
 

Vrije Universiteit Brussel

Fast Desynchronization For Decentralized Multichannel Medium Access Control
Deligiannis, Nikolaos; Mota, Joao; Smart, George; Andreopoulos, Yiannis

Published in:
IEEE Transactions on Communications

DOI:
10.1109/TCOMM.2015.2455036

Publication date:
2015

Document Version:
Submitted manuscript

Link to publication

Citation for published version (APA):
Deligiannis, N., Mota, J., Smart, G., & Andreopoulos, Y. (2015). Fast Desynchronization For Decentralized
Multichannel Medium Access Control. IEEE Transactions on Communications, 63(9), 3336-3349.
https://doi.org/10.1109/TCOMM.2015.2455036

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 27. Apr. 2024

https://doi.org/10.1109/TCOMM.2015.2455036
https://cris.vub.be/en/publications/fast-desynchronization-for-decentralized-multichannel-medium-access-control(b98e0056-2b09-44e9-9ec5-2223e34bf0df).html
https://doi.org/10.1109/TCOMM.2015.2455036


ar
X

iv
:1

50
7.

06
23

9v
1 

 [c
s.

S
Y

]  
22

 J
ul

 2
01

5
1

Fast Desynchronization For Decentralized
Multichannel Medium Access Control

Nikos Deligiannis, João F. C. Mota, George Smart, and Yiannis Andreopoulos

Abstract—Distributed desynchronization algorithms are key to
wireless sensor networks as they allow for medium access control
in a decentralized manner. In this paper, we view desynchro-
nization primitives as iterative methods that solve optimization
problems. In particular, by formalizing a well established desyn-
chronization algorithm as a gradient descent method, we establish
novel upper bounds on the number of iterations required to reach
convergence. Moreover, by using Nesterov’s accelerated gradient
method, we propose a novel desynchronization primitive that
provides for faster convergence to the steady state. Importantly,
we propose a novel algorithm that leads to decentralized time-
synchronous multichannel TDMA coordination by formulatin g
this task as an optimization problem. Our simulations and
experiments on a densely-connected IEEE 802.15.4-based wireless
sensor network demonstrate that our scheme provides for faster
convergence to the steady state, robustness to hidden nodes,
higher network throughput and comparable power dissipation
with respect to the recently standardized IEEE 802.15.4e-2012
time-synchronized channel hopping (TSCH) scheme.

Index Terms—Medium access control, desynchronization, gra-
dient methods, decentralized multichannel coordination.

I. I NTRODUCTION

I N WIRELESS sensor networks (WSNs), achieving and
maintaining (de)synchronization among the nodes supports

various functionalities, including data aggregation, duty cy-
cling, and cooperative communications. In particular, devising
protocols that perform desynchronization at the medium access
control (MAC) layer is key in achieving fair TDMA scheduling
among the nodes in a channel [2]–[7].

In order to extend fair TDMA scheduling to large-scale
networks, protocols that achieve(de)synchronization across
multiple channels[4], [5] are required. Typical approaches are
infrastructure-based(i.e., centralized), as they use a coordi-
nation channel and/or node and a global clock (e.g., via a
GPS system) [5]. Channel hopping is been accepted as a good
solution for MAC-layer coordination for dense WSN topolo-
gies. According to channel hopping, nodes hop between the
available channels of the physical layer such that they are not
constantly using a channel with excessive interference. Form-
ing the state-of-the-art, thetime-synchronized channel hopping
(TSCH) [5] protocol is now part of the IEEE 802.15.4e-
2012 standard [8]. In TSCH, each node reserves timeslots

This work has been presented in part at the 14th International Conference
on Information Processing in Sensor Networks (IPSN ’15) [1].

N. Deligiannis is with the Department of Electronics and Informatics,
Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium, and also with
iMinds, Ghent 9050, Belgium (email: ndeligia@etro.vub.ac.be).

J. F. C. Mota, G. Smart, and Y. Andreopoulos are with the Electronic
and Electrical Engineering Department, University College London, Roberts
Building, Torrington Place, London, WC1E 7JE, UK (e-mail:{j.mota,
george.smart, i.andreopoulos}@ucl.ac.uk).

within the predefined slotframe interval and within the 16
channels of IEEE 802.15.4. However, filling up the avail-
able slots follows an advertising request-and-acknowledgment
(RQ/ACK) process on a coordination channel. This channel is
prone to interference and self-inflicted collisions when nodes
advertise slots aggressively. Moreover, when nodes leave the
network, their slots may remain unoccupied for long periods
until another advertisement process reassigns them to other
nodes. This limits the bandwidth usage per channel and does
not allow for fast convergence to the steady state1. It is also
important to note that TSCH requires a coordinator to maintain
global time synchronization [3], [5].

To achieve infrastructure-less(i.e., decentralized) WSN
MAC-layer coordination, distributed (de)synchro-nization al-
gorithms have attracted a lot of interest [2], [5], [6], [9]–[17].
These algorithms are inspired by biological agents modeled
as pulse-coupled oscillators (PCOs) [6], [14], [18], namely, as
timing mechanisms following a periodic pulsing (i.e., beacon
packet transmission at the MAC) that is updated via the
timings of pulses heard from other nodes.

Most work on distributed (de)synchronization is based on
the PCO dynamics model introduced by Mirollo and Strogatz
[18], and derives several algorithms with properties of practical
relevance to WSN deployments, namely:(i) limited listening
[2], [19], [20], a property that is imperative for low energy
consumption in wireless transceivers;(ii) solutions amenable
to multi-hop network topologies and the existence of hidden
nodes [2], [11], [17];(iii) solutions scalable to large groups
of nodes [6], [15]; and(iv) modifications that lead to fast
convergence to steady state [12]–[14], [21]. PCO-based syn-
chronization methods have also been interpreted as consensus
algorithms for multi-agent systems [22]–[24]. The work in
[22] studied synchronization of networked oscillators under
heterogeneous time-delays and varying topologies. In [24], the
synchronization of networked oscillators was modeled using
coupled discrete-time phase locked loops.

Regarding the study of the convergence speed of desynchro-
nization algorithms, mostly estimates based on simulations
or empirical measurements have been derived. In effect, only
lower bounds [14], [19], order-of-convergence estimates [2],
[6], [19] and operational estimates [25] have been established.
However, no upper bounds are currently known for the conver-
gence speed of desynchronization algorithms, despite the fact
that such bounds provide for worst-case guarantees of time and

1Both high network throughputand quick convergenceare important for
WSNs that operate with a periodic wake-up cycle (or are event-triggered) and
must quickly converge to a steady operational state and transmit high data
volumes before being re-suspended.

http://arxiv.org/abs/1507.06239v1


2

0

θi+1(ti−1)

θi−1(ti−1)
θi(ti−1)

θ′i(ti−1)

Fig. 1. Phase update of nodei according to the DESYNCalgorithm: nodei−
1 fires at timeti−1, and nodei updates its phase fromθi(ti−1) to θ′

i
(ti−1),

towards the average of the phases of nodesi−1 andi+1, its phase neighbors.

energy consumption to achieve the state of desynchrony. Fur-
thermore, despite the plethora of works on PCOs, the problem
of extending distributed (de)synchronization algorithmsto the
multichannel case (which is key in today’s wireless networks)
has received limited attention. A preliminary attempt was done
in [7], where desynchronization was independently appliedper
channel. The limitation of the scheme in [7] is that, since the
nodes in different channels are not synchronized, when a node
switches channels convergence needs to be established anew.

In this work, we view the problem of desynchronization
as an optimization problem. In particular, we show that a
minor modification of the well established DESYNC algorithm
[2], [10] is the gradient descent method applied to a specific
optimization problem. Although desynchronization can also
be viewed from a consensus perspective [23], the optimiza-
tion approach is more powerful as it allows deriving faster
algorithms [26], [27]. Our contributions are as follows:

• We establish novel upper bounds on the convergence rate
of the DESYNC process. Such bounds can yield reliable
estimates of worst-case energy consumption and time re-
quired for convergence, which are important for systems
that operate under delay and/or energy constraints.

• We propose a novel desynchronization algorithm based
on Nesterov’s accelerated gradient method [28], [29].
We show, both theoretically and experimentally, that the
proposed algorithm leads to faster convergence to steady
state than the conventional DESYNC algorithm [2], [10].

• We propose a novel distributed multichannel method
that jointly performs synchronization across channels
and desynchronization within each channel. Contrary to
[7], the proposed algorithm leads to time-synchronous
multichannel TDMA coordination (where nodes allocated
the same timeslot in adjacent channels are synchronized).
In this way, nodes can swap channels (thus, avoiding
persistent interference in certain channels and achieving
higher connectivity) without the network exiting the
steady state.

• Finally, via simulations and experiments using a real
WSN deployment abiding by the IEEE802.15.4 stan-
dard, we show that our approach leads to decentralized
time-synchronous multichannel MAC-layer coordination
that achieves higher network throughput compared to
the state-of-the-art TSCH [5] protocol, while incurring
comparable power consumption.

The paper continuous as follows: Section II presents the
background on PCO methods, while Section III derives our

upper bound for the desynchronization process and proposes
our novel accelerated desynchronization algorithm. Section IV
presents our novel formulation of multichannel coordination.
Simulations and experiments using a WSN deployment are
given in Section V, while Section VI concludes the paper.

