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Performance Analysis of Asynchronous Multicarrier
Wireless Networks

Xingqin Lin, Libin Jiang, and Jeffrey G. Andrews

Abstract—This paper develops a novel analytical framework
for asynchronous wireless networks deploying multicarrier trans-
mission. Nodes in the network have different notions of timing,
so from the viewpoint of a typical receiver, the received signals
from different transmitters are asynchronous, leading to a loss
of orthogonality between subcarriers. We first develop a detailed
link-level analysis based on OFDM, based on which we propose
a tractable system-level signal-to-interference-plus-noise ratio
(SINR) model for asynchronous OFDM networks. The proposed
model is used to analytically characterize several important
statistics in asynchronous networks with spatially distributed
transmitters, including (i) the number of decodable transmitters,
(ii) the decoding probability of the nearest transmitter, and
(iii) the system throughput. The system-level loss from lack
of synchronization is quantified, and to mitigate the loss, we
compare and discuss four possible solutions including extended
cyclic prefix, advanced receiver timing, dynamic receiver timing
positioning, and semi-static receiver timing positioning with
multiple timing hypotheses. The model and results are general,
and apply to ad hoc networks, cellular systems, and neighbor
discovery in device-to-device (D2D) networks.

I. I NTRODUCTION

Consider a wireless network in which some nodes are
broadcasting multicarrier signals and some nodes are listening.
A listening node can decode the signal broadcast by a transmit-
ting node if the received signal-to-interference-plus-noise ratio
(SINR) exceeds some detection threshold, which depends on
the used modulation and coding scheme. In reality, the various
nodes in the network do not have precise synchronization with
one another. Therefore, this paper investigates the following
question: if we take a snapshot of the network at a randomly
selected time-frequency slot and randomly select a receiving
node, then how many (if any) transmitting nodes can be
decoded by the selected receiving node given that the network
nodes each have different notions of timing?

The general question posed above is of interest in many
wireless networks. For example, in device-to-device (D2D)
node discovery, a user equipment (UE) seeks to identify other
UEs in its proximity via periodically broadcasting/receiving
discovery signals [1]. The number of transmitting devices
that can be decoded is an important metric of discovery
effectiveness. A similar metric can be used for neighbor
discovery in wireless ad hoc networks [2]. Cellular networks
are a third important example. For example, in the downlink
of a cellular network, how many base stations (BSs) can be
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decoded by a typical UE at a given SINR? This is a key
consideration for soft handover or multiple-BS coverage or
offloading in dense heterogeneous networks [3].

A. Background and Related Work

The answer to the posed question obviously depends on how
the transmitting nodes are spatially distributed. We assume that
the transmitting nodes are distributed according to a Poisson
point process (PPP), which has two main advantages: (i)
it captures the randomness inherent in the positions of the
transmitting nodes (which are usually unknown to a receiving
node), and (ii) the PPP has nice properties which make
it particularly appealing from an analytical perspective [4].
The PPP also has been recently shown to accurately model
(with small modifications or shifts) a very large class of
wireless networks, including even regular grids (with sufficient
shadowing) [5] and most random spatial distributions with a
small and constant SINR shift [6]. It is therefore reasonable
to assume that the conclusions in this paper also will hold for
most plausible network topologies.

Because of its excellent analytical properties, the PPP has
found numerous applications in various types of wireless
networks including the analysis and optimization of Aloha in
wireless ad hoc networks [7] and coverage and rate analysis in
cellular systems [8]. More recently, the PPP has been applied
to D2D networking including the analysis and design of
scheduling in FlashlinQ [9], [10], the interaction betweenD2D
and cellular systems [11]–[13], and message dissemination
with intermittently connected D2D links [14]. More applica-
tions of the PPP may be found in [15], [16] and references
therein.

Despite this encouraging progress in applying the PPP to
wireless networking, existing works nearly universally assume
that the networks are perfectly synchronized. In cellular net-
works, BSs in different cells may not be synchronized in
a Frequency Division Duplex (FDD) deployment, or have
synchronization errors in a Time Division Duplex (TDD)
deployment. These facts also lead to synchronization issues
in D2D discovery. In particular, UEs participating in the
discovery are synchronized with their associated BSs and thus
may not be synchronized or at best imperfectly synchronized
among themselves even when other factors like propagation
delays are not considered, let alone the UEs that are out of
cellular coverage [1]. The synchronous assumption becomes
even more questionable when it comes to an ad hoc network
in which network-wide synchronization is almost impossible.
In such contexts, different transmitters have different notions
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of timing. From the viewpoint of a typical receiver, which
also has its own notion of timing, the multicarrier orthogonal
frequency-division multiplexing (OFDM) signals from the
transmitters are asynchronous and also do not align with the
receiver’s timing, leading to a loss of orthogonality between
subcarriers.

The impact of synchronization errors on single-user OFDM
has been extensively investigated in the literature (see e.g.
[17]–[21]). Extension of the analysis in single-user OFDM to
multiuser OFDM, however, is not straightforward as the latter
involves a much larger set of random variables. Analysis of
asynchronous OFDM in the uplink of cellular systems includes
[22]–[25], while the downlink counterpart may be found in
[26], [27] and ad hoc networks in [28]. The works [22]–
[25] are focused on a single-cell setting and do not consider
other-cell interference that plays a key role in system-level
performance. In contrast, cochannel interference is modeled
and studied in [26]–[28]. But [26]–[28] do not consider or
leverage the randomness inherent in the positions of network
nodes, and the system-level studies therein are mainly based
on Monte Carlo simulations.

B. Main Results and Contributions

The main goal of this paper is to incorporate the impact of
asynchronous OFDM transmissions in the system-level study
of wireless networks in which the positions of transmitting
nodes are modeled by a PPP. The main contributions and
outcomes of this paper are summarized as follows.

1) A tractable SINR model for asynchronous OFDM net-
works: We carry out a detailed link-level analysis on the
impact of timing misalignment in OFDM transmission. Based
on the link-level analysis, we propose a tractable first-order
SINR model, which can be conveniently used in system-level
studies.

2) System-level analysis of asynchronous PPP networks:
We apply the proposed SINR model to study the system-level
performance of asynchronous networks where the locations
of transmitting nodes are modeled by a PPP and an OFDM
waveform is used. Taking from a typical receiver’s point of
view, we derive analytical results for the average number
of decodable transmitters, the decoding probability of the
nearest transmitter, and system throughput. Further, we derive
an upper bound on the distribution of the number of decod-
able transmitters. Note that, according to Palm theory [4],
the statistical performance experienced by a typical receiver
is equivalently the spatially averaged performance over all
receivers. The analysis of perfectly synchronized networks can
be treated as a special case of this work. For example, the
result on the decoding probability of the nearest transmitter
reduces to [8] that studies a perfectly synchronized cellular
network.

