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Abstract—Unlike a generic PSK/QAM detector, which may visit
a constellation diagram only once, a depth-first Sphere Decoder
(SD) has to re-visit the same constellation diagram multiple times.
Therefore, in order to prevent the SD from repeating the detection
operations, the Schnorr-Euchner search strategy of Schnorr and
Euchner may be invoked for optimizing the nodes’ search-order,
where the ideal case is for the SD to visit the constellation nodes
in a zigzag fashion. However, when the hard-decision Multiple-
Symbol Differential Sphere Detection (MSDSD) of Lampe et al. is
invoked for using multiple receive antennas Ny > 1, the Schnorr-
Euchner search strategy has to visit and sort all the MPSK
constellation points. A similar situation is encountered for the soft-
decision MSDSD of Pauli ef al., when the a priori LLRs gleaned
from the channel decoder are taken into account. In order to tackle
these open problems, in this paper, we propose a correlation pro-
cess for the hard-decision MSDSD of Lampe ef al. and a reduced-
complexity design for the soft-decision MSDSD of Pauli et al.,
so that the Schnorr-Euchner search strategy always opts for vis-
iting the MPSK constellation points in a zigzag fashion. Our simu-
lation results demonstrate that a substantial complexity reduction
is achieved by our reduced-complexity design without imposing any
performance loss. Explicitly, up to 88.7% complexity reduction is
attained for MSDSD (&, = 4) aided D16PSK. This complexity
reduction is quite substantial, especially when the MSDSD is
invoked several times during turbo detection. Furthermore, in
order to offer an improved solution and a comprehensive study for
the soft-decision MSDSD, we also propose to modify the output of
the SD to harmonize its operation with the near-optimum Approx-
Log-MAP. Then the important subject of coherent versus nonco-
herent is discussed in the context of coded systems, which suggests
that MSDSD aided DPSK is an eminently suitable candidate for
turbo detection assisted coded systems operating at high Doppler
frequencies.

Index Terms—Multiple-symbol differential sphere detection,
DPSK, sphere decoding, Schnorr-Euchner search strategy, turbo
detection, soft-decision, coherent versus noncoherent.
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1. INTRODUCTION

HE history of Differential Phase Shift Keying (DPSK)
dates back to Lawton’s classic work [4], [5] in 19591960,
where the effect of false carrier-phase locking is mitigated by
the low-complexity Conventional Differential Detection (CDD).
More explicitly, the DPSK transmitter modulates the data-
carrying symbols onto the phase changes between consecutive
transmitted symbols, so that the CDD may recover the source
information by observing the phase change between every pair
of consecutive received samples. However, it was demonstrated
by Cahn [6] in 1959 that the CDD-aided DPSK scheme suffers
from a 3 dB performance penalty compared to its coherent
counterpart. Moreover, it was discovered by Bello and Nelin [7]
in 1962 that an irreducible error floor occurs for DPSK, when
the CDD, which was originally designed for AWGN channels,
is directly employed in rapidly fluctuating fading channels. In
order to mitigate this problem, the Multiple-Symbol Differen-
tial Detection (MSDD) philosophy was proposed by Divsalar
and Simon [8] in 1990 for DPSK invoked in AWGN channels
and by Ho as well as Fung [9] in 1992 for Rayleigh fading
channels. More explicitly, the MSDD extends the CDD’s obser-
vation window width of N,, = 2 to N,, > 2, where a total num-
ber of (N,, — 1) data-carrying symbols are jointly detected. The
price paid is that the MSDD complexity grows exponentially
with (N,, — 1). In order to reduce the MSDD complexity, a
reduced-complexity algorithm was conceived for MSDD oper-
ating in AWGN channels by Mackenthun [10] in 1994, which
may also be invoked for slowly-fading channels exhibiting a
near-constant envelope for a block of signal transmission. As a
closely related result, it was demonstrated by Cavers [11] in
1991 that accurate channel estimation relying on the classic
Pilot Symbol Assisted Modulation (PSAM) may become es-
pecially challenging, when the normalized Doppler frequency
is increased. Therefore, as an attractive alternative to coherent
receivers, it is essentially important to implement MSDD in
rapidly fluctuating fading channels at an affordable complexity.
Another low-complexity design alternative, namely the
Decision-Feedback Differential Detection (DFDD) was orig-
inally proposed for AWGN channels by Leib and Pasupathy
[12] in 1988. Then in 1995 it was confirmed by Leib [13] that
the DFDD of [12] is equivalent to the MSDD of [8] operating
in decision-feedback mode. The DFDD design was further
extended to Rayleigh fading channels by Schober ef al. [14] in
1999. However, the DFDD inevitably imposes a performance
loss due to its inherent error-propagation problem. In order
to retain the optimum MSDD performance, the state-of-the-art
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Multiple-Symbol Differential Sphere Detection (MSDSD) was
proposed by Lampe et al. [2] in 2005, where the MSDD is facil-
itated by invoking the Sphere Decoder (SD) [15]. Furthermore,
inspired by the revolutionary Turbo Code (TC) concept [16]
and the generalization of the “turbo principle” [17], the soft-
decision MSDSD was conceived for DPSK by Pauli er al. [3]
in 2006, so that the MSDSD may be invoked in turbo detection
for the sake of approaching the full capacity potential of the
DPSK systems.

Although the MSDD complexity may be effectively reduced
by the SD, it was demonstrated by Jalden and Ottersten [18]
in 2005 that the SD complexity still remains an exponential
function at low SNRs. Later, Hassibi and Vikalo [19], [20]
demonstrated that the expected SD complexity invoking the
Fincke-Pohst enumeration strategy [21] obeyed a polynomial
function. As an alternative, Kyrillidis and Karystinos [22] re-
cently proposed a new algorithm that aimed for maximizing the
Rayleigh quotient of PSK sequence detection in 2014, where
the complexity was a fixed polynomial function at all SNRs.
Nonetheless, further research efforts are required for enhanc-
ing this algorithm [22] in soft-decision-aided turbo detection
assisted coded systems. Therefore, in this paper, we focus our
attention on the MSDSD solutions [2], [3].

The classic MSDSD aided DPSK [2] was first invoked for a
single receive antenna (Ng = 1). Since the recent developments
in the millimeter-wave band [23], [24] facilitate the employ-
ment of a large number of antennas, especially at the Base Sta-
tion (BS) [25], [26], DPSK systems relying on multiple receive
antennas Nr > 1 may be preferred. However, when the hard-
decision MSDSD of [2] is invoked for N > 1, the Schnorr-
Euchner search strategy has to visit and sort all the MPSK
constellation points. The similar situation is encountered for the
soft-decision MSDSD of [3], when the a priori LLRs gleaned
from the channel decoder are taken into account. Against this
background, we offer the following novel contributions in this
paper:

1) We propose to introduce a low-complexity correlation ope-
ration into the hard-decision MSDSD aided DPSK scheme
employing an arbitrary number of receive antennas, so
that the SD may visit the constellation points in a zigzag
fashion, which is similar to the scenario of Ng = 1 in [2].

2) It was shown in [27], [28] that substantial complexity
reduction may be attained by exploring the symmetry
of the Gray-labelled MPSK constellation. Against this
background, we propose a reduced-complexity Schnorr-
Euchner search strategy for the soft-decision MSDSD of
[3] employing an arbitrary number of received antennas.
The proposed soft-decision MSDSD algorithm may visit a
reduced number of nodes and hence achieve a substantial
complexity reduction without imposing any performance
loss.

Moreover, in order to offer an improved solution and a com-
prehensive study for the soft-decision MSDSD, the following
novelties are also offered in this paper:

3) The soft-decision MSDSD proposed in [3] invokes the sub-
optimal Max-Log-MAP algorithm, where the SD produces
only the optimum candidate. Against this background, we
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additionally propose to modify the output of the SD, where
multiple candidates may be produced so that the near-
optimum Approx-Log-MAP may be implemented.

4) Furthermore, the important subject of coherent versus
noncoherent detection is discussed for coded systems. Our
simulation results suggest that compared to the coherent
MPSK relying on realistic channel estimation, the DPSK
schemes employing MSDSD may be deemed as a more
suitable candidate for turbo detection aided coded systems
operating at high Doppler frequencies.

The rest of this paper is organized as follows. The hard-
decision MSDSD of [2] is extended to the case of Ng > 1 in
Section II, where the correlation operation is introduced. The
soft-decision MSDSD of [3] is introduced in Section III, and
then our reduced-complexity soft-decision MSDSD is proposed
in Section IV. Furthermore, the near-optimum Approx-Log-
MAP for the soft-decision MSDSD is proposed in Section V. We
provide simulation results in Section VI, where the coherent ver-
sus noncoherent discussion is offered, and our conclusions are
given in Section VII. Finally, in Appendix, we present the classic
SD aided V-BLAST employing MPSK [29]-[34] in the same
form as the MSDSD aided DPSK, so that the proposed reduced-
complexity Schnorr-Euchner search strategy and the Approx-
Log-MAP solution may be applied to the V-BLAST detection.

The following notations are used throughout the paper. The
operations (-)* and ()" denote the conjugate of a complex num-
ber and the Hermitian transpose of a complex matrix, respec-
tively. The notations In(-) and exp(-) refer to natural logarithm
and natural exponential functions, respectively. The notations
p(-) and E(-) denote the probability and the expectation, re-
spectively. The operation & represents the Kronecker product.
The notation rvec(A) forms a row vector by taking the rows of
matrix A one-by-one, while Toeplitz(a) refers to the symmetric
Toeplitz matrix generated from the vector a. Moreover, the
notations N(-) and J(-) take the real part and the imaginary part
of a complex number, respectively.

II. HARD-DEcCISION MSDSD
For an M-ary DPSK scheme, the transmitter firstly maps
BPS = log, M source bits {bk},'fi? to an MPSK symbol x"* =
exp (jzﬁnzh), where the phasor index m = bin2dec(b; - - - bpps)

is the Gray-coded index 7. Following this, the differential
encoding may be performed as:

Sn = Xp—18n—1- (1)

For a Single-Input Multiple-Output (SIMO) system, the signal
received by the Ny receive antennas may be expressed as:

Y,=s,H,+V,, 2

where the (1 x Ng)-element vectors Y,, H,, and V, refer to
the received signal vector, the Rayleigh fading vector and the
AWGN vector which has a zero mean and a variance of Ny,
respectively. Furthermore, the N,, observations of (2) may be
modelled by MSDD as [9], [35]:

Y=SH+V, 3)
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where we drop the time index 7, so that the matrices in (3) are
givenby Y = [Y§ .-, YI1', S = diag{[sn,. --- , 511}, H=

M5 .- H1" and V= [V} .-, VI]". We note that the
matrices Y, H and V are of size (N,, x Ng), while S has
(Ny, x N,,) elements. Furthermore, since the first transmitted
symbol s1 1n S is a common phase rotation of the following
symbols {St}; ', the MSDD’s received signal model of (3) may

be rewritten as!:

Y=SH+V, “

where the v diagonal element in S is given by Sy =5y - 57,
which 1eads tos; =lands, = xy_15y—1 = ]_[t | X forv > 1,
while the v row in H is given by H, = s;H,. The MSDD aims
for maximizing the following a posteriori probability:
1 L
p1Y) = LOPE) 5)
> ve P(YISHp(S))

where the a priori probability p(S’) may be assumed to
be a constant of for the equiprobable candidates

— . =1 _ .
{S’}?io 1. Furthermore, the conditional probability p(Y|S")

in (5) may be expressed as:

1
ey

exp {—rvec(Y) . R;; - [rvec(Y)]H }

Y|SH =
p(Y|S) aNrNw det(Ryy)

. (0

where the equivalent signal model is given by rvec(Y) =
rvec(H) - (S ® Ing) + rvec(V). As a result, the correlation ma-
trix in (6) may be formulated as:

Ryy = E {[rvec(Y)] - rvec(Y)} = [(S")H CS"] ® Ing. (7)

More explicitly, the fading correlation matrix is given by
Ry =E{[rvec(H)]? - rvec(H)} =Ry, ® In,, where the fading
characteristic matrix is given by Ry, = Toeplitz([po, o1, - - - ,
PN, —11). According to the Clarke model [36], the fading auto-
correlation is given by {p, = Jo2rfy - v)}gio_l, where Jo(-) is
the zero-order Bessel function of the first kind, while f; denotes
the normalized Doppler frequency. Moreover, the AWGN cor-
relation matrix is given by Ryy = E{[rvec(V)]¥ - rvec(V)} =
Ry, ® Iy, where the AWGN characteristic matrix is simply
given by Ry, = Noly,,. As a result, the channel characteris-
tic matrix in (7) is given by C = Ry, + Ry,. The transmission
matrix S of (3) is a unitary matrix, hence the determinant
term in (6) is a constant of det(Ryy) = {det[(Si)H - det(C) -
det(S)]}¥8 = det(C)M¥. In summary, the MSDD that maxi-
mizes the a posteriori probability of (5) may be formulated as:

®)

S = argmin
vSi

where L is a lower triangular matrix obtained from the
Cholesky decomposition of C~! = LLH.