II. BACKGROUND ON PULSE-COUPLED OSCILLATORS

Consider afully-connectedWSN comprisingn nodes, each
acting as a pulse-coupled oscillator [18]. When a node does
not interact with others, it broadcasts afire messageor
pulse periodically. This is modeled by assigning to nodei
a phaseθi(t), whose value at timet is given by [2], [19]

θi(t) =
t

T
+ φi mod 1 , (1)

whereφi ∈ [0, 1] is the phase offsetof node i and mod 1
denotes the modulo operation with respect to unity. Fig. 1
illustrates (1) graphically: the phaseθi(t) of node i can be
seen as a bead moving clockwise on a circle, whose origin
coincides both with0 and 1 [6], [18], [19], [30]. If φi is
constant, which happens when the nodes do not interact, nodei
broadcasts a fire message everyT time units, whenθi(t) = 1,
and then sets its phase to zero. When the nodes interact,
e.g., by listening to each others’ messages, they modify
their phases (specifically, their phase offsets), according to an
update equation that expresses the PCO dynamics [18]. One of
the most prominent PCO algorithms for desynchronization at
the MAC layer of WSNs is the DESYNC algorithm [2], [10].
In DESYNC, the nodes are ordered according to their initial
phases:0 ≤ θ1(0) < θ2(0) < · · · < θn(0) < 1. Assuming
perfect beacon transmission and reception, the order of the
firings in DESYNC will remain the same [2], [10]. The phase
θi of each nodei is updated based on the phasesθi−1 andθi+1

of its phase neighbors, nodesi−1 andi+1, respectively. This
is illustrated in Fig. 1: immediately after nodei− 1 transmits
a fire message, nodei modifies its phase according to

θ′i(ti−1) = (1−α)θi(ti−1)+α
θi−1(ti−1) + θi+1(ti−1)

2
, (2)

whereti−1 is the time instant in which nodei − 1 fires, i.e.,
θi−1(ti−1) = 1, andi = 1, 2, . . . , n, with periodic extension at
the boundaries. Thejump-phase parameterα ∈ (0, 1) controls
the phase increment [2], [10].

When nodei updates its phase, it hasstaleknowledge of the
phase of nodei+1, namely, it only knows the previous value
of θi+1 and not the current one. This is because nodei + 1
modified its phase when nodei fired, but the value of the
new phase has not been “announced” yet [10]. In DESYNC,
each node:(i) updates its phase once in eachfiring round (we
say that a firing round is completed when each node in the
network has fired exactly once);(ii) does not need to know
the total number of nodes,n, in the network;(iii) requires
limited listening, as only the messages from the two phase
neighbors are required. These features make DESYNC quite
popular [2], [10]. For a fully-connected network, it has been
shown that (2) converges to thestate of desynchronyat timet,
after which the interval between consecutive firings isT/n up
to a small thresholdǫ. Under partial connectivity or hidden



3

nodes, convergence is still achieved under a wide variety of
topologies, but the node firings may not be equidistant [2]. It
has been conjectured via simulations [10], [30] that DESYNC

converges to desynchrony (i.e., perfect TDMA scheduling) in

rDESYNC = O

(
1

α
n2 ln

1

ǫ

)

(3)

firing rounds. Recently, under the assumption of uniformly
distributed initial firing phases, an operational estimatefor
the number of firing rounds for the DESYNC algorithm’s
convergence was derived [25]. However, no upper bounds are
known for the desynchronization process.

III. D ESYNC AS A GRADIENT METHOD

We start by showing that, considering a fully-connected
network, a minor modification of DESYNC [2], [10] can be
viewed as a gradient descent method solving an optimization
problem. Then, we establish novel convergence properties of
the resulting method and derive a new accelerated desynchro-
nization primitive.

Staleness of DESYNC: Fig. 2 shows five consecutive con-
figurations of the phases of the nodes of a network with four
nodes. The purpose is to illustrate how the phases of the nodes
are updated in the first iteration of DESYNC [2], [10] and to
highlight our minor modification. For simplicity, we omit the
time dependence of the phases, but use a superscript to indicate
how many times they have been updated. In Fig. 2(a), no
firing has yet occurred. The first update occurs when node2

fires, whereby node3 updates its phase fromθ(0)3 to θ
(1)
3 [see

Fig. 2(b)]. According to (2), this update requires knowingθ2
(which is equal to1 because node2 is firing) andθ4 (which
is known because node4 was the first to fire). The second
phase update occurs in Fig. 2(c): node1 fires, and node2
updates its phase fromθ(0)2 to θ

(1)
2 . According to (2), this

update requires the value ofθ1 (known because node1 is
firing) and θ3. The current value ofθ3 (actually,θ(1)3 ) is not
known because node3 has not fired since it updated its phase.
Therefore, node2 will use θ

(0)
3 rather thanθ(1)3 . This is why

we say that DESYNC is stale: each update uses stale versions
of the phases. In step (d), node1 updates its phase and also
uses a stale version of the phase of node2. Finally, in step (e),
node4 updates its phase using a stale version of the phase of
node1. We assume, however, that in contrast with the other
nodes, this update uses the valueθ

(0)
3 (in gray) and notθ(1)3 .

Assumption 1. In DESYNC, node n updates its phase at
iteration k usingθ(k−1)

n−1 in place ofθ(k)n−1.

Via Assumption 1, all updates in Fig. 2 use the initial
valuesθ(0)1 , θ(0)2 , θ(0)3 , and θ

(0)
4 . In practice, this assumption

does not lead to a discernible difference in the performance
of DESYNC.

Vector notation: Suppose we are in thek-th firing round,
i.e., all nodes have updated their phasesk− 1 times. We have
already mentioned how the firing of a nodei, say at timeti,
enables other nodes to determine the current value ofφ

(k−1)
i

in (1): φ
(k−1)
i = 1 − ti/T . Knowing this, each node can

determine the value ofθ(k−1)
i (t) for any time instant. We will

now see how the update rule (2) translates into the updates
of the phase offsets. Replacing (1) into (2) at firing round
(iteration)k, we obtain

θ′i(ti−1) =
ti−1

T
+ φ

(k)
i

= (1− α)
[ ti−1

T
+ φ

(k−1)
i

]

+
α

2

[ ti−1

T
+ φ

(k−1)
i−1 +

ti−1

T
+ φ

(k−1)
i+1

]

=
ti−1

T
+ (1− α)φ

(k−1)
i + α

φ
(k−1)
i−1 + φ

(k−1)
i+1

2
.

Eliminating the termti−1/T , we get:φ(k)
i = (1−α)φ

(k−1)
i +

α
φ
(k−1)
i−1 +φ

(k−1)
i+1

2 . In a strict sense, this expression is only valid
for i = 2, . . . , n− 1 as the updates for nodes1 andn require
a correcting term to compensate the fact that eachθ wraps
around1. Therefore, the updates for all nodes are

φ
(k)
1 = (1− α)φ

(k−1)
1 +

α

2

(
φ
(k−1)
2 + φ(k−1)

n − 1
)

(4)

φ
(k)
i = (1− α)φ

(k−1)
i +

α

2

(
φ
(k−1)
i−1 + φ

(k−1)
i+1

)
, 2 ≤ i ≤ n− 1

(5)

φ(k)
n = (1− α)φ(k−1)

n +
α

2

(
φ
(k−1)
n−1 + φ

(k−1)
1 + 1

)
. (6)

Without Assumption 1,φ(k−1)
1 in (6) would be replaced

with φ
(k)
1 . It is, however, this assumption that enables us to

write (4)-(6) in vector form:

φ(k) =








1− α α
2 0 · · · 0 α

2
α
2 1− α α

2 · · · 0 0
...

. . .
...

...
α
2 0 0 · · · α

2 1− α







φ(k−1)−α

2
d ,

(7)
where φ(k) = (φ

(k)
1 , φ

(k)
2 , . . . , φ

(k)
n ) ∈ R

n is a vector
containing the phases of all the nodes at iterationk, and
d := (1, 0, . . . , 0,−1) ∈ R

n. Equation (7) has the format
of the updates usually found in the discrete-time consensus
literature [23], [31], [32]. In particular, the matrix in (7)
can be seen as the Perron matrix of a network with a ring
topology and the vectord can be seen as an input bias [23].
This observation can be used to provide upper bounds on
the convergence rate of (7). However, one can view (7) as
an algorithm solving an optimization problem since, besides
also providing upper bounds, this interpretation enables the
derivation of an accelerated version of desynchronization. This
interpretation is formalized next.

Proposition 1. Let φ(k) = (φ
(k)
1 , φ

(k)
2 , . . . , φ

(k)
n ) denote the

phases of all nodes at firing roundk. If Assumption 1 holds,
then DESYNC (2) and (7) is the steepest descent method
applied to

minimize
φ

g(φ) :=
1

2

∥
∥Dφ− v1n + en

∥
∥
2

2
(8)

where v = 1/n, 1n ∈ R
n is the vector of ones,en =



4

0

θ
(0)
4

θ
(0)
3

θ
(0)
2

θ
(0)
1

(a)

0

θ
(0)
4

θ
(0)
2

θ
(0)
1

θ
(0)
3

θ
(1)
3

(b)

0

θ
(0)
4

θ
(1)
3

θ
(0)
1

θ
(0)
2

θ
(1)
2

(c)

0

θ
(0)
4

θ
(1)
3

θ
(1)
2

θ
(0)
1

θ
(1)
1

(d)

0
θ
(0)
4

θ
(1)
3

θ
(0)
3

θ
(1)
2

θ
(1)
1

θ
(0)
4

θ
(1)
4

(e)

Fig. 2. Updates during the first iteration of DESYNC in a 4-node network: (a) initial phases; no firing has occurred yet; (b) the first update occurs when
node2 fires and after nodes4 and3 have fired. The firing of node2 causes node3 to updateθ(0)3 to θ

(1)
3 . In the remaining steps, nodei fires and nodej

updates its phase, where(i, j) is (1, 2) in (c), (4, 1) in (d), and(3, 4) in (e). All phases are updated as a function of the initial values, i.e., although some
of the phases have already changed, the updates use alwaysθ

(0)
1 , θ(0)2 , θ(0)3 , or θ(0)4 , and not the new values.