3) Solutions for mitigating the impact of asynchronous
transmissions: We compare and discuss four possible so-
lutions including extended cyclic prefix, advanced receiver
timing, dynamic receiver timing positioning, and semi-static
receiver timing positioning with multiple timing hypotheses.
These solutions, detailed in Section V, differ in complexity

and may be applicable in different scenarios for mitigating
the loss due to asynchronous transmissions.

The rest of this paper is organized as follows. Section II de-
scribes the system model. In Section III, we propose a tractable
SINR model for asynchronous OFDM networks. System-level
analysis is carried out in Sections IV. Section V presents four
possible solutions for mitigating the impact of asynchronous
transmissions, and is followed by our concluding remarks in
Section VI. Numerical and/or simulation results are presented
throughout the paper to help understand the various analytical
results and build intuition.

II. SYSTEM MODEL

We consider a network in which transmitters use an OFDM
waveform. The baseband equivalent time-domain signalsi(t)
emitted by transmitteri can be written as

si(t) =
√

Ei

∞
∑

m=−∞

1

N

∑

k

Si[k;m]

× ej2π
k
T (t−mTs)I[−Tcp,Td)(t−mTs), (1)

whereEi denotes the transmit energy per sample of transmitter
i, m is the OFDM symbol index,N denotes the total number
of subcarriers,k is the subcarrier index,Si[k;m] denotes
transmitteri’s data symbol on thek-th subcarrier during the
m-th OFDM symbol,Ts = Td + Tcp denotes the duration of
an OFDM symbol withTd denoting the duration of the data
part andTcp the duration of the cyclic prefix, andIA(t) is an
indicator function: it equals1 if t ∈ A and zero otherwise.
The data symbols{Si[k;m]} are complex and assumed to be
independent and identically distributed (i.i.d.) with zero mean
and unit variance.

As indicated in Section I-A, we are interested in asyn-
chronous scenarios where different transmitters have different
notions of timing and so do the receivers. The more commonly
studied synchronous scenarios where all the nodes are syn-
chronized is a special case of this model. In an asynchronous
network, we are interested in what a typical receiver “sees”at
a random time-frequency resource unit. Note that the spectral
width can be arbitrary. It can be a complete OFDM channel or
a subband of an OFDM channel. In the latter case, transmitter
i simply puts zero-valued data symbolsSi[k;m] on the unused
subcarriers, as in OFDMA.

The active transmitters at the time-frequency resource unit
in question are assumed to be randomly distributed according
to a PPPΦ with densityλ. The location of transmitteri ∈ Φ
is denoted byXi. Note that our model does not preclude
the possibility that there may be other transmitters activeat
some other time-frequency resource units. For example, we
may consider a super PPPΦ′ ⊇ Φ, whereΦ′ denotes the set
of all the nodes in the network, and a time-frequency grid
composed of orthogonal time-frequency resource units.1 Each
node randomly selects a time-frequency resource unit and
transmits an OFDM waveform. Then the active transmitters at
a randomly selected time-frequency resource unit constitute a

1We ignore possible leakages from other time-frequency resource units
when considering a particular time-frequency resource unit.
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PPPΦ, thinned from the super PPPΦ′. This described random
access scheme is in fact part of the D2D discovery design used
in LTE Direct [29].

In this asynchronous network, we will study system-level
questions such as the number of transmitting nodes that can be
decoded by a typical receiver. To this end, since the transmitter
process is stationary, we may assume without loss of generality
that the typical receiver is located at the origin. Further,
we consider flat-fading OFDM channels, i.e., the multipath
spreads are small (w.r.t. sampling period). The last assumption
holds for example in the following three scenarios: (1) there
are not many obstacles in the radio environment and the arrival
times of the multipaths are not resolvable at the receiver; (2)
the received signal power is dominated by a single path, e.g.
the line-of-sight path if it exists; and (3) the transmit signal
is restricted to a flat-fading subband of a frequency-selective
channel, as in OFDMA. We leave the important extension to
frequency-selective OFDM channels as future work.

More specific modeling assumptions related to the system-
level study will be given in Section IV.

III. T RACTABLE SINR MODEL FORASYNCHRONOUS

NETWORKS

A. Link-Level Timing Misalignment Analysis

In this subsection, we analyze the impact of timing mis-
alignment from a link-level perspective. Though similar anal-
ysis may be found in the rich OFDM literature (see e.g. [19]),
we briefly revisit this analysis to motivate our proposed SINR
model that captures the impact of asynchronous transmission.
To this end, we shall focus on the link between transmitteri
and the typical receiver and ignore the signals from the other
transmitters for now.

Note that then-th time-domain sample of them-th OFDM
symbol from the signalsi(t) is given by

si[n;m] = si

(

mTs + n
Td

N

)

=

√
Ei

N

∑

k

Si[k;m]ej2π
k
N n, n = −Ncp, ..., N − 1, (2)

whereNcp = NTcp/Td is the number of cyclic prefix samples.
Denote byDi the timing misalignment between transmitteri
and the typical receiver. Without loss of generality, we assume
Di ∈ D , [−(N +Ncp), N +Ncp).2

In each OFDM symbolm, the typical receiver would like
to decode them-th OFDM symbol sent by transmitteri. To
this end, it discards the firstNcp samples falling in the current
receiving window and performs a fast Fourier transform (FFT)
on the remainingN samples. We consider the following four
cases, in which for notational simplicity we drop the additive
noise term and assume that the channel gain is1 unless
otherwise noted.

2This assumption can be easily relaxed by using different notationsm and
m′ to respectively index OFDM symbols at the transmitter and atthe receiver
in the following analysis.

Case 1:−(N + Ncp) ≤ Di < −N . The N samples used
for the FFT of them-th OFDM symbol are

y[n;m] = si[n−Di −N −Ncp;m+ 1], n = 0, ..., N − 1.
(3)

The received signal on theℓ-th subcarrier during them-th
OFDM symbol is given by

Y [ℓ;m] =
√

Eie
j2π ℓ

N (−Di−Ncp)Si[ℓ;m+ 1], (4)

which is derived in Appendix A. Thus, the received symbol
on the ℓ-th subcarrier during OFDM symbol timem is just
a phase rotated version of the transmitted symbol on theℓ-th
subcarrier during OFDM symbol timem + 1. If Si[ℓ;m] is
desired, the useful signal power is0. Otherwise, transmitter
i’s signal appears as interference and its interference power
(energy/symbol) on theℓ-th subcarrier during them-th OFDM
symbol equals

Pi[ℓ;m] = E[|Y [ℓ;m]|2] = Gi[m]Ei, (5)

where we have included the effect of channel gainGi[m] from
transmitter i to the typical receiver during OFDM symbol
time m. Note thatGi[m] is independent of subcarrierℓ as
we assume that the channel is flat-fading.