IWe note that Y = [YK,W YTJ in (3) stores the received signal vectors
in a reverse order compared to Y = [YT Y{/ ]T seen in [2], [3], so that
the MSDSD may detect the transmitted symbols accordmg to their differential
encoding order of s, = x,_15,_1, instead of detecting them backwards as
EU = X:El)ﬁ*l .

In order to facilitate SD,2 the MSDD metric of (8) may be
revised to the Euclidean Distance (ED) as:

> ZE?‘Uzv

v=1
where R denotes the SD’s sphere radius. The vectors {{U;, =
11:/‘:”' 1 in (9) are invariant over the variables

|LESHY | = <R, ©)

INy—t+1.Ny—v+1Y e} }
{5y }giz, where Iy, —+1,n,—v+1 refers to the element taken from
the (N,, — t+ 1)-th row and (N,, — v + 1)-th column of the
lower triangular matrix L in (8). We note that the superscript
i for S’ in (8) is omitted in (9) for notational convenience.
Therefore, the MSDSD’s Partial Euclidean Distance (PED)
based on the ED of (9) may be defined as [2]:

_ 2
v v
dy =Y |Y 55U =do1+ Ay, (10)
=1 Il r=1
and the associated PED increment as:
2 2

_*Ut,v =

Ay—1 =

v—1
Ej_lUv,v + xy—1 (Z E;kUt,v>

=1

(1)

Observe in (10) and (11) that for a specific index v, all the pre-
viously tested transmitted symbols {E,}tvz_l1 have been decided,
and the current SD search may opt for the best candidate for
representing x,_1, which is supposed to minimize A,_j.

When Ng = 1 is used, it was demonstrated in [2] that the
best phasor index is gwen by my_1 = |py—1], where we have
Pyv_1= %Z(— U, v/Zz 1 57U, ). If the phase index 71,1
was rounded down from p,_1, i.e. we have the condition of
Pv—1 — My—1 > 0, then the SD visits the remaining phasors in
a zigzag fashion according to the steps of m,—| = my_1 + 1,
My—1 =My—1—2, My—1] =my—_1 + 3, etc. Otherwise, the SD may
visit the remaining phasors according to the steps of 7, =
My—1 — 1, my—1 = my—1 + 2, my—1 = my—1 — 3, etc. How-
ever, for the more general case of using Ng > 1, {{U; v };_; }Ifil
in (11) become vectors, hence we cannot directly obtain p,_1.
In order to mitigate this problem, we rewrite (11) as:

2
Ay 1—HAMSDD xv,IBB{SPDH : (12)

where we have AMSDD 55Uy, pand BMSDD > 11 57U, .
As aresult, a s1mple correlation process leads us to the follow-
ing decision variable:
H

21 = AYSPP (BYSPP) (13)
which may be directly used for detecting x,_. More explicitly,
the best phasor is now given by 71,1 = |py—1], where we have
Po—1 = % /7y—1, and the Schnorr-Euchner search strategy may
visit the remaining phasors in a zigzag fashion in the same way
as the case of Ng = 1 in [2].

2We note that the depth-first tree search strategy of [30] and the Schnorr-
Euchner constellation search strategy of [1] constitute the default choice for
the MSDSD [2], [3], which enables the MSDSD to achieve the same detection
capability as the MSDD.



III. SOFT-DECISION MSDSD

According to the a posteriori probability of (5), the optimum
Log-MAP algorithm invoked by MSDD may be expressed as
[37], [38]

Ysies,, PSTY)
Ysies,, o PSTY)
Zslesb exp(d’)
ZS’eSb OeXp(dl)
where Ly, (by), L. (bx) and L, (by) represent the a posteriori LLR
and the extrinsic LLR produced by the MSDD as well as the
a priori LLR gleaned from a channel decoder, respectively.

Furthermore, Sbk:1 and Sbk:() refer to the MSDD signal set

S, when the specific bit bk is set to 1 and 0, respectively. The
Nw—1) _
probability metric? {dl}l 0 :

L,(by) =1n
(14)

= Lq(bi) + L (by),

seen in (14) is given by d' =

[ sy” YH + Y MBS g (b, where (B P

denotes the bit-mapping corresponding to the MSDD candidate
S'. The Log-MAP algorithm of (14) may be simplied by the
low-complexity Max-Log-MAP [37] as:

max d'. (15)

SiEShk:()

L,(br) = _max d —

SiESkaI

Furthermore, in order to compensate for the sub-optimum Max-
Log-MAP, the Approx-Log-MAP was introduced as [39]:

L,(by) = jacsieshk=l d — jacsi€§1,k=0dl' (16)
where jac denotes the Jacobian algorithm of jac(d', d?) =
max{d', d®} + I'{|d" — d?|}, while the additional term of
I'{|d' — d?|} may take into account the difference between d'
and d? according to a lookup table.

The Max-Log-MAP aims for finding the maximum proba-
bility metrics, which is similar to the action of hard-decision
detectors. Therefore, in order to invoke SD for the Max-Log-
MAP, the maximization of (15) has to be revised for the sake of
minimization, while the probability metrics should be guaran-
teed to have positive values. As a result, the MSDD probability

metric of (14) may be transformed into:

Ny v N, BPS
B | D ID MR AT RN Mt
v=I11lr=1 v= 2k—1

where the superscript i for d seen in (14) is deleted for the sake
of convenience, while the polarity of d’ in (14) is altered. Fur-
thermore, the constant C,, &, in (17) was formulated as Ca K, =

lnHBPS]{1+eXp[L (bi )1} in [3], which was originally

3We note that all multiplicative factors of the exp(di) term are elim-
inated by tyg: di_v_ision ogt;ration in (14), which include the denominator
[ZVS/ p(YIS)p(S)] of p(S'|Y) in (5), the denominator [ NRNw det(Ryy)] of
p(Y|SY) in (6) as well as the denominator ]_[<NW_I)BPS{1 + exp[Lqa(bp)]} in
exp[zgiw_l)BPS by La(bp)]
M1~ DPPS (1 explLa (o))

LLR definition of Ly = In 2G=g} [37], [38].

the a priori probability of p(Si ) =

according to the
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eliminated by the the division of the Log-MAP of (14). How-
ever, in order to avoid excessive calculations in logarithm
domain, we adopt the method in [34], [40], which uses a simple
operation of 6& k= %[|La (bg,)| + La(by, )] to guarantee a non-
negative ED. As a result, the PED of soft-decision MSDSD may
be defined as [3]:

v | @ 2 v oBPS B
dv = Z ZE?ULTJ _Z Z Iib]'qLa (b/_q;) — Ca,/_cﬁ] (18)
v=21lt=1 522]_(6:]
=dy—1 + Ay—1,

where the PED increment is given by:

v—1
Ejfluv,v + X" (Z E;kUt,v>
=1
BPS

—Z[bk ( )—Eu,,—%]. (19)

k=1

2
Ay =

As introduced in [3], the Schnorr-Euchner search strategy may
search for x,_| according to A,_; of (19). However, unlike
the hard-decision MSDSD, the decision variable z,,_; of (13)
cannot be directly used, because the a priori information
pr_sl [bg, La(by,) — C, 1, 11s notincluded in z,—;. As a result,
the conventional Schnorr-Euchner search strategy in [3] has to
visit all MPSK constellation points for x,_; by evaluating and
sorting a total of M PED increment values A,_; of (19).

The soft-decision MSDSD algorithm based on the PED of
(18) may now be implemented by the “MAP-MSDSD” function
in [3], which is exemplified for the cases of employing DQPSK
and D8PSK in Figs. 1 and 2, respectively. In summary, the
MSDSD algorithm in [3] is capable of finding both the global
minimum dMAp as well as the optimum constellation points
{Xy— 1}v 2 , ! which may be translated into the hard-bit decisions

of {bkMAID } k: ] DBPS. In order to produce soft-bit decisions, the
Max-Log-MAP algorithm of (15) may be completed as:

—d d o if pMAP _
Ly(bx) = AMAP + dmap 1 fvaP (20)
—duap + dyap, it b = 0.

where EZMA p is obtained by invoking the MSDSD again, where
the search space is halved by fixing by to be the flipped version
of the MAP decision as by = l_JkMAP . In summary, when the con-
secutive MSDSD windows are simply overlapped by Nor = 1
observations, the MSDSD algorithm of [3] has to be invoked
once first for finding the global MAP solution dy4p in (20), and
then it is invoked for an additional (V,, — 1) log, M number of
times for finding the local MAP solutions dyap in (20), which
may be referred to as the Repeated Tree Search (RTS).
Alternatively, it’s recently proposed in [33], [34] that the
Single Tree Search (STS) [41] may opt to invoke the SD only
once for obtaining all the EDs of dysp and &MAP, which may
induce a potential performance loss. More explicitly, if the
hypothesis bit-mapping arrangement for dy4p is updated and
changed, all the counter-hypothesis bit-mapping arrangements
for dyap have to be changed accordingly. As a result, the previ-
ously dismissed candidates that obey the new bit-mapping can-
not be taken into account again. As a remedy, the sub-optimal
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184 25331 7.28 16211
O constellation points that are visited by the SD
paths that are visited by the SD
the SD’s decision
the SD’s steps
(b)
—Sort candidates at Step(D :

AZ_| = 5563

AY_ | =8.269

A3 =10.986
10 Ay =13.692

2
Azrfl

0,1,2.3
Ar—l

PED increments labelled by Gray coded indices

Fig. 1. Example of soft-decision MSDSD aided DQPSK, recorded at SNR =
0 dB, where we have I4 =0.3, N, =2 and N, =3. (a) Example of
Soft-Decision MSDSD Conceived for DQPSK Detection (labelled with PED
values). (b) Example of QPSK constellation digram visited by Soft-Decision
SD at index v = 2.

(@)

1135 18, 14 2> s . 786

v=3
24718 22414 4246 11.4623 2?)133 26.56 6.6652 15.569
(b)
—Sort candidates at Step (D :
adjas fa a7 Jar fae fan a2 |
AL = 3.499
AP = 5988
Al =1135
AT =12.786
Al | =18.089
AS | =18.289
A3 = 925568
A2 =26.14

Fig. 2. Example of soft-decision MSDSD aided DSPSK, recorded at SNR =
3 dB, where we have Iy = 0.3, Ng =2 and N,, = 3. (a) Example of Soft—
Decision MSDSD Conceived for D8PSK Detection. (b) Example of 8PSK
constellation digram visited by Soft-Decision SD at index v = 2.

detector has to invoke the LLR correction method [34] for
correcting the LLR results. Against this background, the RTS is
suggested in this paper. In fact, the STS’s motivation of visiting
a node at most once can still be accomplished by the RTS,
where the previously visited nodes may be labelled so that the
repeated calculations may be avoided by reading the previously
evaluated PED metrics.