(0, 0, . . . , 0, 1) ∈ R
n, and

D =










−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
...

. . .
. . .

...
0 . . . 0 0 −1 1
1 . . . 0 0 0 −1










∈ R
n×n . (9)

Specifically, the updates in(7) can be written as

φ(k) = φ(k−1) − α

2
∇g(φ(k−1)) . (10)

Proof: SinceDT
1n = 0n, we have

∇g (φ) = DT (Dφ− v1n + en) = DTDφ+ d , (11)

whered = DTen is the vector that appears in (7). Therefore,
the steepest descent applied to (8) yields

φ(k) = φ(k−1) − β∇g(φ(k−1))

= φ(k−1) − βDTDφ(k−1) − βd

= (In − βDTD)φ(k−1) − βd , (12)

whereIn is the identity matrix inRn. Replacingβ = α/2,
we obtain

φ(k) = (In − α

2
DTD)φ(k−1) − α

2
d , (13)

The last equation is exactly (7).
We setv = 1

n
in (8) to emphasize that the goal of DESYNC

is to disperse then phases throughout[0, 1]. However, any
other value forv would lead to the same update rule, since
the gradient of the objective function does not depend onv;
see (11) in the proof. This confirms the fact that DESYNC does
not require the knowledge of the number of nodes,n, in the
network [10]. Notice also thatD is not full rank; therefore, the
objective of (8) is not strictly convex. Indeed, the nullspace
of D is {z 1n : z ∈ R} ∪ {0n}. Consequently, ifφ is a
solution of (8), so isφ + z 1n for any z ∈ R. We notice
that the interpretation of Proposition 1 is akin to the one that
views consensus algorithms as gradient descent methods for
minimizing

∑n
i=1(φi − θi)

2, whereθi is the observation of
agenti [26], [33].

This interpretation of DESYNC provides for:(i) an alterna-
tive way to establish the values ofα for which convergence
holds, and(ii) an upper bound on the number of the firing
rounds until convergence.

Corollary 1. Every limit point of the sequence produced by
the DESYNC algorithm (7) with α ∈ (0, 1) is a stationary
point of (8).

Proof: The proof is given in Appendix A.

Corollary 2. Let φ(0) represent the vector of initial phases,
and letφ⋆ be any solution of(8). Suppose0n ≤ φ(0) ≤ 1n.
Then, the number of firing rounds,rD , that DESYNC (4)–(6)
requires in order to generate a pointφ that has accuracy
ǫ := g

(
φ
)

is upper bounded as

rD ≤ ‖φ(0) − φ⋆‖22
2α(1− α)

(
1

ǫ
− 1

g
(
φ(0)

)

)

(14)

≤ 1

6nα(1− α)

[
7

2
n2 + 3n+ 4

](
1

ǫ
− 1

g
(
φ(0)

)

)

. (15)

Proof: The proof is given in Appendix A.
Corollary 1 confirms Theorem 1 in [10] regarding the sta-

bility and convergence of DESYNC, albeit using different tools
and without requiring simulations to illustrate the avoidance
of limit cycles. Corollary 2 complements the existing order-
of-convergence estimate of (3) and the operational estimates
derived by Buranapanichkitet al. [25] by deriving an upper
bound for the firing rounds to achieve convergence. Such an
upper bound allows for reliable estimates ofworst-caseenergy
consumption and time, expressed in number of firing rounds or
iterations, required to reach convergence. These estimates are
important for systems that operate under delay and/or energy
constraints. Notice that the bound in (15) is a function of
known system parameters, namely, the number of nodesn,
the jump-phase parameterα, the tolerance parameterǫ, and
the evaluation ofg(·) on the initial phase vector (the latter
can be ignored yielding a looser bound).

The FAST-DESYNC algorithm based on Nesterov:A key
advantage of viewing desynchronization as an optimization
problem is that we can create new primitives that converge to
desynchrony much faster. Particularly, we can use Nesterov’s
fast gradient algorithm [28], [29] (here we use the adaptation
in [34]):

φ(k) = µ(k−1) − β∇g(µ(k−1)) (16a)

µ(k) = φ(k) +
k − 1

k + 2

(
φ(k) − φ(k−1)

)
, (16b)



5

whereµ(k) ∈ R
n is an auxiliary vector. Nesterov’s method is

applicable under the same assumptions as the steepest descent,
i.e., wheng is continuously differentiable and its gradient is
Lipschitz continuous with constantL. However, it requires
0 < β ≤ 1/L rather than0 < β < 2/L. At the expense
of small extra memory and computation, Nesterov’s method
takesO(1/

√
ǫ) iterations to produce a pointφ that satisfies

g(φ) − g(φ⋆) ≤ ǫ, whereφ⋆ minimizes g. Recall that the
steepest descent takesO(1/ǫ) to produce such a point [cf.
(15)]. We shall show that this improved performance in terms
of bounds is also observed experimentally. Note thatµ(k), φ(k)

converge to the same point, i.e.,‖φ(k) − µ(k)‖ → 0 as
k → ∞. More importantly, Nesterov showed in [29] that (16)
has optimal convergence rate among first-order methods, i.e.,
methods that use information about first-order derivativesonly,
possibly from all past iterations.

We propose applying Nesterov’s algorithm (16a)-(16b) to
solve (8). This yields a primitive that we call FAST-DESYNC.
Node i = 1, . . . , n holds two variablesφi andµi, which are
updated at iterationk as

φ
(k)
i = (1− α)µ

(k−1)
i +

α

2

(
µ
(k−1)
i−1 + µ

(k−1)
i+1 − di

)
(17a)

µ
(k)
i = φ

(k)
i +

k − 1

k + 2

(
φ
(k)
i − φ

(k−1)
i

)
, (17b)

whered1 = 1, dn = −1, anddi = 0 for i = 2, . . . , n − 1.
Note that (17a) is identical to the DESYNC updates (4)–(6).
The only detriment is that each node needs an extra memory
register to storeφ(k−1)

i , which is used in (17b), and perform
the extra computations in (17b). Under this modification, the
following holds:

Corollary 3. Letα ∈ (0, 1/2] and let0n ≤ φ(0) = µ(0) ≤ 1n

represent the vectors of initial phases. Let alsoφ⋆ be any
solution of (8). Then, the number of firing rounds thatFAST-
DESYNC (17a)-(17b) requires to generate a pointφ that has
accuracyǫ := g(φ) is upper bounded as

rFD ≤ 2√
α ǫ

∥
∥φ(0) − φ⋆

∥
∥
2

(18)

≤ 2

√

1

3nαǫ

[
7

2
n2 + 3n+ 4

]

. (19)

Proof: The proof is given in Appendix A.
Contrasting (15) and (19) we notice that FAST-DESYNC

allows for significant reduction in the order-of-iterations for
convergence compared to DESYNC, particularly, O(

√

n/ǫ)
versusO(n/ǫ), respectively.

IV. EXTENSION TO DECENTRALIZED MULTICHANNEL

COORDINATION

We now describe our algorithm that jointly applies syn-
chronization across channels and desynchronization in each
channel. We assume that all nodes can receive all fire message
broadcasts in their channel. We will show experimentally,
however, that our proposal works even for densely-connected
WSNs (when some nodes cannot be reached by others), as
DESYNC still converges in such cases [2]. We first describe
our protocol.

(a) (b)

Fig. 3. (a) Initial random state ofn = 14 nodes inC = 4 channels;
(b) steady state of the proposed protocol withnc = 3 nodes for channels
c = 1 and c = 2, andnc = 4 nodes in channelsc = 3 and c = 4. The
DESYNCnodes (in white) allow for intra-channel desynchronization, while the
SYNC nodes (in grey) provide for cross-channel synchronization. Nodes that
belong to balanced channel and that fire synchronously can swap channels.
The horizontal position of a node indicates the firing moment.

A. Proposed Decentralized Multichannel MAC-layer Coordi-
nation

Let a WSN comprisen nodes that are initially randomly
distributed inC channels [see Fig. 3(a)]—for example, the
C = 16 channels of the IEEE 802.15.4 standard [35], [36].
The maximum achievable throughput per node is obtained
when the nodes are uniformly distributed across the available
channels and a perfect TDMA scheduling is reached in each
channel. When the total number of nodes in the network,n, is
divisible byC our protocol will lead tonc =

n
C

nodes being
present in each channel, alternatively,nc =

{⌊
n
C

⌋
,
⌈
n
C

⌉}

nodes will be present in each channel, as shown in Fig. 3(b).
Existing mechanisms, such as the one in [7], can take

place during convergence to balance the number of nodes.
Specifically, a node lying in channelc may switch to channel
c+1 (with cyclic extension at the border), if it detects that less
nodes are present there. Detection of the number of nodes in
a channel is possible by integrating this information in thefire
messages transmitted by the nodes. In [7], in order to detect
the number of nodes in channelc + 1, nodes within channel
c proactively switched channels for short time intervals [7].
Here, however, we follow a different approach, which is akin
to the proposed algorithm. In particular, a single node (which
we later call SYNC) lying in channelc is elected to listen for
fire messages in channelc+1. This specific node may jump to
the next channel if it detects that less nodes are present there.
When a SYNC node jumps from one channel to the next, both
channels are set to elect their SYNC nodes anew. In order
to avoid a race condition, where nodes continuously jump
channels, the following conditions are defined for channel
switching:

{

nc − nc+1 ≥ 1, if c ∈ [1, C)

nc − nc+1 ≥ 2, if c = C

where nc denotes the number of nodes present in channel

c, with n =
C∑

c=1
nc. The switching rule and conditions ensure

that, after a few firing periods, there will benc ∈ {
⌊
n
C

⌋
,
⌈
n
C

⌉
}

nodes in each channelc.
When the channels have been balanced, the proposed it-

erative joint synchronization-desynchronization algorithm is



6

applied. By considering that each node acts as a pulse-coupled
oscillator with a period ofT seconds, our novel algorithm
(see Section IV-B) leads todecentralizedmultichannel round-
robin scheduling. The nodes in each channel are divided in
two classes. Specifically, all but one node in each channel
apply desynchronization so as to achieve TDMA within the
channel (these nodes are denoted as “DESYNC”). D ESYNC

nodes operate only within their channel, firing and listening to
messages from the other nodes in their channel. In addition,
one “SYNC” node per channel performs cross-channel syn-
chronization to achieve a time-synchronous slot structure[Fig.
3(b)]. The SYNC node of each channel listens for the SYNC

fire message in the next channel2. A node can be designated as
the SYNC node in a channel based on a pre-established rule,
e.g., the node with the smallest node ID, or the node with the
highest battery level (all nodes can be made to report their
node ID and battery status in their beacon messages).