Case 2:−N ≤ Di < 0. The N samples used for the FFT
of them-th OFDM symbol are

y[n;m] =
{

si[−Di + n;m], 0 ≤ n ≤ N − 1 +Di;

si[n− (N +Di)−Ncp;m+ 1], N +Di ≤ n ≤ N − 1.

(6)

The received signal on theℓ-th subcarrier during them-th
OFDM symbol is given by

Y [ℓ;m] =
√

Ei
N +Di

N
Si[ℓ;m]e−j2π ℓ

N Di

−
√

Ei
Di

N
Si[ℓ;m+ 1]ej2π

ℓ
N (−Di−Ncp)

+
√

Ei
1

N

∑

k 6=ℓ

(

1− ej2π
k−ℓ
N (N+Di)

1− ej2π
k−ℓ
N

)

×
(

Si[k;m]e−j2π k
N Di − Si[k;m+ 1]ej2π

k
N (−Di−Ncp)

)

,

(7)

which is derived in Appendix A. Thus, the total received power
on the ℓ-th subcarrier during them-th OFDM symbol from
transmitteri is

Pi[ℓ;m] =Gi[m]Ei

(

1

N2

(

(N +Di)
2 +D2

i

)

+
2

N2

∑

k 6=ℓ

sin2
(

πN+Di

N (k − ℓ)
)

sin2
(

π 1
N (k − ℓ)

)

)

, (8)

where we have used the assumption that{Si[k;m]} are i.i.d.
and have zero mean and unit variance. IfSi[ℓ;m] is desired,
the useful signal power is(N+Di)

2

N2 Gi[m]Ei; the remaining
terms in (8) contribute to self-interference including both inter-
carrier interference (ICI) and inter-symbol interference(ISI).
Otherwise, transmitteri’s signal appears as interference whose
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power is characterized by (8).

Case 3:0 ≤ Di < Ncp. TheN samples used for the FFT
of them-th OFDM symbol are

y[n;m] = si[n−Di;m], 0 ≤ n ≤ N − 1. (9)

As in Case 1, we can show that the received signal on theℓ-th
subcarrier during them-th OFDM symbol is given by

Y [ℓ;m] =
√

EiSi[ℓ;m]e−j2π ℓ
N Di . (10)

If Si[ℓ;m] is desired, the useful signal power isGi[m]Ei, and
there is no self-interference. Otherwise, transmitteri’s signal
appears as interference with powerGi[m]Ei.

Case 4:Ncp ≤ Di < N + Ncp. The N samples used for
the FFT of them-th OFDM symbol are

y[n;m] =
{

si[n+N +Ncp −Di;m− 1], 0 ≤ n ≤ Di −Ncp − 1;

si[n−Di;m], Di −Ncp ≤ n ≤ N − 1.

(11)

As in Case 2, we can show that the received signal on theℓ-th
subcarrier during them-th OFDM symbol is given by

Y [ℓ;m] =
√

Ei
N −Di +Ncp

N
Si[ℓ;m]e−j2π ℓ

N Di

+
√

Ei
Di −Ncp

N
Si[ℓ;m− 1]e−j2π ℓ

N (Di−Ncp)

+
√

Ei
1

N

∑

k 6=ℓ

(

1− ej2π
k−ℓ
N (Di−Ncp)

1− ej2π
k−ℓ
N

)

×
(

−Si[k;m]e−j2π k
N Di + Si[k;m− 1]e−j2π k

N (Di−Ncp)
)

.

(12)

Thus, the total received power on theℓ-th subcarrier during
them-th OFDM symbol from transmitteri is

Pi[ℓ;m] =Gi[m]Ei

(

1

N2

(

(N −Di +Ncp)
2 + (Di −Ncp)

2
)

+
2

N2

∑

k 6=ℓ

sin2
(

π
Di−Ncp

N (k − ℓ)
)

sin2
(

π 1
N (k − ℓ)

)

)

. (13)

If Si[ℓ;m] is desired, the useful signal power is
(N−Di+Ncp)

2

N2 Gi[m]Ei; the remaining terms in (13) contribute
to self-interference including both ICI and ISI. Otherwise,
transmitteri’s signal appears as interference whose power is
characterized by (13).

B. From Link-Level to System-Level Studies

In this subsection, we discuss how to apply the previous
link-level analysis on the impact of timing misalignment to
OFDM transmission in system-level studies. In an OFDM
system, a transmitter sends a block of coded bits on the used
subcarriers. The probability that the receiver can decode the
block sent by transmitteri depends on all the SINR values of
the used subcarriers. Transmitteri’s SINR of subcarrierℓ is

given by

SINRi[ℓ] =
g(Di)GiEi

Pi[ℓ]− g(Di)GiEi +
∑

j 6=i Pj [ℓ] +N0
, (14)

where we have dropped the OFDM symbol indexm, N0

denotes the noise power, and

g(d) =



















0 −(N +Ncp) ≤ d < −N ;
(N+d)2

N2 −N ≤ d < 0;
1 0 ≤ d < Ncp;
(N+Ncp−d)2

N2 Ncp ≤ d < N +Ncp.
(15)

In a system-level study, the subcarrier SINR values are
usually mapped to a unique SINR, based on which the decision
on whether the block is decodable is made. For example,
the exponential effective SINR mapping (EESM) is a popular
mapping method [30]. In an asynchronous network with timing
misalignment, the calculation of SINRi[ℓ] can be difficult
because the detailed modeling of timing errors in a system-
level study can be cumbersome. Further, the received power
Pi[ℓ] depends on timing misalignment in a delicate way (c.f.
(8) and (13)), which makes the analytical evaluation of system-
level performance even more challenging.

To solve the above mentioned difficulties, we propose a
simple first-order model, which can be conveniently used in
system-level studies.

System-Level Abstraction. In a system-level study of the
asynchronous network with timing misalignment, the subcar-
rier SINRi[ℓ] may be approximately calculated as follows.

1) Model and calculate the timing misalignmentDi be-
tween transmitteri and the typical receiver.

2) Calculate the useful signal power asg(Di)GiEi, where
g(d) is defined in (15).

3) Approximate the total received signal power from trans-
mitter j asPj [ℓ] = GjEj , j = 1, 2, ....

4) Calculate SINRi[ℓ] according to (14).

The proposed system-level abstraction has two main ad-
vantages: (1) when evaluating SINRi[ℓ] it only needs to
consider the timing misalignment of the receiver with respect
to transmittersi; and (2) compared to the original complicated
expressions (c.f. (8) and (13)), the total received signal power
from transmitterj is simply approximated asPj [ℓ] = GjEj .
These two facts greatly simplify system-level studies.

