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Abstract

A primary source of increased read time on NAND flash comes from the fact that in the presence of

noise, the flash medium must be read several times using different read threshold voltages for the decoder

to succeed. This paper proposes an algorithm that uses a limited number of re-reads to characterize the

noise distribution and recover the stored information. Both hard and soft decoding are considered. For

hard decoding, the paper attempts to find a read threshold minimizing bit-error-rate (BER) and derives

an expression for the resulting codeword-error-rate. For soft decoding, it shows that minimizing BER

and minimizing codeword-error-rate are competing objectives in the presence of a limited number of

allowed re-reads, and proposes a trade-off between the two.

The proposed method does not require any prior knowledge about the noise distribution, but can take

advantage of such information when it is available. Each read threshold is chosen based on the results of

previous reads, following an optimal policy derived through a dynamic programming backward recursion.

The method and results are studied from the perspective of an SLC Flash memory with Gaussian noise

for each level but the paper explains how the method could be extended to other scenarios.

I. INTRODUCTION

A. Overview

The introduction of Solid State Drives (SSD) based on NAND flash memories has revolu-

tionized mobile, laptop, and enterprise storage by offering random access to the information
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with dramatically higher read throughput and power-efficiency than hard disk drives. However,

SSD’s are considerably more expensive, which poses an obstacle to their widespread use. NAND

flash manufacturers have tried to pack more data in the same silicon area by scaling the size

of the flash cells and storing more bits in each of them, thus reducing the cost per gigabyte

(GB) and making flash more attractive to consumers, but this cell-size shrinkage has come at

the cost of reduced performance. As cell-size shrinks to sub-16nm limits, noise can cause the

voltage residing on the cell at read time to be significantly different from the voltage that was

intended to be stored at the time of write. Even in current state-of-the-art 19nm NAND, noise

is significant towards the end of life of the drive. One way to recover host data in the presence

of noise is to use advanced signal processing algorithms [1], [2], [3], [4], but excessive re-reads

and post-read signal processing could jeopardize the advantages brought by this technology.

Typically, all post-read signal processing algorithms require re-reads using different thresholds,

but the default read thresholds, which are good for voltage levels intended during write, are often

suboptimal for read-back of host data. Furthermore, the noise in the stored voltages is random and

depends on several factors such as time, data, and temperature; so a fixed set of read thresholds

will not be optimal throughout the entire life of the drive. Thus, finding optimal read thresholds

in a dynamic manner to minimize BER and speed up the post-processing is essential.

The first half of the paper proposes an algorithm for characterizing the distribution of the

noise for each nominal voltage level and estimating the read thresholds which minimize BER.

It also presents an analytical expression relating the BER found using the proposed methods to

the minimum possible BER. Though BER is a useful metric for algebraic error correction codes,

the distribution of the number of errors is also important. Some flash memory controllers use

a weaker decoder when the number of errors is small and switch to a stronger one when the

former fails, both for the same code (e.g. bit-flipping and min-sum for decoding an LDPC code

[5]). The average read throughput and total power consumption depends on how frequently each

decoder is used. Therefore, the distribution of the number of errors, which is also derived here,

is a useful tool to find NAND power consumption.
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The second half of the paper modifies the proposed algorithm to address the quality of the soft

information generated, instead of just the number of errors. In some cases, the BER is too large

for a hard decoder to succeed, even if the read is done at the optimal threshold. It is then necessary

to generate soft information by performing multiple reads with different read thresholds. The

choice of read thresholds has a direct impact on the quality of the soft information generated,

which in turn dictates the number of decoder iterations and the number of re-reads required.

The paper models the flash as a discrete memoryless channel with mismatched decoding and

attempts to maximize its capacity through dynamic programming.

The overall scheme will work as follows. First, the controller will read with an initial threshold

and attempt a hard-decoding of the information. If the noise is weak and the initial threshold was

well chosen, this decoding will succeed and no further processing will be needed. Otherwise,

when this first decoding fails, the controller will perform additional reads with adaptively chosen

thresholds to estimate the mean and/or variance of the voltage values for each level. These

estimates will in turn be used to estimate the minimum feasible BER and the corresponding

optimal read threshold. The flash controller then decides whether to perform an additional read

with that estimated threshold to attempt hard decoding again, or directly attempt a more robust

decoding of the information, leveraging the reads already performed to generate soft information.

B. Literature review

Most of the existing literature on optimizing the read thresholds for NAND flash assumes that

prior information on the noise is available (e.g., [6], [7], [8], [9], [10]). Some methods, such at

the one proposed by Wang et al. in [11], assume complete knowledge of the noise and choose the

read thresholds so as to maximize the mutual information between the values written and read,

while others attempt to predict the noise from the number of program-erase (PE) cycles and then

optimize the read thresholds based on that prediction. An example of the latter was proposed

by Cai et al. in [12]. Other references addressing threshold selection and error-correction codes

are [13] and [14].
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However, in some practical cases there is no prior information available, or the prior infor-

mation is not accurate enough to build a reliable noise model. In these situations, a common

approach is to perform several reads with different thresholds searching for the one that returns

an equal number of cells on either side, i.e., the median between the two levels1. However,

the median threshold is suboptimal in general, as was shown in [1]. In [2] and [15] Zhou et

al. proposed encoding the data using balanced, asymmetric, or Berger codes to facilitate the

threshold selection. Balanced codes guarantee that all codewords have the same number of ones

and zeros, hence narrowing the gap between the median and optimal thresholds. Asymmetric and

Berger codes, first described in [16], leverage the known asymmetry of the channel to tolerate

suboptimal thresholds. Berger codes are able to detect any number of unidirectional errors. In

cases of significant leakage, where all the cells reduce their voltage level, it is possible to perform

several reads with progressively decreasing thresholds until the Berger code detects a low enough

number of errors, and only then attempt decoding to recover the host information.

Researchers have also proposed some innovative data representation schemes with different

requirements in terms of read thresholds. For example, rank modulation [17], [18], [19], [20], [21]

stores information in the relative voltages between the cells instead of using pre-defined voltage

levels. The strategy of writing data represented by rank modulation in parallel to flash memories

is studied in [22]. Theoretically, rank modulation does not require actual read thresholds, but just

comparisons between the cell voltages. Unfortunately, there are a few technological challenges

that need to be overcome before rank modulation becomes practical. Other examples include

constrained codes [23], [24]; write-once memories codes [25], [26], [25], [27]; and other rewriting

codes [28]. All these codes impose restrictions on the levels that can be used during a specific

write operation. Since read thresholds need only separate the levels being used, they can often

take advantage of these restrictions.

1In many cases this threshold is not explicitly identified as the median cell voltage, but only implicitly as the solution of

t−µ1

σ1

= t−µ2

σ2

, where (µ1, σ1) and (µ2, σ2) are the mean and standard deviation of the level voltages.
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The scheme proposed in this paper is similar to those described in [29] and [30] in that it

assumes no prior information about the noise or data representation, but it is significantly simpler

and more efficient. We propose using a small number of reads chosen by a dynamic program

to simultaneously estimate the noise and recover the information, instead of periodically testing

multiple thresholds (as in [29]) or running a computationally intensive optimization algorithm

to perfect the model (as in [30]). A prior version of this paper was published in [31], but the

work presented here has been significantly extended with a bound on the capacity for the soft

decoding case and a dynamic programming method for optimizing the read thresholds.