We highlight that the existence of a SYNC node in each
channel calls for an iterative algorithm performed jointly
across the available channels (see Section IV-B). This is
fundamentally different from prior schemes, e.g., [7], which
applied desynchronization in each channel independently.In
contrast, cross-channel synchronization allows for achannel
swappingmechanism to be applied in the converged state.
Specifically, nodes (both of SYNC and DESYNC type) that
fire synchronously in adjacent channels can swap channels and
time-slots in pairs using a simple RQ/ACK scheme3 [see Fig.
3(b)]. Channel swapping allows for communication between
nodes initially present in different channels without leaving the
steady network state, thereby achieving increased connectivity.
Conversely, in [7], when a node changes channels, conver-
gence to TDMA in the channel needs to be established anew.

According to our protocol, starting from any random state,
the network reaches a steady state, where:(i) the same number
of nodes is present in adjacent channels,(ii) the nodes in each
channel have converged to a TDMA scheduling and(iii) the
nodes in channels with the same number of nodes have a
parallel TDMA scheduling, where nodes allocated with the
same time-slot order transmit synchronously [see Fig. 3(b)].

B. Proposed JointSYNC-DESYNC Algorithm

We now describe the proposed joint algorithm that al-
lows for synchronization of SYNC nodes across channels and
desynchronization of DESYNC nodes in each channel. Letθc,i
(resp.φc,i) denote the phase (resp. phase offset) of nodei =
1, . . . , nc in channelc = 1, . . . , C. Without loss of generality
and to simplify notation, let the nodei = 1 be the SYNC node
in each channel4. DESYNC nodesi = 2, . . . , nc in channelc
are coupled with phase neighboring nodes (both DESYNC and
SYNC) in the same channel. Namely, any DESYNC nodei in
channelc updates its phase offsetφc,i when nodei− 1 in the

2We consider a cyclic behavior between channels 1 and 16 of IEEE 802.15.4
[35], [36]. Namely, the SYNC node at channel 16 listens for the fire message
from the SYNC node in channel 1.

3Swap RQ/ACK packets are transmitted at another channel during a short
interval after and before a node’s fire message transmission.

4As explained in Section IV-A, any node in a channel can be the SYNC

node. This convention is only used to simplify our notation.

Fig. 4. Example of the phase updates performed by the proposed multichan-
nel MAC algorithm: In channel 1, the DESYNC (white) node 4 undergoes
a phase update receiving coupling from nodes 1 and 3, presentin the same
channel. In channel 2, the SYNC (grey) node 2 doesnot receive coupling from
the DESYNC node 4 that fires. In channel 3, the phase of the SYNC node 1
is updated due to the firing of the SYNC node in channel 4. The firing of the
latter node also triggers a phase update of the DESYNC node 2 in channel 4.

same channel transmits a fire message, i.e., whenθc,i−1 = 1.
The SYNC node in channelc, in turn, receives coupling only
from the SYNC node in channelc+ 1 (channel 1 forc = C).
Specifically, it updates its phase offsetφc,1 when the SYNC

node in the next channel fires, that is, whenθc+1,1 = 1. An
illustrative example of the phase updates performed by the
proposed algorithm is given in Fig. 4.

Problem formulation: Inspired by the interpretation given
in Proposition 1, we address the multichannel coordination
problem by solving

minimize
φ1,...,φC

h(φ1, . . . ,φC) :=

C∑

c=1

1

2

∥
∥Dcφc−

1

nc

1nc
+ec

∥
∥
2

2

+

C∑

c=1

1

2

(

wc+1
Tφc+1 −wc

Tφc

)2

, (20)

where φc = (φc,1, φc,2, . . . , φc,nc
) ∈ R

nc is the vector
containing the phase offsets of all nodes of channelc,
Dc ∈ R

nc×nc is the matrix of (9) with dimensionsnc × nc,
ec = (0, 0, . . . , 1) ∈ R

nc and wc = (1, 0, . . . , 0) ∈ R
nc .

While the first term ofh enforces desynchronization among
the nodes of the same channel [note that each summand
has the same format asg in (8)], the second term enforces
synchronization among the first nodes of each channel. We
remark that the second term of (20) is commonly found in the
design of optimization-based consensus algorithms [26], [27],
[33].

Intuition: We show that the direct application of the gra-
dient descent method to solve (20) leads to updates (for the
SYNC nodes) that cannot be implemented in a practical WSN.
However, the proposed solution will be a modification of those
updates.

Taking into account thatDc
T
1nc

= 0nc
for any c, the

gradient ofh with respect toφc is given by



7

∇φc
h(φ1, . . . ,φC) = Dc

TDcφc + dc

+
(

2wc
Tφc −wc−1

Tφc−1 −wc+1
Tφc+1

)

wc , (21)

wheredc := (1, 0, . . . , 0,−1) ∈ R
nc . Therefore, the partial

derivative ofh with respect toφc,i is

∂

∂ φc,i

h(φ1, . . . ,φC)

=

{
4φc,i − φc,i−1 − φc,i+1 − φc−1,i − φc+1,i , i = 1
2φc,i − φc,i−1 − φc,i+1 + (dc)i , i 6= 1 ,

where(dc)i denotes thei-th component ofdc. The gradient
descent with stepsizeβ applied to (20) yields for nodei of
channelc: φ(k)

c,i = φ
(k−1)
c,i − β ∂

∂ φc,i
h(φ1

(k−1), . . . ,φC
(k−1)).

Replacingβ with α/2, we obtain

φ
(k)
c,i = (1−2α)φ

(k−1)
c,i +

α

2
(φ

(k−1)
c,i−1 +φ

(k−1)
c,i+1 +φ

(k−1)
c−1,i +φ

(k−1)
c+1,i ) ,

(22)
for i = 1, and

φ
(k)
c,i = (1− α)φ

(k−1)
c,i +

α

2
(φ

(k−1)
c,i−1 + φ

(k−1)
c,i+1 − (dc)i) , (23)

for i 6= 1. The update of (23) is similar to the DESYNC

algorithm phase update in (4)–(6). However, the derived update
for the SYNC node, given in (22), does not abide by the
coupling rules mentioned in Section IV-A. Specifically, to
implement (22) in a wireless transceiver, each SYNC node
has to listen for fire messages in its own channel, as well
as in the previous and the next channel. This is impractical
with the half-duplex transceiver hardware in IEEE 802.15.4-
based WSNs. This issue stems from the symmetry of the
matrix In − βDTD [cf. (21) and (12)]. To alleviate this
issue, we propose modifying directly the matrix associated
with the iterations (22) and (23). Our modification is based
on the insight that there is one degree of freedom in each
channel. Therefore, we can fix the phase of one of the nodes
at an arbitrary value. Our approach is to modify (22) and (23)
to have the first nodes of each channel performing a simple
consensus algorithm [31] (while the remaining nodes perform
a DESYNC algorithm).

Multichannel SYNC-DESYNC (M UCH-SYNC-DESYNC):
For simplicity and without loss of generality, we assume that
all channels have the same number of nodes:n := n1 = n2 =
· · · = nC . The iteration we propose is








φ1
(k)

φ2
(k)

...
φC

(k)







=










Q1 Q2 0 · · · 0

0 Q1 Q2 · · · 0

...
. . .

...
0 0 · · · Q1 Q2

Q2 0 0 · · · Q1










︸ ︷︷ ︸

=:M








φ1
(k−1)

φ2
(k−1)

...
φC

(k−1)








+ β








en
en
...
en








︸ ︷︷ ︸

=:b

, (24)

where0 is then× n zero matrix,en := (0, 0 . . . , 0, 1) ∈ R
n,

Q2 := Diag(γ, 0, . . . , 0) ∈ R
n×n, 0 < γ < 1, andQ1 is the

n× n matrix defined as

Q1 :=










1− γ 0 0 0 · · · 0 0
β 1− 2β β 0 · · · 0 0
0 β 1− 2β β · · · 0 0
...

. . .
...

...
β 0 0 0 · · · β 1− 2β










.

