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Abstract

This paper addresses the problem of designing LDPC decoders robust to transient errors introduced

by a faulty hardware. We assume that the faulty hardware introduces errors during the message passing

updates and we propose a general framework for the definition of the message update faulty functions.

Within this framework, we define symmetry conditions for the faulty functions, and derive two simple

error models used in the analysis. With this analysis, we propose a new interpretation of the functional

Density Evolution threshold introduced in [1], [2], and show its limitations in case of highly unreliable

hardware. However, we show that under restricted decoder noise conditions, the functional threshold

can be used to predict the convergence behavior of FAIDs under faulty hardware. In particular, we

reveal the existence of robust and non-robust FAIDs and propose a framework for the design of robust

decoders. We finally illustrate robust and non-robust decoders behaviors of finite length codes using

Monte Carlo simulations.
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Pontoise, France (e-mail:elsa.dupraz@ensea.fr; declercq@ensea.fr).
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I. INTRODUCTION

Reliability is becoming a major issue in the design of modern electronic devices. The huge

increase in integration factors coupled with the important reduction of the chip sizes makes

the devices much more sensitive to noise and may induce transient errors. Furthermore, the

fabrication process makes hardware components more prone to defects and may also cause

permanent computation errors. As a consequence, in the context of communication and storage,

errors may not only come from transmission channels, but also from the faulty hardware used

in transmitters and receivers.

The general problem of reliable function computation using faulty gates was first addressed

by von Neumann in [3] and the notion of redundancy was later considered in [4]–[6]. Hardware

redundancy is defined as the number of noisy gates required for reliable function computation

divided by the number of noiseless gates needed for the same function computation. Gács and

Gál [4] and Dobrushin and Ortyukov [5], respectively, provided lower and upper bounds on the

hardware redundancy for reliable Boolean function computation from faulty gates. Pippenger [6]

showed that finite asymptotic redundancy can be achieved when using Low Density Parity

Check (LDPC) codes for the reliable computation of linear Boolean functions. Taylor [7] and

Kuznetsov [8] considered memories as a particular instance of this problem and provided an

analysis of a memory architecture based on LDPC decoders made of faulty components. More

recently, an equivalence between the architecture proposed by Taylor and a noisy Gallager-B

decoder was identified by Vasic et al. [9], while Chilappagari et al. [10] analyzed a memory

architecture based on one-step majority logic decoders.

As a consequence, there is a need to address the problem of constructing reliable LDPC

decoders made of faulty components not only for error correction on faulty hardware, but also

as a first step in the context of reliable function computation and storage. Formulating a general

method for construction of robust decoders requires understanding whether a particular decoder
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is inherently robust to errors introduced by the faulty hardware. There is also a need for a

rigorous analysis to determine which characteristics of decoders make them robust.

To answer to the first point, Varshney [11] introduced a framework referred to as noisy

Density Evolution (noisy-DE) for the performance analysis of noisy LDPC decoders in terms

of asymptotic error probability. Based on this framework, the asymptotic performance of a

variety of noisy LDPC decoders was analyzed. In [11], infinite precision BP decoders were

investigated, which is not useful for actual implementation on faulty hardware. On the contrary,

noisy practically important hard-decision decoders, such as noisy Gallager-A [11] and Gallager-

E [12] decoders were considered. Gallager-B decoders were analyzed for binary [9], [13], [14]

and non-binary [15] alphabets under transient error models, and [14] also considered permanent

error models. From the same noisy-DE framework, [16], [17] proposed an asymptotic analysis

of the behavior of stronger discrete Min-Sum decoders, for which the exchanged messages are

no longer binary but are quantized soft information represented by a finite (and typically small)

number of bits.

Recently, a new class of LDPC decoders referred to as Finite Alphabet Iterative Decoders

(FAIDs) has been introduced [18]. In these decoders, the messages take their values in small

alphabets and the variable node update is derived through a predefined Boolean function. The

FAID framework offers the possibility to define a large collection of these functions, each

corresponding to a particular decoding algorithm. The FAIDs were originally introduced to

address the error floor problem, and designed to correct error events located on specific small

topologies of error events referred to as trapping sets that usual decoders (Min-Sum, BP-based)

cannot correct. When operating on faulty hardware, the FAIDs may potentially exhibit very

different properties in terms of tolerance to transient errors and we are interested in identifying

the robust ones among the large diversity of decoders.

In this paper, we propose a rigorous method for the analysis and the design of decoding

rules robust to transient errors introduced by the hardware. We assume that the faulty hardware
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introduces transient errors during function computation and propose a general description of

faulty functions. We introduce new symmetry conditions for faulty functions that are more general

than those in [11]. We discuss possible simplifications of the general description and present

two particular error models to represent the faulty hardware effect. The design procedure we

propose is based on an asymptotic performance analysis of noisy-FAIDs using noisy-DE. In order

to characterize the asymptotic behavior of the FAIDs from the noisy-DE equations, we follow

the definition of the noisy-DE threshold of [1], [2], referred to as the functional threshold. We

analyze more precisely the behavior of the functional threshold and we observe that if the decoder

noise level is too high, the functional threshold fails at predicting the convergence behavior of

the faulty decoder. However, under the restricted decoder noise conditions, we show that the

functional threshold can be used to predict the behavior of noisy-FAIDs and gives a criterion

for the comparison of the asymptotic performance of the decoders. Based on this criterion,

we then propose a noisy-DE based framework for the design of decoders inherently robust to

errors introduced by the hardware. Finite-length simulations illustrate the gain in performance

at considering robust FAIDs on faulty hardware.

The outline of the paper is as follows. Section II gives the notations and basic decoder

definition. Section III introduces a general description of faulty functions and presents particular

error models. Section IV gives the noisy-DE analysis for particular decoder noise models.

Section V restates the definition of the functional threshold and presents the analysis of its

behavior. Section VI presents the method for the design of robust decoders. Section VII gives

the finite-length simulation results, and Section VIII provides the conclusions.

II. NOTATIONS AND DECODERS DEFINITION

This section introduces notations and basic definitions of FAIDs introduced in [18]. In the

following, we assume that the transmission channel is a Binary Symmetric Channel (BSC) with

parameter α. We consider a BSC because on the hardware all the operations are performed at a
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binary level.