II. SYSTEM MODEL

Cells in a NAND flash are organized in terms of pages, which are the smallest units for write

and read operations. Writing the cells in a page is done through a program and verify approach

where voltage pulses are sent into the cells until their stored voltage exceeds the desired one.

Once a cell has reached its desired voltage, it is inhibited from receiving subsequent pulses and

the programming of the other cells in the page continues. However, the inhibition mechanism is

non-ideal and future pulses may increase the voltage of the cell [12], creating write noise. The

other two main sources of noise are inter-cell interference (ICI), caused by interaction between

neighboring cells [32], and charges leaking out of the cells with time and heat [33].

Some attempts have been made to model these sources of noise as a function of time, voltage

levels, amplitude of the programming pulses, etc. Unfortunately, the noise is temperature- and

page-dependent as well as time- and data-dependent [34]. Since the controller cannot measure

those factors, it cannot accurately estimate the noise without performing additional reads. This

paper assumes that the overall noise follows a Gaussian distribution for each level, as is common

in the literature, but assumes no prior knowledge about their means or variances. Section VI

will explain how the same idea can be used when the noise is not Gaussian.

Reading the cells in a page is done by comparing their stored voltage with a threshold voltage

t. The read operation returns a binary vector with one bit for each cell. Bits corresponding to
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cells with voltage lower than t are 1 and those corresponding to cells with voltage higher than

t are 0. However, the aforementioned sources of voltage disturbance can cause some cells to be

misclassified, introducing errors in the bit values read. The choice of a read threshold therefore

becomes important to minimize the BER in the reads.

In a b-bit MLC flash, each cell stores one of 2b distinct predefined voltage levels. When each

cell stores multiple bits, i.e. b ≥ 2, the mapping of information bits to voltage levels is done using

Gray coding to ensure that only one bit changes between adjacent levels. Since errors almost

always happen between adjacent levels, Gray coding minimizes the average BER. Furthermore,

each of the b bits is assigned to a different page, as shown in Fig. 1. This is done so as to reduce

the number of comparisons required to read a page. For example, the lower page of a TLC

(b = 3) flash can be read by comparing the cell voltages with a single read threshold located

between the fourth and fifth levels, denoted by D in Fig. 1. The first four levels encode a bit

value 1 for the lower page, while the last four levels encode a value 0. Unfortunately, reading

the middle and upper pages require comparing the cell voltages with more read thresholds: two

(B,F) for the middle page and four (A,C,E,G) for the upper page.

1
1
1

Voltage

1
1
0

1
0
0

1
0
1

0
0
1

0
0
0

0
1
0

0
1
1 Upper page

Lower page
Middle page

A DCB E GF Thresholds

Fig. 1. Typical mapping of bits to pages and voltage levels in a TLC Flash memory.

Upper pages take longer to read than lower ones, but the difference is not as large as it might

seem. Flash chips generally incorporate dedicated hardware for performing all the comparisons

required to read upper pages, without the additional overhead that would arise from issuing

multiple independent read requests. The flash controller can then be oblivious to the type of page
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being read. Read commands only need to specify the page being read and a scalar parameter

representing the desired shift in the read thresholds from their default value. If the page is a

lower one, which employs only one threshold, the scalar parameter is understood as the amount

by which this threshold needs to be shifted. If the page is an upper one, which employs multiple

read thresholds, their shifts are parameterized by the scalar parameter. For example, a parameter

value of ∆ when reading the middle page in Fig. 1 could shift thresholds B and F by ∆ and

−3
2
∆ mV, respectively. Then, cells whose voltage falls between the shifted thresholds B and F

would be read as 0 and the rest as 1.

After fixing this parametrization, the flash controller views all the pages in an MLC or TLC

memory as independent SLC pages with a single read shift parameter that needs to be optimized.

In theory, each low level threshold could be independently optimized, but the large number of

reads and amount of memory required would render that approach impractical. Hence, most of

the paper will assume a SLC architecture for the flash and Section VI will show how the same

method and results can be readily extended to memories with more bits per cell.

Figure 2 (a) shows two overlapping Gaussian probability density functions (pdfs), correspond-

ing to the two voltage levels to which cells can be programmed. Since data is generally com-

pressed before being written onto flash, approximately the same number of cells is programmed

to each level. The figure also includes three possible read thresholds. Denoting by (µ1, σ1) and

(µ2, σ2) the means and standard deviations of the two Gaussian distributions, the thresholds are:

tmean = µ1+µ2

2
, tmedian = µ1σ2+µ2σ1

σ1+σ2
, and t⋆, which minimizes BER. If the noise variance was the

same for both levels all three thresholds would be equal, but this is not the case in practice. The

plot legend provides the BER obtained when reading with each of the three thresholds.

There exist several ways in which the optimal threshold, t⋆, can be found. A common approach

is to perform several reads by shifting the thresholds in one direction until the decoding succeeds.

Once the data has been recovered, it can be compared with the read outputs to find the threshold

yielding the lowest BER [29]. However, this method can require a large number of reads if the

initial estimate is inaccurate, which reduces read throughput, and additional memory to store and
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Fig. 2. (a): Cell voltages pdf in an SLC page, and BER for three different thresholds: tmean = (µ1 + µ2)/2 is the average of

the cell voltages, tmedian returns the same number of 1s and 0s and t⋆ minimizes the BER and is located at the intersection of

the two pdfs. (b): cdf corresponding to pdf in (a).

compare the successive reads, which increases cost. The approach taken in this paper consists

of estimating (µ1, σ1) and (µ2, σ2) and deriving t⋆ analytically. It will be shown how this can

be done with as few reads as possible, thereby reducing read time. Furthermore, the mean and

standard deviation estimates can also be used for other tasks, such as generating soft information

for LDPC decoding.

A read operation with a threshold voltage t returns a binary vector with a one for each

cell whose voltage level is lower than t and zero otherwise. The fraction of ones in the read

output is then equal to the probability of a randomly chosen cell having a voltage level below

t. Consequently, a read with a threshold voltage t can be used to obtain a sample from the

cumulative distribution function (cdf) of cell voltages at t, illustrated in Fig. 2 (b).

The problem is then reduced to estimating the means and variances of a mixture of Gaussians

using samples from their joint cdf. These samples will be corrupted by model, read, and

quantization noise. Model noise is caused by the deviation of the actual distribution of cell

voltages from a Gaussian distribution. Read noise is caused by the intrinsic reading mechanism

of the flash, which can read some cells as storing higher or lower voltages than they actually have.

Quantization noise is caused by limited computational accuracy and rounding of the Gaussian
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cdf2. All these sources of noise are collectively referred to as read noise in this paper. It is

assumed to be zero mean, but no other restriction is imposed in our derivations.