IV. REDUCED-COMPLEXITY SOFT-DECISION MSDSD

It was demonstrated in Section III that the conventional
Schnorr-Euchner search strategy utilized by the soft-decision
MSDSD of [3] has to visit all MPSK constellation points. In this
section, we opt to propose a reduced-complexity soft-decision
MSDSD algorithm, where the Schnorr-Euchner search strategy
may once again visit the MPSK constellation points in a zigzag
fashion. More explicitly, the PED increment A,_; of (19) may
be further extended as:

BPS
2 ~ —
Ay = HA{}“_SPD — xp_ BMSPD H -3 [b,—CULa (b,-{v) . Ca,;;v]

u:1

BPS

L,(b L,(b _

——2‘7{ X 1Zv71 Zbkl‘ (bk> M.FC
ky=1

v—1,
(2D

where we deliberately rotate all the detected MPSK constel-
lations (except for BPSK*) anti-clockwise by (/M) as sug-
gested by [28], i.e. we have Xy_1 = x,_1 - €xp (/1\1/1)’ so that
there are exactly M /4 constellation points in each quadrant.
Furthermore, the new decision variable z,_; seen in (21) is

given by:
H T
MSDD .
. e —_— y
vl ) & (] M)

which is rotated anti-clockwise from the correlation decision
variable zy_S?SD of (13) by (/M) for detecting x,_1, while the
constant of C,_; seen in (21) is given by:

AMSDD ( (22)

La(b1)+La(b2)
2 b
(23)

2 2
= MSDD MSDD || | &=
Comr= [P+ [BPP] +Can -

and we have the constant Ea,v—l = ZEP_SI 661 k- We note that
= ,

C,_1 of (23) is invariant over all the different candidates ¥,_; in
(21). As a result, comparing the M candidates {x”’}%;é accord-
ing to their PED increment values A,_; of (21) is equivalent to
comparing the following equivalent PED increment metric over
the variables x,_; as:

Ay = 2RE-DREp-1) — 23E-DIEo-1)
BPS
o La (bl) + La (b2) (24)
-3 L (%) +
]_cv:l
where we have the algebraic relationship of M(X}_,zy—1) =

RN @p-1) + SGX-1S(@p-1)-
Considering the rotated QPSK as an example, the four proba-

bility metrics {ZT?I}Z:_OI = of (24) corresponding to the M = 4
M—1=3

rotated QPSK constellation points {Scm =+L 7 +j f] 0
m=
may be expressed as (25), shown at the bottom of the next page.

4We note that rotating the BPSK constellation anti-clockwise by (/M)
will only move the two BPSK constellation points from the real axis to the
imaginary axis, which is not neccessary.
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TABLE 1
PSEUDO-CODE FOR REDUCED-COMPLEXITY SOFT-DECISION MSDSD AIDED DPSK

Function: {&v— 1}v %y, darap) = Soft-MSDSD-RC({{U¢ ., }¥_ 1}v L {{La L k} k 1 {Cop— 1}v o
P }ff Nu, B?)
Requirements: The a priori information on group index g is given by {{P7_, = EBPS by LL_1 k}éu/OA‘ ! iv“ where
the bits mapping is given by {[b3 - - - bgps] = dechin(g)}y:/O4 L
1: d1 =0 //initialize PED
2. 51=1 /finitialize the first transmitted symbol
3v=2 /finitialize SD search index
4: (subfunction) findBest-DBPSK/findBest-DQPSK/findBest-DPSK /ffind the best candidate
5: loop
6: dy =dp—1 4+ Dy—1+Co_1 /fupdate PED according to Eq. (18)
7: if d, < R?
8: Ly—1 = x™Mv-1 /fupdate candidate data symbol
9: Sy = Ty—18y—1- //update candidate transmitted symbol
10: if v # Ny
11: v=v+1 /fmove up
12: (subfunction) findBest-DBPSK/findBest-DQPSK/findBest-DPSK
13: else
14 = dNu /fupdate SD radius
15: {:ru 1}U Yy = {xv,l}ivz“z //update the optimum data phasors
16:
17: if v == 2 return [{Z,— 1} "w,, R?] and exit /fterminate SD for the case of N, = 2
18: v=v-—1 /Imove down
19: while n,_1 == (M — 1)
20: (subfunction) findNext-DBPSK/findNext-DQPSK/findNext-DPSK /Mind the next candidate for index v
21: end if
22: else
23: do
24: if v == 2 return [{i‘v_l}i\fgz, R?] and exit /fterminate SD when v = 2 is reached
25: v=v—1 //move down
26: while n,_; == (M — 1)
27: (subfunction) findNext-DBPSK/findNext-DQPSK/findNext-DPSK /Mind the next candidate for index v
28: end if
29: end loop

where we associate the real and imaginary parts of z,—1 with
Ly(by) and L,(by) respectively as:

e = V2R G@1) — L“(zbz),

", = VEE - O
(26)

After assigning the a priori LLRs to the appropriate parts
of zZy—1, the only difference between the four candidates
(A7 11~ =in (25) is the polarity of £%¢ and #™ . This allows
us to dlrectly obtain the minimum metrlc by 51mply evaluating
Ay = —|t = |t 11> and then the ranking order of the rest
of the candldates may be obtained by comparing |t§il| and
|t{)”i 1. In more detail, if we have the condition of |tfi1| >
|t£”11 |, then the SD may visit the remaining candidates in a zig-
zag fashion according to the steps of A,_| = —|t§i1| + |tf)”i1 R

ANy =R ) =™ | and A,_j =|R¢ |+ ™ |. Other-

wise, the remaining steps should be Ay = |tRel| — |t _1|
Ay_y = —|Re |+ ™ | and Ay_y = R |+ |¢™ . In sum-
mary, similar to the condition of sign(py—; — [py—1]) for the
hard-decision MSDSD of Section II, the soft-decision MSDSD
aided DQPSK may rely on the condition of sign(]tf* | —
|t{}’ﬁ 1) for deciding the direction of SD’s zigzag path.

In more detail, the reduced-complexity soft-decision MS-
DSD is summarized in the form of its pseudo-code in Table I,
where the simplified Schnorr-Euchner search strategy specifi-
cally tailored for DBPSK and DQPSK is given by Tables II and
III, respectively. Furthermore, Fig. 3 revisits the specific ex-
ample of Fig. 1, where the reduced-complexity algorithms of
Tables I and III are invoked. It can be seen in Fig. 3 that
the proposed reduced-complexity MSDSD exhibits a reduced
number of visited nodes compared to the conventional MSDSD
exemplified by Fig. 1.

By_j = —V2IRGEo1) — V23(G1) +

A = —V2RGE ) + V23 G)
Ao ) = VIRGom) + V23Go-1) — La(b1) — La(b) +

Ay = V2R Eoo1) = V23@o-1) — La(b2) +

— La(b1) +

La(bl) “I‘La(bZ) — _tRe _ l_Im

La(b1) + La(b2) e m
U T e i

_Z_Re + t]m
Ly(b1) + La(b)
2

La(b1) + La(b2)
2

= +im, (25)
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TABLE II
PSEUDO-CODE FOR THE SUBFUNCTIONS OF THE REDUCED-COMPLEXITY
SOFT-DECISION MSDSD OF TABLE I, WHERE DBPSK Is EMPLOYED

Subfunction: [Cy-1, AU 1, My—1,Ny— 1] =
findBest-DBPSK({Uy,, }V_,, {5:}7 =), {LY ™ ¥ ey, Cao1)
1. AMSPD — 5+ 1UU v /lupdate according to (12)
2: BMSDD —(ZvTl 5 U /lupdate according to (12)
3 Zy_1 = AMSDD(BMSDD)H /lupdatea ccording to (13)
4. Cy_q = AMSDD H //update the constant of (23)

BMSDDH +Cy_1—0.5L8 11

5 tRe = R(Z,-1) — 0505 1!

6 Au 1= —|tRey| /lupdate the optimum candidate
7: Mmy-1 = (tRE1 <0)

8 Mny_1=0 //initialize child node counter

Subfunction:[A,_1,m,_1,My—1] = findNext-DBPSK(A, _1,m,_1,
Ny—1 )

//the second child node is opposite to the

optimum child node

//alter the optimum child node

//lupdate child node counter

1: Ay—l = _Zv—l

20 Mmy—1=1—my_1
3. my—1=ny—1+1

Let us now consider the rotated 8PSK constellation portrayed
by Fig. 4(b) as an example, where the M = 8 constellation
points are arranged to M /4 =2 groups, which are Group
GO of {:I:cos( ) :I:]sm( )} and Group G1 of {:I:sin(”):t

]cos( )} Accordingly, their probability metrics {Av U _(; y

of (24) may be expressed as:

By === By =4 -0,
= RO 40 Ry =R A (27)
Zi_l = Rl — L (by),
N 1=tRil —r”" — La(b3),
Ay =~k +r’"“ — La(bs),
A =R (b, (27b)

where the two pairs of real/imaginary terms are given by tRfol =
2c08(Z)-RGy—1) — 28D | "0 — 2 5in (Z) - I(Zpoy) — Ll
tfell =2811’1( ) R(Zy— 1) La(bz) and tlml1 —ZCOS( ) S(Zpe 1) _

%b‘). It can be seen in (27a) and (27b) that the only difference
between the four component probability metrics within each
group is the polarity of the real/imaginary terms. As a result,
the local minimum metrics of the M /4 = 2 groups may be ob-

tained by A 1 = MiNye(0,2,4,6) Av = —|tR‘0 | — |t1'”0 | and

—Gl1
A,_ | =MiNye(13,5,7) Av 1= |tRell|—|tIm | —Lg4(b3), respec-

tively, which are evaluated without invoking (24) for M = 8

times in (27). Finally, the global minimum over {AU 1}M =7

of (24) may be simply obtained by comparing the two local
minima as A,_; = mm{AU > v_l}.

In summary, for a generic high-order MPSK scheme
(M > 4), we may firstly assign the M constellation points to
M /4 groups of QPSK-like constellation points that are associ-
ated with the same magnitudes but different polarities, so that
the local minimum metric for {Av 1} of (24) within each
group is simply given by:

BPS
A Z biLa(by).

Reg
Av—l =

tvfl

‘ Img

(28)

where the range for the group index is given by g € {0, -- -,
M /4 — 1}, while the real and imaginary parts of 7, are asso-
ciated with L, (b>) and L,(b1) respectively as follows:

L, (b2) Im

Ree —A® Gy 1) — 5 =B

vl_

L,(b
3Gy — b))

U

(29)

The coordinates of the MPSK constellation points, which
are located in the first quadrant may be denoted by {(AS,

Bs )}M/ -l , and we have A® = 248 as well af/l E‘lg = 2B% in (29).
Asa result the global minimum for {AU 1} o Of (24) may be
simply given by:
A_i= min A%, (30)
2€{0,--,M/4—1)

which is obtained by visiting a reduced-subset of M /4 constel-
lation points that correspond to the M /4 local minima of (28).
We note that the procedures conceived for obtaining the
minimum probability metric of (30) are similar to those in
our previous work designed for generic soft-decision MPSK
detection in [28]. However, for the soft-decision MSDSD, the
Schnorr-Euchner search strategy also relies on the ranking order
of constellation points. Against this background, we propose to
complete the Schnorr-Euchner strategy by using a Comparison
Window (CW). More explicitly, the CW is initialized to have
M /4 local minima of (28), which correspond to local best
candidates. Then the CW may choose the global best candidate
which has the global minimum metric by invoking (30). This is
the subfunction of “findBest-DPSK” for the Schnorr-Euchner
search strategy tailored for MPSK (M > 4) in Table IV. Fur-
thermore, when the SD re-visits a specific SD index v, the
“findNext-DPSK” subfunction in Table IV may offer the next
constellation node. More explicitly, if previously a local min-
imum from Group Gg is chosen as the global candidate, i.e.

previously we have A, = A° 1 from (30), then Group Gg
has to visit a new local candidate in a zigzag fashion by
comparing |t§i§1| and |t{fi§1 |. Following this, the CW may once
again update the new global candidate by invoking (30).