An Ns-level FAID is defined as a 5-tuple given by D = (M,Y ,Φ(v),Φ(c),Φ(a)). The message

alphabet is finite and can be defined as M = {−Ls, . . . ,−L1, 0, L1, . . . , Ls}, where Li ∈ R+

and Li > Lj for any i > j. It thus consists of Ns = 2s + 1 levels to which the message

values belong. For the BSC, the set Y , which denotes the set of possible channel values, is

defined as Y = {±B}. The channel value y ∈ Y corresponding to Variable Node (VN) v is

determined based on its received value. Here, we use the mapping 0 → +B and 1 → −B. In

the following, µ1, . . . , µdc−1 denote the values of incoming messages to a Check Node (CN)

of degree dc and let η1, . . . , ηdv−1 be the values of incoming messages to a VN of degree dv.

Denote µ = [µ1, . . . , µdc−1] and η = [η1, . . . , ηdv−1] the vector representations of the incoming

messages to a CN and to a VN, respectively. FAIDs are iterative decoders and as a consequence,

messages µ and η are computed at each iteration. However, for simplicity, the current iteration

is not specified in the notations of the messages.

At each iteration of the iterative decoding process, the following operations are performed

on the messages. The Check Node Update (CNU) function Φ(c) :Mdc−1 →M is used for the

message update at a CN of degree dc. The corresponding outgoing message is computed as

ηdc = Φ(c)(µ). (1)

In [18], Φ(c) corresponds to the CNU of the standard Min-Sum decoder. The Variable Node

Update (VNU) function Φ(v) :Mdv−1 × Y →M is used for the update at a VN of degree dv.

The corresponding outgoing message is computed as

µdv = Φ(v)(η, y). (2)

The properties that Φv must satisfy are given in [18]. At the end of each decoding iteration, the

A Posteriori Probability (APP) computation produces messages γ calculated from the function

Φ(a) : Mdv × Y → M̄, where M̄ = {−Ls′ , . . . , Ls′} is a discrete alphabet of Ns′ = 2s′ + 1
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levels. Denote η? = [η1, . . . , ηdv ] the vector representation of all the messages incoming to a

VN. The APP computation produces

γ = Φ(a)(η?, y). (3)

The APP is usually computed on a larger alphabet M̄ in order to limit the impact of saturation

effects when calculating the APP. The mapping Φ(a) is given by

Φ(a)(η̃?, y) =
∑

η̃? + y . (4)

The hard-decision bit corresponding to each variable node vn is given by the sign of the APP.

If Φ(a)(η̃?, y) = 0, then the hard-decision bit is selected at random and takes value 0 with

probability 1/2.

Alternatively, Φ(v) can be represented as a Look-Up Table (LUT). For instance, Table I shows

an example of LUT for a 7-level FAID and column-weight three codes when the channel value is

−B. The corresponding LUT for the value +B can be deduced by symmetry. Classical decoders

such as the standard Min-Sum and the offset Min-Sum can also be seen as instances of FAIDs.

It indeed suffices to derive the specific LUT from the VNU functions of these decoders. Table II

gives the VNU of the 7-level offset Min-Sum decoder. Therefore, the VNU formulation enables

to define a large collection of decoders with common characteristics but potentially different

robustness to noise. In the following, after introducing error models for the faulty hardware, we

describe a method for analyzing the asymptotic behavior of noisy-FAIDs. This method enables

us to compare decoder robustness for different mappings Φ(v) and thus to design decoders robust

to faulty hardware.

III. ERROR MODELS FOR FAULTY HARDWARE

In this paper, we assume that the faulty hardware introduces transient errors only during

function computation. For the performance analysis of faulty decoders, specific error models

have been considered in previous works. In [12], [14], [16], transient errors are assumed to
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TABLE I

LUT Φ
(v)
OPT REPORTED IN [18] OPTIMIZED FOR THE ERROR

FLOOR

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L3 −L1

−L2 −L3 −L3 −L3 −L3 −L2 −L1 L1

−L1 −L3 −L3 −L2 −L2 −L1 −L1 L1

0 −L3 −L3 −L2 −L1 0 0 L1

L1 −L3 −L2 −L1 0 0 L1 L2

L2 −L3 −L1 −L1 0 L1 L1 L3

L3 −L1 L1 L1 L1 L2 L3 L3

TABLE II

VNU OF A 3-BIT OFFSET MIN-SUM REPRESENTED AS A

FAID

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L2 −L1

−L2 −L3 −L3 −L3 −L3 −L2 −L1 0

−L1 −L3 −L3 −L3 −L2 −L1 0 0

0 −L3 −L3 −L2 −L1 0 0 0

L1 −L3 −L2 −L1 0 0 0 L1

L2 −L2 −L1 0 0 0 L1 L2

L3 −L1 0 0 0 L1 L2 L3

appear at a binary level on message wires between VNs and CNs. In [11], [17], the noise effect

is represented by a random variable independent of the function inputs and applies only through

a deterministic error injection function. Here we propose a more general error model which

includes the above cases.

For the noisy-DE analysis, the considered faulty functions have to be symmetric, which implies

that the error probability of the decoder does not change when flipping a codeword symbol.

As a consequence, the error probability of the decoder does not depend on the transmitted

codeword, which greatly simplifies the analysis. Here, we introduce new symmetry conditions

for the general error models. We then discuss possible simplifications of the general model and

introduce two particular simple error models which allow the asymptotic analysis of the faulty

iterative decoding.

A. General Faulty Functions and Symmetry Conditions

To describe general faulty functions, we replace the deterministic functions Φ(c), Φ(v), Φ(a)

introduced in Section II by the following conditional Probability Mass Functions (PMF). De-

note µ̃dv , η̃dc , and γ̃ the noisy versions of µdv , ηdc , γ, and denote µ̃ = [µ̃1, . . . , µ̃dc−1], η̃ =
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[η̃1, . . . , η̃dv−1], η̃? = [η̃1, . . . , η̃dv ] their vector representations. Then a faulty VNU is defined as

the conditional PMF

P(v)(µ̃dv |η̃, y), (5)

a faulty CNU is defined as

P(c)(η̃dc |µ̃), (6)

and a faulty APP is defined as

P(a)(γ̃|η̃?, y). (7)

The described model is memoryless and takes only into account transient errors in the decoder,

but it ignores permanent errors and possible dependencies with previous or future function

arguments. However it is general enough to represent any type of memoryless mapping and

error model.

For the noisy-DE analysis, the considered faulty functions have to be symmetric. The defini-

tions of symmetry given in [11] only consider the particular case of error injection functions and

are not sufficient to characterize the symmetry of the above faulty functions. In the following,

we introduce more general definitions of symmetry.