It is desirable to devote as few reads as possible to the estimation of (µ1, σ1) and (µ2, σ2). The

accuracy of the estimates would improve with the number of reads, but read time would also

increase. Since there are four parameters to be estimated, at least four reads will be necessary.

Section III describes how the locations of the read thresholds should be chosen in order to

achieve accurate estimates and Section IV extends the framework to consider how these reads

could be reused to obtain soft information for an LDPC decoder. If the soft information obtained

from the first four reads is enough for the LDPC decoding to succeed, no additional reads will

be required, thereby reducing the total read time of the flash. Section V proposes a dynamic

programming method for optimizing the thresholds for a desired objective. Finally, Section VI

explains how to extend the algorithm for MLC or TLC memories, as well as for non-Gaussian

noise distributions. Section VII provides simulation results to evaluate the performance of the

proposed algorithms and Section VIII concludes the paper.

III. HARD DECODING: MINIMIZING BER

A. Parameter estimation

Let ti, i = 1, . . . , 4 be four voltage thresholds used for reading a page and let yi, i = 1, . . . , 4

be the fraction of ones in the output vector for each of the reads, respectively. If (µ1, σ1) and

(µ2, σ2) denote the voltage mean and variance for the cells programmed to the two levels, then

yi =
1

2
Q
(
µ1 − ti
σ1

)
+

1

2
Q
(
µ2 − ti
σ2

)
+ nyi, i = 1, . . . , 4, (1)

where

Q(x) =
∫ ∞

x
(2π)−

1
2 e−

t2

2 dt (2)

and nyi denotes the read noise associated to yi. In theory, it is possible to estimate (µ1, σ1) and

(µ2, σ2) from (ti, yi), i = 1, . . . , 4 by solving the system of non-linear equations in Eq. (1),

2Since the Gaussian cdf has no analytical expression, it is generally quantized and stored as a lookup table
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but in practice the computational complexity could be too large for some systems. Another

possible approach would be to restrict the estimates to a pre-defined set of values and generate a

lookup table for each combination. Finding the table which best fits the samples would require

negligible time but the amount of memory required could render this approach impractical for

some systems. This section proposes and evaluates a progressive read algorithm that combines

these two approaches, providing similar accuracy to the former and requiring only a standard

normal (µ = 0, σ = 1) look-up table.

Progressive Read Algorithm: The key idea is to perform two reads at locations where one

of the Q functions is known to be either close to 0 or close to 1. The problem with solving the

system in Eq. (1) was that a sum of Q functions cannot be easily inverted. However, once one

of the two Q functions is fixed at 0 or 1, the equation can be put in linear form using a standard

normal table to invert the other Q function. The system of linear equations can then be solved

to estimate the first mean and variance. Once the first mean and variance have been estimated

they can be used to evaluate a Q function from each of the two remaining equations in Eq. (1),

which can then be solved in a similar way. For example, if t1 and t2 are significantly smaller

than µ2, then

Q
(
µ2 − t1

σ2

)
≃ 0 ≃ Q

(
µ2 − t2

σ2

)

and Eq. (1) can be solved for µ̂1 and σ̂1 to get

σ̂1 =
t2 − t1

Q−1(2y1)−Q−1(2y2)
µ̂1 = t2 + σ̂1Q

−1(2y2). (3)

Substituting these in the equations for the third and fourth reads and solving gives

σ̂2 =
t4 − t3

Q−1(2y3 − q3)−Q−1(2y4 − q4)
µ̂2 = t4 + σ̂2Q

−1(2y4 − q4), (4)

where

q3 = Q

(
µ̂1 − t3

σ̂1

)
q4 = Q

(
µ̂1 − t4
σ̂1

)
.

It could be argued that, since the pdfs are not known a priori, it is not possible to determine

two read locations where one of the Q functions is close to 0 or close to 1. In practice, however,
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each read threshold can be chosen based on the result from the previous ones. For example, say

the first randomly chosen read location returned y1 = 0.6. This read, if used for estimating the

higher level distribution, will be a bad choice because there will be significant overlap from the

lower level. Hence, a smart choice would be to obtain two reads for the lower level that are

clear of the higher level by reading to the far left of t1. Once the lower level is canceled, the

y1 = 0.6 read can be used in combination with a fourth read to the right of t1 to estimate the

higher level distribution.

Once the mean and variance of both pdfs have been estimated, it is possible to derive an

estimate for the read threshold minimizing the BER. The BER associated to a given read threshold

t is given by

BER(t) =
1

2

(
Q
(
µ2 − t

σ2

)
+ 1−Q

(
µ1 − t

σ1

))
. (5)

Making its derivative equal to zero gives the following equation for the optimal threshold t⋆

1

σ2

φ
(
µ2 − t⋆

σ2

)
=

1

σ1

φ
(
µ1 − t⋆

σ1

)
, (6)

where φ(x) = (2π)−(1/2)e−x2/2. The optimal threshold t⋆ is located at the point where both

Gaussian pdfs intersect. An estimate t̂⋆ for t⋆ can be found from the following quadratic equation

2 log

(
σ̂2

σ̂1

)
=

(
t̂⋆ − µ̂1

σ̂1

)2

−
(
t̂⋆ − µ̂2

σ̂2

)2

, (7)

which can be shown to be equivalent to solving Eq. (6) with (µ1, σ1) and (µ2, σ2) replaced by

their estimated values.

If some parameters are known, the number of reads can be reduced. For example, if µ1 is

known, the first read can be replaced by t1 = µ1, y1 = 0.25 in the above equations. Similarly,

if σ1 is known (t1, y1) are not required in Eqs. (3)-(4).

B. Error propagation

This subsection first studies how the choice of read locations affects the accuracy of the

estimators (µ̂1, σ̂1), (µ̂2, σ̂2), and correspondingly t̂⋆. Then it analyzes how the accuracy of t̂⋆
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translates into BER(t̂⋆), and provides some guidelines as to how the read locations should be

chosen. Without loss of generality, it will be assumed that (µ1, σ1) are estimated first using

(t1, y1) and (t2, y2) according to the Progressive Read Algorithm described in Section III-A, and

(µ2, σ2) are estimated in the second stage. In this case, Eq. (1) reduces to

Q
(
µ1 − ti
σ1

)
= 2yi − 2nyi

for i = 1, 2 and the estimates are given by Eqs. (3).

