk andS arek × n and (d − k)× n, respectively. Next, we prove that the

main theorem about the rank ofG given in (30).

Theorem 3: The rank ofG given in (30) isd. That is, it is a generator matrix of the MBR

code.

Proof: Let the codes generated byGk andG be C̄ andC, respectively. It can be seen that

any row inGk andS is a cyclic shift of the previous row. Hence, all rows inGk and S are

linearly independent. Now we only consider the linear combination of rows inG chosen from

both Gk and S. SinceC̄ is a linear code, the portion of the linear combination that contains

only rows fromGk results in a codeword, namedc, in C̄. Assume that the rows chosen fromS

are thej0th, j1th, . . ., andjℓ−1th rows. Recall thatS can be represented by a polynomial matrix

as

B(x) =





















f(x)

xf(x)

x2f(x)
...

xd−k−1f(x)





















.

Hence, in the polynomial form, the linear combination can berepresented as

c(x) +
ℓ−1
∑

i=0

bix
ji−1f(x) , (33)

wherec(x) is not the all-zero codeword and not allbi = 0. Sincec(x) is the code polynomial

of C̄, it is divisible byg(x) and can be represented asu(x)g(x). Assume that (33) is zero. Then

we have

u(x)g(x) = −f(x)
ℓ−1
∑

i=0

bix
ji−1 . (34)

Recall thatg(x) =
∏n−k

i=1 (x− ai) andf(x) =
∏n−d

i=1 (x− ai). Hence,

g(x) = f(x)

n−k
∏

i=n−d+1

(x− ai) . (35)
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Substituting (35) into (34) we have

u(x)
n−k
∏

i=n−d+1

(x− ai) = −
ℓ−1
∑

i=0

bix
ji−1 . (36)

That is,
∑ℓ−1

i=0 bix
ji−1 is divisible by

∏n−k

i=n−d+1(x−a
i). However, the degree of

∏n−k

i=n−d+1(x−a
i)

is d − k and the degree of
∑ℓ−1

i=0 bix
ji−1 is at mostd − k − 2 when ℓ = d − k − 1, the largest

possible value forℓ. Thus,
∑ℓ−1

i=0 bix
ji−1 is not divisible by

∏n−k

i=n−d+1(x−a
i) since not allbi = 0.

This is a contradiction.

Since all rows inGk andS are codewords inC, G is then a generator matrix of the[n, d]

RS codeC.

Corollary 4: TheG given in (30) is the least-update-complexity matrix.

Proof: SinceGk must be the generator matrix of the[n, k] RS codeC̄, the Hamming weight

of each row ofGk is greater than or equal to the minimum Hamming distance ofC̄, n− k+1.

Since the degree ofg(x) is n − k and itself is a codeword in̄C, the nonzero coefficients of

g(x) is n− k + 1 and each row ofGk is with n− k + 1 Hamming weight. A similar argument

can be applied to each row ofS such that the Hamming weight of it isn − d + 1. Thus, the

G given in (30) has the least number of nonzero elements. Further, SinceGk is the generator

matrix of the[n, k] code, the minimum Hamming of its row can have isn− k + 1, namely, the

minimum Hamming distance of the code. Hence, the row with maximum Hamming weight in

G is n− k + 1.

SinceC̄ is also a cyclic code, it can be arranged as a systematic code.Gk is then given by

Gk =





















b00 b01 b02 · · · b0(n−k−1) 1 0 0 · · · 0

b10 b11 b12 · · · b1(n−k−1) 0 1 0 · · · 0

b20 b21 b22 · · · b2(n−k−1) 0 1 · · · 0
...

...
...

b(k−1)0 b(k−1)1 b(k−1)2 · · · b(k−1)(n−k−1) 0 0 0 · · · 1





















, (37)

where

xn−k+i = ui(x)g(x) + bi(x) for 0 ≤ i ≤ k − 1,

and bi(x) = bi0 + bi1x+ · · ·+ bi(n−k−1)x
n−k−1. It is easy to see thatG with Gk as a submatrix

is still a least-update-complexity matrix. The advantage of a systematic code will become clear

in the decoding procedure of the MBR code.
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We now consider the number of encoded symbols that need to be updated while a single

data symbol is modified. First, we assume that the modified data symbol is located inA1. If

the modified data symbol is located in the diagonal ofA1, (n − k + 1) encoded symbols need

to be updated; otherwise, there are two corresponding encoding symbols inA1 modified such

that 2(n− k+1) encoded symbols need to be updated. Next, we assume that the modified data

symbol is located inA2. Then (n − k + 1) + (n − d + 1) = 2n − k − d + 2 encoded symbols

need to be updated.