The validness of the proposed system-level abstraction
hinges on the condition that the total received signal power
from transmitterj can be well approximately asPj [ℓ] =
GjEj , regardless of the timing misalignmentDj . As shown
in a numerical example in Fig. 1, this approximation is quite
accurate: the received powers are almost uniform on the used
subcarriers except a few edge subcarriers under various timing
misalignment cases. Fig. 2 further shows how the timing
misalignment in OFDM transmission affects the power of
useful signal as well as the power of self-interference. For
example, the received SNR of the central subcarrier would be
limited to less than20 dB when the receiving window is later
than the actual timing of the received signal by6 samples
(mainly due to the self-interference).
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Fig. 1. Received power of an OFDM signal with timing misalignment.
N = 1024;Ncp = 72; the used subcarriers are{−299, ...,0, ...300}.
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Fig. 2. Signal and self-interference powers of an OFDM signal received on
the central subcarrier with timing misalignment.N = 1024;Ncp = 72; the
used subcarriers are{−300, ..., 0, ...299}.

IV. ON THE DECODABLE TRANSMITTERS OF ATYPICAL

RECEIVER

In this section, we apply the proposed system-level abstrac-
tion to study several important statistics about the transmitters
whose packets can be decoded by the typical receiver in
the asynchronous network. Such statistics include the average
number of decodable transmitters, the decoding probability
of the nearest transmitter, the distribution of the number of
decodable transmitters, and system throughput.

To this end, we first notice that with the proposed system-
level abstraction, the subcarrier SINRi[ℓ] now can be written
as

SINRi[ℓ] =
g(Di)GiEi

(1− g(Di))GiEi +
∑

j 6=i GjEj +N0
. (16)

Noting that the right hand side of (16) is independent ofℓ, we
can simply use the subcarrier SINRi[ℓ] as the block SINRi,
based on which the decision on whether a packet is decodable
can be made. Therefore, in the sequel we drop the subcarrier
index ℓ in (16) and treat it as a block SINR.

In the following system-level study we assume that (i)

transmitters use constant transmit powerE, (ii) the timing
mismatches{Di} are i.i.d. with cumulative distribution func-
tion (CDF) FD(·), and (iii) the channel gainGi is modeled
as

Gi = ‖Xi‖−αFi, (17)

whereα > 2 is the pathloss exponent, andFi denotes the
fading of the link from transmitteri to the typical receiver. For
simplicity, we consider independent Rayleigh fading in this
paper, i.e.,Fi ∼ Exp(1); more general fading and/or the effect
of shadowing may be treated by further applying Displacement
theorem for the PPP [5], which is not the focus of this paper.
With these assumptions, the SINRi now can be written as

SINRi =
g(Di)‖Xi‖−αFi

(1− g(Di))‖Xi‖−αFi +
∑

j 6=i ‖Xj‖−αFj +N0/E
.

(18)

We let Ei be the event that a packet from transmitteri
is decodable. Then the eventEi occurs if and only if the
received SINRi is above some detection thresholdT , which
is a function of the used modulation and coding scheme.
Mathematically, the numberΥ of decodable transmitters is
given by

Υ =
∑

i

I(Ei) =
∑

i

I(SINRi ≥ T ), (19)

whereI(E) is an indicator function which equals1 if the event
E is true and0 otherwise. Clearly,Υ is a random variable and
will be the central object studied in the sequel.

A. Mean Number of Decodable Transmitters

We first consider the average number of decodable trans-
mittersE[Υ].

Proposition 1.The mean number of decodable transmitters is
given by

E[Υ] = πλ

∫

D

∫ ∞

0

I

(

g(τ) >
T

1 + T

)

e−h(τ,T )SNR−1v
α
2

× e−λπsinc−1( 2
α )(h(τ,T ))

2
α vdvFD(dτ), (20)

whereh(τ, T ) = T
(1+T )g(τ)−T , SNR= E/N0, and sinc(x) =

sin(πx)
πx .

Proof: See Appendix B.
To gain some insights from Prop. 1, we next focus on the

special case that the network is interference-limited, i.e.,N0 →
0.

Corollary 1. In the interference-limited case withN0 → 0,
(20) reduces to a simpler form:

E[Υ] = ED





I

(

g(D) > T
1+T

)

sinc
(

2
α

)

(h(D,T ))
2
α



 , (21)

which can be upper bounded as

E[Υ] ≤ sinc
(

2
α

)

T
2
α

. (22)
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Fig. 3. The upper bound on the mean number of decodable transmitters (c.f.
(22)) versus pathloss exponent.

The upper bound (22) follows because by definitiong(τ) ≤
1 (c.f. (15)) and thush(τ, T ) ≥ T for all τ ∈ D satisfying
g(τ) > T/(1 + T ). The upper bound is attained when
timing misalignmentD is restricted within the range of cyclic
prefix. This simple upper bound only depends on two network
parameters:α andT . In particular, the upper bound decreases
as the detection thresholdT increases, agreeing with intuition:
the mean number of decodable transmitters decreases when the
modulation and coding rate are chosen such thatT is higher.

The dependency of the upper bound on the pathloss ex-
ponentα is more complicated and is illustrated in Fig. 3.
Note that sinc

(

2
α

)

is increasing withα ∈ (2,∞). In contrast,
when 0 < T < 1, T

2
α is increasing withα ∈ (2,∞), but

whenT ≥ 1, T
2
α is decreasing withα ∈ (2,∞). Therefore,

when T ≥ 1, the upper bound increases withα ∈ (2,∞).
The intuition is that in order to decode packets from more
transmitters in the median-to-high modulation and coding rate
regime, it is important to reduce the interference power in the
interference-limited scenario and thus high pathloss exponent
is favorable. When0 < T < 1, it is possible that the
upper bound first increases and then decreases as the pathloss
exponent increases. This is because in the low modulation
and coding rate regime, it is also important to preserve the
useful signal power while reducing the interference power.
In particular, for very lowT , as α increases beyond some
point, the loss of the useful signal power will outweigh the
gain of interference reduction and thus the mean number
of decodable transmitters will eventually decrease. Another
interesting observation from Fig. 3 is that the mean number
of decodable transmitters is very small: it is less than2 even
whenT is as low as−9 dB. We will explore this fact more
in later sections.

Though the above discussion is carried out in the
interference-limited case, the overall insights still hold when
noise is taken into account. For example, Fig. 4 considers noise
(whose power is given in Table I) and shows the performance
under two two transmitter densities. The dense case with
λ = 1/202 m−2 is interference-limited; in this case, we can
see that the upper bound shown in Fig. 3 is quite close to
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Fig. 4. Mean number of decodable transmitters versus pathloss exponent in
synchronized networks.

the true values shown in Fig. 4. In the sparse case with
λ = 1/4002 m−2 where the noise has a more pronounced
effect, Fig. 4 shows that a moderate pathloss exponent (around
3.3) is preferred as it strikes a balance between interference
reduction and preserving the useful signal power.