Definition 1: 1) A faulty VNU is said to be symmetric if

P(v)(µ̃dv |η̃, y) = P(v)(−µ̃dv | − η̃,−y). (8)

2) A faulty CNU is said to be symmetric if

P(c)(η̃dc |a.µ̃) = P(c)
((∏

a
)
η̃dc |µ̃

)
. (9)

where a = [a1, . . . , adc−1], ai ∈ {−1, 1}, a.µ̃ is the component by component product of a

and µ̃, and
∏

a is the product of all components in vector a.

3) A faulty APP is said to be symmetric if

P(a)(µ̃dv |η̃?, y) = P(a)(−µ̃dv | − η̃?,−y). (10)
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Noise 

effect
...

Fig. 1. Function decomposition for the CNU

Note that our definitions of symmetry are the same as the ones originally introduced in [19]

for deterministic decoders, except that ours apply on conditional PMFs instead of deterministic

mappings.

B. Faulty Function Decomposition

A possible simplification of the general models described in the previous section is to consider

that the noise appears only at the output of a function computation. More precisely, we assume

that the noisy function can be decomposed as a noiseless function followed by the noise

effect, as in Fig. 1 for the case of the CNU. In this simplified error model, ηdc , µdv , and

γ, represent the messages at the output of the noiseless CNU, VNU, and APP computation

respectively, and their noisy versions are denoted η̃dc , µ̃dv , γ̃. The noisy output is assumed to be

independent of the inputs conditionally to the noiseless output, i.e., for the case of faulty CNU,

this gives P(c)(η̃dc|ηdc , µ̃) = P(c)(η̃dc |ηdc). Furthermore, as the noiseless output is obtained from

a deterministic function of the inputs, we get

P(c)(η̃dc|µ̃) = P(c)(η̃dc |Φ(c)(µ̃)). (11)

The same conditions hold for the faulty VNU and APP.

The noise effects at the output of Φ(c) and Φ(v) are represented by probability transition

matrices Π(v) and Π(c) respectively, with

Π
(c)
k,m = Pr(η̃dc = m|ηdc = k), Π

(v)
k,m = Pr(µ̃dv = m|µdv = k), ∀k,m ∈M (12)

wherein the matrix entries are indexed by the values in M. This indexing is used for all the

vectors and matrices introduced in the remaining of the paper. The noise effect on Φ(a) is modeled
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by the probability transition matrix Π(a) with

Π
(a)
k,m = Pr(γ̃ = m|γ = k), ∀k,m ∈ M̄. (13)

The forms of the probability transition matrices depend on the considered error models. In the

next section, two simple examples derived from this simplified model are introduced. They will

then be considered in the noisy-DE analysis.

Note that in the above decomposition model the noise is added only at a message level

at the output of the noiseless functions. An alternative model would be to consider noise

effect introduced inside the functions, for example during elementary operations such as the

minimum computation between two elements in Φ(c), as in [17]. While the decomposition

model introduced here may not capture all the noise effects, it is sufficient for the analysis

of the behavior and robustness of noisy decoders without requiring knowledge of a particular

hardware implementation. More accurate models will be considered in future works.

Note that some faulty functions cannot be decomposed as a deterministic mapping followed

by the noise effect. For example, it can be verified that the faulty minimum function defined as

η̃3 =

 min(µ1, µ2) with probability 1− p

max(µ1, µ2) with probability p
(14)

does not satisfy (11).

C. Particular Decoder Noise Models

In the following, two particular noise models models that have been proposed in [2] will

be considered. They are derived from the above decomposition model by specifying particular

transition matrices Π(c),Π(v),Π(a) and will be considered for the noisy-DE analysis.

1) Sign-Preserving error model: The first model is called the Sign-Preserving (SP) model.

It has a SP property, meaning that noise is assumed to affect only the message amplitude, but

not its sign. Although this model is introduced for the purpose of asymptotic analysis, it is
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also a practical model, as protecting the sign can be realized at the hardware level by proper

circuit design. The probability transition matrices for the SP-Model can be constructed from a

SP-transfer matrix defined as follows.

Definition 2: The SP-transfer matrix Π(SP)(p, s) is a matrix of size (2s + 1)× (2s + 1) such

that

Π
(SP)
k,k (p, s) = 1− p, Π

(SP)
k,0 (p, s) =

p

s
, Π

(SP)
0,k (p, s) =

p

2s

Π
(SP)
k,m (p, s) =

p

s
, for m 6= k 6= 0, sign(m) = sign(k)

Π
(SP)
k,k (p, s) = 0, elsewhere. (15)

According to this definition, a strictly positive message can be altered to only another positive

message and the same holds for strictly negative messages.

The matrices Π(c), Π(v), and Π(a) can be now obtained from Π(SP) as a template. The noise level

parameter at the output of Φ(c) is given by the parameter pc, and the corresponding probability

transition matrix is given by Π(c) = Π(SP)(pc, s). In the same way, the noise level parameters at

the output of Φ(v) and Φ(a) are denoted pv and pa respectively, and the corresponding probability

transition matrices are given by Π(v) = Π(SP)(pv, s) and Π(a) = Π(SP)(pa, s
′). In the following,

the collection of hardware noise parameters will be denoted ν = (pv, pc, pa). The probability

transition matrix Π(a) is of size (2s′ + 1) × (2s′ + 1) because the APP (3) is computed on the

alphabet M̄ of size (2s′ + 1). It can be verified that if the deterministic mappings Φ(v), Φ(c),

Φ(a), are symmetric in the sense of [19, Definition 1], then the SP-model gives symmetric faulty

functions from conditions (8), (9), (10), in Definition 1.

2) Full-Depth error model: The second model is called the Full-Depth (FD) model. This

model is potentially more harmful than the SP-Model because the noise affects both the amplitude

and the sign of the messages. However, it does not require hardware sign-protection any more.

The FD-transfer matrix is defined as follows.
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Definition 3: The FD-transfer matrix Π(FD)(p, s) is a matrix of size (2s+ 1)× (2s+ 1) such

that

Π
(FD)
k,k (p, s) = 1− p,

Π
(FD)
k,m (p, s) =

p

s
, for m 6= k. (16)

The FD-transfer Matrix defines a (2s+ 1)-ary symmetric model of parameter p. The noise level

parameters at the end of Φc, Φv, Φa, are denoted as before pc, pv, pa, respectively, and ν =

(pv, pc, pa). The corresponding probability transition matrices are given by Π(c) = Π(FD)(pc, s),

Π(v) = Π(FD)(pv, s), and Π(a) = Π(FD)(pa, s
′). It can be verified that if the deterministic mappings

Φ(v), Φ(c), Φ(a), are symmetric in the sense of [19, Definition 1], then the FD-model gives

symmetric faulty functions from the conditions (8), (9), (10), in Definition 1.