Fig. 4 portrays the D8PSK example of Fig. 2, where the
reduced-complexity algorithms of Tables I and IV are invoked.
More explicitly, it can be seen in Fig. 4 that the “findBest-
DPSK” subfunction in Table IV may firstly initialize the CW

by the M/4 = 2 local minima of (28) as Zfol = —3.487 and

Afl 1 = —0.998, and then the CW invokes (30) in order to

obtain the global candidate of A,_| = Afol = —3.487. More-

over, when the SD re-visits index v = 2 in Fig. 4, the “findNext-

DPSK” in Table IV may firstly update a new local candidate

ASOI = 4.364 from Group GO by visiting the QPSK-like con-

stellation points in a zigzag fashion relying on the relationship

between |t§i01| and |tf}"101 |, and then the CW invokes (30) again

in order to obtain the new global candidate of A,_; = KUGll =

—0.998. As aresult, the reduced-complexity MSDSD exempli-
fied in Fig. 4 visits a reduced subset of the constellation points
compared to the conventional MSDSD exemplified in Fig. 2,
yet the same SD result is arrived at.

Moreover, it is worth pointing out that the conventional
MSDSD algorithm in [3] requires the Schnorr-Euchner search
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TABLE III
PSEUDO-CODE FOR THE SUBFUNCTIONS OF THE REDUCED-COMPLEXITY SOFT-DECISION MSDSD OF TABLE I, WHERE DQPSK Is EMPLOYED

Subfunction: [Cy_1, [t5€ |, [tI™ |, Ay_1,my—1,7,—1) = findBest-DQPSK({ Uy, }2_, {5:}' =1 {Ly™ "2, Chv)
I: AMSDD =35_1Uyp /lupdate AMSDD according to Eq. (12)
2: BMSDD = 7(2:@71 57Ut w) //update BMSDD according to Eq. (12)
3: ’MSDSD AMSDD(BMSDD)H - exp (j ALI) //update dec151on variable of Eq. (22)
4: 61,_1 = HAL\]’[E?DH BXE?D‘ 2 +Cap—1— 0.5(Ly~ 11 4 L2712y /lupdate the constant of Eq. (23)

5. the, = VoR(zMSPSP) — 0501 /frelate LY~ 12 to real part of zMSDSD
6: t{)m = V293 (zMSPSP) — 050211 /relate LY~ 1! to imag part of zMSDSD
7o DNyoyr = —|tRe | — |elmy| /lupdate the optimum PED increment
8: by =(tIm <0) //update the optimum candidate

9: by = (tRe; <0)

10: my—1 = bin2dec(b1b2) //translate binary bits to decimal index
11 ny—1 =0 //initialize child node counter
Subfunction:  [Ay_1,My—1,Nny—1,cdy—1] = ﬁndNext-DQPSK(\tRel| \t“"l\ Ay—_1,My—1,Np—1,cdy_1)

I: ny—1=ny-1+1 //update child node counter

2:  switch ny,—q

3: case 1: b1by = dec2bin(my—_1) //translate decimal index to binary bits

4: cdy—1 = sign(|the | — [tImy)) /fupdate the condition

5 ifcdy—1 ==1 /fthe case of [tRe | > [¢tIm, |

6: Ayo1 = —|tBe | + |tImy| /falter the imaginary part of the PED increment

7: my—1 = bin2dec(b1b2) //alter by in the optimum child node

8: else /fthe case of [tRe | < [¢tIm |

9: Ay_1 = [tRe | — [tImy| /falter the real part of the PED increment

10: My—1 = bin2dec(b1b2) /falter by in the optimum child node

11: end if

12: break

13: case 2: Ay = —Ay_ //alter the decision made by the previous step

14: My—1 =3 — My—_1

15: break

16: case 3: bi1by = dec2bm(mt_1)

17: Ay_1 = [tBe |+ |tImy| //alter the optimum child node

18: ifcdy—1 == 1my_1 = bln2dec(51bz) //alter by in the decision made by the previous step

19: else m,_1 = bin2dec(b1b2) //alter bz in the decision made by the previous step

20: break

21: end

7.28
the SD paths that are avoided

-~ ’

Cr---=10
because of the reduced—complexity design
(b)
v=2| (C,_ =8.771) —Find the best candidate at Step (D :
2
o1 00 _Ar—l
o oL, A1 =4, =-3208
3! ¢ Ay =By 1 +Cyy = 5563
v —Find the next candidate at Step():
2 0
] @10 N1 =4, =—0502
N A (condition: |¢ffe,| > [tIm,|)
Ayt =Dyy + Cpy = 8.269

Fig. 3. Example of soft-decision MSDSD aided DQPSK, which corresponds
to the example seen in Fig. 1, subject to the difference that the reduced-
complexity algorithm of Tables I and III are invoked. (a) Example of Reduced—
Complexity Soft-Decision MSDSD Conceived for DQPSK Detection.
(b) Example of QPSK constellation diagram visited by Reduced—Complexity
Soft-Decision SD at index v = 2.

strategy to invoke a sorting algorithm, which was represented
by the “gsort” function on line F-6 in the pseudo-code algorithm
table of [3]. As a result, all M constellation points {xm}ln‘;’;&
are ranked according to an ascending order of the PED in-
crement values {A”' }M:_l, which is explicitly exemplified by
Figs. 1 and 2. There are numerous sorting algorithms that may
be suitable, such as Bubble sort, Timsort, Library sort [42],
[43], etc., but the average number of comparisons required by
these algorithms is as high as O(MlogM). By contrast, the
reduced-complexity MSDSD of Tables II-IV does not require
any sorting algorithms. As exemplified by Figs. 3 and 4, the
proposed Schnorr-Euchner search strategy does not have to
maintain the complete ranking order of constellation points,
which dispenses with a considerable number of comparisons.

V. APPROX-LOG-MAP IMPLEMENTED BY MSDSD

The soft-decision MSDSD discussed in the Sections [ITand IV
aims to implement the Max-Log-MAP of (15), which may im-
pose a performance loss compared to the near-optimum Approx-
Log-MAP of (16). In order to mitigate this open problem, we
propose the Approx-Log-MAP solution for MSDSD as follows:

(1) Let us define the leaf nodes of a SD structure as the candi-
dates associated with the SD index v = N,,.. For example,
the M = 4 candidates visited at the SD’s step of O in
Fig. 1(a) as well as the M = 8 candidates visited at step 2)
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Group GO

Group G1

omparlso/' Wmdow
A’ ”1 =R = 3487
A =R = —0.998
A, =min {AII“ A

A,v_| = Z,,

.....Group GO .

B} = 3287
+ O, 3.499

—Find the next candidate at Step 3:

Group GO A .:ZD

Group Gl

Comparison Window:
G0 -0

A~ = A, = 4.364 (condition{t )| > |¢t[m])
A =R = 1998

o Ay_| = min {A, '1 A, |} = —0.998

S A =Dy 4 Cyy = 5988

Fig. 4. Example of the soft-decision MSDSD aided DS8PSK, which corre-
sponds to the example seen in Fig. 2, subject to the difference that the
reduced-complexity algorithms of Tables I and IV are invoked. (a) Example of
Reduced-Complexity Soft-Decision MSDSD Conceived for DS8PSK De-
tection. (b) Example of 8PSK constellation diagram visited by Reduced—
Complexity Soft-Decision SD at index v = 2.

in Fig. 2(a) are all leaf nodes. This leads us to the proposed
change of the MSDSD output scenario. When the MSDSD
algorithm is invoked for the first time, instead of just pro-
ducing the global optimum djz4 p and the MAP hard-bit deci-

sions {bMAP | —DBPS , all the PED values of the leaf nodes

{dcan = dU}VU:NW as well as all the corresponding hard-

. .. N,y—1)BPS
bit decisions {biAN },({=1 )

duced. For example, the SD of Fig. 1(a) may produce both
the MAP solution, which is represented by dyap = 7.28

and {bMAP}(N” DBPS _ 1010, as well as all the leaf nodes,
which are represented by {dcan} = {18.4,25.331, 7.28,
16.211} and (M4}~ (1000, 1001, 1010, 1011},
(2) For each soft-bit output the MSDSD algorithm is invoked
again with a fixed bit by = BkMAP . Similarly, whenever the

SD visits index v = N,,, the resultant M leaf candi-
L,MAP

dates {d}éAAf } may all be recorded and produced. For
example, when the SD of Fig. 1(a) is invoked again with
a fixed bit b1 = 0, the resultant SD structure is portrayed
in Fig. 5, where the two sub-groups of leaf nodes {25.118,
35.09, 18.97, 1491} and {20 05, 24.09, 46.615, 35.05}

may be recorded as {dcl;mj7 ¥ }. We note that there may

only be M /2 leaf candidates, when the fixed bit by = I_JQ’IAP

may also be recorded and pro-

is at the specific position in the range of k € {(N,, —
2)BPS+1,---, (N, — 1)BPS}.

(3) Finally, the Max-Log-MAP of (20) may be revised for the
Approx-Log-MAP as:

LMAP

jac (—dCAN)—jac< A > if MAP = |

Ly (bk) = by =bMAP
jac <—dCAN" ) —jac(—dcan), if bYIAP=0.

€1y
We note that when the sizes of the two candidate groups
b/]yIAP

{dcan} and {dCAN } are not the same, the size of the
larger group may be reduced, so that ideally both groups
disregard the same number of candidates. Ideally, any
potential deviations introduced both by the jac(—dcan)
7 MAP
and by jac(—d?;,bk ) operations may be cancelled out.
In practice, the SD’s output candidates for {dcay} and
LMAP

{d: A; K} are always constituted by either the sub-group
of M leaf candidates or by the sub-group of M/2 leaf
candidates. Therefore, for the larger-sized group, we may
compare the best leaf candidates, which are supposed
to have the minimum PED values in each sub-groups,
and then we may delete the sub-groups associated with
the highest locally best leaf candidate’s PED value. For
the example of Fig. 5, we may delete the sub-group of
{20.05,24.09,46.615,35.05}, because the local best leaf
candidates from each sub-group have the relationship of
20.05>14.91. As a result, the Approx-Log-MAP of (31)
may be implemented for the example seen in Figs. 1(a) and
5 as Ly(by) =jac (—{18.4,25.331,7.28,16.211}) —
jac (—{25.118, 35.09, 18.97, 14.91}).

One may argue that the SD does not visit all the MSDD
candldates which means that the group sizes of {dcay} and

{dCAN B } seen in (31) may be smaller than the group sizes of

Sie Sp.=1 and Sie Sbk —o seen in (16). In other words, ideally,
the Approx-Log-MAP of (16) may include all the MSDD
candidates, but naturally the SD may only visit a subset of them.
Nonetheless, as suggested by [39], when the Approx-Log-
MAP corrects the difference between two probability metrics
of |d' — d?|, only 8 values corresponding to |d' — d?| ranging
between O and 5.0 may be taken into account. This implies
that large differences of |[d! — d?| > 5.0 are inherently ignored
by the Approx-Log-MAP. Therefore, we may assume that the
leaf candidates ignored by the SD may also be ignored by the
Approx-Log-MAP, so that no extra complexity is imposed on
the SD by our proposed Approx-Log-MAP.

We note that for a better implementation, Step (2) may be

exccuted for all BPS(N,, — 1) fixed bits {by = pMAP1>HS M=V
before proceeding to Step (3), so that all the leaf nodes Vlsited
by the repeated SD searches may be utilized in Step (3). As
CAN MAP

a result, {dCAN} in (31) may be replaced by {dCA N =bi }, and

MAP
then both {dCAN = } and {dCAN } in (31) may include all
the leaf nodes obtained from Steps (1) and (2) corresponding to

the specific bit by being bf{vIAP and EQ’IAP , respectively.