B. Decoding Scheme for MBR Codes

The generator polynomial of the RS code encoded by (37) hasan−k, an−k−1, . . . , a as roots.

Hence, the progressive decoding scheme based on the[n, k] RS code given in [19] can be applied

to decode the MBR code. The decoding algorithm given in [19] is slightly modified as follows.

Assume that the data collector retrieves encoded symbols fromℓ storage nodesj0, j1, . . . , jℓ−1,

k ≤ ℓ ≤ n. The data collector receivesd vectors where each vector hasℓ symbols. Denoting

the first k vectors among thed vectors asYk×ℓ and the remainingd − k vectors asY(d−k)×ℓ.

By the encoding of the MBR code, the codewords in the lastd − k rows of C can be viewed

as encoded byGk instead ofG. Hence, the decoder of the[n, k] RS code can be applied on

Y(d−k)×ℓ to recover the codewords in the lastd− k rows ofC.

Let C̃(d−k)×k be the lastk columns of the codewords recovered by the error-and-erasure

decoder in the lastd− k rows ofC. Since the code generated by (37) is a systematic code,A2

in U can be reconstructed as

Ã2 = C̃(d−k)×k . (38)

We then calculate thej0th, j1th, . . ., jℓ−1th columns ofÃT
2 ·B asEk×ℓ, and subtractEk×ℓ from

Yk×ℓ:

Y ′

k×ℓ = Yk×ℓ −Ek×ℓ . (39)

Applying the error-and-erasure decoding algorithm of the[n, k] RS code again onY ′

k×ℓ we can

reconstructA1 as

Ã1 = C̃k×k . (40)
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The decoded information sequence is then verified by data integrity check. If the integrity check

is passed, the data reconstruction is successful; otherwise the progressive decoding procedure is

applied, where two more storage nodes need to be accessed from the remaining storage nodes

in each round until no further errors are detected.

The decoding capability of the above decoding algorithm isn−k
2

. Since each erroneous storage

node sendsα = d symbols to the data collector, in general, not allα symbols are wrong if failures

in the storage nodes are caused by random faults. Hence, the decoding algorithm given in [19]

can be modified as follows to extend error correction capability. After decodingY(d−k)×ℓ, one

can locate the erroneous columns ofY(d−k)×ℓ by comparing the decoded result to it. Assume

that there arev erroneous columns located. Delete the corresponding columns inEk×ℓ andYk×ℓ

and we have

Y ′

k×(ℓ−v) = Yk×(ℓ−v) −Ek×(ℓ−v) . (41)

Applying the error-and-erasure decoding algorithm of the[n, k] RS code again onY ′

k×(ℓ−v) to

reconstructA1 if ℓ−v ≥ k; otherwise the progressive decoding is applied. The modified decoding

algorithm is summarized in Algorithm 2 and its corresponding flow chart is shown in Fig. 2.

The advantage of the modified decoding algorithm is that it can correct errors up to

n− k

2
+

⌊

n− k + 1− ⌊n−k+1
2
⌋

2

⌋

even though not all error patterns up to such number of errorscan be corrected.

Next, we give an example for Algorithm 2 based on a shortened RS code. Letm = 3, n = 5,

k = 3, d = 4. Thenα = 4 and

G =















3 6 1 0 0

1 1 0 1 0

3 7 0 0 1

2 1 0 0 0















.

Let the information sequencem = [0 4 0 3 7 0 3 7 7]. Then

U =















0 4 0 3

4 3 7 7

0 7 0 7

3 7 7 0
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and

C =















2 7 0 4 0

3 2 4 3 7

2 0 0 7 0

0 5 3 7 7















.

Assume that the first node is compromised and the vector that the data collector retrieves from

the first three nodes for data reconstruction is

Yd×ℓ =















1 7 0

0 2 4

4 0 0

6 5 3















.

At the beginning,ℓ = k and we assume thatv = 0. We decode the lastd− k rows of Yd×ℓ and

obtain

C̄(d−k)×k =
[

3 6 3
]

.

By Equations (38) to (40),

Ã2 =
[

3 6 3
]

, Y ′

k×(ℓ−v) =











7 4 0

7 4 4

2 3 0











, Ã1 =











0 1 2

4 2 7

0 0 7











.