Next let us turn to the impact of timing misalignment. As
expected and shown in (22), there is a loss in the mean number
of decodable transmitters due to the timing misalignment.
However, if the timing misalignment is restricted within the
range of cyclic prefix, i.e.,D ∈ [0, Ncp), theng(D) ≡ 1 and
thus the upper bound in (22) is attained. In this case, there is no
loss due to the timing misalignment. Otherwise, the loss exists
and depends on the distribution of the timing misalignment.
Note that the integrand in (20) is zero ifg(τ) ≤ T/(1 + T ).
The physical interpretation is that wheng(τ) ≤ T/(1 + T ),
the self interference caused by timing misalignment is already
large enough to cause the decoding failure.

To obtain a more concrete understanding of the impact
of timing misalignment, we show some numerical results
in the sequel. As a null hypothesis, we assume that the
distribution of the timing misalignment is Gaussian with mean
0 and standard deviationσ but is truncated within the range
[−(N + Ncp), N + Ncp). The specific parameters used in
plotting numerical or simulation results in this paper are
summarized in Table I unless otherwise specified. Note that,
with the OFDM sampling period normalized to1, N denotes
the duration of the data part of an OFDM symbol. Accordingly,
we normalize timing error deviationσ and measure it in terms
of N , as indicated in Table I.

Fig. 5 shows the mean number of decodable transmitters
versus the detection threshold. From Fig. 5, we can see
that asynchronous transmissions have a remarkable effect on
the performance; for example, when aiming at decoding one
transmitter on average andλ = 1/202 m−2, the loss in
the supported detection threshold is about2 dB (resp. 4
dB) with σ = 0.2N (resp. σ = 0.4N ). Similarly, with
the detection thresholdT = −4 dB, the loss in the mean
number of decodable transmitters is21% (resp.44%) when
σ = 0.2N (resp. σ = 0.4N ). Fig. 5 also shows that the
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Tx densityλ 1/4002 m−2

PL exponentα 3.8
Tx power 23 dBm
Channel bandwidth 10 MHz
Noise PSD −174 dBm
Rx noise figure 9 dB
Detection thresholdT −12 dB
(N,Ncp) (1024, 72)
Timing error deviationσ 0.2N

TABLE I
SIMULATION /NUMERICAL PARAMETERS
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Fig. 5. Mean number of decodable transmitters versus detection threshold.

relative loss in the mean number of decodable transmitters
due to asynchronous transmissions increases as the detection
threshold increases, implying that asynchronous transmissions
have a more significant impact on high-rate communication.
Similar observations hold whenλ = 1/4002 m−2. Note that
the simulation results clearly match the analysis in Fig. 5;this
provides a sanity check for the derived analytical results.

B. An Upper Bound on the Distribution of the Number of
Decodable Transmitters

In the previous subsection, we studied the first order statistic
of the numberΥ of decodable transmitters. In this subsec-
tion, we take a broader view and study the distribution of
the numberΥ of decodable transmitters. Though an exact
characterization is possible, the resulting expressions involve
very high dimensional integrals even in the case of perfectly
synchronized networks [3]. Instead, we provide a simple upper
bound on the distribution ofΥ in the following proposition.

Proposition 2.The numberΥ of decodable transmitters is (first
order) stochastically dominated by a truncated Poisson random
variableΥ(u), i.e., P(Υ(u) ≥ n) ≥ P(Υ ≥ n), n = 0, 1, ....
The distribution ofΥ(u) is given as follows:P(Υ(u) = n) =
1
C

λ̃n

n! , n = 0, ..., ⌊ 1+T
T ⌋, where

λ̃ = πλ

∫ ∞

0

ED

[

I

(

g(D) >
T

1 + T

)

e−
Tvα/2

g(D)SNR

]

dv, (23)

andC is a normalization constant such that
∑⌊ 1+T

T ⌋
n=0 P(Υ(u) =

n) = 1.

Proof: See Appendix C.
To gain some insights from Prop. 2, we next focus on the

special case withT > 1. Then Prop. 1 implies thatΥ(u)

is a Bernoulli random variable: it equals1 with probability
λ̃/(1 + λ̃) and 0 otherwise. The mean ofΥ(u) is λ̃/(1 + λ̃).
If the network is very sparse such thatλ ∼ o(1), then
λ̃/(1 + λ̃) ∼ λ̃ = Θ(λ). When the transmit power is fixed, the
performance of sparse networks is noise-limited. This indicates
that in the noise-limited case the probability that the receiver
can decode a packet from some transmitter isO(λ). So is the
mean number of decodable transmitters. In the next subsection,
we will show that the probability isΩ(λ) asλ → 0, and thus
the probability actually scales asΘ(λ).

If the network is very dense, i.e.,λ → ∞, thenλ̃/(1 + λ̃) ∼
1. Clearly, the performance of dense networks is interference-
limited. As a result, one might think that in the interference-
limited case the probability that the receiver can decode a
packet from some transmitter is close to1. The fallacy of
the above argument is thatλ̃/(1 + λ̃) is an upper bound and
may not be tight asλ → ∞. In fact, the right intuition
should be that the received SINR from any transmitter in
the interference-limited case would not be large and thus the
probability that no transmitter can be decoded can be relatively
high if the detection thresholdT is large. The last intuition
can be further confirmed by examining Fig. 3. For example,
Fig. 3 shows that the mean number of decodable transmitters
is less than0.5 at α = 4 and T = 3 dB, implying that the
probability that no transmitter can be decoded is greater than
0.5.

Note that the parameter̃λ may take more explicit form in
some special cases. For example, whenα = 4,

λ̃ =
π

3
2 λ

2

√

SNR
T

ED

[

I

(

g(D) >
T

1 + T

)

√

g(D)

]

. (24)

Therefore, ifT > 1 andα = 4, the probability that the receiver
can decode a packet from some transmitter is proportional to
the square root of SNR in the noise-limited case, agreeing
with intuition: the radio link length is proportional to SNR1/4

when α = 4 and thus the decoding probability should be
proportional to SNR1/2 in R

2. Similar intuition may be used
to explain why the probability is inversely proportional tothe
square root of the detection thresholdT .

Figs. 6 and 7 compare the analytical upper bound on the
distribution of the numberΥ of decodable transmitters to the
corresponding true distribution obtained from simulationunder
two different transmitter densities. It can be seen that the
analytical upper bound is more accurate when the network
is sparser (i.e. less interference-limited).

C. On Decoding the Nearest Transmitter

According to Prop. 2, the receiver can decode the packet
from at most one transmitter ifT > 1. The decodable trans-
mitter is typically the nearest one, though fading and timing
misalignment may affect the result. Further, the probability
of decoding the nearest transmitter indicates the coverage



8

0 1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# decodable TXs

C
D

F

Simulation

Analytical upper bound

Fig. 6. Analytical upper bound vs. simulation on the distribution of the
number of decodable transmitters:λ = 1/4002 m−2.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# decodable TXs

C
D

F

Analytical upper bound

Simulation

Fig. 7. Analytical upper bound vs. simulation on the distribution of the
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performance of cellular networks where the positions of BSs
are modeled by a PPP [8]. Therefore, it is of particularly
interest to study the probability that the receiver can decode a
packet sent by the nearest transmitter. We answer this question
in the following Proposition 3.