IV. NOISY DENSITY EVOLUTION

This section presents the noisy-DE recursion for asymptotic performance analysis of FAIDs

on faulty hardware. The DE [11] consists of expressing the Probability Mass Function (PMF)

of the messages at successive iterations under the local independence assumption, that is the

assumption that the messages coming to a node are independent. As a result, the noisy-DE

equations can be used to derive the error probability of the considered decoder as a function

of the hardware noise parameters. The noisy-DE analysis is valid on average over all possible

LDPC code constructions, when infinite codeword length is considered.

In the following, we first discuss the all-zero codeword assumption which derives from the

symmetry conditions of Definition 1 and greatly simplifies the noisy-DE analysis.

A. All-zero Codeword Assumption

In [19], it was shown that if the channel is output-symmetric, and the VNU and CNU functions

are symmetric functions, the error probability of the decoder does not depend on the transmitted
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codeword. From this codeword independence, one can compute the PMFs of the messages and

the error probability of the decoder assuming that the all-zero codeword was transmitted. The

codeword independence was further extended in [2], [11] to the case of faulty decoders when

the noise is introduced through symmetric error injection functions. Unfortunately, the results

of [2], [11] do not apply to our more general error models. In particular, the proof technique

of [2], [11] cannot be used when the noise is not introduced through deterministic error injection

functions. The following theorem thus restates the codeword independence for faulty functions

described by the general error introduced in Section III-A and for the symmetry conditions of

Definition 1.

Theorem 1: Consider a linear code and a faulty decoder defined by a faulty VNU (5), a

faulty CNU (6), and a faulty APP (7). Denote P (`)
e (x) the probability of error of the decoder

at iteration ` conditioned on the fact that the codeword x was transmitted. If the transmission

channel is symmetric in the sense of [19, Definition 1] and if the faulty VNU, CNU, and APP

are symmetric in the sense of Definition 1, then P (`)
e (x) does not depend on x.

Proof: See Appendix.

Theorem 1 states that for a symmetric transmission channel and symmetric faulty functions,

the error probability of the decoder is independent of the transmitted codeword. All the error

models considered in the paper are symmetric and as a consequence, we will assume that the

all-zero codeword was transmitted. Note that when the decoder is not symmetric, DE can be

performed from the results of [20], [21]. In this case, it is not possible anymore to assume that

the all-zero codeword was transmitted, and the analysis becomes much more complex.

B. Noisy-DE Equations

In this section, we assume that the all-zero codeword was transmitted, and we express the

PMFs of the messages at successive iterations. The error probability of the decoder at a given

iteration can then be computed from the PMFs of the messages at the considered iteration. The
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analysis is presented for regular LDPC codes. However, the generalization to irregular codes is

straightforward.

Let the Ns-tuple q(`) denote the PMF of an outgoing message from a VN at `-th iteration.

In other words, the µ-th component q(`)
µ of q(`) is the probability that the outgoing message

takes the value µ ∈M. Similarly, let r(`) denote the PMF of an outgoing message from a CN.

The PMFs of noisy messages are represented by q̃(`) and r̃(`), respectively. In the following, the

noisy-DE recursion is expressed with respect to general probability transition matrices Π(c), Π(v),

Π(a) . To obtain the noisy-DE equations for a specific error model, it suffices to replace these

general probability transition matrices with the ones corresponding to the considered model.

The density evolution is initialized with the PMF of the channel value

q
(0)
−B = 1− α q

(0)
+B = α q

(0)
k = 0 elsewhere.

Denote q̃
(`−1)
µ the (dc − 1)-tuple associated to µ. More precisely, if the k-th component of µ is

given by µk, then the k-th component of q̃
(`−1)
µ is given by q̃

(`−1)
µk . The PMF r(`) of the output

of the CNU is obtained from the expression of Φc as ∀η ∈M,

r(`)
η =

∑
µ:Φc(µ)=η

∏
q̃(`−1)
µ (17)

where the vector product operator is performed componentwise on vector elements. The noisy

PMF is then obtained directly in vector form as

r̃(`) = Π(c)r(`). (18)

Denote r̃
(`)
η the (dv−1)-tuple associated to η. The PMF q(`) of the output of the VNU is obtained

from the expression of Φv as ∀µ ∈M,

q(`)
µ =

∑
η:Φv(η,−B)=µ

q
(0)
−B

∏
r̃(`)
η +

∑
η:Φv(η,+B)=µ

q
(0)
+B

∏
r̃(`)
η (19)

and

q̃(`) = Π(v)q(`). (20)
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Finally, applying the sequence of 4 equations (17), (18), (19) and (20) implements one recursion

of the noisy-DE over the BSC channel.

The error probability of the decoder can be obtained from the above recursion and from the

PMF of the messages at the end of the APP computation. Denote r̃
(`)
η̄ the dv-tuple associated

to η̄, and denote q
(`)
app and q̃

(`)
app the respective noiseless and noisy PMFs of the messages at the

output of the APP computation. They can be expressed from (3) as ∀γ ∈ M̄,

q(`)
app,γ =

∑
η̄:Φa(η̃?,−B)=γ

q
(0)
−B

∏
r̃

(`)
η̄ +

∑
η̄:Φa(η̃?,+B)=γ

q
(0)
+B

∏
r̃

(`)
η̄

and

q̃(`)
app = Π(a)q(`)

app. (21)

Finally, for a given α and hardware noise parameters ν = (pv, pc, pa), the error probability at

each iteration can be computed under the all-zero codeword assumption as

P (`)
e,ν (α) =

1

2
q̃

(`)
app,0 +

∑
k<0

q̃
(`)
app,k. (22)

Lower bounds on the error probability can be obtained as follows [1].

Proposition 1: The following lower bounds hold at every iteration `

1) For the SP model, P (`)
e,ν (α) ≥ 1

2s′
pa

2) For the FD model, P (`)
e,ν (α) ≥ 1

2
pa + pa

4s′

The term s′ appears in the two lower bounds because the APP (3) is computed on the alphabet

M̄ of size 2s′ + 1.