Therefore,m̃ = [0 1 2 2 7 7 3 6 3] . The integrity check ofm also fails. The data

collector needs to retrieve data from two more nodes and assign ℓ + 2 to ℓ. By following

the same step as above,C̄(d−k)×k = Ã2 =
[

3 7 7
]

,

Y ′

k×(ℓ−v) =











4 0 4 0

5 4 3 7

7 0 7 0











, Ã1 =











0 4 0

4 3 7

0 7 0











.

The information sequence is recovered correctly, i.e.,m̃ = [0 4 0 3 7 0 3 7 7].

One important function of regenerating codes is to perform data regeneration with least repair

bandwidth while one node is failed. Since the decoding schemes proposed in [19] can be applied

directly without modification to the proposed MSR and MBR codes in this work, the decoding

schemes of data regeneration for these codes are omitted in this work. The interested readers

can refer to [19] for details on these decoding schemes.
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Fig. 2. Flow chart of Algorithm 2
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Fig. 3. Comparison of the failure rate between the algorithmin [19] and the proposed algorithm for[20, 10, 18] MSR codes

00.10.20.30.40.5
10

11

12

13

14

15

16

17

18

19

20

Node Failure Probability

A
ve

ra
ge

 N
um

be
r 

of
 A

cc
es

se
s 

(N
od

es
)

[20,10,18] MSR Codes for Data Reconstruction

 

 

Non−progressive
Previous Progressive [19]
Proposed Progressive

Fig. 4. Comparison of the number of node accesses between thealgorithm in [19] and the proposed algorithm for[20, 10, 18]

MSR codes

V. PERFORMANCE EVALUATION

In this section, we first analyze the fault-tolerance capability of the proposed codes in the

presence of crash-stop and Byzantine failures, security strength with malicious attack, and then

carry out numerical simulations to evaluate the performance for proposed schemes.

The fault-tolerance capability of product-matrix MSR and MBR codes has been investigated
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fully in [19] where CRC or cryptographic hash function is adopted as the data integrity check.

Their error-correction capability was also presented in [20].

We need to verify whether the reconstructed data are correct. Progressive decoding algo-

rithms are implemented that incrementally retrieve additional stored data and perform data

reconstruction when errors have been detected. Since cryptographic hash function has better

security strength than CRC on data integrity check, it is adopted to verify the integrity of stored

data. In particular, for data reconstruction, the hash value is coded along with the original data

and distributed among storage nodes.

We first consider two types of failures, crash-stop failuresand Byzantine failures. Nodes are

assumed to fail independently. In both cases, the fault-tolerance capability is measured by the

maximum number of failures that the system can handle to maintain functionality.

A crash-stop failure on a node can be viewed as an erasure in the codeword. Sincek nodes

need to be alive for data reconstruction, the maximum numberof crash-stop failures that can be

tolerated in data reconstruction isn−k. Note that since all accessed nodes contain correct data,

the associated hash values are also correct.

For an error-correcting code, two additional correct code fragments are needed to correct one

erroneous code fragment. Thus, with the proposed MSR decoding algorithm,⌊n−k
2
⌋ erroneous

nodes can be tolerated in data reconstruction. For the proposed MBR decoding algorithm, not

only any n−k
2

erroneous nodes can be tolerated but it can also correct errors up to

n− k

2
+

⌊

n− k + 1− ⌊n−k+1
2
⌋

2

⌋

even though not all error patterns up to such number of errorscan be corrected.

In analyzing the security strength with malicious attacks,we consider forgery attacks, where

Byzantine attackers try to disrupt the data reconstructionprocess by forging data collaboratively.

In other words, collusion among compromised nodes is considered. We want to determine the

minimum number of compromised nodes to forge the data in datareconstruction. By using

cryptographic hash functions, the security strength can beincreased since the operation to obtain

the hash value is non-linear. In this case, the attacker needs to obtain the original information

data to forge the hash value. Hence, the attacker needs to compromise at leastk nodes in data

reconstruction.
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The proposed data reconstruction algorithms for MSR and MBRcodes have also been eval-

uated by Monte Carlo simulations. From now on, the codes based on shortened RS codes are

employed for simulations. They are compared with the data reconstruction algorithms previously

proposed in [19]. The performance of a traditional decodingscheme that is non-progressive is

also provided for comparison purposes.9 After k nodes are accessed, if the integrity check fails,

the data collector will access all remainingn − k nodes in data reconstruction in the non-

progressive decoding scheme. Each data point is generated from 103 simulation runs. Storage

nodes may fail arbitrarily with the Byzantine failure probability ranging from0 to 0.5. In both

schemes,[n, k, d] andm are chosen to be[20, 10, 18] and5, respectively.