Proposition 3.The probability that the receiver can decode a
packet sent by the nearest transmitterX0 is given by

P(SINR0 ≥ T ) = πλ

∫

D

∫ ∞

0

I

(

g(τ) >
T

1 + T

)

× e−h(τ,T )SNR−1v
α
2 e−πλ(1+ρ(h(τ,T ),α))vdvFD(dτ), (25)

whereρ(x, α) = x
2
α

∫∞

x−

2
α

1

1+v
α
2
dv, andh(τ, T ) is defined in

Prop. 1.

Proof: See Appendix D.
From Prop. 3, it is easy to see the probability that the

receiver can decode a packet sent by the nearest transmitter
is Θ(λ) asλ → 0. Thus, the probability that the receiver can
decode a packet sent by at least one transmitter isΩ(λ) as
λ → 0. The last fact has been used in the previous section
when stating that withT > 1 the probability that the receiver
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Fig. 8. Impact of timing misalignment on the decoding probability of the
nearest transmitter.

can decode a packet sent by some transmitter scales asΘ(λ).

When the network is interference-limited, i.e.,N0 → 0, (25)
reduces to

P(SINR0 ≥ T ) = ED





I

(

g(D) > T
1+T

)

1 + ρ(h(D,T ), α)





≤ 1

1 + ρ(T, α)
, (26)

where we have used the fact thath(τ, T ) ≥ T , for all τ ∈ D

satisfyingg(τ) > T/(1+T ), in the last inequality. The above
upper bound is attained whenD ≡ 0, i.e., the network is
perfectly synchronized, which has been studied in [8]. In fact,
as long as the timing misalignmentD is restricted within the
range of cyclic prefix, the upper bound can be attained. As in
the case of the mean number of decodable transmitters, there
is a loss in the probability of decoding the nearest transmitter
due to the timing misalignment, and the loss depends on the
distribution of the timing misalignment.

Fig. 8 shows the decoding probability of the nearest trans-
mitter versus the detection threshold. From Fig. 8, we can see
that, when aiming at decoding probability0.5 andλ = 1/202

m−2, the loss in the supported detection threshold is about3
dB (resp.6 dB) with σ = 0.2N (resp.σ = 0.4N ). Fig. 8 also
shows that the impact of asynchronous transmissions becomes
more significant as the detection threshold increases. Similar
observations hold whenλ = 1/4002 m−2.

D. Optimizing System Throughput

The average number of decodable transmitters characterized
in Prop. 1 is monotonically increasing as the detection thresh-
old T decreases. However, reducing the detection thresholdT
implies that we adopt lower modulation order and/or coding
rate. This may be undesirable from a throughput point of view.
In order to take into account this tradeoff, we definesystem
throughputξ as the mean of the sum rate of all the transmitters
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Fig. 9. System throughput versus detection threshold.

to the typical receiver. Mathematically,

ξ = E

[

∑

i

I(SINRi ≥ T ) log(1 + T )

]

. (27)

With this definition, the following result follows immediately.

Corollary 2. The system throughput equalsξ = log(1 +
T )E[Υ] with E[Υ] given in Prop. 1.

Now we may optimize the detection thresholdT by maxi-
mizing the system throughputξ. This optimization is of single
variable and thus can be solved efficiently. To gain some
intuition, we show the system throughput as a function ofT
in Fig. 9. From Fig. 9, we can see that the optimal detection
thresholds are respectively5 dB, −1 dB and−3 dB when
σ = 0, 0.2N and 0.4N . This implies that we have to be
more conservative in setting the detection threshold when
the networks are asynchronous (vs. synchronized networks).
Another interesting observation from Fig. 9 is that the optimal
detection thresholds are nearly unaffected by the transmitter
density.

V. SOLUTIONS TO M ITIGATING THE LOSS OF

ASYNCHRONOUSTRANSMISSIONS

In the previous section, we have seen that asynchronous
transmissions may have a remarkable effect on the system-
level performance. In this section we discuss four possible
solutions, which differ in complexity and may be applicable
in different scenarios, to mitigate the loss due to asynchronous
transmissions.

1) Extended cyclic prefix:If the timing mismatches are
concentrated in the range[0, Nx) whereNx > Ncp, we can
solve the timing misalignment problem by simply extending
the length of the cyclic prefix beyondNx. However, using
cyclic prefix of extended length comes at the cost of more
power and time spent in sending the cyclic prefix instead
of being used to communicate data. This is a tradeoff, the
characterization of which is beyond the scope of this paper.
The general principle is that this approach is applicable tothe
scenarios whereNx is not too large.

2) Advanced receiver timing:If the timing mismatches are
concentrated in the range[−Nx, Ny) whereNx, Ny > 0 and
Nx + Ny ≤ Ncp, we can solve the timing misalignment
problem by simply advancing the receiver timing byNx.
Then the timing mismatches will be concentrated in the range
[0, Nx +Ny). As Nx +Ny ≤ Ncp, there will be no loss due
to the timing misalignment after shifting the receiver’s timing
earlier. This approach is very simple but is only applicable
to the scenarios whereNx + Ny ≤ Ncp, and it also requires
knowledge ofNx.

3) Dynamic receiver timing positioning:The receiver may
estimate the timings used by each transmitter through either
pilot-based or non pilot-based synchronization methods. Once
a transmitter’s timing is obtained, the receiver can adaptively
adjust its receiving window to decode the transmitter’s packet.
Compared to the previous two approaches, dynamic receiver
timing positioning is applicable to many more scenarios butat
the cost of higher complexity. In particular, as the transmitters
have i.i.d. timing mismatches, the typical receiver needs to
estimate every transmitter’s timing and accordingly positions
its receiving window to decode a transmitter’s packet.

4) Semi-static receiver timing positioning with multiple
timing hypotheses:Instead of estimating each transmitter’s
timing, the receiver may simply adopt multiple timing hy-
potheses:−n1∆, ..., 0, ..., n2∆, wheren∆ denotes the timing
difference between the hypothesisn and the receiver’s timing.
For every timing hypothesis, the receiver accordingly adjusts
its receiving window and performs decoding; the packets
from the transmitters whose timings happen to be around the
current timing hypothesis may be decoded. This semi-static
receiver timing positioning approach reduces the complexity
of dynamic receiver timing positioning but still requires the
receiver to use multiple timing windows. Further, a careful
choice ofn1, n2 and∆ is important for the design. In general,
the more the used timing hypotheses, the smaller the loss due
to timing misalignment but the higher the complexity.