In other words, in each channelc, nodei 6= 1 performs the
update (23), while node1 performs

φ
(k)
c,1 = (1− γ)φ

(k−1)
c,1 + γφ

(k−1)
c+1,1 . (25)

Recall that the phase update of the SYNC node in channelc
is performed when the SYNC node in channelc+1 fires, i.e.,
when θc+1,i(tc+1,i) = 1. Adding tc+1,i

T
in both sides of (25)

as well as replacingφc+1,i = 1− tc+1,i

T
and using (1) leads to

the following phase update for the SYNC node in channelc:

θ′c,1(tc+1,1) = (1− γ)θc,1(tc+1,1) + γ mod 1. (26)

Since0 ≤ θc,1(t) ≤ 1, it is straightforward to show that, for
0 < γ < 1, (26) provides for inhibitory coupling5 between
the SYNC nodes in subsequent channels, thereby leading to
synchronization of their phases. In the following proposition
we establish that the update (24) converges to a solution of the
optimization problem (20). In this case, however, we cannot
obtain an explicit convergence rate. Note that the matrixM

is not symmetric, which complicates the convergence analysis.
Note also that, when the number of nodes per channel varies,
the sizes of vectorsφ, e, and matricesQ1 and Q2 in (24)
vary per channelc = 1, . . . , C, but their format is the same.
Moreover, the update equations, described in (23) and (25)
remain the same.

Proposition 2. Let 0 < γ < 1 and 0 < β < 1
2 . Then, the

sequence produced by(24) converges to a solution of(20).

Proof: The proof is given in Appendix B.
In MUCH-SYNC-DESYNC—formed by (23) and (25)—the

DESYNC and SYNC nodes per channel update their phases
only once during a firing round in the channel. Similarly
to existing (de)synchronization algorithms, the role of the
parametersα and γ in the updates of (23) and (25) is to
compensate for missed fire messages and to not allow their
propagation throughout all nodes and channels in the network.

Since the update of the DESYNC nodes in each channel fol-
lows the phase update in (4)–(6), the corresponding Nesterov
modification can be applied to speed-up desynchronization in
each channel. This approach leads to the FAST-MUCH-SYNC-
DESYNC version of our algorithm, of which the convergence
speed is assessed in the next section.

V. EXPERIMENTAL EVALUATIONS

A. Simulation Results

All simulations were performed in MATLAB, by extending
the event-driven simulator in [2]. Initially, we examine the

5Similar to other synchronization algorithms [15], every time the SYNC
node in channelc + 1 fires the SYNC node in the previous channel will
increase its phase towards 1 according to (26).



8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

180

α

F
ir
in

g
R
o
u
n
d
s

 

 

DESYNC, ǫ = 10−4

FAST-DESYNC, ǫ = 10−4

DESYNC, ǫ = 10−3

FAST-DESYNC, ǫ = 10−3

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

α

F
ir
in

g
R
o
u
n
d
s

 

 

DESYNC, ǫ = 10−4

FAST-DESYNC, ǫ = 10−4

DESYNC, ǫ = 10−3

FAST-DESYNC, ǫ = 10−3

(b)

Fig. 5. Average number of firing rounds for convergence to TDMA
scheduling for DESYNC and the proposed FAST-DESYNC with the Nesterov
modification: (a)n = 4 and (b)n = 8.

performance of DESYNC versus its fast counterpart based on
Nesterov’s algorithm. Then, we assess the performance of
the proposed MUCH-SYNC-DESYNC algorithm and its fast
version. We use two convergence thresholds, i.e.,ǫ = 10−3

and ǫ = 10−4. Convergence is reported at the firing round
where the phasesφ of the nodes minimize the objective
function in (8) with accuracyg

(
φ
)
≤ ǫ. Following existing

desynchronization schemes [2], [10], our algorithms’ updates
are performed on the nodes’ phasesθi, as Assumption 1
does not need to be followed in practice. This simplifies the
implementation, as we do not need to know the order of firings.
All simulations were repeated 400 times and average results
are reported.

The results of applying desynchronization at a given channel
using either DESYNC [2], [10] or the proposed FAST-DESYNC

algorithm are presented in Fig. 5(a) and (b) forn = 4 andn =
8 nodes, respectively. Although our analysis proves that FAST-
DESYNC converges forα ∈ (0, 0.5], convergence is actually
achieved forα ∈ (0, 1). In fact, FAST-DESYNC systematically
reduces the required number of iterations to convergence (i.e.,
irrespective of the value of the parameterα), leading to a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10
2

10
4

10
6

10
8

α

F
ir
in

g
R
o
u
n
d
s

 

 

DESYNC, ǫ = 10− 4

FAST-DESYNC, ǫ = 10− 4

DESYNC, ǫ = 10− 3

FAST-DESYNC, ǫ = 10− 3

Bound FAST-DESYNC, ǫ = 10− 4

Bound FAST-DESYNC, ǫ = 10− 3

Bound DESYNC, ǫ = 10− 3

Bound DESYNC, ǫ = 10− 4

Fig. 6. Maximum required firing rounds to convergence for DESYNC and
FAST-DESYNC versus the corresponding upper bounds,n = 8.

2.6%–28.6% speed-up with respect to DESYNC. Furthermore,
the convergence speed-up increases when a strict threshold
(ǫ = 10−4) is used. The improvement is more significant at
low and medium values ofα, which are typically used in
practice to attenuate the impact of missed fire messages.

Fig. 6 depicts the maximum number of required firing
rounds for convergence of DESYNC and FAST-DESYNC versus
the bounds in Corollaries 2 and 3. The difference between
DESYNC and FAST-DESYNC is not visible now due to the
logarithmic scale. Because of the lowǫ value in the denomi-
nator of (15) the DESYNC upper bound appears to be loose.
However, the FAST-DESYNC bound in (19) offers a tighter
characterization of the simulation-based convergence iterations
and follows a trend very similar to the simulation results.

We now evaluate the convergence properties of the proposed
MUCH-SYNC-DESYNC and its fast version. The results are
given in Fig. 7(a) and (b) fornc = 4 nodes per channel
in C = 6 and C = 16 channels, respectively. Contrasting
these results with the ones in Fig. 5, we observe that the
proposed multichannel algorithm requires approximately only
10–20% more firing rounds to reach convergence than the
single-channel DESYNC algorithm. It is also worth noticing
that the proposed FAST-MUCH-SYNC-DESYNC version offers
a notable convergence speed-up (i.e., 6.01%–42.54%) with
respect to the simple MUCH-SYNC-DESYNC algorithm, ir-
respective of the number of channels.

B. Experiments with TelosB Motes

Experimental setup: We implemented the proposed
MUCH-SYNC-DESYNC and its FAST version as applications
in the Contiki 2.7 operating system running on TelosB motes.
By utilizing the NullMAC and NullRDC network stack
options in Contiki, we control all node interactions at the MAC
layer via our code. By utilizing the TelosB high-resolution
timer (rtimer library), we can achieve the scheduling of
transmission and listening events with sub-millisecond accu-
racy, and setT = 100 ms. The phase-jump parameters are
set asα = γ = 0.6. All nodes first listen constantly until
convergence is achieved in their channel, at which point data



9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

α

F
ir
in

g
R
o
u
n
d
s

 

 

MUCH-SYNC-DESYNC, ǫ = 10−4

FAST-MUCH-SYNC-DESYNC, ǫ = 10−4

MUCH-SYNC-DESYNC, ǫ = 10−3

FAST-MUCH-SYNC-DESYNC, ǫ = 10−3

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

α

F
ir
in

g
R
o
u
n
d
s

 

 

MUCH-SYNC-DESYNC, ǫ = 10−4

FAST-MUCH-SYNC-DESYNC, ǫ = 10−4

MUCH-SYNC-DESYNC, ǫ = 10−3

FAST-MUCH-SYNC-DESYNC, ǫ = 10−3

(b)

Fig. 7. Average number of firing rounds for convergence to decentralized
multichannel TDMA scheduling for the proposed MUCH-SYNC-DESYNC
algorithm and its fast counterpart;nc = 4 nodes per channel are considered
with: (a) C = 6 and (b)C = 16 channels.

transmission starts and nodes switch to sparse listening tosave
energy. Due to interference in the 2.4 GHz band of IEEE
802.15.4 and timing uncertainties in the fire message broadcast
and reception, we apply three practical modifications to ensure
that, once the network reaches the steady state, it remains there
until the entire network operation is suspended, or nodes join
or leave the network:

1) Each node can transmit data in-between its own fire mes-
sage and the subsequent fire message from another node,
albeit allowing forguard timeof 6 ms before and after
the anticipated beacon broadcast times; this ensures no
collisions occur between data and fire message packets.

2) In the steady state, each node turns its transceiver on
solely for the 12 ms guard time corresponding to each
beacon message. Moreover, all nodes switch to “sparse
listening”, i.e., they listen for beacons only once every

eight periods, unless high interference noise is detected6.
3) To remain in sparse listening and avoid interrupting data

transmission due to transient interference, all nodes are
set to switch to full listening only ifNc = 10 consecutive
fire messages are missed. Our choice ofNc provides
stable operation under interference at the cost of slower
reaction time.

As mentioned in Section IV-A, once all nodes are activated,
they are first balanced across the available channels. Note also
that, although our time-synchronized slot structure provides
channel swapping between synchronous nodes, this is not
considered in the experiments.

We select TSCH as benchmark for our comparisons, since
it is a state-of-the-art centralized MAC protocol for densely-
connected WSNs [3], [4]. Our implementation follows the
6tisch simulator and TSCH standard [4], [8], [36], namely:
channel11 of IEEE 802.15.4 was used for advertisements,
the RQ/ACK ratio was set to19 , the slotframe comprised101
slots of 15 ms each, and one node was set to broadcast the
slotframe beacon for global time synchronization. Finally, the
WSN under TSCH is deemed as converged to the steady state
when 5% or less of the timeslots changed within the last 10
slotframes.