If the read thresholds are on the tails of the distributions, a small perturbation in the cdf value

y could cause a significant change in Q−1(y). This will in turn lead to a significant change in

the estimates. Specifically, a first-order Taylor expansion of Q−1(y + ny) at y can be written as

Q−1(y + ny) = x−
√
2πe

x2

2 ny +O(n2
y), (8)

where x = Q−1(y). Since the exponent of e is always positive, the first-order error term is

minimized when x = 0, i.e., when the read is performed at the mean. The expressions for

(µ̂1, σ̂1) and (µ̂2, σ̂2) as seen in Eqs. (3)-(4) use inverse Q functions, so the estimation error

due to read noise will be reduced when the reads are done close to the mean of the Gaussian

distributions. The first order Taylor expansion of Eq. (3) at σ1 is given by

σ̂1 = σ1 −
σ2
1

t2 − t1
(n2 − n1) +O(n2

1, n
2
2) (9)

where

n1 = 2
√
2πe

(t1−µ1)
2

2σ2
1 ny1 +O(n2

y1) n2 = 2
√
2πe

(t2−µ1)
2

2σ2
1 ny2 +O(n2

y2). (10)

A similar expansion can be performed for µ̂1, obtaining

µ̂1 = µ1 − σ1
(t2 − µ1)n1 − (t1 − µ1)n2

t2 − t1
+O(n2

1, n
2
2). (11)

Two different tendencies can be observed in the above expressions. On one hand, Eqs. (10)

suggest that both t1 and t2 should be chosen close to µ1 so as to reduce the magnitude of n1

and n2. On the other hand, if t1 and t2 are very close together, the denominators in Eq. (9) and

(11) can become small, increasing the estimation error.
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The error expansions for µ̂2, σ̂2 and t̂⋆, are omitted for simplicity, but it can be shown that the

dominant terms are linear in nyi , i = 1, . . . , 4 as long as all nyi are small enough. The Taylor

expansion for BER(t̂⋆) at t⋆ is

BER(t̂⋆) = BER(t⋆) +
(

1

2σ2
φ
(
µ2 − t⋆

σ2

)
− 1

2σ1
φ
(
µ1 − t⋆

σ1

))
et⋆ +O(e2t⋆)

= BER(t⋆) +O(e2t⋆), (12)

where t̂⋆ = t⋆+et⋆ . The cancellation of the first-order term is justified by Eq. (6). Summarizing,

the mean and variance estimation error increases linearly with the read noise, as does the deviation

in the estimated optimal read threshold. The increase in BER, on the other hand, is free from

linear terms. As long as the read noise is not too large, the resulting BER(t̂⋆) is close to the

minimum possible BER. The numerical simulations in Fig. 3 confirm these results.
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|σ̂ − σ|/σ

|t̂− t⋆|/t⋆

|µ̂− µ|/µ
BER(t̂)− BER(t⋆)

BER(t⋆)

Fig. 3. The relative error in the mean, variance, and threshold estimates increases linearly with the read noise (slope=1), but

the relative increase in BER grows quadratically (slope=2) and is negligible for a wide range of read noise amplitudes.

In view of these results, it seems that the read thresholds should be spread out over both

pdfs but close to the levels’ mean voltages. Choosing the thresholds in this way will reduce

the error propagating from the reads to the estimates. However, read thresholds can be chosen

sequentially, using the information obtained from each read in selecting subsequent thresholds.

Section V proposes a method for finding the optimal read thresholds more precisely.
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IV. SOFT DECODING: TRADEOFF BER-LLR

This section considers a new scenario where a layered decoding approach is used for increased

error-correction capability. After reading a page, the controller may first attempt to correct any bit

errors in the read-back codeword using a hard decoder alone, typically a bit-flipping hard-LDPC

decoder [35]. Reading with the threshold t̂⋆ found through Eq. (7) reduces the number of hard

errors but there are cases in which even BER(t̂⋆) is too high for the hard decoder to succeed.

When this happens, the controller will attempt a soft decoding, typically using a min-sum or

sum-product soft LDPC decoder.

Soft decoders are more powerful, but also significantly slower and less power efficient than

hard decoders. Consequently, invoking soft LDPC decoding too often can significantly impact

the controller’s average read time. In order to estimate the probability of requiring soft decoding,

one must look at the distribution of the number of errors, and not at BER alone. For example,

if the number of errors per codeword is uniformly distributed between 40 and 60 and the hard

decoder can correct 75 errors, soft decoding will never be needed. However, if the number of

errors is uniformly distributed between 0 and 100 (same BER), soft decoding will be required

to decode 25% of the reads. Section IV-A addresses this topic.

The error-correction capability of a soft decoder depends heavily on the quality of the soft

information at its input. It is always possible to increase such quality by performing additional

reads, but this decreases read throughput. Section IV-B shows how the Progressive Read Algo-

rithm from the previous section can be modified to provide high quality soft information.

A. Distribution of the number of errors

Let N be the number of bits in a codeword. Assuming that both levels are equally likely, the

probability of error for any given bit, denoted pe, is given in Eq. (5). Errors can be considered

independent, hence the number of them in a codeword follows a binomial distribution with

parameters N and pe. Since N is usually large, it becomes convenient to approximate the binomial
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Failure rate pe = 0.008 pe = 0.01 pe = 0.012

α = 23 0.05 0.28 0.62

α = 25 0.016 0.15 0.46

α = 27 0.004 0.07 0.31

TABLE I

FAILURE RATE FOR A N = 2048 BCH CODE AS A FUNCTION OF PROBABILITY OF BIT ERROR pe AND NUMBER OF

CORRECTABLE BIT ERRORS α.

by a Gaussian distribution with mean Npe and variance Npe(1−pe), or by a Poisson distribution

with parameter Npe when Npe is small.

Under the Gaussian approximation paradigm, a codeword fails to decode with probability

Q
(

α−Npe√
Npe(1−pe)

)
, where α denotes the number of bit errors that can be corrected. Table I shows

that a small change in the value of α may increase significantly the frequency with which a

stronger decoder is needed. This has a direct impact on average power consumption of the

controller. The distribution of bit errors can thus be used to judiciously obtain a value of α in

order to meet a power constraint.

B. Obtaining soft inputs

After performing M reads on a page, each cell can be classified as falling into one of the

M +1 intervals between the read thresholds. The problem of reliably storing information on the

flash is therefore equivalent to the problem of reliable transmission over a discrete memoryless

channel (DMC), such as the one in Fig. 4. Channel inputs represent the levels to which the cells

are written, outputs represent read intervals, and channel transition probabilities specify how

likely it is for cells programmed to a specific level to be found in each interval at read time.

It is well known that the capacity of a channel is given by the maximum mutual information

between the input and output over all input distributions (codebooks) [36]. In practice, however,

the code must be chosen at write time when the channel is still unknown, making it impossible

to adapt the input distribution to the channel. Although some asymmetric codes have been
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Fig. 4. DMC channel equivalent to Flash read channel with four reads.

proposed (e.g. [15], [24], [37]), channel inputs are equiprobable for most practical codes. The

mutual information between the input and the output is then given by

I(X ; Y ) =
1

2

M+1∑

j=1

p1j log(p1j) + p2j log(p2j)− (p1j + p2j) log
(
p1j + p2j

2

)
, (13)

where pij , i = 1, 2, j = 1, . . . ,M+1 are the channel transition probabilities. For Gaussian noise,

these transition probabilities can be found as

pij = Q
(
µi − tj
σi

)
−Q

(
µi − tj−1

σi

)
, (14)

where t0 = −∞ and tM+1 = ∞.