The asymptotic error probability of an iterative decoder is the limit of P (`)
e,ν (α) when ` goes

to infinity. If the limit exists, let us denote P (+∞)
e,ν (α) = lim

`→+∞
P (`)
e,ν (α). In the case of noiseless

decoders (pv = pc = pa = 0), the maximum channel parameter α such that P (+∞)
e,ν (α) = 0 is

called the DE threshold of the decoder [19]. However, the condition P
(+∞)
e,ν (α) = 0 cannot be

reached in general for faulty decoders. For instance, from Proposition 1, we see that the noise

in the APP computation prevents the decoder from reaching a zero error probability. Thus, the

concept of iterative decoding threshold for faulty decoders has to be modified, and adapted to the
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fact that only very low asymptotic error probabilities, bounded away from zero, are achievable.

The following section recalls the definition of the functional threshold that was introduced in [1],

[2] to characterize the asymptotic behavior of faulty decoders. We then analyze in details the

properties of the functional threshold.

V. ANALYSIS OF CONVERGENCE BEHAVIORS OF FAULTY DECODERS

Varshney in [11] defines the useful region as the set of parameters α for which P (+∞)
e,ν (α) < α.

The useful region indicates what are the faulty hardware and channel noise conditions that a

decoder can tolerate to reduce the level of noise. However, there are situations where the decoder

can actually reduce the noise while still experiencing a high level of error probability. As a

consequence, the useful region does not predict which channel parameters lead to a low level

of error probability. Another threshold characterization has been proposed in [11], [16], where

a constant value λ is fixed and the target-BER threshold is defined as the maximum value of

the channel parameter α such that P (+∞)
e,ν (α) ≤ λ. However, the target-BER definition has its

limitations. The choice of lambda is arbitrary, and the target-BER threshold does not capture an

actual ”threshold behavior”, defined as a sharp transition between a low level and a high level

of error probability.

Very recently, in [1], [2], another threshold definition referred to as the functional threshold

has been proposed to detect the sharp transition between the two levels of error probability. In

this section, we first recall the functional threshold definition. We then provide a new detailed

analysis of the functional threshold behaviors and properties. In particular, we point out the

limitations of the functional threshold for the prediction of the asymptotic performance of faulty

decoders.

A. Functional Threshold Definition

Here, we recall the functional threshold definition introduced in [1], [2]. The functional

threshold definition uses the Lipschitz constant of the function α 7→ P
(+∞)
e,ν (α) defined as
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Definition 4: Let P (+∞)
e,ν : I → R be a function defined on an interval I ⊆ R. The Lipschitz

constant of P (+∞)
e,ν in I is defined as

L
(
P (+∞)
e,ν , I

)
= sup

α 6=β∈I

|P (+∞)
e,ν (α)− P (+∞)

e,ν (β)|
|α− β|

∈ R+ ∪ {+∞} (23)

For a ∈ I and δ > 0, let Ia(δ) = I ∩ (a− δ, a+ δ). The (local) Lipschitz constant of P (+∞)
e,ν in

α ∈ I is defined by:

L
(
P (+∞)
e,ν , α

)
= inf

δ>0
L
(
P (+∞)
e,ν , Iα(δ)

)
∈ R+ ∪ {+∞} (24)

Note that if α is a discontinuity point of P (+∞)
e,ν , then L

(
P

(+∞)
e,ν , α

)
= +∞. On the opposite,

if P (+∞)
e,ν is differentiable in α, then the Lipschitz constant in α corresponds to the absolute value

of the derivative. Furthermore, if L
(
P

(+∞)
e,ν , I

)
< +∞, then P (+∞)

e,ν is uniformly continuous on

I and almost everywhere differentiable. In this case, P (+∞)
e,ν is said to be Lipschitz continuous

on I .

The functional threshold is then defined as follows.

Definition 5: For given decoder noise parameters ν = (pv, pc, pa) and a given channel param-

eter α, the decoder is said to be functional if it satisfies the three conditions below

(a) The function x 7→ P
(+∞)
e,ν (x) is defined on [0, α],

(b) P
(+∞)
e,ν is Lipschitz continuous on [0, α], and

(c) L
(
P

(+∞)
e,ν , x

)
is an increasing function of x ∈ [0, α].

Then the functional threshold ᾱ is defined as

ᾱ = sup{α | conditions (a), (b) and (c) above are satisfied} (25)

The function P
(+∞)
e,ν (x) is defined provided that there exist a limit of P (`)

e,ν (x) when ` goes

to infinity. Condition (a) is required because P
(`)
e,ν (x) does not converge for some particular

decoders and noise conditions, as shown in [2].

The functional threshold is defined as the transition between two parts of the curve representing

P
(`)
e,ν (α) with respect to α. The first part corresponds to the channel parameters leading to a low
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Fig. 2. Asymptotic error probabilities for (3, 5) codes for the offset Min-Sum, for B = 1, for the SP-Model, with (a) pc = 10−3,

pa = 10−3, (b) pv = 10−3, pa = 10−3, (c) pv = 10−3, pc = 10−3

level of error probability, i.e., for which the decoder can correct most of the errors from the

channel. In the second part, the channel parameters lead to a high level of error probability,

meaning that the decoder does not operate properly.. Note that there are two possibilities. If

L
(
P

(+∞)
e,ν , ᾱ

)
= +∞, then ᾱ is a discontinuity point of P (+∞)

e,ν and the transition between the

two levels is sharp. If L
(
P

(+∞)
e,ν , ᾱ

)
< +∞, then ᾱ is just an inflection point of P (+∞)

e,ν and

the transition is smooth. Using the Lipschitz constant defined in this section, it is possible to

characterize the type of transition for the error probability and discriminate between the two

cases. We provide more details on our approach in the next section.

B. Functional Threshold Interpretation

As opposed to the work presented in [1], [2], where the functional threshold was introduced

only to predict the asymptotic performance of the faulty Min-Sum decoder, our goal is to use the

functional threshold as a tool to discriminate between different FAIDs and design faulty decoders

which are robust to faulty hardware. In order to do so, we need a precise understanding of the

behaviors and the limits of the functional threshold. We present the analysis for regular dv = 3

LDPC codes, and for the offset Min-Sum decoder [22] interpreted as a FAID. Table II gives the
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Fig. 3. Functional regions for the offset min-sum, for B = 1, (a) w.r.t. pv , with pc = pa = 10−3 (SP-Model) and pc =

pa = 10−4 (FD-Model), (b) w.r.t. pc, with pv = pa = 10−3 (SP-Model) and pv = pa = 10−4 (FD-Model), (c) w.r.t. pa, with

pv = pc = 10−3 (SP-Model) and pv = pc = 10−4 (FD-Model)

LUT of the VNU of the 7-level offset Min-Sum decoder considered for the analysis.