HMAP
k
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TABLE IV
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v—1

Subfunction:  [{|t, <4 1070t {16,y [ e T ACWE_ 1T {ewm

M/4— M/4—
AR Sl UL vl

My—1,ny—1] = findBest-DPSK({ Uy, }¥_,, {5:}V= 1,{L”‘1’°}k . au_l,{Pg Y

yAy—1,Cy—1,
M/4 )

Bl RSN > A

hd

10:
11:
12:
13:
14:

15:
16:

AMSDD §* 1U'u »
BMSDD — _(zt - *Ut 'u)

Z]\ISDSD — AMSDD(BMSDD)H

Co1 = ‘AMSDDH
for g=0 to (M /4 — 1)
thes = A9 éR(zMSDSD) 0.5L0 12
™ = BY . (zMSDPSD) _ o, 5L”_1’1
WYy = —|elea ) — ¢ima) — P9
by = (1™ < 0)
by = (tRe" <0)
Cng_1 = bin2dec(b1b2b3 - - - bps)

- exp (j57)

1

ny_, =0
end for
[Au-1, 9] = min({CWJ_, 3,707
My—1 = Cng_1
Nny—1 =0

2 —_— - -
B’XE?DH +Cawe1 —05(L~ 5 4 L2712

/fupdate AMSPD according to Eq. (12)
/fupdate BMSED according to Eq. (12)
/lupdate decision variable of Eq. (22)

//lupdate the constant of Eq. (23)

/Irelate Lz_l’z to real part of 2IWSDSD
/relate LY ™! zMSDSD

//update the local minimum PED increment

! to imag part of z;

//we have [bs - - - bgps] = dec2bin(g)
/lupdate child node counter for each group

//the global minimum is Ny_1 = CWg_1
//record the global optimum index
/lupdate global child node counter

v—1

A'u 1, My— lyn'u 1)

M M M
T g T {edd_

Subfunction: [{CW“’_l}M/4 ! {Cwm? _1}M/4 ! {ng_l}M/4 ! {edd_ 1}M/4 L Au_1,my_1,ny_1] = findNext-DPSK(
Req yM/A—1 p| Ty G0 /4—1 M/4—1 Mja-1
RS el 125 Pe 2 ows 3 (owm

’

Bl AN A

3

11:
12:
13:
14:
15:
16:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
. end for
29:

[b1 - - - bpps] = dec2bin(my—1)

g = bin2dec(bs - - - bpps)
i+

switch ng 1

Reg I'myg
case 1: cd?_ | =sign(|t, 7] — [t,”"7))

if cdg_1 ==1
i Re( Imy
CWI_, = —[t7 7|+ 1e)"7| - PT_,
Cng_l = bm2dec(b1b2b3 - bpps)
else
il Res Im4
ng—l = ‘t'u—.i - ‘tv—i]‘ - P{? 1

CWmJ_ | = bin2dec(b1b2b3 - - - byps)

end if
break

case 2: ng 1= —Ayo1 — 2P 1
Cng = bi n2dec(b1 bobs - - - bgps)
break

case 3: CW9_, :\t |+|t "7 - PI_,

if cdg o, ==1 Cng_1 = bin2dec(b1 b2b3 - - -

else Cng_1 = bin2dec(b1b2b3 - - - bgps)
break
end switch
Zv—l = inf
for g=0to (M/4—-1)
ifCWI_, <Ay_randnf_, <=3
Ay_1=CWI_,
my—1 =CWm?_,
end if

Ny—1 =Ny—1+ 1

bgps)

//obtain the previously tested child node
/lupdate the previously tested group’s index

/lupdate child node counter

/lupdate the condition of group g

//alter the imaginary part of local minimum
//alter by in the local optimum child node

//alter the real part of local minimum
//alter bz in the local optimum child node
//alter the second child node

//alter both by and bs in the previous decision

//alter the local optimum child node
//alter by in the previous decision
//alter by in the previous decision

//initialize global minimum

/lcompare local minimums from un-full groups
//update global minimum

//update global child node

The Approx-Log-MAP may also be straightforwardly ap-

plied to the reduced-complexity soft-decision MSDSD of
Section IV, where the simplified Schnorr-Euchner strategy
of Tables II-IV can be invoked for all SD indice satisfying
v < N,,. However, the original Schnorr-Euchner strategy of [3]
has to be invoked for the specific SD index v = N,,, because all
the leaf nodes at v = N,, have to be recorded and produced for

the Approx-Log-MAP.

VI. PERFORMANCE RESULTS

A. Approx-Log-MAP Versus Max-Log-MAP

First of all, the accuracy of the extrinsic LLRs produced
by the Approx-Log-MAP and Max-Log-MAP algorithms are
tested as portrayed in Fig. 6, where the two PDFs
{p(Le|D)}p=10,1y may be obtained by estimating the histograms

of L., with the source bits being b = {0, 1}. If the LLR
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Fig. 5. Example of the soft-decision MSDSD conceived for DQPSK imple-
menting Approx-Log-MAP, which invokes the SD seen in Fig. 1 with a fixed
bit of by = 0.

-------- (1) DQPSK, MSDSD (Max-Log-MAP)
——=- (2) DQPSK, MSDSD (Approx-Log-MAP)
—— (3) D16PSK, MSDSD (Max-Log-MAP)

0))

=1)/Pr(Le|b=

In(Pr(Le|b

Fig. 6. LLR accuracy test for DQPSK and D16PSK employing both Approx-
Log-MAP and Max-Log-MAP aided Subset MSDSD (N,, = 4), recorded at
SNR = 0 dB and Iy = 0, where we have Ng = 2 and f; = 0.03.

definition of L, = In % is statistically true, then the LLRs
accuracy test is supposed to result in a diagonal line in Fig. 6.
However, the LLRs of the Max-Log-MAP suffer from a notice-
able deviation, which is effectively improved by the proposed
Approx-Log-MAP, as evidenced by Fig. 6

It is worthy to note that the so-called Subset MSDSD is
employed throughout this section. More explicitly, it was dis-
covered in [44] that the symbols at the middle of the MSDSD
window may be more reliably detected than those at its edges.
Therefore, the Subset MSDSD overlaps the consecutive detec-
tion windows by Ng; = 3 observations, so that the (Nor —
1 = 2) symbols detected at the edges may be discarded.” The
BER performance of Fig. 7 further confirms the advantage of
the proposed Approx-Log-MAP algorithm in both TC coded
and IRCC-URC coded DPSK systems, where the simulation
parameters are summarized in Table V.

B. Complexity Reduction

To elaborate, the asymptotic complexity analysis of MSDSD
was presented in [45] following the same guideline as the SD

5We note that the choice of Nop, is independent of N,,, and it was demon-
strated in [44] that increasing Ny, beyond three does not provide any further
advantage.

~@- IR1c=4, IRtcmspsp=4 (Approx-Log-MAP)
—©— IR1c=4, IRycvspsp=4 (Max-Log-MAP)

~#- IRyrc-mspsp™2- IRRec-(urc-MspsDy =50 (Approx-Log-MAP)
—— IRyre-mspsp™2s IRrec-(ure-mspspy =30 (Max-Log-MAP)
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Fig. 7. BER performance of TC/IRCC-URC coded DPSK employing Subset
MSDSD (N,, = 4), where we have Ng = 2 and f; = 0.03.

TABLE V
SYSTEM PARAMETERS

Channel TC coded DPSK (Schematics Fig. 3.1 in [38])
Coding IRCC-URC coded DPSK (Schematics Fig. 5.1 in [38])
TC coded I Rr¢ iterations within TC decoder; I RTc_prspsp
DPSK iterations between TC decoder and MSDSD
IRCC-URC [ Ry rc—msDspiterations between URC decoder and
coded MSDSD; IIRCC— {URC-MSDSD} iterations between
DPSK [RCC and the amalgamated URC-MSDSD decoder.
Frame length | 1 000 000 bits
TABLE VI
COMPLEXITY OF SOFT-DECISION MSDSD SUBFUNCTIONS
real-valued mul- | real-valued comparisons | visited
tiplications additions nodes
sortDelta (ANgv + (ANgv + O(Mlog M)| M
6Ng)M 2NR)M
findBest-DBPSK | dNgpv + 8N ANgpv + 4Ng | 2 1
ffindNext-DBPSK |0 2 0 1
indBest-DQPSK [ANpv+8Ngr+ UNpv+ANg+ | 4 il
7 6
findNext-DQPSK_|< 1 <4 <3 T
indBest-DPSK ~ dNgv+8Nr+ UNpuv+ANgp+ | 5M/4 M4
M 44 3M/2+2
indNext-DPSK__|< 3 <7 <M/2+2 | 1

aided BLAST of [18], which was only feasible when invoking
the sub-optimal Fincke-Pohst strategy of [21]. By contrast, in
this work, we focus our attention on the complexity reduction
achieved for the optimal Schnorr-Euchner strategy of [1].
Against this background, the detection complexities of the soft-
decision MSDSD subfunctions are summarized in Table VI,°
where “sortDelta” refers to the conventional Schnorr-Euchner
search strategy in [3], while the rest of the proposed subfunc-
tions are given by Tables II-IV. It can be seen in Table VI that
the proposed Schnorr-Euchner search strategy visits a reduced

OWe note that unneccessary calculations are eliminated for Table VI. For

example, both {O.Sszl'l}Vu and {O.Sszl'z}Vu may be calculated before

invoking the MSDSD’s subfunctions. Furthermore, the function of [bg ---
bpps] = dec2bin(m) may be implemented by a pre-stored lookup table
for bit-mapping, while its inverse function m = bin2dec(b; - - - bgps) = by -
2BPS-1 4 by - 2BPS-2 4 4 bpps—1 - 2+ bgpg may require a total number
of (BPS — 1) multiplications as well as (BPS — 1) additions.
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Fig. 8. Complexity (number of real-valued multiplications) comparison be-
tween the conventional MSDSD algorithm of [3] associated with N,, =4
and the reduced-complexity MSDSD algorithm of Tables I and III for coded
DQPSK, where we have Ng =2 and f; = 0.03. (a) E;,/Ng =0~ 15 dB.
(b)Iy =0~ 1.
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Fig. 9. Complexity-Reduction Ratio (CRR) achieved by the reduced-
complexity MSDSD algorithm of Table I compared to the conventional
MSDSD algorithm of [3] recorded at E;/Ng =0 dB and I4 = 1, where we
have Ng =2 and f; = 0.03. (a) Ny, = {3,4,5,6}. (b) M = {2, 4,8, 16}.

number of nodes, which results in a reduced complexity in all
categories.

The complexity of the conventional MSDSD algorithm and
that of the proposed MSDSD algorithm conceived for coded
DQPSK are compared in Fig. 8 in terms of the total number
of real-valued multiplications. It is confirmed by Fig. 8(a)
and (b) that the complexities of the MSDSD algorithms may
converge to their lower bounds, as E, /Ny and/or I4 increase.
Fig. 8 demonstrates that the proposed MSDSD of Table I sub-
stantially reduces the complexity of the conventional MSDSD
in [3]. The Complexity-Reduction Ratios (CRRs) achieved by
our reduced-complexity design are further presented in Fig. 9.

IEEE TRANSACTIONS ON COMMUNICATIONS

We note that for the conventional MSDSD, the Approx-Log-
MAP and the Max-Log-MAP impose the same number of real-
valued multiplications. By contrast, for the proposed MSDSD,
the Approx-Log-MAP has to invoke the conventional Schnorr-
Euchner strategy for the specific SD index v = N,,, which
results in a higher number of multiplications than the Max-Log-
MAP. Nonetheless, Fig. 9(a) and (b) demonstrate that substan-
tial complexity reductions of up to CRR = 48.0% and CRR =
52.2% are achieved by the Subset MSDSD (N,, = 6) aided
DQPSK and by the Subset MSDSD (N,, = 4) aided D16PSK,
when the Approx-Log-MAP is implemented. Furthermore,
even more substantial complexity reductions of CRR = 66.7%
and CRR = 88.7% are achieved by the Subset MSDSD (N,, =
6) aided DQPSK and by the Subset MSDSD (N,, = 4) aided
D16PSK, when the Max-Log-MAP is implemented. We note
that the complexity reductions achieved by the proposed
MSDSD are especially significant, when the MSDSD is iter-
atively invoked several times by the turbo detected systems.