The inputs to a soft decoder are given in the form of log-likelihood ratios (LLR). The LLR

value associated with a read interval k is defined as LLRk = log(p1k/p2k). When the mean

and variance are known it is possible to obtain good LLR values by reading at the locations

that maximize I(X ; Y ) [11], which tend to be on the so-called uncertainty region, where both

pdfs are comparable. However, the mean and variance are generally not known and need to be

estimated. Section III provided some guidelines on how to choose read thresholds in order to

obtain accurate estimates, but those reads tend to produce poor LLR values. Hence, there are

two opposing trends: spreading out the reads over a wide range of voltage values yields more

accurate mean and variance estimates but degrades the performance of the soft decoder, while

concentrating the reads on the uncertainty region provides better LLR values but might yield

inaccurate estimates which in turn undermine the soft decoding.



17

Some flash manufacturers are already incorporating soft read commands that return 3 or 4 bits

of information for each cell, but the thresholds for those reads are often pre-specified and kept

constant throughout the lifetime of the device. Furthermore, most controller manufacturers use

a pre-defined mapping of read intervals to LLR values regardless of the result of the reads. We

propose adjusting the read thresholds and LLR values adaptively to fit our channel estimates.

Our goal is to find the read locations that maximize the probability of successful decoding when

levels are equiprobable and the decoding is done based on the estimated transition probabilities.

With this goal in mind, Section IV-C will derive a bound for the (symmetric and mismatched)

channel capacity in this scenario and Section V will show how to choose the read thresholds

so as to maximize this bound. The error-free coding rate specified by the bound will not be

achievable in practice due to finite code length, limited computational power, etc., but the BER

at the output of a decoder is closely related to the capacity of the channel [38], [39]. The read

thresholds that maximize the capacity of the channel are generally the same ones that minimize

the BER, in practice.

C. Bound for maximum transmission rate

Shannon’s channel coding theorem states that all transmission rates below the channel capacity

are achievable when the channel is perfectly known to the decoder; unfortunately this is not the

case in practice. The channel transition probabilities can be estimated by substituting the noise

means and variances µ̂1, µ̂2, σ̂1, σ̂2 into Eq. (14) but these estimates, denoted p̂ij , i = 1, 2,

j = 1, . . . , 5, are inaccurate. The decoder is therefore not perfectly matched to the channel.

The subject of mismatched decoding has been of interest since the 1970’s. The most notable

early works are by Hui [40] and Csiszár and Körner [41], who provided bounds on the maximum

transmission rates under several different conditions. Merhav et al. [42] related those results to

the concept of generalized mutual information and, more recently, Scarlett et al. [39] found

bounds and error exponents for the finite code length case. It is beyond the scope of this paper

to perform a detailed analysis of the mismatched capacity of a DMC channel with symmetric
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inputs; the interested reader can refer to the above references as well as [43], [44], [45], and [46].

Instead, we will derive a simplified lower bound for the capacity of this channel in the same

scenario that has been considered throughout the paper.

Theorem 1. The maximum achievable rate of transmission with vanishing probability of error

over a Discrete Memoryless Channel with equiprobable binary inputs, output alphabet Y , tran-

sition probabilities pij , i = 1, 2, j = 1, . . . , |Y|, and maximum likelihood decoding according to

a different set of transition probabilities p̂ij , i = 1, 2, j = 1, . . . , |Y| is lower bounded by

CP,P̂ =
1

2

|Y|∑

j=1

p1j log(p̂1j) + p2j log(p̂2j)− (p1j + p2j) log

(
p̂1j + p̂2j

2

)
(15)

Proof: Provided in the Appendix.

It is worth noting that CP,P̂ is equal to the mutual information given in Eq. (13) when the

estimates are exact, and decreases as the estimates become less accurate. In fact, the probability

of reading a given value y ∈ Y can be measured directly as the fraction of cells mapped to

the corresponding interval, so it is usually the case that p̂1k + p̂2k = p1k + p2k. The bound then

becomes CP,P̂ = I(X ; Y )−D(P ||P̂ ), where I(X ; Y ) is the symmetric capacity of the channel

with matched ML decoding and D(P ||P̂ ) is the relative entropy (also known as Kullback-Leibler

distance) between the exact and the estimated transition probabilities.

D(P ||P̂ ) =
1

2

|Y|∑

j=1

p1j log

(
p1j
p̂1j

)
+ p2j log

(
p2j
p̂2j

)
. (16)

In this case CP,P̂ is a concave function of the transition probabilities (pij , p̂ij), i = 1, 2, j =

1, . . . , |Y|, since the relative entropy is convex and the mutual information is concave [36]. The

bound attains its maximum when the decoder is matched to the channel (i.e. pij = p̂ij ∀i, j)

and the read thresholds are chosen so as to maximize the mutual information between X and

Y , but that solution is not feasible for our problem.

In practice, both the capacity of the underlying channel and the accuracy of the estimates at the

decoder depend on the location of the read thresholds and cannot be maximized simultaneously.

Finding the read thresholds t1, t2, t3, and t4 which maximize CP,P̂ is not straightforward, but it
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can be done numerically. Section V describes a dynamic programming algorithm for choosing

each read threshold based on prior information about the noise and the result of previous reads.

V. OPTIMIZING READ THRESHOLDS

In most practical cases, the flash controller has prior information about the voltage distri-

butions, based on the number of PE cycles that the page has endured, its position within the

block, etc. This prior information is generally not enough to produce accurate noise estimates,

but it can be used to improve the choice of read thresholds. We wish to determine a policy to

choose the optimal read thresholds sequentially, given the prior information about the voltage

distributions and the results in previous reads.

This section proposes a dynamic programming framework to find the read thresholds that

maximize the expected value of a user-defined reward function. If the goal is to minimize the BER

at the estimated threshold t̂⋆, as in Section III, an appropriate reward would be 1−BER(t̂⋆). If the

goal is to maximize the channel capacity, the reward could be chosen to be I(X ; Y )−D(P‖P̂ ),

as shown in Section IV-C.

Let x = (µ1, µ2, σ1, σ2) and ri = (ti, yi), i = 1, . . . , 4 be vector random variables, so as to

simplify the notation. If the read noise distribution fn is known, the prior distribution for x can

be updated based on the result of each read ri using Bayes rule and Eq. (1):

fx|r1,...,ri = K · fyi|x,ti · fx|r1,...,ri−1

= K · fn
(
yi −

1

2

(
Q
(
µ1 − ti
σ1

)
+Q

(
µ2 − ti
σ2

)))
· fx|r1,...,ri−1

, (17)

where K is a normalization constant. Furthermore, let R(r1, r2, r3, r4) denote the expected

reward associated with the reads r1, . . . , r4, after updating the prior fx accordingly. In the

following, we will use R to denote this function, omitting the arguments for the sake of simplicity.