The above proposed solutions may be combined depending
on the application scenarios. For example, advanced receiver
timing may be jointly used with extended cyclic prefix to
make the conditionNx + Ny ≤ Ncp hold. In practice, the
design decision on which solution should be used or how they
should be combined is best made based on the specific scenario
under consideration. Note that if our target is not to decode
as many transmitters as possible but for example is to decode
the nearest transmitter, synchronizing directly with the nearest
transmitter is of reasonable complexity and recovers the loss.

Let us consider the solution of semi-static receiver timing
positioning with multiple timing hypotheses since it can be
applied to many scenarios while having reasonable complexity.
We take the mean number of decodable transmitters as the
metric to evaluate its effectiveness. The following corollary
immediately follows from Prop. 1.

Corollary 3. Denote byH = {−n1∆, ..., 0, ..., n2∆} the set
of timing hypotheses. The mean number of decodable trans-
mitters is given by (20) but withg(x) substituted bỹg(x) ,

maxτ∈H g(x− τ).

The rationale of Corollary 3 is straightforward: a transmitter
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Fig. 10. Using semi-static receiver timing positioning with multiple timing
hypotheses to mitigate the loss of asynchronous transmissions.

is decodable as long as it is decodable under any of the used
timing hypotheses. Fig. 10 shows the effectiveness of using
multiple timing hypotheses. As expected, the more the used
timing hypotheses, the more the mean number of decodable
transmitters. Also, we can see from Fig. 10 that in this
numerical example using3 timing hypotheses helps recover
the majority of the loss.

VI. CONCLUSIONS

In view of the lack of network-wide synchronization in
many wireless networks, this paper has presented a baseline
SINR model for asynchronous OFDM networks, which can be
conveniently used in system-level studies. The model is then
applied to characterize several important statistics in asyn-
chronous PPP networks, including the number of decodable
transmitters, the decoding probability of the nearest transmit-
ter, and system throughput. The derived results complement
existing analysis of synchronized networks using stochastic
geometry. Further, this paper has compared and discussed
four possible solutions for mitigating the loss of asynchronous
transmissions.

This work can be extended in a number of ways. An
extension from the studied flat-fading channels to frequency-
selective channels would be highly desirable, since OFDM’s
main application is in such channels. It would also be of inter-
est to explore scenarios where the notions of timing of different
transmitters are not i.i.d. For example, a cluster of transmitters
may synchronize with a common anchor node or base station
and thus their notions of timing may become correlated. Also,
if propagation delays are modeled, farther transmitters may
likely have larger timing offsets with respect to the reference
receiver, leading to non i.i.d. timing mismatches. One may
further consider extending this work to study non-PPP network
models and compare their performance to that of PPP model
studied in this paper.

APPENDIX

A. Derivation of Equations (4) and (7)

We first derive (4). By the definition of discrete-time Fourier
transform,

Y [ℓ;m] =

N−1
∑

n=0

y[n;m]e−j2π ℓ
N n

=

N−1
∑

n=0

si[n−Di −N −Ncp;m+ 1]e−j2π ℓ
N n

=

N−1
∑

n=0

√
Ei

N

∑

k

Si[k;m+ 1]ej2π
k
N (n−Di−N−Ncp)e−j2π ℓ

N n

=
√

Ei

∑

k

Si[k;m+ 1]ej2π
k
N (−Di−Ncp)

1

N

N−1
∑

n=0

ej2π
k−ℓ
N n

=
√

Eie
j2π ℓ

N (−Di−Ncp)Si[ℓ;m+ 1], (28)

where we have plugged (3) in the second equality and used
(2) in the third equality, and the last equality follows fromthe
fact that 1

N

∑N−1
n=0 ej2π

k−ℓ
N n = δ[k − ℓ].

We next derive (7). Using the definition of discrete-time
Fourier transform, (6) and (2) yields

Y [ℓ;m] =

N−1
∑

n=0

y[n;m]e−j2π ℓ
N n

=

N−1+Di
∑

n=0

s[−Di + n;m]e−j2π ℓ
N n

+
N−1
∑

n=N+Di

s[n− (N +Di)−Ncp;m+ 1]e−j2π ℓ
N n

=

N−1+Di
∑

n=0

√
Ei

N

∑

k

Si[k;m]ej2π
k
N (−Di+n)e−j2π ℓ

N n+

N−1
∑

n=N+Di

√
Ei

N

∑

k

Si[k;m+ 1]ej2π
k
N (n−(N+Di)−Ncp)e−j2π ℓ

N n.

(29)

The first sum in (29) equals
√

Ei
N +Di

N
Si[ℓ;m]e−j2π ℓ

N Di

+
√

Ei
1

N

∑

k 6=ℓ

Si[k;m]e−j2π k
N Di

N−1+Di
∑

n=0

ej2π
k−ℓ
N n, (30)

and the second sum in (29) equals

−
√

Ei
Di

N
Si[ℓ;m+ 1]ej2π

ℓ
N (−Di−Ncp) +

√

Ei
1

N

×
∑

k 6=ℓ

Si[k;m+ 1]ej2π
k
N (−Di−Ncp)

N−1
∑

n=N+Di

ej2π
k−ℓ
N n. (31)

Combining the above two results, and plugging in the follow-
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ing two equations

N−1+Di
∑

n=0

ej2π
k−ℓ
N n =

1− ej2π
k−ℓ
N (N+Di)

1− ej2π
k−ℓ
N

N−1
∑

n=N+Di

ej2π
k−ℓ
N n =

ej2π
k−ℓ
N (N+Di)(1− ej2π

ℓ−k
N Di)

1− ej2π
k−ℓ
N

, (32)

we obtain (7).

B. Proof of Proposition 1

For notational simplicity, denote by IΦ =
∑

Xj∈Φ ‖Xj‖−αFj . Then by definition,

E[Υ] =

E

[

∑

Xi∈Φ

I

(

g(Di)‖Xi‖−αFi

(1− g(Di))‖Xi‖−αFi + IΦ−δXi
+N0/E

≥ T

)]

=

∫

R2

∫

D

∫

R

E

[

I

(

g(τ)‖x‖−αf

(1− g(τ))‖x‖−αf + IΦ +N0/E
≥ T

)]

FF (df)FD(dτ)M(dx), (33)

whereM(·) is the mean measure of the PPPΦ, i.e.,M(A) =
E[Φ(A)] for any measurable setA ⊂ R

2, and we have used
the reduced Campbell formula for the PPP [4] in the last
equality. Noting thatFi’s are i.i.d. Rayleigh fading,FF (df) =
e−fdf, f ≥ 0. For the homogeneous PPPΦ, M(dx) = λdx.
Using these two facts and changing the integral with respect
to x ∈ R