Once again, we note that the proposed soft-decision MS-
DSD algorithm presented in Tables I-IV has exactly the same
detection capability as the conventional soft-decision MSDSD
algorithm presented in Appendix I of [3]. We have arranged
for them to decode the same channel output associated with the
same a priori soft input, and we found that they always produce
exactly the same SD decisions.

C. Coherent Versus Noncoherent

Last but not least, MSDSD aided DQPSK is compared to its
PSAM aided coherent QPSK counterpart. First of all, Fig. 10
demonstrates that when we have f; = 0.03, the LLRs produced
by the PSAM aided QPSK detector suffer from severe deviation
from the true probabilities, which may result in disproportion-
ately high LLR values that may misinform the channel decoder.

Secondly, Fig. 113 demonstrates that when we have
f2=0.001, the coherent PSAM aided QPSK significantly
outperforms the Subset MSDSD aided DQPSK in both our TC
and IRCC-URC coded systems. However, when the normalized
Doppler frequency is increased to f; = 0.03, the PSAM aided
QPSK’s performance degrades substantially, while the Subset
MSDSD aided DQPSK only suffers from a small BER per-
formance degradation, which gives the noncoherent schemes a
0.7 dB and a 1.4 dB performance advantage over their coherent
counterparts in the context of our TC and IRCC-URC coded
systems, respectively, as evidenced by Fig. 11. Therefore, we
may conclude that the DPSK schemes employing MSDSD may
be deemed to be a more suitable candidate for channel coded
systems operating at high Doppler frequencies.

TWhen we have f; = 0.03, the PSAM’s pilot spacing Npg is reduced to 12
in order to sample the channel more frequently, while the PSAM’s observation
window length Now (number of filter coefficients) is also reduced to 12, due to
the weak temporal correlation.

8There is no iteration between the QPSK detector and the channel decoder in
Fig. 11, because the QPSK detection does not produce any iteration gain [28].
Nonetheless, the coded coherent schemes and their noncoherent counterparts
have the same total number of iterations for turbo detection.
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Fig. 10. LLR accuracy test for PSAM [11] aided coherent QPSK, recorded at
SNR = 0 dB and I4 = 0, where we have Ng = 2.
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Fig. 11. BER performance comparison between TC/IRCC-URC coded PSAM
[11] aided coherent QPSK and TC/IRCC-URC coded Subset MSDSD aided
DQPSK, where the Approx-Log-MAP is invoked, while Ng = 2 receive anten-
nas are used. (a) TC coded systems. (b) IRCC-URC coded systems.

VII. CONCLUSION

In this paper, the Schnorr-Euchner search strategy was con-
figured to always visit the MPSK constellation points in a zig-
zag fashion both for the hard-decision MSDSD of Section II
and for the soft-decision MSDSD of Section IV. The com-
plexity results of Figs. 8 and 9 demonstrated that our proposed
design offers a substantial complexity reduction. Furthermore,
the Approx-Log-MAP algorithm implemented by the MSDSD
was proposed in Section V, which improved the Max-Log-
MAP, as demonstrated by Figs. 6 and 7. Finally, our comparison
of the channel-coded coherent and noncoherent schemes char-
acterized in Figs. 10 and 11 suggested that the DPSK schemes

employing MSDSD may be deemed to be more suitable can-
didates for channel coded systems operating at high Doppler
frequencies.

APPENDIX

In this section, we aim to conceive the SD aided V-BLAST
employing MPSK [29]-[34] in the same form as the MSDSD
aided DPSK, so that the reduced-complexity Schnorr-Euchner
search strategy proposed in Section IV and the Approx-Log-
MAP proposed in Section V may also be applied to the
V-BLAST detection.

Explicitly, the (1 x Nr)-element V-BLAST transmission
matrix is given by:

S=[s1. . swl=[Z . ] 62

where the MPSK/QAM symbols are separately modulated as
{s"™v }Ivvil, while the factor /N7 normalizes the transmission
power. The signal received by the Ng antenna elements at the

receiver may be modelled as:

Y=SH+V, (33)

where the (1 x N7)-element vector S and the (1 x Ng)-element
vector Y represent the input and output signals of the MIMO
channels, respectively. Furthermore, the (N7 x Ng)-element H
matrix of (33) models the MIMO’s Rayleigh fading channels,
while the (1 x Ng)-element AWGN vector V of (33) models the
zero-mean Gaussian random variables with a common complex
variance of Ny, whose PDF is given by p(V) = p(Y|S)) =
__ansﬁﬂF)
No

1 .
N R exp ( , wWhere there is a total number of

MNT combinations {S'} ~! for the MIMO transmission ma-
trix S in (33). In order to invoke the classic SD, the V-BLAST
receiver may apply QR decomposition to H [31]-[34], which
results in H = (QU)” = LQ#, where the (Ng x Nr)-element
matrix Q has orthogonal columns Q”Q = In,, while U and
L = U are upper- and lower- triangular matrices, respectively.
As aresult, (33) may be reformulated as:

MNT
i=0

Y = YQ =SL + VQ, (34)

where VQ has exactly the same statistics as the AWGN vector
V. Based on the conditional probability p(Y|S?) as well as on
the Bayes’s theorem of (5), the ED to be minimized by the SD
may be expressed as [34], [40]:

~ 2
Z:)Vil YU_Z?]:TU i vst Nr BPS _ —w
= No -2 [bIEvLa(bicv)—Ci;;v],

v=1j,=1
(35)

where an extra constant Z‘iD,;v = %[|La(b,-%)| + L, (b,—cu )] is intro-
duced in order to guarantee that the ED remains non-negative
[34], [40]. According to the ED of (35), the SD’s PED may be



formulated as d, = dy+1 + Ay, where the PED increment A,
may be expressed as:

- . 2
‘yv M s BPS

~ —SD
o= No -2 [b’?vL” (b’_%) - Cjk]
k,=1
,  BPS -
= [AP — B3P = 3 [P L (7,) - Car, |- G6)
ky=1
where we have ASD M nd BSP = .Asa

result, (36) is in the same form as the MSDSD’s PED mcrement
of (19) in Section III and (21) in Section IV. Therefore, the
reduced-complexity Schnorr-Euchner search strategy and the
proposed Approx-Log-MAP solution may be directly applied
to the SD aided V-BLAST employing MPSK.
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Abstract—Unlike a generic PSK/QAM detector, which may visit
a constellation diagram only once, a depth-first Sphere Decoder
(SD) has to re-visit the same constellation diagram multiple times.
Therefore, in order to prevent the SD from repeating the detection
operations, the Schnorr-Euchner search strategy of Schnorr and
Euchner may be invoked for optimizing the nodes’ search-order,
where the ideal case is for the SD to visit the constellation nodes
in a zigzag fashion. However, when the hard-decision Multiple-
Symbol Differential Sphere Detection (MSDSD) of Lampe et al. is
invoked for using multiple receive antennas Ng > 1, the Schnorr-
Euchner search strategy has to visit and sort all the MPSK
constellation points. A similar situation is encountered for the soft-
decision MSDSD of Pauli ef al., when the a priori LLRs gleaned
from the channel decoder are taken into account. In order to tackle
these open problems, in this paper, we propose a correlation pro-
cess for the hard-decision MSDSD of Lampe ef al. and a reduced-
complexity design for the soft-decision MSDSD of Pauli et al.,
so that the Schnorr-Euchner search strategy always opts for vis-
iting the MPSK constellation points in a zigzag fashion. Our simu-
lation results demonstrate that a substantial complexity reduction
is achieved by our reduced-complexity design without imposing any
performance loss. Explicitly, up to 88.7% complexity reduction is
attained for MSDSD (N,, = 4) aided D16PSK. This complexity
reduction is quite substantial, especially when the MSDSD is
invoked several times during turbo detection. Furthermore, in
order to offer an improved solution and a comprehensive study for
the soft-decision MSDSD, we also propose to modify the output of
the SD to harmonize its operation with the near-optimum Approx-
Log-MAP. Then the important subject of coherent versus nonco-
herent is discussed in the context of coded systems, which suggests
that MSDSD aided DPSK is an eminently suitable candidate for
turbo detection assisted coded systems operating at high Doppler
frequencies.

Index Terms—Multiple-symbol differential sphere detection,
DPSK, sphere decoding, Schnorr-Euchner search strategy, turbo
detection, soft-decision, coherent versus noncoherent.
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1. INTRODUCTION

HE history of Differential Phase Shift Keying (DPSK)
dates back to Lawton’s classic work [4], [5] in 1959-1960,
where the effect of false carrier-phase locking is mitigated by
the low-complexity Conventional Differential Detection (CDD).
More explicitly, the DPSK transmitter modulates the data-
carrying symbols onto the phase changes between consecutive
transmitted symbols, so that the CDD may recover the source
information by observing the phase change between every pair
of consecutive received samples. However, it was demonstrated
by Cahn [6] in 1959 that the CDD-aided DPSK scheme suffers
from a 3 dB performance penalty compared to its coherent
counterpart. Moreover, it was discovered by Bello and Nelin [7]
in 1962 that an irreducible error floor occurs for DPSK, when
the CDD, which was originally designed for AWGN channels,
is directly employed in rapidly fluctuating fading channels. In
order to mitigate this problem, the Multiple-Symbol Differen-
tial Detection (MSDD) philosophy was proposed by Divsalar
and Simon [8] in 1990 for DPSK invoked in AWGN channels
and by Ho as well as Fung [9] in 1992 for Rayleigh fading
channels. More explicitly, the MSDD extends the CDD’s obser-
vation window width of N,, = 2 to V,, > 2, where a total num-
ber of (N,, — 1) data-carrying symbols are jointly detected. The
price paid is that the MSDD complexity grows exponentially
with (N,, — 1). In order to reduce the MSDD complexity, a
reduced-complexity algorithm was conceived for MSDD oper-
ating in AWGN channels by Mackenthun [10] in 1994, which
may also be invoked for slowly-fading channels exhibiting a
near-constant envelope for a block of signal transmission. As a
closely related result, it was demonstrated by Cavers [11] in
1991 that accurate channel estimation relying on the classic
Pilot Symbol Assisted Modulation (PSAM) may become es-
pecially challenging, when the normalized Doppler frequency
is increased. Therefore, as an attractive alternative to coherent
receivers, it is essentially important to implement MSDD in
rapidly fluctuating fading channels at an affordable complexity.
Another low-complexity design alternative, namely the
Decision-Feedback Differential Detection (DFDD) was orig-
inally proposed for AWGN channels by Leib and Pasupathy
[12] in 1988. Then in 1995 it was confirmed by Leib [13] that
the DFDD of [12] is equivalent to the MSDD of [8] operating
in decision-feedback mode. The DFDD design was further
extended to Rayleigh fading channels by Schober et al. [14] in
1999. However, the DFDD inevitably imposes a performance
loss due to its inherent error-propagation problem. In order
to retain the optimum MSDD performance, the state-of-the-art
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Multiple-Symbol Differential Sphere Detection (MSDSD) was
proposed by Lampe et al. [2] in 2005, where the MSDD is facil-
itated by invoking the Sphere Decoder (SD) [15]. Furthermore,
inspired by the revolutionary Turbo Code (TC) concept [16]
and the generalization of the “turbo principle” [17], the soft-
decision MSDSD was conceived for DPSK by Pauli et al. [3]
in 2006, so that the MSDSD may be invoked in turbo detection
for the sake of approaching the full capacity potential of the
DPSK systems.