Choosing the fourth read threshold t4 after the first three reads r1,. . . ,r3 is relatively straight-

forward: t4 should be chosen so as to maximize the expected reward, given the results of the
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previous three reads. Formally,

t⋆4 = argmax
t4

E {R|r1, . . . , r3, t4} , (18)

where the expectation is taken with respect to (y4,x) by factoring their joint distribution in a

similar way to Eq. (17): fy4,x|r1,...,r3 = fy4|x,t4 · fx|r1,...,r3 .

This defines a policy π for the fourth read, and a value V3 for each possible state after the

first three reads:

π4(r1, . . . , r3) = t⋆4 (19)

V3(r1, . . . , r3) = E {R|r1, . . . , r3, t⋆4} . (20)

In practice, the read thresholds ti and samples yi can only take a finite number of values, hence

the number of feasible arguments in these functions (states) is also finite. This number can be

fairly large, but it is only necessary to find the value for a small number of them, those which

have non-negligible probability according to the prior fx and value significantly larger than 0.

For example, states are invariant to permutation of the reads so they can always be reordered

such that t1 < t2 < t3. Then, states which do not fulfill y1 < y2 < y3 can be ignored. If the

number of states after discarding meaningless ones is still too large, it is also possible to use

approximations for the policy and value functions [47], [48].

Equations (19) and (20) assign a value and a fourth read threshold to each meaningful state

after three reads. The same idea, using a backward recursion, can be used to decide the third

read threshold and assign a value to each state after two reads:

π3(r1, r2) = argmax
t3

E {V3(r1, . . . , r3)|r1, r2, t3} (21)

V2(r1, r2) = max
t3

E {V3(r1, . . . , r3)|r1, r2, t3} , (22)

where the expectation is taken with respect to (y3,x). Similarly, for the second read threshold

π2(r1) = argmax
t2

E {V2(r1, r2)|r1, t2} (23)

V1(r1) = max
t2

E {V2(r1, r2)|r1, t2} , (24)
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where the expectation is taken with respect to (y2,x). Finally, the optimal value for the first read

threshold is

t⋆1 = argmax
t1

E {V1(t1, y1)|t1} .

These policies can be computed offline and then programmed in the memory controller. Typical

controllers have multiple modes tailored towards different conditions in terms of number of PE

cycles, whether an upper or lower page is being read, etc. Each of these modes would have its

own prior distributions for (µ1, µ2, σ1, σ2), and would result in a different policy determining

where to perform each read based on the previous results. Each policy can be stored as a partition

of the feasible reads, and value functions can be discarded, so memory requirements are very

reasonable. Section VII presents an example illustrating this scheme.

Just like in Section III-A, the number of reads can be reduced if some of the noise parameters

are known or enough prior information is available. The same backward recursion could be used

to optimize the choice of thresholds, but with fewer steps.

VI. EXTENSIONS

Most of the paper has assumed that cells can only store two voltage levels, with their voltages

following Gaussian distributions. This framework was chosen because it is the most widely used

in the literature, but the method described can easily be extended to memories with more than

two levels and non-Gaussian noise distributions.

Section II explained how each wordline in a MLC (two bits per cell, four levels) or TLC

(three bits per cell, eight levels) memory is usually divided into two or three pages which

are read independently as if the memory was SLC. In that case, the proposed method can

be applied without any modifications. However, if the controller is capable of simultaneously

processing more than two levels per cell, it is possible to accelerate the noise estimation by

reducing the number of reads. MLC and TLC memories generally have dedicated hardware that

performs multiple reads in the ranges required to read the upper pages and returns a single binary

value. For example, reading the upper page of a TLC memory with the structure illustrated in
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Fig. 1 requires four reads with thresholds (A, C, E, G) but cells between A and C would be

indistinguishable from cells between E and G; all of them would be read as 0. However, one

additional read of the lower page (D threshold) would allow the controller to tell them apart.

Performing four reads (t1, . . . , t4) on the upper page of a TLC memory would entail comparing

the cell voltages against 16 different thresholds but obtaining only four bits of information for

each cell. The means and variances in Eqs. (3)-(4) would correspond to mixtures of all the levels

storing the same bit value, assumed to be approximately Gaussian. The same process would

then be repeated for the middle and lower page. A better approach, albeit more computationally

intensive, would be to combine reads from all three pages and estimate each level independently.

Performing one single read of the lower page (threshold D), two of the middle page (each

involving two comparisons, with thresholds B and F) and three of the upper page (each involving

four comparisons, with thresholds A, C, E, G) would theoretically provide more than enough

data to estimate the noise in all eight Gaussian levels. A similar process can be used for MLC

memories performing, for example, two reads of the lower page and three of the upper page.

Hence, five page reads are enough to estimate the noise mean and variance in all 4 levels of an

MLC memory and 6 page reads are enough for the 8 levels in a TLC memory. Other choices for

the pages to be read are also possible, but it is useful to consider that lower pages have smaller

probabilities of error, so they often can be successfully decoded with fewer reads. Additional

reads could provide more precise estimates and better LLR values for LDPC decoding.

There are papers suggesting that a Gaussian noise model might not be accurate for some

memories [49]. The proposed scheme can also be extended to other noise distributions, as long as

they can be characterized by a small number of parameters. Instead of the Q-function in Eq. (2),

the estimation should use the cumulative density function (cdf) for the corresponding noise

distribution. For example, if the voltage distributions followed a Laplace instead of Gaussian

distribution, Eq. (1) would become

yi =
1

2
− 1

4
e
−

ti−µ1
b1 +

1

2
e
−

ti−µ2
b2 + nyi , (25)
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for µ1 ≤ ti ≤ µ2 and the estimator b̂1 of b1 would become

b̂1 =
t2 − t1

log(1− 2y1)− log(1− 2y2)
(26)

when t1, t2 are significantly smaller than µ2. Similar formulas can be found to estimate the other

parameters.

VII. NUMERICAL RESULTS

This section presents simulation results evaluating the performance of the dynamic program-

ming algorithm proposed in Section V. Two scenarios will be considered, corresponding to a

fresh page with BER(t⋆) = 0.0015 and a worn-out page with BER(t⋆) = 0.025. The mean

voltage values for each level will be the same in both scenarios, but the standard deviations will

differ. Specifically, µ1 = 1 and µ2 = 2 for both pages, but the fresh page will be modeled using

σ1 = 0.12 and σ2 = 0.22, while the worn page will be modeled using σ1 = 0.18 and σ2 = 0.32.

These values, however, are unknown to the controller. The only information that it can use to

choose the read locations are uniform prior distributions on µ1, µ2, σ1, and σ2, identical for both

the fresh and the worn-out pages. Specifically, µ1 is known to be in the interval (0.75, 1.25), µ2

in (1.8, 2.1), σ1 in (0.1, 0.24) and σ2 in (0.2, 0.36).

For each scenario, three different strategies for selecting the read thresholds were evaluated.

The first strategy, S1, tries to obtain accurate noise estimates by spreading out the reads. The

second strategy, S2, concentrates all of them on the uncertainty region, attempting to attain highly

informative LLR values. Finally, the third strategy, S3, follows the optimal policy obtained by

the dynamic programming recursion proposed in Section V, with CP,P̂ as reward function. The

three strategies are illustrated in Fig. 5 and the results are summarized in Table II, but before

proceeding to their analysis we describe the process employed to obtain S3.