Adhering to scenarios involving dense network topologies
and data-intensive communications (e.g., visual sensor net-
works [37]), we deployedn = 64 nodes in theC = 16
channels of IEEE 802.15.4. This leads tonc = 4 nodes per
channel after balancing. The64 TelosB motes were placed in
four neighboring rooms on the same floor of an office building,
with each room containing16 nodes.

Power dissipation results:We assessed the average power
dissipation of our scheme against TSCH by placing selected
TelosB motes in series with a high-tolerance 1-Ohm resistor
and by utilizing a high-frequency oscilloscope to capture the
current flow through the resistor in real time. During this
experiment, no other devices (or interference signal genera-
tors) operating in the 2.4 GHz band were present in the area.
Average results over5 min of operation are reported. The
average power dissipation of MUCH-SYNC-DESYNC without
transmitting or receiving data payload was measured to be 1.58
mW. The average power dissipation of a TSCH node under
minimal payload (128 bytes per 4 s) was found to be 1.64 mW,
which is very close to the value that has been independently
reported by Vilajosanaet al. [4]. Therefore, under the same
setup, our proposal and TSCH were found to incur comparable
power dissipation for their operation.

Convergence speed results:We investigate the conver-
gence time of MUCH-SYNC-DESYNC, FAST-MUCH-SYNC-
DESYNC and TSCH under varying interference levels. Rapid
convergence to the steady state is very important when the
WSN is initiated from a suspended state, or when sudden
changes happen in the network (e.g., nodes join or leave). We
carried out 100 independent tests, with each room containing
an interference generator for 25 tests. To generate interference,

6In the converged state, each node determines the interference noise floor
in-between transmissions by reading the CC2420 RSSI register. If high
interference is detected, the node switches to regular listening. Thus, sparse
listening does not affect the stability of MUCH-SYNC-DESYNC.



10

−20 −15 −10 −5 0 5
0

5

10

15

20

25

30

35

Jamming Signal Power (dBm)

T
im

e 
(s

)

 

 

MUCH−SYNC−DESYNC
FAST−MUCH−SYNC−DESYNC
TSCH

Fig. 8. Average time required for MUCH-SYNC-DESYNC, its FAST version,
and TSCH to converge under various interference levels.

TABLE I
AVERAGE CONVERGENCET IME (IN SECONDS) UNDER HIDDEN NODES.

NUMBERS IN PARENTHESISSHOW THE CONVERGENCE TIME OF THE

FAST (NESTEROV-BASED) VERSION OF OUR PROPOSAL.

MUCH-SYNC-DESYNC TSCH
Without Hidden Nodes 1.1356 (0.7351) 15.5845

With Hidden Nodes 1.8514 (1.2896) 15.2957

an RF signal generator was used to create an unmodulated car-
rier in the center of each WSN channel. The carrier amplitude
was adjusted to alter the signal-to-noise-ratio (SNR) at each
receiver [38]. The nodes were set to maximum transmit power
(+0 dBm) in order to operate under the best SNR possible.

Fig 8 shows the time required for MUCH-SYNC-DESYNC,
FAST-MUCH-SYNC-DESYNC and TSCH to converge under
varying interfering signal power levels. The results corroborate
that our proposal reduces the convergence time by an order
of magnitude in comparison to TSCH and that the Nesterov-
based algorithm offers 36.48%-41.07% increased convergence
speed under a realistic setup. Moreover, the difference in
convergence time between the proposed mechanism and TSCH
increases with the interference level because TSCH nodes miss
most of the RQ/ACK messages in the advertisement (control)
channel. This result demonstrates the key advantages of our
decentralized MAC mechanism with respect to TSCH, namely:
(i) it is fully decentralized and(ii) it does not depend on an
advertisement and acknowledgement scheme.

Results under hidden nodes:We now investigate the
robustness and convergence speed of our scheme when some
nodes in the WSN are hidden from other nodes. We measure
the time to achieve convergence to steady state when a random
subset of20 nodes in our WSN setup was programmed to
ignore transmissions from4 randomly chosen nodes. The
results in Table I show that, irrespective of the presence
of hidden nodes, the convergence of MUCH-SYNC-DESYNC

and its FAST version is an order-of-magnitude faster than
that of TSCH. When hidden nodes are present, the required
convergence time of MUCH-SYNC-DESYNC (resp. its FAST

version) increases by 63.03% (resp. 75.43%), while that of
TSCH is actually sightly decreased by 2.13%. This is to be

−20 −15 −10 −5 0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

Jamming Signal Power (dBm)

T
hr

ou
gh

pu
t (

kb
ps

)

 

 

MUCH−SYNC−DESYNC
TSCH

Fig. 9. Total network throughput between MUCH-SYNC-DESYNCand TSCH
under varying signal power levels.

expected, as TSCH nodes simply ignore RQ packets from
hidden nodes. Conversely, due to the DESYNC (resp. FAST-
DESYNC) process within each channel, applied by MUCH-
SYNC-DESYNC (resp. its FAST version), prolonged beaconing
will take place until all hidden nodes are placed amongst non-
hidden DESYNC phase neighbors. This spontaneous robustness
of MUCH-SYNC-DESYNC (and its FAST version) to hidden
nodes is an interesting property that deserves further study7.

Bandwidth results: We measure the total network through-
put (i.e., total payload bits transmitted by all nodes per second)
achieved with MUCH-SYNC-DESYNC and TSCH under var-
ious interference levels. Since the measurement is performed
after the network is converged, the throughput of MUCH-
SYNC-DESYNC coincides with its fast version. The results
in Fig 9 show that MUCH-SYNC-DESYNC systematically
achieves substantially higher network throughput (more than
40% increase w.r.t. TSCH), irrespective of the interference
level. Both protocols suffer a significant throughput loss
of under high interference (i.e., above 10 dBm), which is,
however, substantially more severe for TSCH. In effect, when
interference is above 12 dBm, the bandwidth obtained with
TSCH drops to zero because of the inability to recover
lost slots through advertising. Conversely, even under high
interference levels, MUCH-SYNC-DESYNC recuperates band-
width utilization due to the elasticity of SYNC and DESYNC

mechanisms and the high value used forNc.

VI. CONCLUSION

We have shown that DESYNC, which is a well established
desynchronization method for MAC layer coordination in
WSNs, can be viewed as a gradient method for solving
an optimization problem. This interpretation led to a novel,
faster desynchronization algorithm (based on Nesterov’s mod-
ification of the gradient method) and resulted in the deriva-
tion of upper bounds for the convergence of desynchroniza-
tion. Importantly, casting the problem of time-synchronous
desynchronization across channels as a convex optimization

7 For instance, one can try to determine conditions that guarantee that no
configuration of hidden nodes can lead to instability.



11

problem, led to the derivation of novel multichannel MAC
algorithms. Our proposed MUCH-SYNC-DESYNC algorithm
and its fast counterpart were benchmarked against the IEEE
802.15.4e-2012 TSCH and were shown to provide for:(i)
an order-of-magnitude decrease in the convergence time to
the network steady state,(ii) more than 40% increase in
the total network throughput, and(iii) significantly-increased
robustness to interference and hidden nodes in the network,
while requiring comparable power dissipation.

APPENDIX A

Proof of Corollary 1: It is known that every limit point
of the steepest descent method with a constant stepsizeβ, i.e.,
φ

(k) = φ
(k−1) − β∇g(φ(k−1)), is a stationary point ofg(φ)

whenever∇g is Lipschitz continuous, i.e., there is anL > 0
such that‖∇g(y)−∇g(x)‖ ≤ L‖y − x‖ for all x, y ∈ R

n,
and β ∈ (0, 2/L); see [39, Prop.1.2.3]. In problem (8),g is
twice differentiable, and∇2g(φ) = DTD, for all φ. We can
then setL ≥ λmax(D

TD), whereλmax(·) is the maximum
eigenvalue of a matrix. Notice that, forD in (9), DTD

coincides with the Laplacian matrix of the ring graph, whose
eigenvalues are given by2− 2 cos(2πk/n), k = 1, . . . , n [40,
Lemma 2.4.4]. We then have

λmax(∇2g(φ)) = argmax
k

2− 2 cos
(
2πk/n

)
≤ 4 . (27)

Setting L = 4, and taking into account thatα = 2β, we
obtain that DESYNC converges wheneverα ∈ (0, 1). Notice
that whenn is even, the maximum is achieved in (27), i.e.,
λmax(∇2g(φ)) = 4.

Proof of Corollary 2: Let g : Rn −→ R be a convex,
continuously differentiable function whose gradient is Lips-
chitz continuous with constantL. It is known that the se-
quence generated by the steepest descent method with constant
stepsizeβ ∈ (0, 2/L), i.e., φ(k) = φ(k−1) − β∇g(φ(k−1)),
satisfies [29, Thm.2.1.14]

g(φ(k))− g(φ⋆)

≤ 2(g(φ(0))− g(φ⋆))‖φ(0) − φ⋆‖22
2‖φ(0) − φ⋆‖22 + k β(2 − Lβ)(g(φ(0))− g(φ⋆))

, (28)

whereφ⋆ is any minimizer ofg. As shown in the proof of
Corollary 1, L = 4 in our case. Furthermore,g(φ⋆) = 0.
Taking this into account in (28), usingα = 2β, and after
some manipulations, we get (14).