2 into polar coordinates, we have

E[Υ] = 2πλ

∫ ∞

0

∫

D

∫ ∞

0

E

[

I

(

g(τ)r−αf

(1− g(τ))r−αf + IΦ +N0/E
≥ T

)]

e−fdfFD(dτ)rdr

= 2πλ

∫ ∞

0

∫

D

∫ ∞

0

E

[

I

(

g(τ) >
T

1 + T

)

× I (f ≥ rαh(τ, T )(IΦ +N0/E))

]

e−fdfFD(dτ)rdr

= 2πλ

∫ ∞

0

∫

D

I

(

g(τ) >
T

1 + T

)

× e−rαh(τ,T )N0/EE

[

e−rαh(τ,T )IΦ
]

FD(dτ)rdr

= 2πλ

∫

D

∫ ∞

0

I

(

g(τ) >
T

1 + T

)

e−rαh(τ,T )N0/E

× e−λπsinc−1( 2
α )(h(τ,T ))

2
α r2rdrFD(dτ), (34)

where we have used the shorthand functionh(τ, T ) in the
second equality and applied in the last equality the Laplace
transform of the interference generated by a Poisson field of
interferers with Rayleigh fading [31]:

LIΦ(s) , E[e−sIΦ ] = exp

(

− λπs
2
α

sinc
(

2
α

)

)

. (35)

With a change of variablesr2 → v in (34), we obtain (20)
and complete the proof.

C. Proof of Proposition 2

The set of transmitters inΦ whose packets can be decoded
can be upper bounded as

Φ̃ =
∑

Xi∈Φ

δXiI(SINRi ≥ T )

≤
∑

Xi∈Φ

δXiI

(

g(Di)Fi‖Xi‖−α

N0/E
≥ T

)

I

(

g(Di) >
T

1 + T

)

, Φ̃(u). (36)

Note that given Φ the Bernoulli random variables
I

(

g(Di)Fi‖Xi‖
−α

N0/E
≥ T

)

I

(

g(Di) >
T

1+T

)

, i = 1, 2, ...,

are independent. It follows that̃Φ(u) is an independent
thinning ofΦ with thinning probability

p(x) = E

[

I

(

g(Di)Fi‖Xi‖−α

N0/E
≥ T

)

I

(

g(Di) >
T

1 + T

)]

= ED

[

I

(

g(D) >
T

1 + T

)

exp

(

− T ‖x‖α
g(D)SNR

)]

, (37)

where we have used the independence ofD and F , and
F ∼ exp(1). Therefore,Φ̃(u) is a PPP with intensity measure
Λ(A) =

∫

A
p(x)λdx. Further,Υ(u) = Φ̃(u)(R

¯
2) is Poisson

with parameter

Λ(R
¯
2) =

∫

R
¯

2
p(x)λdx

=

∫

R
¯

2
ED

[

I

(

g(D) >
T

1 + T

)

exp

(

− T ‖x‖α
g(D)SNR

)]

λdx

= πλ

∫ ∞

0

ED

[

I

(

g(D) >
T

1 + T

)

exp

(

− Tv
α
2

g(D)SNR

)]

dv.

Next we show thatΥ(u) can be truncated at⌊ 1+T
T ⌋, follow-

ing a similar argument as in [4]. To this end, suppose there are
n decodable transmitters, without loss of generality assumed
to beX0, ..., Xn−1. Denoting byĨ = IΦ−∪n−1

j=0 δXj
+ N0/E,

Then we have

g(Di)‖Xi‖−αFi

−g(Di)‖Xi‖−αFi +
∑n−1

j=0 ‖Xj‖−αFj + Ĩ
≥ T, (38)

for i = 0, ..., n− 1, which implies that

‖Xi‖−αFi
∑n−1

j=0,j 6=i ‖Xj‖−αFj + Ĩ
≥ T, (39)

for i = 0, ..., n − 1. With some algebraic manipulations, we
have the following set of inequalities:

(1 + T )‖Xi‖−αFi ≥ T (

n−1
∑

j=0

‖Xj‖−αFj + Ĩ), (40)

for i = 0, ..., n− 1. Summing the above set of inequalities,

(1 + T )

n−1
∑

j=0

‖Xj‖−αFj ≥ nT (

n−1
∑

j=0

‖Xj‖−αFj + Ĩ)

> nT

n−1
∑

j=0

‖Xj‖−αFj . (41)
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It follows thatn ≤ ⌊ 1+T
T ⌋, and thus the proposition has been

proven.

D. Proof of Proposition 3

To begin with, we condition on the location of the nearest
transmitterX0 = x = (r, θ) and its associated fadingF0 = f
and timing misalignmentD0 = τ . Then

P(SINR0 ≥ T |X0 = x, F0 = f,D0 = τ)

= P

(

g(τ)‖x‖−αf

(1− g(τ))‖x‖−αf + IΦ−δx +N0/E
≥ T

∣

∣X0 = x, F0 = f,D0 = τ

)

= P

(

f ≥ rαh(τ, T )(IΦ−δx +N0/E)

∣

∣X0 = x, F0 = f,D0 = τ

)

I

(

g(τ) >
T

1 + T

)

= P
x,f,τ

(

f ≥ rαh(τ, T )(IΦ−δx +N0/E)

∣

∣Φ(B(o, r)) = 0

)

I

(

g(τ) >
T

1 + T

)

, (42)

wherePx,f,τ (·) denotes the Palm distribution with respect to
Φ, i.e., the probability law conditioned on that there exists
a point at locationx with the marksf and τ . Note that,
conditioned on that the nearest point is located inx, there
are no other points inΦ located in the ballB(o, r) centered at
o with radiusr, i.e.,Φ(B(o, r)) = 0. This condition has been
made explicitly in (42). Further, the first term in (42) equals

P
x,f,τ

(

f ≥ rαh(τ, T )(IΦ∩Bc(o,r)−δx +N0/E)

∣

∣Φ(B(o, r)) = 0

)

= P
x,f,τ(f ≥ rαh(τ, T )(IΦ∩Bc(o,r)−δx +N0/E))

= P(f ≥ rαh(τ, T )(IΦ∩Bc(o,r) +N0/E)). (43)

The first equality in (43) is due to the independence of
IΦ∩Bc(o,r)−δx and Φ(B(o, r)) = 0, which follows from the
complete independence property of PPP. The second equality
in (43) is due to Slivnyak-Mecke Theorem [4].

Following a similar derivation as in [8], we can uncondition
on F0 = f andX0 = x to obtain

P(SINR0 ≥ T |D0 = τ) = πλI

(

g(τ) >
T

1 + T

)

×
∫ ∞

0

e−v
α
2 h(τ,T )N0/Ee−πλv(1+ρ(h(τ,T ),α))dv, (44)

whereρ(t, α) is defined in Prop. 3. Unconditioning further on
D = τ yields (25). This completes the proof.
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