Fig. 2 (a) represents the asymptotic error probability P (+∞)
e,ν (α) with respect to α for several

values of pv for the SP-Model with pc = pa = 10−3. The circled points represent the positions

of the functional thresholds obtained from Definition 5. When pv is low, the threshold is given

by the discontinuity point of the error probability curve. But when pv becomes too high, there is

no discontinuity point anymore, and the functional threshold is given by the inflection point of

the curve. However, the inflection point does not predict accurately which channel parameters

lead to a low level of error probability. Fig. 2 (b) represents P (+∞)
e,ν (α) for several values of

pc with pv = pa = 10−3. In all the considered cases, the functional threshold is given by the

discontinuity point of the error probability curve. Fig. 2 (c) represents P (+∞)
e,ν (α) for several

values of pa with pv = pc = 10−3. In this case, not only the functional threshold is always

given by the discontinuity point of the error probability curve, but the position of the functional

threshold position does not seem to depend on the value of pa.

Fig. 3 (a) shows the functional thresholds ᾱ as a function of the hardware noise parameter

at the VNU, pv. For the SP-Model, we consider pc = pa = 10−3, and for the FD-Model,
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pc = pa = 10−4. When pv is small, the value of ᾱ decreases with increasing pv. But when

pv becomes too large, we observe an unexpected jump in the ᾱ values. The curve part at the

right of the jump corresponds to the values pv for which the functional threshold is given by

the inflection point of the error probability curve. This confirms that when pv is too large, the

functional threshold does not predict accurately which channel parameters lead to a low level

of error probability. Fig. 3 (b) shows the ᾱ values as a function of pc. For the (3, 8)-code and

the FD-Model, we observe that when pc becomes too large, the functional threshold also fails at

predicting the convergence behavior of the faulty decoder. Finally, Fig. 3 (c) shows the ᾱ values

as a function of pa. It confirms that the functional threshold value does not depend on pa.u This

is expected, because the APP computation does not affect the iterative decoding process. As a

consequence, the faulty APP computation only adds noise in the final codeword estimate, but

does not make the decoding process fail.

We have seen that when the hardware noise is too high, it leads to a non-standard asymptotic

behavior of the decoder in which the functional threshold does not predict accurately the

convergence behavior of the faulty decoder. That is why we modify the functional threshold

definition as follows.

Definition 6: Denote α? the functional threshold value obtained from Definition 5. The func-

tional threshold value is restated by setting its value to ᾱ defined as

ᾱ =

 α? if L
(
P

(+∞)
e,ν , α?

)
= +∞,

0 if L
(
P

(+∞)
e,ν , α?

)
< +∞.

(26)

Definition 6 eliminates the decoder noise values which lead to non-desirable behavior of the

decoder. The functional threshold of Definition 6 identifies the channel parameters α which lead

to a low level of asymptotic error probability and predicts accurately the convergence behavior

of the faulty decoders. In this case, the functional threshold can be used as a criterion for the

performance comparison of noisy FAIDs. This criterion will be used in the following for the



21

0.09 0.092 0.094 0.096 0.098 0.1 0.102 0.104
0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1
F
u
n
ct

io
n
a
l 
th

re
sh

o
ld

 (
S
P

-M
o
d
el

)

Noiseless threshold

(a)

0.09 0.092 0.094 0.096 0.098 0.1 0.102 0.104
0

0.02

0.04

0.06

0.08

0.1

F
u
n
ct

io
n
a
l 
th

re
sh

o
ld

 (
F
D

-M
o
d
el

)

Noiseless threshold

(b)

0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1
0

0.02

0.04

0.06

0.08

0.1

F
u
n
ct

io
n
a
l 
th

re
sh

o
ld

 (
F
D

-M
o
d
el

)

Functional threshold (SP-Model)

(c)

Fig. 4. (a) Noiseless thresholds vs functional thresholds for the SP-Model (pv = pc = pa = 10−2) , (b) Noiseless thresholds

vs functional thresholds for the FD-Model (pv = pc = pa = 5× 10−3) (c) Functional thresholds for the SP-Model (pv = pc =

pa = 10−2) vs functional thresholds for the FD-Model (pv = pc = pa = 5 × 10−3)

comparison of FAIDs performance and for the design of robust decoders.

VI. DESIGN OF FAIDS ROBUST TO FAULTY HARDWARE

Based on noisy-DE recursion and on the functional threshold definition, we now propose a

method for the design of decoders robust to transient noise introduced by the faulty hardware. In

Section II, we have seen that the FAID framework enables to define a large collection of VNU

mappings Φv and thus a large collection of decoders. The choice of the VNU mapping gives

a degree of freedom for optimizing the decoder for a specific constraint. In [18], FAIDs were

optimized for low error flor. Here, we want to optimize FAIDs for robustness to noise introduced

by the faulty hardware.

For message alphabet size Ns = 7, the number of possible FAIDs is equal to 530 803 988,

which is too large for a systematic analysis. Instead, we rely on previous work on FAIDs, and

start with a collection of ND = 5291 FAIDs which correspond to column-weight tree codes

selected from the trapping sets analysis presented in [18]. As a result of this selection process,

each of the ND FAIDs have both good noiseless threshold, and good performance in the error
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floor. We now perform a noisy-DE analysis on this set by computing, for each of the ND FAIDs,

the value of their functional threshold.

As an illustration, Fig. 4 (a) and (b) represent the functional thresholds with respect to the

noiseless thresholds. For the SP-Model, the functional thresholds are computed for pv = pc =

pa = 10−2, and for the FD-Model, pv = pc = pa = 5 × 10−3. Although all the considered

decoders have good noiseless threshold (between 0.09 and 0.104), a wide range of behaviors

can be observed when the decoder is faulty. Indeed, for the SP-Model, the functional threshold

values are between 0.065 and 0.095, thus illustrating the existence of both robust and non-robust

decoders. In particular, even decoders with approximately the same noiseless threshold value

(e.g. around 0.101) can exhibit different robustness. This is even more pronounced for the FD-

Model, for which the functional threshold values are between 0.01 and 0.085. These observations

illustrate the importance of selecting robust decoders to operate on faulty hardware and that a

noiseless analysis is not sufficient to reach any useful conclusion.

We did also a performance comparison with noisy-DE and different error models, and Fig. 4

(c) represents the functional thresholds obtained for the FD-Model (for pv = pc = pa = 5×10−3)

with respect to the functional thresholds obtained for the SP-Model (for pv = pc = pa = 10−2).