In the first set of simulations, we compare the proposed algorithm with the progressive

algorithm in [19] and the non-progressive algorithm in terms of the failure rate of reconstruction

and the average number of node accesses, which indicates therequired bandwidth for data

reconstruction. Failure rate is defined as the percentage ofruns for which reconstruction fails

(due to insufficient number of healthy storage nodes). Figure 3 shows that the proposed algorithm

can successfully reconstruct the data with much higher probability than the previous progressive

or non-progressive algorithm for the same node failure probability. For example, when the node

failure probability is0.1, only about 1% of the time, reconstruction fails using the proposed

algorithm, in contrast to 50% with the old algorithm. The advantage of the proposed algorithm

is also pronounced in the average number of accessed nodes for data reconstruction, as illustrated

in Fig. 4. For example, on an average, only2.5 extra nodes are needed by the proposed algorithm

under the node failure probability of0.1; while over 6.5 extra nodes are required by the old

algorithm in [19]. It should be noted that the actual saving attained by the new algorithm

depends on the setting ofn, k, d and the number of errors.

The previous and proposed decoding algorithms for MBR codesare compared in the second

set of simulations. Figures 5 and 6 show that both of the progressive algorithms have identical

failure rates of reconstruction and average number of accessed nodes. This result implies that

the specific error patterns, which only the proposed algorithm is able to handle for successful

data reconstruction, do not happen very frequently. However, the computational complexity

9Since no data integrity check is performed in the deocding algorithms given in [20], to reach error-correction capability of

the MSR and MBR codes,n nodes need to be accessed. Hence, the number of accessed nodes in deocding algorithms in [20]

are much larger than those of the non-progressive version presented here.
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codes

of the proposed algorithm for MBR encoding is much lower since no matrix inversion and

multiplications are needed in (38) and (40). Moreover, boththe progressive algorithms are better

than the non-progressive algorithm in failure rates of reconstruction and average number of

accessed nodes.

In the evaluation of the update complexity, two measures areconsidered: the metric given

in [21] and the number of updated symbols when a single data symbol is modified. The first
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metric corresponds to the maximum number of nonzero elements in all rows of the generator

matrix G. Denote byη(R) the ratio of the update complexity of the proposed generatormatrix

to that of the generator matrix given in [13], whereR = k/n. It can be seen that,

ηMSR(R) =
n− α + 1

n
≈ 1− R

for MSR codes since the generator matrix of the MSR code proposed in [13] is a Vandermonde

matrix. Two types of generator matrices of the MBR codes havebeen proposed in [13]: the

Vandermonde matrix and a systematic matrix based on Cauchy matrix. With Vandermonde

matrix,

ηMBR(R) =
n− k + 1

n
≈ 1−R .

The systematic matrix based on Cauchy matrix is given by [13]




Ik φT

0 ∆T



 ,

whereIk is thek×k identity matrix,0 is the(d−k)×k all-zero matrix, and[φ ∆] is a Cauchy

matrix. Since all elements in the Cauchy matrix are nonzero,

ηMBR(R) =
n− k + 1

n− k + 1
= 1 .

The number of updated symbols that need to be modified when a single data symbol is

changed in MSR and MBR codes are summarized in Table I. By the arguments given in previous

sections, the average number of updated symbols when a single data symbol is modified for the

proposed MSR and MBR codes are2(n− α + 1) α
α+1

and kd(n−k+1)+k(d−k)(n−d+1)
2kd−k(k−1)

, respectively.

These numbers for Vandermonde-matrix based MSR and MBR codes are2n α
α+1

and n(2kd−k2)
2kd−k(k−1)

,

respectively. The number iskd(n−k+1)+k(d−k)(n−k)
2kd−k(k−1)

for the systematic MBR code based on Cauchy

matrix. Note that, the numbers for systematic codes based onlinear remapping are obtained from

simulations. From Table I, one can observe that the proposedmethod has the best performance

on the number of updated symbols when a single data symbol is modified, and the systematic

version based on linear remapping performs the worst among all schemes in the table. For

example, for the[20, 10, 18] MSR code, the average number of encoded symbols that need to

be updated for a single data symbol modification is88 in the systematic version based on linear

remapping but only22 with the proposed encoding matrix. This is a 4-fold improvement in

complexity. In the case of the[100, 40, 78] MSR code, the improvement is 19-fold. Hence, the
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proposed approach has much lower update complexity than thesystematic approach. It can be

seen that after linear remapping, the modified symbols almost occur in all check positions of the

code vector. This is because even when only one data symbol ismodified, due to the symmetry

requirement on the information matrix, the modification propagates to check positions of all

codewords (rows) in the code vector through linear remapping. One can also observe that even

though the Cauchy-based MBR code results in the same maximumnumber of nonzero elements

in all rows of the generator matrix as the proposed MBR code, it requires more symbol updates

when a single data symbol is modified.