To obtain (15), we note that (14) holds for any solutionφ⋆

of (8). That is,

rD ≤
[

min
φ⋆

∈S⋆
‖φ(0) − φ⋆‖22

]

· 1

2α(1− α)

(
1

ǫ
− 1

g
(
φ(0)

)

)

,

(29)
whereS⋆ is the set of all solutions of (8). We haveS⋆ = {φ+
z 1n : z ∈ R}, whereφ is any solution of (8). Henceforth,
we will take φ = (0, 1/n, 2/n, . . . , (n − 1)/n). Then, the
minimization problem in (29) is equivalent to the minimization
of ‖φ + z 1n − φ(0)‖22 over z, which yieldsz⋆ = 1

n
1
T
n (φ −

φ(0)). Hence,

min
φ⋆

∈S⋆
‖φ(0) − φ

⋆‖22 =
∥
∥
∥φ+

1

n
1
T
n (φ− φ

(0))1n − φ
(0)

∥
∥
∥

2

2

=
∥
∥
∥

(
In +

1

n
1n1

T
n

)(
φ− φ(0)

)
∥
∥
∥

2

2
.

(30)

To find a worst case scenario, we maximize (30) with respect
to φ(0), subject to the constraints0n ≤ φ(0) ≤ 1n. This is a
non-convex problem, but the solution can be found in closed-
form with the following observation. SinceIn + (1/n)1n1

T
n

is a circulant matrix and its entries are all positive, maximiz-
ing (30) subject to0n ≤ φ(0) ≤ 1n is equivalent to

maximize
φ(0)

∥
∥
∥φ− φ(0)

∥
∥
∥

2

2

subject to 0n ≤ φ(0) ≤ 1n .
(31)

Sinceφ = (0, 1/n, 2/n, . . . , (n− 1)/n), the solution of (31)
is φ(0) = (1, 1, . . . , 1, 0, 0, . . . , 0), where the transition from1
to 0 occurs at the first indexm wherem ≥ n/2. Denoting

B := max
φ(0)

min
φ⋆

∈S⋆
‖φ(0) − φ⋆‖22

s.t. 0n ≤ φ(0) ≤ 1n

we have

B ≤ 2

[m−1∑

i=0

(

1− i

n

)2

+

n−1∑

i=m

( i

n

)2
]

(32)

=
2

n2

[m−1∑

i=0

(n− i)2 +
n−1∑

i=m

i2
]

(33)

=
2

n2

[

mn2 − nm(m− 1) +
n(n− 1)(2n− 1)

6

]

(34)

=
1

3n

[
6nm− 6m2 + 6m+ 2n2 − 3n+ 1

]
(35)

≤ 1

3n

[
7

2
n2 + 3n+ 4

]

. (36)

The bound in (32) is due to replacingφ(0) =
(1, 1, . . . , 1, 0, 0, . . . , 0) in (30) and using

∥
∥(In+

1
n
1n1

T
n )(φ−

φ(0))
∥
∥
2

2
≤

(∥
∥In

∥
∥
2

2
+ (1/n2)

∥
∥1n1

T
n

∥
∥
2

2

)∥
∥φ − φ(0)

∥
∥
2

2
=

2
∥
∥φ − φ(0)

∥
∥
2

2
. From (33) to (34), we developed the

square in the first summand and used the identities
∑m−1

i=1 i = m(m− 1)/2 and
∑n−1

i=1 i2 = n(n− 1)(2n− 1)/6.
From (35) to (36), we used the boundn/2 ≤ m ≤ (n+1)/2.
Using (36) in (29) we get (15).

Proof of Corollary 3: Equations (17a)-(17b) are applying
Nesterov’s method (16a)-(16b) to problem (8) withα = 2β. It
is known that the number of iterations that (16a)-(16b) requires
to generate a pointφ that has accuracyǫ = g(φ) is bounded
as [34]

rFD ≤
√

2/β
√

ǫ− g(φ⋆)

∥
∥φ(0) − φ⋆

∥
∥
2
, (37)

where φ⋆ minimizes g. This expression is valid forβ ∈
(0, 1/L], whereL is the Lipschitz constant of∇g. We saw
in the proof of Corollary 1 thatL = 4 is a valid choice.
Since g(φ⋆) = 0 for any optimalφ⋆, and usingα = 2β
in (37), we get (18). To obtain (19) from (18), we use (36)
from the proof of Corollary 2.



12

APPENDIX B

Proof of Proposition 2:If {φ(k)} converges, its limit will
be a fixed point of (24). Before showing that{φ(k)} converges,
we show that any fixed point of (24) solves (20). Letφ⋆ =
(φ⋆

1,φ
⋆
2, . . . ,φ

⋆
C) be a fixed point of (24). For eachc, we have

φ⋆
c,i = (1 − γ)φ⋆

c,i + γ φ⋆
c+1,i , i = 1 (38)

φ⋆
c,i = β φ⋆

c,i−1 + (1− 2β)φ⋆
c,i + β φ⋆

c,i+1 + β(en)i , i 6= 1 .
(39)

From (38), and sinceγ > 0, we haveφ⋆
c,1 = φ∗

c+1,1, for all c
modulo C. This makes the second summation term in (20)
equal to zero, that is,wc+1

Tφ⋆
c+1 = wc

Tφ⋆
c , for all c.

From (39), and sinceβ > 0, we have

φ⋆
c,i =

φ⋆
c,i−1 + φ⋆

c,i+1

2
, i = 2, 3, . . . , n− 1 (40)

φ⋆
c,n =

φ⋆
c,n−1 + φ⋆

c,1 + 1

2
. (41)

These equations are equivalent toφ⋆
c,i+1−φ⋆

c,i = 1/n, for i =
1, . . . , n − 1, and φ⋆

c,1 + 1 − φ⋆
c,n = 1/n, and this makes

the first term of the objective of (20) equal to zero. To see
why the above equivalence holds, note that (40)-(41) imposes
that all n − 1 phasesφ⋆

c,2, φ⋆
c,3, . . ., φ⋆

c,n be placed in the
interval [φ⋆

c,1, φ
⋆
c,1 +1]. Furthermore, each phase has to equal

the average of the previous phase with the next phase, where
the phase previous toφ⋆

c,2 is φ⋆
c,1 and the phase next toφc,n

is φ⋆
c,1 + 1. The only possibility is all phases, including the

extreme points, being equispaced.
We now prove that{φ(k)} converges. Writing (24) in a

more compact form,

φ
(k) = Mφ

(k−1) + b . (42)

It is known that the sequence{φ(k)} produced by (42)
converges to(I−M)−1b whenever the spectral radius ofM ,
denoted asρ(M), is strictly smaller than1 [41, §1.2]. In our
case, however,1 is an eigenvalue ofM , so ρ(M) ≥ 1.
By computing all the eigenvalues ofM , we will see that
actually ρ(M) = 1. Before proceeding, note that the vector
of ones,1nC , is a right eigenvector ofM associated to the
eigenvalue1, and u := (e1, e1, . . . , e1) ∈ (Rn)C is a left
eigenvector ofM also associated to the eigenvalue1.8 To
compute the eigenvalues ofM , first decomposeQ1 as

Q1 =

[
1− γ 0

T
n−1

r T

]

,

wherer = (β, 0, . . . , 0, β) ∈ R
n−1, and

T =








1− 2β β 0 · · · 0 0
β 1− 2β β · · · 0 0
...

...
.. . · · · · · ·

0 0 · · · β 1− 2β







.

8If the Perron-Frobenuis theory [42], [43] were applicable,we would
conclude thatρ(M) = 1, and that the eigenvalue1 would have algebraic
multiplicity 1. This would enable us to skip the computation of all eigenvalues
of M and jump to the next paragraph. However, the Perron-Frobenuis theory
is not applicable, sinceM , although being positive, is not irreducible.

There is exists a permutation matrixP such that

P TMP =










T r

T r

. . .
. . .

T r

0C×(n−1)C R










,

where

R =








1− γ γ 0 · · · 0
0 1− γ γ · · · 0
...

. . .
...

γ 0 0 · · · 1− γ







∈ R

C×C .

Such permutation matrix corresponds to a reordering of the
nodes such thatφ is mapped onto

(φ1,2, φ1,3, . . . , φ1,n, φ2,2, φ2,3, . . . , φ2,n, . . . ,

φ1,1, φ2,1, . . . , φC,1) ,

that is, the first nodes of each channel are in the end of the
vector in the new coordinate system. The matricesM and
P TMP have the same eigenvalues. The upper triangular
structure of P TMP reveals that its eigenvalues are the
roots of det(T − λI)Cdet(R − λI) = 0 , where I is an
identity matrix with appropriate dimensions. In other words,
the eigenvalues ofM are the union of the eigenvalues ofT ,
each with multiplicityC, with the eigenvalues ofR, each with
multiplicity 1. SinceT is tridiagonal Toeplitz, its eigenvalues
areλj(T ) = 1− 2β + 2β cos(π

n
j), for j = 1, . . . , n− 1 [43,

p.514]. The matrixR, on the other hand, is a circulant
matrix and hence its eigenvalues are the Fourier transform
of the vector that generates the matrix. In this case, they
are λj(R) = 1 − γ + γ exp(2πi

C
j), for j = 1, . . . , C,

where i :=
√
−1. Since0 < γ < 1, R has one eigenvalue

equal to1 (multiplicity 1) and the remaining ones have mag-
nitude smaller than1. As 0 < β < 1/2, all eigenvalues ofT
have magnitude smaller than1. We conclude thatρ(M ) = 1,
and that its algebraic (and geometric) multiplicity is1.

DefineM := M − 1nCu
T . Then,ρ(M ) < 1 [42, Lemma

8.2.7], and (42) can be written as

φ(k) = Mφ(k−1) + 1nCu
Tφ(k−1) + b . (43)

SinceuTM = u and uTb = 0, (42) tells us thatuTφ(k) =
uTMφ

(k−1) + uT b = uTφ
(k−1). In particular,

uTφ(k) = uTφ(k−1) = · · · = uTφ(1) = uTφ(0) .