In this case also a large variety of behaviors can be observed. Indeed, only a small number of

decoders are robust to both error models, while some of them are robust only to the SP-Model,

and some others only to the FD-Model. This suggests that robustness to different error models

may require different decoders.

Following these observations, we have selected four decoders from the set of ND FAIDs.

The first two ones denoted Φ
(v,SP)
robust and Φ

(v,FD)
robust are the decoderd have been selected such as

to minimize discrepancy between noiseless and functional thresholds, for the SP-Model and

the FD-Model respectively. Two other FAIDs Φ
(v,SP)
non-robust and Φ

(v,FD)
non-robust are selected to maximize the

difference between noiseless and functional thresholds respectively for the SP-Model and for the

FD-Model. The LUTs of Φ
(v,SP)
robust and Φ

(v,SP)
non-robust are given in Table III and Table IV, and the LUTs of
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TABLE III

FAID RULE Φ
(v,SP)
ROBUST ROBUST TO THE FAULTY HARDWARE

(SP-MODEL)

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L2 0

−L2 −L3 −L3 −L3 −L3 −L2 −L2 L1

−L1 −L3 −L3 −L3 −L2 −L1 −L1 L1

0 −L3 −L3 −L2 −L1 −L1 0 L1

+L1 −L3 −L2 −L1 −L1 0 L1 L2

+L2 −L2 −L2 −L1 0 L1 L2 L2

+L3 0 L1 L1 L1 L2 L2 L3

TABLE IV

FAID RULE Φ
(v,SP)
NON-ROBUST NOT ROBUST TO FAULTY

HARDWARE (SP-MODEL)

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L3 0

−L2 −L3 −L3 −L3 −L3 −L2 0 L2

−L1 −L3 −L3 −L2 −L2 −L1 0 L2

0 −L3 −L3 −L2 −L1 0 L1 L3

+L1 −L3 −L2 −L1 0 0 L1 L3

+L2 −L3 0 0 L1 L1 L1 L3

+L3 0 L2 L2 L3 L3 L3 L3

TABLE V

FAID RULE Φ
(v,FD)
(ROBUST) ROBUST TO THE FAULTY HARDWARE

(FD-MODEL)

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L1 0

−L2 −L3 −L3 −L3 −L3 −L1 −L1 L2

−L1 −L3 −L3 −L2 −L2 −L1 0 L2

0 −L3 −L3 −L2 −L1 0 0 L3

+L1 −L3 −L1 −L1 0 0 L1 L3

+L2 −L1 −L1 0 0 L1 L1 L3

+L3 0 L2 L2 L3 L3 L3 L3

TABLE VI

FAID RULE Φ
(v,FD)
NON-ROBUST NOT ROBUST TO FAULTY

HARDWARE (FD-MODEL)

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L2 −L2 0

−L2 −L3 −L3 −L3 −L3 −L2 −L1 L2

−L1 −L3 −L3 −L2 −L2 −L1 0 L2

0 −L3 −L3 −L2 −L1 0 0 L3

+L1 −L2 −L2 −L1 0 0 L1 L3

+L2 −L2 −L1 0 0 L1 L1 L3

+L3 0 L2 L2 L3 L3 L3 L3

Φ
(v,FD)
robust and Φ(non-robust)

v,FD are given in Table V and Table VI. The four decoders will be considered in

the following section to validate the asymptotic noisy-DE results with finite-length simulations.

VII. FINITE LENGTH SIMULATIONS RESULTS

This section gives finite-length simulation results with the FAIDs Φ
(v,SP)
robust , Φ

(v,SP)
non-robust, Φ

(v,FD)
robust , and

Φ
(v,FD)
non-robust that have been identified by the noisy-DE analysis. For the sake of comparison, a fifth
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decoder denoted Φ
(v)
(opt) (Table I) will also be considered. Φ

(v)
opt has been optimized in [18] for

noiseless decoding with low error floor. In our simulations, the number of iterations is set to

100 and we consider the (155, 93) Tanner code with degrees (dv = 3, dc = 5) given in [23].

Fig. 5 (a) represents the Bit Error Rates (BER) with respect to channel parameter α and for

the SP-Model. In the case of noiseless decoding, as Φ
(v)
opt has been optimized for low error floor,

it performs better, as expected, than Φ
(v,SP)
robust and Φ

(v,SP)
non-robust. But as Φ

(v,SP)
robust and Φ

(v,SP)
non-robust belong to

a predetermined set of good FAID decoders, they also have good performance in the noiseless

case.

We now discuss the faulty decoding case. For the SP-Model, we fix pv = pc = pa = 0.05,

and for the FD-Model, pv = pc = pa = 0.02. We first see that the lower bound conditions of

Proposition 1 are not satisfied here. Indeed, in our simulations, we considered an early stopping

criterion, which halts the decoding process when the sequence estimated by the APP block is a

codeword, while the results of Proposition 1 consider the averaged error probabilities at a fixed

iteration number, and thus do not take into account the stopping criterion. We then see that

the results are in compliance with the conclusions of the functional thresholds analysis. Indeed,

when the decoder is faulty, Φ
(v,SP)
robust performs better than Φ

(v)
opt while Φ

(v,SP)
non-robust has a significant

performance loss compared to the two other decoders. From Fig. 5 (b) we see that the same

holds for the FD-Model in which case the error correction performance of the faulty decoders

are much worse than for the SP-Model. The FD-Model makes decoders less robust to noise than

the SP-Model, because with the FD-Model, not only the amplitudes, but also the signs of the

messages can be corrupted by the noise. In particular, the non-robust decoder Φ
(v,FD)
non-robust performs

extremely poorly.

We now comment the results of Fig. 6. The code and decoder noise parameters are the same

as before. In Fig. 6, the FD-Model with pv = pc = pa = 0.02 is applied to Φ
(v,SP)
robust and Φ

(v,FD)
robust ,

and the SP-Model with pv = pc = pa = 0.05 is also applied to Φ
(v,SP)
robust and Φ

(v,FD)
robust . We see that

Φ
(v,SP)
robust is robust for the SP-Model but not-robust for the FD-Model and that Φ

(v,FD)
robust is robust
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Fig. 5. (155, 93) Tanner Code, dv = 3, dc = 5, 100 iterations, (a) BER for the SP-Model, with pv = pc = pa = 0.05,

(b) BER for the FD-Model, with pv = pc = pa = 0.02

for the FD-Model but not-robust for the SP-Model. These results are in compliance with the

asymptotic analysis of Section VI which shows that some decoders that are robust for one model

are not necessarily robust for the other one.