VI. CONCLUSION

In this work, we proposed new encoding and decoding schemes for the [n, d] error-correcting

MSR and MBR codes that generalize the previously proposed codes in [19]. Through both

theoretical analysis and numerical simulations, we demonstrated the superior error correction

capability, low update complexity and low computation complexity of the new codes.

Clearly, there is a trade-off between the update complexityand error correction capability of

regenerating codes. In this work, we found encoders of product-matrix regenerating codes and

then optimized their update complexity. Possible future work includes the study of encoding

schemes that first design regenerating codes with good update complexity and then optimize

their error correction capability.

The least update-complexity codes in this work minimize themaximum number of nonzero

elements in all rows of the generation matrix, but they do notminimize the number of symbol

updates when a single data symbol is modified. For instance, due to symmetry requirement on

the information vector, two symbols need to be updated in theinformation vector during the

encoding process for a single modified symbol in some cases. Another possible future work is

to seek codes with the least number of updated encoded symbols.
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Algorithm 1: Decoding of MSR Codes Based on(n, k−1) RS Code for Data Reconstruction

begin
v = 0; j = k;

The data collector randomly choosesk storage nodes and retrieves encoded data,Yα×j;

while v ≤ ⌊n−k+1
2
⌋ do

Collect thej columns ofḠ corresponding to accessed storage nodes asḠj;

CalculateḠT
j Yα×j ;

ConstructP̃ and Q̃ by using (24) and (25);

Perform progressive error-and-erasure decoding on each row in P̃ to obtainP̂ ;

Locate erroneous columns in̂P by searching for columns of them with at least

v + 2 errors; assume thatℓe columns found in the previous action;

Locate columns inP̂ with at mostv errors; assume thatℓc columns found in the

previous action;

if (ℓe = v and ℓc = k + v) then

Copy theℓe erronous columns of̂P to their corresponding rows to makêP a

symmetric matrix;

Collect anyα columns in the aboveℓc columns ofP̂ as P̂α and find its

correspondingḠα;

Multiply the inverse ofḠα to P̂α to recoverḠT
j Z1;

RecoverZ1 by the inverse of anyα rows of ḠT
j ;

RecoverZ2 from Q̃ by the same procedure; Recoverm̃ from Z1 andZ2;

if integrity-check(m̃) = SUCCESS then
return m̃;

j ← j + 2;

Retrieve2 more encoded data from remaining storage nodes and merge them into

Yα×j; v ← v + 1;
return FAIL;
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Algorithm 2: Decoding of MBR Codes for Data Reconstruction

begin
The data collector randomly choosesk storage nodes and retrieves encoded data,Yd×k;

ℓ← k;

repeat
Perform progressive error-erasure decoding on lastd− k rows in Yd×ℓ, Y(d−k)×ℓ, to

recoverC̃ (error-erasure decoding performsd− k times);

Locate the erroneous columns inY(d−k)×ℓ (assume to havev columns);

CalculateÃ2 via (38);

CalculateÃ2 · B and obtainY ′

k×(ℓ−v) via (41);

if (ℓ− v ≥ k) then
Perform progressive error-erasure decoding onY ′

k×(ℓ−v) to recover the firstk

rows in codeword vector (error-erasure decoding performsk times);

CalculateÃ1 via (40);

Recover the information sequencẽm from Ã1 and Ã2;

if integrity-check(m̃) = SUCCESS then
return m̃;

ℓ← ℓ+ 2;

Retrieve two more encoded data from remaining storage nodesand merge them

into Yd×ℓ;

until ℓ ≥ n− 2;

return FAIL;

TABLE I

COMPARISON ON THE AVERAGE NUMBER OF UPDATED SYMBOLS WHILE A SINGLE DATA SYMBOL IS MODIFIED

MSR code MBR code

[20 10 18] [100 40 78] [20 10 18] [100 40 78]

Proposed method 22 121 8 48

Vandermonde matrix 36 195 19 99

Systematic version based on linear remapping [13]* 88 2323 34 807

Systematic version based on Cauchy matrix [13] - - 10 60

* The numbers are obtained from simulation results
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