The dynamic programming scheme assumed that read thresholds were restricted to move in

steps of 0.04, and quantized all cdf measurements also in steps of 0.04 (making the noise ny from

Eq. (1) uniform between −0.02 and 0.02). Starting from these assumptions, Eqs. (19) and (20)
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were used to find the optimal policy π4 and expected value V3 for all meaningful combinations of

(t1, y1, t2, y2, t3, y3), which were in the order of 106 (very reasonable for offline computations).

The value function V3 was then used in the backward recursion to find the policies and values

for the first three reads as explained in Section V. The optimal location for the first read, in

terms of maximum expected value for I(X ; Y )−D(P‖P̂ ) after all four reads, was found to be

t⋆1 = 1.07. This read resulted in y1 = 0.36 for the fresh page and y1 = 0.33 for the worn page.

The policy π2 dictated that t2 = 0.83 for y1 ∈ (0.34, 0.38), and t2 = 1.63 for y1 ∈ (0.3, 0.34),

so those were the next reads in each case. The third and fourth read thresholds t3 and t4 were

chosen similarly according to the corresponding policies.

Finally, as depicted in Fig. 5, the read thresholds were

• S1: t = (0.85, 1.15, 1.75, 2.125).

• S2: t = (1.2, 1.35, 1.45, 1.6).

• S3 (fresh page): t = (1.07, 0.83, 1.79, 1.31) resulting in y = (0.36, 0.04, 0.58, 0.496),

respectively.

• S3 (worn page): t = (1.07, 1.63, 1.19, 1.43) resulting in y = (0.33, 0.56, 0.43, 0.51),

respectively.

For the fresh page, the policy dictates that the first three reads should be performed well outside

of the uncertainty region, so as to obtain good estimates of the means and variances. Then,

the fourth read is performed as close as possible to the BER-minimizing threshold. Since the

overlap between both levels is very small, soft decoding would barely provide any gain over

hard decoding. Picking the first three reads for noise characterization regardless of their value

towards building LLRs seems indeed to be the best strategy. For the worn-out page, the policy

attempts to achieve a trade-off by combining two reads away from the uncertainty region, good

for parameter estimation, with another two inside it to improve the quality of the LLR values

used for soft decoding.

Table II shows the relative error in our estimates and sector failure rates averaged over 5000

simulation instances, with read noise nyi , i = 1, . . . , 4 uniformly distributed between −0.02 and
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Fig. 5. Read thresholds for strategies S1, S2 and S3 for a fresh and a worn-out page.

FRESH PAGE S1 S2 S3

|µ̂− µ|/µ 0.004 0.182 0.012

|σ̂ − σ|/σ 0.03 0.91 0.12

|t̂⋆ − t⋆|/t⋆ 0.01 0.07 0.02

|BER(t̂⋆)− BER(t⋆)|/BER(t⋆) 0.1 1.4 0.11

LDPC fail rate 1 0.15 0

Genie LDPC fail rate 1 0 0

OLD PAGE S1 S2 S3

|µ̂− µ|/µ 0.005 0.053 0.021

|σ̂ − σ|/σ 0.03 0.27 0.13

|t̂⋆ − t⋆|/t⋆ 0.006 0.015 0.011

|BER(t̂⋆)− BER(t⋆)|/BER(t⋆) 0.003 0.009 0.007

LDPC fail rate 1 0.19 0.05

Genie LDPC fail rate 1 0 0.01

TABLE II

TRADE-OFF BETWEEN BER AND LDPC FAILURE RATE.

0.02. The first three rows show the relative estimation error of the mean, variance, and optimal

threshold. It can be observed that S1 provides the lowest estimation error, while S2 produces

clearly wrong estimates. The estimates provided by S3 are noisier than those provided by S1, but

are still acceptable. The relative increase in BER when reading at t̂⋆ instead of at t⋆ is shown in

the fourth row of each table. It is worth noting that the BER(t̂⋆) does not increase significantly,

even with inaccurate mean and variance estimates. This validates the derivation in Section III-B.

Finally, the last two rows on each table show the failure rate after 20 iterations of a min-sum

LDPC decoder for two different methods of obtaining soft information. The LDPC code had

18% redundancy and codeword length equal to 35072 bits. The fifth row corresponds to LLR

values obtained using the mean and variance estimates from the Progressive Read Algorithm

and the last row, labeled “Genie LDPC”, corresponds to using the actual values instead of the

estimated ones. It can be observed that strategy S1, which provided very accurate estimates,

always fails in the LDPC decoding. This is due to the wide range of cell voltages that fall
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between the middle two reads, being assigned an LLR value close to 0. The fact that the “Genie

LDPC” performs better with S2 than with S3 shows that the read locations chosen by the former

are better. However, S3 provides lower failure rates in the more realistic case where the means

and variances need to be estimated using the same reads used to produce the soft information.

In summary, S3 was found to be best from an LDPC code point of view and S1 from a

pure BER-minimizing perspective. S2 as proposed in [11] is worse in both cases unless the

voltage distributions are known. When more than four reads are allowed, all three schemes

perform similarly. After the first four reads, all the strategies have relatively good estimates for

the optimal threshold. Subsequent reads are located close to the optimal threshold, achieving

small BER. Decoding failure rates are then limited by the channel capacity, rather than by the

location of the reads.

VIII. CONCLUSION

NAND flash controllers often require several re-reads using different read thresholds to recover

host data in the presence of noise. In most cases, the controller tries to guess the noise distribution

based on the number of PE cycles and picks the read thresholds based on that guess. However,

unexpected events such as excessive leakage or charge trapping can make those thresholds

suboptimal. This paper proposed algorithms to reduce the total read time and sector failure rate

by using a limited number of re-reads to estimate the noise and improve the read thresholds.

The overall scheme will work as follows. First, the controller will generally have a prior

estimation of what a good read threshold might be. It will read at that threshold and attempt a

hard-decoding of the information. If the noise is weak and the initial threshold was well chosen,

this decoding will succeed and no further processing will be needed. In cases when this first

decoding fails, the controller will perform additional reads to estimate the mean and/or variance

of the voltage values for each level. These estimates will in turn be used to estimate the minimum

achievable BER and the corresponding optimal read threshold. The flash controller then decides

whether to perform an additional read with this threshold to attempt hard decoding again, or
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directly attempt a more robust decoding of the information, for example LDPC, leveraging the

reads already performed to generate the soft information.