Defining b = b+ 1nCu
Tφ(0), (43) can then be written as

φ(k) = Mφ(k−1) + b , (44)

where ρ(M) < 1. Thus, according to [41,§1.2], the se-
quence{φ(k)} produced by (44), and thus by (24), converges
to (I − M )−1b = (I − M)−1b + (I − M)−1

1nCu
Tφ(0),

which is well-defined and unique (note thatI−M is invertible
becauseρ(M) < 1). This shows that the sequence{φ(k)}
converges.



13

REFERENCES

[1] N. Deligiannis, J. F. Mota, G. Smart, and Y. Andreopoulos, “Decentral-
ized multichannel medium access control: Viewing desynchronization as
a convex optimization method,” inProc. 14th International Conference
on Information Processing in Sensor Networks (IPSN’15). ACM, 2015,
pp. 13–24.

[2] J. Degesys and R. Nagpal, “Towards desynchronization ofmulti-hop
topologies,” inProc. IEEE Int. Conf. Self-Adaptive and Self-Organizing
Syst. (SASO), 2008, pp. 129–138.

[3] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister, “Openwsn: a standards-based low-power
wireless development environment,”Transactions on Emerging Telecom-
munications Technologies, vol. 23, no. 5, pp. 480–493, 2012.

[4] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang,and K. Pister,
“A realistic energy consumption model for TSCH networks,”IEEE
Sensors J., 2013.

[5] A. Tinka, T. Watteyne, and K. Pister, “A decentralized scheduling
algorithm for time synchronized channel hopping,” inAd Hoc Netw.,
2010, pp. 201–216.

[6] R. Pagliari and A. Scaglione, “Scalable network synchronization with
pulse-coupled oscillators,”IEEE Trans. Mobile Comput., vol. 10, no. 3,
pp. 392–405, 2011.

[7] D. Buranapanichkit and Y. Andreopoulos, “Distributed time-frequency
division multiple access protocol for wireless sensor networks,” IEEE
Wirel. Comm. Lett., vol. 1, no. 5, pp. 440–443, Oct. 2012.

[8] IEEE 802.15.4e-2012, “IEEE Standard for Local and Metropolitan
Area Networks. Part 15.4: Low-Rate Wireless Personal Area Networks
(LRWPANs) Amendment 1: MAC Sublayer,”IEEE Std., Apr. 2012.

[9] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz, “Distributed
synchronization in wireless networks,”IEEE Signal Process. Mag.,
vol. 25, no. 5, pp. 81–97, Sep. 2008.

[10] A. Patel, J. Degesys, and R. Nagpal, “Desynchronization: The theory of
self-organizing algorithms for round-robin scheduling,”Proc. IEEE Int.
Conf. Self-Adaptive and Self-Organizing Syst. (SASO), july 2007.

[11] A. Motskin, T. Roughgarden, P. Skraba, and L. Guibas, “Lightweight
coloring and desynchronization for networks,” inIEEE INFOCOM’09,
2009, pp. 2383–2391.

[12] C.-M. Lien, S.-H. Chang, C.-S. Chang, and D.-S. Lee, “Anchored
desynchronization,” inProc. IEEE INFOCOM’12, 2012, pp. 2966–2970.

[13] R. Leidenfrost and W. Elmenreich, “Firefly clock synchronization in an
802.15.4 wireless network,”EURASIP J. Embed. Syst., 2009.

[14] J. Klinglmayr and C. Bettstetter, “Self-organizing synchronization with
inhibitory-couples oscillaotrs: convergence and robustness,”ACM Trans.
on Autonomous and Adaptive Systems, vol. 7, no. 3, Sep. 2012.

[15] Y.-W. Hong and A. Scaglione, “A scalable synchronization protocol for
large scale sensor networks and its applications,”IEEE J. Sel. Areas
Commun., vol. 23, no. 5, pp. 1085–1099, 2005.

[16] S. Choochaisri, K. Apicharttrisorn, K. Korprasertthaworn, P. Taechalert-
paisarn, and C. Intanagonwiwat, “Desynchronization with an artificial
force field for wireless networks,”ACM SIGCOMM Computer Commu-
nication Review, vol. 42, no. 2, pp. 7–15, 2012.

[17] I. Bojic, V. Podobnik, I. Ljubi, G. Jezic, and M. Kusek, “A self-
optimizing mobile network: Auto-tuning the network with firefly-
synchronized agents,”Information Sciences, vol. 182, no. 1, pp. 77–92,
2012.

[18] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-coupled
biological oscillators,”SIAM Journal on Applied Mathematics, vol. 50,
no. 6, pp. 1645–1662, 1990.

[19] R. Pagliari, Y.-W. P. Hong, and A. Scaglione, “Bio-inspired algorithms
for decentralized round-robin and proportional fair scheduling,” IEEE J.
on Select. Areas in Commun., vol. 28, no. 4, pp. 564–575, May 2010.

[20] Y. Wang, F. Nunez, and F. J. Doyle, “Energy-efficient pulse-coupled
synchronization strategy design for wireless sensor networks through
reduced idle listening,”IEEE Trans. Signal Process., vol. 60, no. 10,
pp. 5293–5306, 2012.

[21] Y. Wang and F. J. Doyle, “Optimal phase response functions for fast
pulse-coupled synchronization in wireless sensor networks,” IEEE Trans.
Signal Process., vol. 60, no. 10, pp. 5583–5588, 2012.

[22] A. Papachristodoulou and A. Jadbabaie, “Synchronization in oscillator
networks: Switching topologies and non-homogeneous delays,” in IEEE
Conf. Dec. Control (CDC’05), 2005, pp. 5692–5697.

[23] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensusand coop-
eration in networked multi-agent systems,”Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[24] O. Simeone and U. Spagnolini, “Distributed time synchronization
in wireless sensor networks with coupled discrete-time oscillators,”
EURASIP J. Wireless Commun. Netw., vol. 2007.

[25] D. Buranapanichkit, N. Deligiannis, and Y. Andreopoulos, “Convergence
of desynchronization primitives in wireless sensor networks: A stochas-
tic modeling approach,”IEEE Trans. Signal Process., vol. 63, no. 1, pp.
221–233, 2015.

[26] T. Erseghe, D. Zennaro, E. Dall’Anese, and L. Vangelista, “Fast consen-
sus by the alternating direction multipliers method,”IEEE Trans. Signal
Process., vol. 59, no. 11, pp. 5523–5537, 2011.

[27] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Puschel, “D-ADMM:
A communication-efficient distributed algorithm for separable optimiza-
tion,” IEEE Trans. Signal Process., vol. 61, no. 10, pp. 2718–2723,
2013.

[28] Y. Nesterov, “A method of solving a convex programming problem with
convergence rateO(1/k2),” Soviet Mathematics Doklady, vol. 27, no. 2,
pp. 372–376, 1983.

[29] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. Kluwer Academic Publishers, 2004.

[30] J. Degesys, I. Rose, A. Patel, and R. Nagpal, “Desync: self-organizing
desynchronization and tdma on wireless sensor networks,” in Int. Conf.
on Information Processing in Sensor Networks (IPSN), 2007, pp. 11–20.

[31] M. DeGroot, “Reaching a consensus,”J. American Statistical Associa-
tion, vol. 69, no. 345, pp. 118–121, 1974.

[32] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, pp. 65–78, 2004.

[33] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,”
in Int. Conf. Information Processing in Sensor Networks (IPSN04).
ACM, 2004, pp. 20–27.

[34] L. Vandenberghe, “Gradient method,” Spring 2008-09, lecture Notes,
Optimization Methods for Large-Scale Systems (EE-236C), UCLA.

[35] G. Lu, B. Krishnamachari, and C. Raghavendra, “Performance eval-
uation of the IEEE 802.15. 4 MAC for low-rate low-power wireless
networks,” inIEEE Internat. Conf. on Perf., Comput., and Comm., 2004,
pp. 701–706.

[36] Q. Wang, X. Vilajosana, and T. Watteyne, “6TSCH operation sub-
layer (6top),” Internet-Draft, IETF Std., Rev. draft-wang- 6tisch-6top-
sublayer-00, Apr. 2014.

[37] N. Deligiannis, F. Verbist, J. Slowack, R. v. d. Walle, P. Schelkens, and
A. Munteanu, “Progressively refined wyner-ziv video codingfor visual
sensors,”ACM Trans. Sensor Netw., vol. 10, no. 2, p. 21, 2014.

[38] C. A. Boano, T. Voigt, C. Noda, K. Romer, and M. Zúñiga,“Jamlab:
Augmenting sensornet testbeds with realistic and controlled interference
generation,” inInt. Conf. on Information Processing in Sensor Networks
(IPSN), 2011, pp. 175–186.

[39] D. P. Bertsekas, “Nonlinear programming,” 1999.
[40] D. Spielman, “The Laplacian,” 2009, lecture notes, Spectral Graph

Theory, Yale.
[41] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations.

SIAM, Philadelphia, 1995.
[42] R. A. Horn and C. R. Johnson,Matrix analysis. Cambridge university

press, 2012.
[43] C. M. Meyer, Matrix Analysis and Applied Linear Algebra. SIAM,

Philadelphia, 2000.


	I Introduction
	II Background on Pulse-Coupled Oscillators 
	III Desync as a Gradient Method
	IV Extension To Decentralized Multichannel Coordination
	IV-A Proposed Decentralized Multichannel MAC-layer Coordination 
	IV-B Proposed Joint Sync-Desync Algorithm

	V Experimental Evaluations
	V-A Simulation Results
	V-B Experiments with TelosB Motes

	VI Conclusion
	Appendix A
	Appendix B
	References