Although the MSDD complexity may be effectively reduced
by the SD, it was demonstrated by Jalden and Ottersten [18]
in 2005 that the SD complexity still remains an exponential
function at low SNRs. Later, Hassibi and Vikalo [19], [20]
demonstrated that the expected SD complexity invoking the
Fincke-Pohst enumeration strategy [21] obeyed a polynomial
function. As an alternative, Kyrillidis and Karystinos [22] re-
cently proposed a new algorithm that aimed for maximizing the
Rayleigh quotient of PSK sequence detection in 2014, where
the complexity was a fixed polynomial function at all SNRs.
Nonetheless, further research efforts are required for enhanc-
ing this algorithm [22] in soft-decision-aided turbo detection
assisted coded systems. Therefore, in this paper, we focus our
attention on the MSDSD solutions [2], [3].

The classic MSDSD aided DPSK [2] was first invoked for a
single receive antenna (Ng = 1). Since the recent developments
in the millimeter-wave band [23], [24] facilitate the employ-
ment of a large number of antennas, especially at the Base Sta-
tion (BS) [25], [26], DPSK systems relying on multiple receive
antennas Np > 1 may be preferred. However, when the hard-
decision MSDSD of [2] is invoked for N > 1, the Schnorr-
Euchner search strategy has to visit and sort all the MPSK
constellation points. The similar situation is encountered for the
soft-decision MSDSD of [3], when the a priori LLRs gleaned
from the channel decoder are taken into account. Against this
background, we offer the following novel contributions in this
paper:

1) We propose to introduce a low-complexity correlation ope-
ration into the hard-decision MSDSD aided DPSK scheme
employing an arbitrary number of receive antennas, so
that the SD may visit the constellation points in a zigzag
fashion, which is similar to the scenario of Ngp = 1 in [2].

2) It was shown in [27], [28] that substantial complexity
reduction may be attained by exploring the symmetry
of the Gray-labelled MPSK constellation. Against this
background, we propose a reduced-complexity Schnorr-
Euchner search strategy for the soft-decision MSDSD of
[3] employing an arbitrary number of received antennas.
The proposed soft-decision MSDSD algorithm may visit a
reduced number of nodes and hence achieve a substantial
complexity reduction without imposing any performance
loss.

Moreover, in order to offer an improved solution and a com-
prehensive study for the soft-decision MSDSD, the following
novelties are also offered in this paper:

3) The soft-decision MSDSD proposed in [3] invokes the sub-
optimal Max-Log-MAP algorithm, where the SD produces
only the optimum candidate. Against this background, we
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additionally propose to modify the output of the SD, where
multiple candidates may be produced so that the near-
optimum Approx-Log-MAP may be implemented.

4) Furthermore, the important subject of coherent versus
noncoherent detection is discussed for coded systems. Our
simulation results suggest that compared to the coherent
MPSK relying on realistic channel estimation, the DPSK
schemes employing MSDSD may be deemed as a more
suitable candidate for turbo detection aided coded systems
operating at high Doppler frequencies.

The rest of this paper is organized as follows. The hard-
decision MSDSD of [2] is extended to the case of Ng > 1 in
Section II, where the correlation operation is introduced. The
soft-decision MSDSD of [3] is introduced in Section III, and
then our reduced-complexity soft-decision MSDSD is proposed
in Section IV. Furthermore, the near-optimum Approx-Log-
MAP for the soft-decision MSDSD is proposed in Section V. We
provide simulation results in Section VI, where the coherent ver-
sus noncoherent discussion is offered, and our conclusions are
given in Section VII. Finally, in Appendix, we present the classic
SD aided V-BLAST employing MPSK [29]-[34] in the same
form as the MSDSD aided DPSK, so that the proposed reduced-
complexity Schnorr-Euchner search strategy and the Approx-
Log-MAP solution may be applied to the V-BLAST detection.

The following notations are used throughout the paper. The
operations (-)* and ()" denote the conjugate of a complex num-
ber and the Hermitian transpose of a complex matrix, respec-
tively. The notations In(-) and exp(-) refer to natural logarithm
and natural exponential functions, respectively. The notations
p(-) and E(-) denote the probability and the expectation, re-
spectively. The operation ® represents the Kronecker product.
The notation rvec(A) forms a row vector by taking the rows of
matrix A one-by-one, while Toeplitz(a) refers to the symmetric
Toeplitz matrix generated from the vector a. Moreover, the
notations N(-) and J(-) take the real part and the imaginary part
of a complex number, respectively.

II. HARD-DECISION MSDSD

For an M-ary DPSK scheme, the transmitter firstly maps
BPS = log, M source bits {bk},}?if to an MPSK symbol x"* =
exp (j%ﬁz), where the phasor index m = bin2dec(b; - - - bpps)

is the Gray-coded index 7. Following this, the differential
encoding may be performed as:

ey

For a Single-Input Multiple-Output (SIMO) system, the signal
received by the Ny receive antennas may be expressed as:

Sn = Xn—15n—1-

Y, =s5H,+V,, )

where the (1 x Ng)-element vectors Y,, H,, and V,, refer to
the received signal vector, the Rayleigh fading vector and the
AWGN vector which has a zero mean and a variance of Ny,
respectively. Furthermore, the N,, observations of (2) may be
modelled by MSDD as [9], [35]:

Y=SH+V, 3
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where we drop the time index n, so that the matrices in (3) are

givenby Y = [YI{,W, . ,YIT]T, S = diag{[sn,,, -+ ,s1]}, H=
[HY .- ,HIT]T and V=[V] .- ,VIT]T. We note that the

matrices Y, H and V are of size (N,, x Ng), while S has
(N,, x N,,) elements. Furthermore, since the first transmitted
symbol s 1n S is a common phase rotation of the following
symbols {s,}t 5> the MSDD’s received signal model of (3) may

be rewritten as!:

Y=SH+V, “4)

where the v diagonal element in S is given by 5, = sy - 5],
which leads to 5] = 1 and 5, = Xp_15p—1 = ]—[;:11 x; forv > 1,
while the v™ row in H is given by H, = s;H,. The MSDD aims
for maximizing the following a posteriori probability:
1 1
p@E 1Y) = LIPS 5)
> s P(YIS)Hp(S)

where the a priori probability p(S?) may be assumed to

be a constant of m for the equiprobable candidates
— . M Nw=D _ _.
{S’}?io : . Furthermore, the conditional probability p(Y|S")

in (5) may be expressed as:
exp {—rvec (Y) - R;; - [rvec (Y)]H }

YIS = ’
p(Y|S) aNeNw det(Ryy)

(6)

where the equivalent signal model is given by rvec(Y) =
rvec(H) - (S ® In;) 4 rvec(V). As a result, the correlation ma-
trix in (6) may be formulated as:

Ryy = E {[rvec(V)]” - rvec(Y)} = [(Sf)H CS’] ® Ing. (7)

More explicitly, the fading correlation matrix is given by
Rig =E{[rvec(H)] - rvec(H)} =Ry, @ Ing, where the fading
characteristic matrix is given by Ry, = Toeplitz([pg, o1, - - ,
on,,—11). According to the Clarke model [36], the fading auto-
correlation is given by {p, = Jo(2nfy - v)}ﬁ’io_l, where Jo () is
the zero-order Bessel function of the first kind, while f; denotes
the normalized Doppler frequency. Moreover, the AWGN cor-
relation matrix is given by Ryy = E{[rvec(V)] - rvec(V)} =
R,y ® In,, where the AWGN characteristic matrix is simply
given by Ry, = Noly,,. As a result, the channel characteris-
tic matrix in (7) is given by C = Ry, + Ry, The transmission
matrix S of (3) is a unitary matrix, hence the determinant
term in (6) is a constant of det(Ryy) = {det[(Si)H - det(C) -
det(SH1}V% = det(C)Mr. In summary, the MSDD that maxi-
mizes the a posteriori probability of (5) may be formulated as:

§ = argmin HL(S")HYHZ, @®)
VSt

where L is a lower triangular matrix obtained from the
Cholesky decomposition of C~! = LL#.

T.
I'We note that Y = [Y,{,w, EE YlT] in (3) stores the received signal vectors

in a reverse order compared to Y = [YT YN JT seen in [2], [3], so that
the MSDSD may detect the transmitted symbols accordmg to their differential
encoding order of s, = x,_15,_1, instead of detecting them backwards as

- *o
Sy = X85p41-

In order to facilitate SD,% the MSDD metric of (8) may be
revised to the Euclidean Distance (ED) as:

> Z%Uw

v=1
where R denotes the SD’s sphere radius. The vectors {{U; , =

|LEsHY | = <R, )

IN, —1+1, NW_U_HY,};’: 1 }i)’il in (9) are invariant over the variables
{50 }2’22’ where Iy, 141§, —v+1 refers to the element taken from
the (V,, — t+ 1)-th row and (N,, — v 4+ 1)-th column of the
lower triangular matrix L in (8). We note that the superscript
i for S’ in (8) is omitted in (9) for notational convenience.
Therefore, the MSDSD’s Partial Euclidean Distance (PED)
based on the ED of (9) may be defined as [2]:

- 2
v v
dy =) |D 5Us| =dpi+ A1, (10)
v=I1 Il t=1
and the associated PED increment as:
2 2

Ay_1 =

v
—*
Zst Ut,U y
=1

v—1
% %
Sv_lUv,v + xy—1 ZS[UZ,U

=1

(1)

Observe in (10) and (11) that for a specific index v, all the pre-
viously tested transmitted symbols {5}, ! have been decided,
and the current SD search may opt for the best candidate for
representing x,_1, which is supposed to minimize A,_j.

When Ng =1 is used, it was demonstrated in [2] that the
best phasor index is given by My—1 = |py—1], where we have
Pv—1=%é( 5 Un/ > s;“U,U) If the phase index m,_|
was rounded down from p,_1, i.e. we have the condition of
Pv—1 — My—1 > 0, then the SD visits the remaining phasors in
a Z1gzag fashion accordlng to the steps of ry—; = ry—1 + 1,
Py—1 =My—1—2, My—1 =Mmy—1 + 3, etc. Otherwise, the SD may
visit the remaining phasors according to the steps of 7,1 =
My—1— 1, my_1 =my_1 +2, my_1 = my_1 — 3, etc. How-
ever, for the more general case of using Ng > 1, {{U;,};_ I}N”
in (11) become vectors, hence we cannot directly obtain p,_1.
In order to mitigate this problem, we rewrite (11) as:

= HAMSDD Xy 1BMSDDH ’ (12)

where we have 5% Uy yand BIIYI_SPD Zt L 57Uy
As a result, a simple correlation process leads us to the follow-
ing decision variable:

H
21 = AYSPP (BYSPP)

MSDD _
Av—l -

13)

which may be directly used for detecting x,_1. More explicitly,
the best phasor is now given by 7,1 = |py—1], where we have
Po—1 = % /zy—1, and the Schnorr-Euchner search strategy may
visit the remaining phasors in a zigzag fashion in the same way
as the case of N = 1in [2].

2We note that the depth-first tree search strategy of [30] and the Schnorr-
Euchner constellation search strategy of [1] constitute the default choice for
the MSDSD [2], [3], which enables the MSDSD to achieve the same detection
capability as the MSDD.



III. SorT-DECISION MSDSD

According to the a posteriori probability of (5), the optimum
Log-MAP algorithm invoked by MSDD may be expressed as
[371, [38]

Y sics, _, PSTY)

Ly,(by) =1n k —
ZSiESb _,P'Y) (14
ZS’ESb eXp(di)

= La(br) + Le(bi),
ZS’eSh -0 exp(dl)

where Ly, (by), L. (bx) and L, (by) represent the a posteriori LLR
and the extrinsic LLR produced by the MSDD as well as the
a priori LLR gleaned from a channel decoder, respectively.
Furthermore, Sbk=1 and Sbkzo refer to the MSDD signal set

S, when the specific bit by is set to 1 and 0, respectively. The

Mw)]

probablhty metric® {d'};_, seen in (14) is given by d' =

—HLH SH'Y H M DBPS B L (b, where (B (VPP
denotes the bit-mapping corresponding to the MSDD candidate
S'. The Log-MAP algorithm of (14) may be simplied by the
low-complexity Max-Log-MAP [37] as:

max d'.