The paper proposes using a dynamic programming backward recursion to find a policy for

progressively picking the read thresholds based on the prior information available and the results

from previous reads. This scheme will allow us to find the thresholds that optimize an arbitrary

objective. Controllers using hard decoding only (e.g., BCH) may wish to find the read threshold

providing minimum BER, while those employing soft decoding (e.g., LDPC) will prefer to

maximize the capacity of the resulting channel. The paper provides an approximation for the

(symmetric and mismatched) capacity of the channel and presents simulations to illustrate the

performance of the proposed scheme in such scenarios.
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IX. APPENDIX

Proof: (Theorem 1) The proof is very similar to that for Shannon’s Channel Coding The-

orem, but a few changes will be introduced to account for the mismatched decoder. Let X ∈

{1, 2}n denote the channel input and Y ∈ Yn the channel output, with Xi and Yi denoting

their respective components for i = 1, . . . , n. Throughout the proof, P̂ (A) will denote the

estimate for the probability of an event A obtained using the transition probabilities p̂ij , i = 1, 2,

j = 1, . . . , |Y|, to differentiate it from the exact probability P (A) obtained using transition prob-

abilities pij , i = 1, 2, j = 1, . . . , |Y|. The inputs are assumed to be symmetric, so P̂ (X) = P (X)

and P̂ (X, Y ) = P̂ (Y |X)P (X).

We start by generating 2nR random binary sequences of length n to form a random code C with

rate R and length n. After revealing the code C to both the sender and the receiver, a codeword x

is chosen at random among those in C and transmitted. The conditional probability of receiving a

sequence y ∈ Yn given the transmitted codeword x is given by P (Y = y|X = x) =
∏n

i=1 pxiyi ,

where xi and yi denote the i-th components of x and y, respectively.

The receiver then attempts to recover the codeword x that was sent. However, the decoder does

not have access to the exact transition probabilities pij and must use the estimated probabilities

p̂ij instead. When pij = p̂ij ∀i, j, the optimal decoding procedure is maximum likelihood

decoding (equivalent to maximum a posteriori decoding, since inputs are equiprobable). In

maximum likelihood decoding, the decoder forms the estimate x̂ = argmaxx∈C P̂ (y|x), where

P̂ (Y = y|X = x) =
∏n

i=1 p̂xiyi is the estimated likelihood of x, given y was received.

Denote by Â(n)
ǫ the set of length-n sequences {(x,y)} whose estimated empirical entropies
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are ǫ-close to the typical estimated entropies:

Â(n)
ǫ = {(x,y) ∈ {1, 2}n × Yn : (27)

∣∣∣∣−
1

n
logP (X = x)− 1

∣∣∣∣ < ǫ, (28)

∣∣∣∣−
1

n
log P̂ (Y = y)− µY

∣∣∣∣ < ǫ, (29)

∣∣∣∣−
1

n
log P̂ (X = x, Y = y)− µXY

∣∣∣∣ < ǫ
}
, (30)

where µY and µXY represent the expected values of − 1
n
log P̂ (Y ) and − 1

n
log P̂ (X, Y ), respec-

tively, and the logarithms are in base 2. Hence,

µY = −1

n

n∑

i=1

|Y|∑

k=1

P (Yi = k) log P̂ (Yi = k) (31)

= −
|Y|∑

k=1

p1k + p2k
2

log

(
p̂1k + p̂2k

2

)
, (32)

µXY = −1

n

n∑

i=1

2∑

b=1

|Y|∑

k=1

P (Xi = b, Yi = k) log P̂ (Xi = b, Yi = k) (33)

= −
|Y|∑

k=1

(
p1k
2

log

(
p̂1k
2

)
+

p2k
2

log

(
p̂2k
2

))
, (34)

where the exact transition probabilities are used as weights in the expectation and the estimated

ones are the variable values. Particularly, (x,y) ∈ Â(n)
ǫ implies that P̂ (Y = y|X = x) >

2n(1−µXY −ǫ) and P̂ (Y = y) < 2−n(µY −ǫ). We will say that a sequence x ∈ {1, 2}n is in Â(n)
ǫ if

it can be extended to a sequence (x,y) ∈ Â(n)
ǫ , and similarly for y ∈ Yn.

First we show that with high probability, the transmitted and received sequences (x,y) are

in the Â(n)
ǫ set. The weak law of large numbers states that for any given ǫ > 0, there exists n0,

such that for any codeword length n > n0

P
(∣∣∣∣−

1

n
logP (X = x)− 1

∣∣∣∣ ≥ ǫ
)
<

ǫ

3
, (35)

P
(∣∣∣∣−

1

n
log P̂ (Y = y)− µY

∣∣∣∣ ≥ ǫ
)
<

ǫ

3
, (36)

P
(∣∣∣∣−

1

n
log P̂ (X = x, Y = y)− µXY

∣∣∣∣ ≥ ǫ
)
<

ǫ

3
. (37)

Applying the union bound to these events shows that for n large enough, P
(
(x,y) /∈ Â(n)

ǫ

)
< ǫ.
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When a codeword x ∈ {1, 2}n is transmitted and y ∈ Yn is received, an error will occur

if there exists another codeword z ∈ C such that P̂ (Y = y|X = z) ≥ P̂ (Y = y|X = x).

The estimated likelihood of x is greater than 2n(1−µXY −ǫ) with probability at least 1− ǫ, as was

just shown. The other nR− 1 codewords in C are independent from the received sequence. For

a given y ∈ Â(n)
ǫ , let Sy =

{
x ∈ {1, 2}n : P̂ (Y = y|X = x) ≥ 2n(1−µXY −ǫ)

}
denote the set of

input sequences whose estimated likelihood is greater than 2n(1−µXY −ǫ). Then

1 =
∑

x∈{1,2}n

P̂ (X = x|Y = y) (38)

>
∑

x∈Sy

P̂ (Y = y|X = x)
P (X = x)

P̂ (Y = y)
(39)

> |Sy|2n(1−µXY −ǫ)2−n2n(µY −ǫ) (40)

which implies |Sy| < 2n(µXY −µY +2ǫ) for all y ∈ Â(n)
ǫ .

If (x,y) ∈ Â(n)
ǫ , any other codeword causing an error must be in Sy. Let Ei, i = 1, . . . , nR−1

denote the event that the i-th codeword in the codebook C is in Sy, and F the event that (x,y)

are in Â(n)
ǫ . The probability of error can be upper bounded by

P (x̂ 6= x) = P (F c)P (x̂ 6= x|F c) + P (F )P (x̂ 6= x|F ) (41)

≤ ǫP (x̂ 6= x|F c) +
2nR−1∑

i=1

P (Ei|F ) (42)

≤ ǫ+ 2nR|Sy|2−n (43)

≤ ǫ+ 2n(R+µXY −µY −1+2ǫ) (44)

Consequently, as long as

R <
1

2

|Y|∑

k=1

(p1k log (p̂1k) + p2k log (p̂2k))− (p1k + p2k) log

(
p̂1k + p̂2k

2

)
, (45)

for any δ > 0, we can choose ǫ and nǫ so that for any n > nǫ the probability of error, averaged

over all codewords and over all random codes of length n, is below δ. By choosing a code

with average probability of error below δ and discarding the worst half of its codewords, we

can construct a code of rate R − 1
n

and maximal probability of error below 2δ, proving the



33

achievability of any rate below the bound CP,P̂ defined in Eq. (15). This concludes the proof.
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