To conclude, the finite-length simulations confirm that the functional threshold can be used

to predict the performance of faulty decoders. Both the asymptotic analysis and the finite-length

results demonstrate the existence of robust and non-robust decoders. They both illustrate the

importance of designing robust decoders for faulty hardware and show that the design of robust

decoders is dependant on the hardware error model.

VIII. CONCLUSION

In this paper, we performed an asymptotic performance analysis of noisy FAIDs using noisy-

DE. We provided an analysis of the behavior of the functional threshold and showed that under

restricted noise conditions, it enables to predict the asymptotic behavior of noisy FAIDs. From

this asymptotic analysis, we illustrated the existence of a wide variety of decoders robustness
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(FD-Model) For the legend, e.g., Φ
(robust,SP)
v FD is the decoder robust for the SP-Model applied to the FD-Model

behaviors, and proposed a framework for the design of inherently robust decoders. The finite-

length simulations illustrated the gain in performance when considering robust decoders.

APPENDIX

The proof of Theorem 1 follows the same steps as the proof of [24, Theorem 2]. We first

show that the symmetry is retained under faulty VN and CN processing. We then show that the

decoder error probability does not depend on the transmitted codeword. For the sake of simplicity,

the representation 0 → 1 and 1 → −1 is considered in the proof. The all-zero codeword thus

becomes the all-one codeword.

A. Symmetry of the Faulty Iterative Processing

Consider the two setups

1) Setup 1: The codeword a = [a1, . . . , an], where ai ∈ {−1,+1}, was transmitted, and the

sequence y = [y1, . . . , yn] was received by the decoder.
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2) Setup 2: The codeword 1 = [1, . . . , 1] was transmitted, and the sequence a.y = [a1y1, . . . , anyn]

was received.

For Setup 1, denote µ(`)
i,j the message from a VN i to a CN j at iteration ` and denote η(`)

i,j the

message from a CN j to a VN i at iteration `. Also denote γ(`)
i the APP message computed at

node i at iteration `. We want to show that at any iteration `,

P (γ
(`)
i |x = a,y) = P (aiγ

(`)
i |x = 1, a.y). (27)

The proof is made by recursion on the µ(`)
i,j and the η(`)

i,j .

1) Initial messages: The initial messages from VN i to CN j all verify

P (µ
(0)
i,j |xi = ai, yi) = P (aiµ

(0)
i,j |xi = 1, aiyi) (28)

by the channel symmetry [11, Definition 2].

2) Check Node processing: Assume that at iteration `, the condition

P (µ
(`)
i,j |x = a,y) = P (aiµ

(`)
i,j |x = 1, a.y). (29)

is verified. Then at any CN j,

P (η
(`)
i,j |x = a,y) =

∑
µ

(`)
j

P(c)(η
(`)
i,j |µ

(`)
j )

dc−1∏
k=1

P (µ
(`)
k,j|x = a,y) (30)

where µ
(`)
j = [µ

(`)
1,j, . . . , µ

(`)
dc−1,j] is the set of VN messages incoming to the CN j. The equality

holds because the µ(`)
k,j are independent random variables. Then,

P (η
(`)
i,j |x = a,y) =

∑
µ

(`)
j

P(c)(ajη
(`)
i,j |aµ

(`)
j )

dc−1∏
k=1

P (akµ
(`)
k,j|x = 1, a.y) (31)

from (9), (29), and
∏dc−1

k=1 ak = aj . By the variable change µ′(`)k,j = akµ
(`)
k,j , we finally get

P (η
(`)
i,j |x = a,y) =

∑
µ′(`)

j

P(c)(ajη
(`)
i,j |µ′(`)

j )
dc−1∏
k=1

P (µ
′(`)
k,j |x = 1, ay)

= P (ajη
(`)
i,j |x = 1, a.y). (32)
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3) Variable Node processing: At any VN i,

P (µ
(`+1)
i,j |x = a,y) =

∑
η
(`)
i

P(v)(µ
(`+1)
i,j |η

(`)
i )

dv−1∏
j=1

P (η
(`)
i,j |x = a,y) (33)

where η
(`)
i = [η

(`)
i,1 , . . . , η

(`)
i,dv−1] is the set of CN messages incoming to the VN i. Then

P (µ
(`+1)
i,j |x = a,y) =

∑
η
(`)
i

P(v)(aiµ
(`+1)
i,j |aiη

(`)
i )

dv−1∏
j=1

P (aiη
(`)
i,j |x = 1, a.y) (34)

from (8) and (32). By the variable change η′(`)i,j = aiη
(`)
i,j , we get

P (µ
(`+1)
i,j |x = a,y) =

∑
η′(`)

i

P(v)(aiµ
(`+1)
i,j |η′(`)

i )
dv−1∏
j=1

P (η′
(`)
i,j |x = 1, a.y)

= P (aiµ
(`+1)
i,j |x = 1, a.y) (35)

which shows the recursion of (29).

4) APP processing: At any VN i,

P (γ
(`)
i |x = a,y) = P (aiγ

(`)
i |x = 1, a.y). (36)

The proof is obtained from the previous recursion on VN and CN processing, and following the

steps of VN processing.

B. Error Probability

We now show that the error probabilities of Setup 1 and Setup 2 are equal.

1) Error probability at node i: For Setup 1, the error probability at VN i conditionally to y

is

P
(`)
e,i (x = a,y) =

∫
Ωi

P (γ
(`)
i |x = a,y)dγ

(`)
i (37)

where Ωi = R− if ai = 1, and Ωi = R+ if ai = −1. Then, from (36),

P
(`)
e,i (x = a,y) =

∫
Ωi

P (aiγ
(`)
i |x = 1, a.y)dγ

(`)
i . (38)

By variable change γ′(`)i = aiγ
(`)
i , we get

P
(`)
e,i (x = a,y) =

∫
R−
P (γ′

(`)
i |x = 1, a.y)dγ′

(`)
i = P

(`)
e,i (1,x = a.y). (39)
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2) Error probability: The error probability of Setup 1 is given by

P (`)
e (a) = Ei,y

[
P

(`)
e,i (x = a,y)

]
= Ei,y

[
P

(`)
e,i (x = 1, a.y)

]
. (40)

By the variable change y′ = ay, we get

P (`)
e (a) = Ei,y′

[
P

(`)
e,i (x = 1,y′)

]
(41)

and

P (`)
e (a) = P (`)

e (1) (42)

which concludes the proof.
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