Lo(bw) = Sics
bk:()

~max d' —
SiESbkzl

(15)

Furthermore, in order to compensate for the sub-optimum Max-
Log-MAP, the Approx-Log-MAP was introduced as [39]:

L,(by) = jaCSieShkzldl — jaCSiESthOdl. (16)
where jac denotes the Jacobian algorithm of jac(d!, d?) =
max{d!, d*} + I'{|d' — d*|}, while the additional term of
r{|d' — d*} may take into account the difference between d!
and d? according to a lookup table.

The Max-Log-MAP aims for finding the maximum proba-
bility metrics, which is similar to the action of hard-decision
detectors. Therefore, in order to invoke SD for the Max-Log-
MAP, the maximization of (15) has to be revised for the sake of
minimization, while the probability metrics should be guaran-
teed to have positive values. As a result, the MSDD probability

metric of (14) may be transformed into:

Ny || v N, BPS
S | S ID MR ACH RN Mt
v=11lr=1 v=2f =1

where the superscript i for d’ seen in (14) is deleted for the sake
of convenience, while the polarity of d' in (14) is altered. Fur-
thermore, the constant C, ; in (17) was formulated as C, ; =

In HBpsl{l + explLq(bg )]} in [3], which was originally

3We note that all multiplicative factors of the exp(di) term are elim-
inated by the di_vjsion OHQration in (14), which include the denominator
vy P(YISHpS)] of p(S'[Y) in (5), the denominator [V det(Ryy)] of

p(YlSi) in (6) as well as the denominator ]_[(wal)BPS{l +explLa(bp)]} in

B Z(NW—I)BPS ByLa(hp)]
the a priori probability of p(S') =
1‘[<N‘* UBPS{HeXp[La(bk)J}

according to the

LLR definition of L, = In 20=g) [37], [38].
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eliminated by the the division of the Log-MAP of (14). How-
ever, in order to avoid excessive calculations in logarithm
domain, we adopt the method in [34], [40], which uses a simple
operation of Ea, k= %[|La (bg, )| + La(by, )] to guarantee a non-
negative ED. As aresult, the PED of soft-decision MSDSD may
be defined as [3]:

v | @ v BPS
=2 Zng”” Zz[bk ( )_aaf%] (18)
=2l r=1 =2};=1
=dy—1+ Ay-1,
where the PED increment is given by:
v—1 2
Apoy = |55 Uyy +2" (Z E;kUt,v)
"o
= 2 (Bt (i) ~Cur]- a9
ky=1

As introduced in [3], the Schnorr-Euchner search strategy may
search for x,_1 according to A,_; of (19). However, unlike
the hard-decision MSDSD, the decision variable z,_1 of (13)
cannot be directly used, because the a priori information

BPS [bk L, (bk )—C, ,;U] is not included in z,_1. As a result,
the conventlonal "Schnorr-Euchner search strategy in [3] has to
visit all MPSK constellation points for x,_; by evaluating and
sorting a total of M PED increment values A,_; of (19).

The soft-decision MSDSD algorithm based on the PED of
(18) may now be implemented by the “MAP-MSDSD” function
in [3], which is exemplified for the cases of employing DQPSK
and D8PSK in Figs. 1 and 2, respectively. In summary, the
MSDSD algorithm in [3] is capable of finding both the global
minimum dMAp as well as the optimum constellation points
{Xv_1 ‘_”2 , which may be translated into the hard-bit decisions

of {bMAP }(N” I)BPS. In order to produce soft-bit decisions, the
Max-Log- MAP algorithm of (15) may be completed as:
if BYAP = 1
if BYAP = 0.

—dyap + dyiap,

Ly(b) = (20)

—dyap + dyap,

where dyap is obtained by invoking the MSDSD again, where
the search space is halved by fixing by to be the flipped version
of the MAP decision as by = b¥A”. In summary, when the con-
secutive MSDSD windows are simply overlapped by Nor = 1
observations, the MSDSD algorithm of [3] has to be invoked
once first for finding the global MAP solution djz4p in (20), and
then it is invoked for an additional (N,, — 1) log, M number of
times for finding the local MAP solutions dyap in (20), which
may be referred to as the Repeated Tree Search (RTS).
Alternatively, it’s recently proposed in [33], [34] that the
Single Tree Search (STS) [41] may opt to invoke the SD only
once for obtaining all the EDs of dy4p and dyiap, which may
induce a potential performance loss. More explicitly, if the
hypothesis bit-mapping arrangement for dyap is updated and
changed, all the counter-hypothesis bit-mapping arrangements
for dyap have to be changed accordingly. As a result, the previ-
ously dismissed candidates that obey the new bit-mapping can-
not be taken into account again. As a remedy, the sub-optimal
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18.4 25331 7.28 16211
O constellation points that are visited by the SD
paths that are visited by the SD

@ — @ @ the SD’s decision
.@. the SD’s steps
000 p
(b)
v=2 01 —Sort candidates at Step(D :
AV
11 00 Aj_| =5.563
AY_| =8.269
A A, AP, =10.986
10 Al =13.692
A7
01,23
At'~l

PED increments labelled by Gray coded indices

Fig. 1. Example of soft-decision MSDSD aided DQPSK, recorded at SNR =
0 dB, where we have I4 =0.3, Np =2 and N, =3. (a) Example of
Soft-Decision MSDSD Conceived for DQPSK Detection (labelled with PED
values). (b) Example of QPSK constellation digram visited by Soft—Decision
SD atindex v = 2.

v=1
v=2
O O V=3
24718 22414 4246 11423 27.13326.56 6.6652 15.569
(b)
—Sort candidates at Step (D :

NN NI

A% = 3499

AS_| = 5.988

AY | =11.35

AT = 12.786

Al =18.089

AB_ | = 18289

AP = 25568

A2 =264

Fig. 2. Example of soft-decision MSDSD aided D8PSK, recorded at SNR =
3 dB, where we have Iy = 0.3, Ng =2 and N,, = 3. (a) Example of Soft—
Decision MSDSD Conceived for D8PSK Detection. (b) Example of 8PSK
constellation digram visited by Soft-Decision SD at index v = 2.

detector has to invoke the LLR correction method [34] for
correcting the LLR results. Against this background, the RTS is
suggested in this paper. In fact, the STS’s motivation of visiting
a node at most once can still be accomplished by the RTS,
where the previously visited nodes may be labelled so that the
repeated calculations may be avoided by reading the previously
evaluated PED metrics.

IV. REDUCED-COMPLEXITY SOFT-DECISION MSDSD

It was demonstrated in Section III that the conventional
Schnorr-Euchner search strategy utilized by the soft-decision
MSDSD of [3] has to visit all MPSK constellation points. In this
section, we opt to propose a reduced-complexity soft-decision
MSDSD algorithm, where the Schnorr-Euchner search strategy
may once again visit the MPSK constellation points in a zigzag
fashion. More explicitly, the PED increment A,_; of (19) may
be further extended as:

BPS
N > A
]_cv:l
BPS
Ly(b1)+La(b2)
:—2}}1 v IZ‘U l Zbkl’ (bk) : - Cv L
k=1
(21

where we deliberately rotate all the detected MPSK constel-
lations (except for BPSK*) anti-clockwise by (w/M) as sug-
gested by [28], i.e. we have X, = x,_1 -exp (j35), so that
there are exactly M /4 constellation points in each quadrant.
Furthermore, the new decision variable z,_1 seen in (21) is
given by:
H b4
7, 1 Z AMSDD (BMSDD> exp (j—), (22)
M

which is rotated anti-clockwise from the correlation decision
variable zﬁ”leSD of (13) by (/M) for detecting x,_1, while the
constant of C,_; seen in (21) is given by:
La(b1)+La(b2)

> ,
(23)

— 2 A N
Comr= |AMSPR " |BYSPP " 4 G -

T
C,_1 of (23) is invariant over all the different candidates Xp—1in
(21). As a result, comparing the M candidates {x™ }Amté accord-
ing to their PED increment values A,_; of (21) is equivalent to
comparing the following equivalent PED increment metric over
the variables x,_; as:

and we have the constant Ea,v_l => . We note that

Ayt = 2R E-1)R(@p—-1) = 23F-1)SZv-1)

BPS
~ Lo(by) + Ly(b 24
_Zbl_(uLa(bl_cv)_'_ al 1)2 al 2)’ 24)

k=1

where we have the algebraic relationship of M(X}_,zy—1) =
RCp— 1N (Zp—1) + I(Xy—1)I(Zy—1).
Considering the rotated QPSK as an example, the four proba-

bility metrics {K:)n_l }Zz_é = of (24) corresponding to the M = 4
M—-1=3

rotated QPSK constellation points i)'c =+-1 7 +j f}

may be expressed as (25), shown at the bottom of the next page.

4We note that rotating the BPSK constellation anti-clockwise by (/M)
will only move the two BPSK constellation points from the real axis to the
imaginary axis, which is not neccessary.
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TABLE 1
PSEUDO-CODE FOR REDUCED-COMPLEXITY SOFT-DECISION MSDSD AIDED DPSK

Function: {&o—1} darap) = Soft-MSDSD-RC({{Um-}75':1}57;"1, {rev ’f}ffﬂz 2 A{Ca—130,,
(P Yoo ™ 0y, N, R?)
Requirements: The a priori information on group index g is given by {{P?_, = ZBPS b L™ b k}éu/é 1}5“2, where
the bits mapping is given by {[bs bes] = dec2bin(g )}2[:/6L '
1: di =0 //initialize PED
2. 51 = //initialize the first transmitted symbol
3v=2 //initialize SD search index
4: (subfunction) findBest-DBPSK/findBest-DQPSK/findBest-DPSK //find the best candidate
5: loop
6: dy =dy—1 + Dy—1+ Cy_1 /lupdate PED according to Eq. (18)
7. ifdy, < R?
8: Ty—1 = xMv-1 //update candidate data symbol
9: Sy = Ty—18y—1- /lupdate candidate transmitted symbol
10: if v # Ny
11: v=v+1 //move up
12: (subfunction) findBest-DBPSK/findBest-DQPSK/findBest-DPSK
13: else
14: R?=d N /fupdate SD radius
15: {xv 1}U h = {mug»l}i\];”? /lupdate the optimum data phasors
16:
17: if v == 2 return [{JEU41},]JV§'27 R?] and exit /fterminate SD for the case of Ny, = 2
18: v=v—1 //move down
19: while n,—1 == (M — 1)
20: (subfunction) findNext-DBPSK/findNext-DQPSK/findNext-DPSK /Mind the next candidate for index v
21: end if
22: else
23: do
24: if v == 2 return [{ir_1}iv;“2, R?] and exit /terminate SD when v = 2 is reached
25: v=v-—1 //move down
26: while n,_1 == (M — 1)
27: (subfunction) findNext-DBPSK/findNext-DQPSK/findNext-DPSK //find the next candidate for index v
28: end if
29: end loop

where we associate the real and imaginary parts of z,—1 with
L,(by) and L, (by) respectively as:

(b2) - La(by)

) = V2RGE-1) - “2 ot = VG - T
(26)

After assigning the a priori LLRs to the appropriate parts
of Zy— I the only difference between the four candidates

Yin (25) is the polarity of %  and #/ |. This allows
us to d1rectly obtain the minimum metnc by 51mply evaluating
Ay_1 = —|tR = |t1m |, and then the ranking order of the rest

of the candidates may be obtained by comparing |t§i1| and

U

|t£’f i|. In more detail, if we have the condition of |t§f1| >
|t{)”1 1|, then the SD may visit the remaining candidates in a zig-
zag fashion according to the steps of A,_| = —ItRe |+ IfII,"il l,
Ay—1 = |t§L_1| - |t{,’711| and Ay_j = |tRL |+ |t1m | Other-

wise, the remaining steps should be A, | = |t§i = |t{)”1 1l
Apoy = —|08, |+ 10" | and Ay_y = 125, [+ )" ] In sum-
mary, similar to the condition of sign(py—; — |py—1]) for the
hard-decision MSDSD of Section II, the soft-decision MSDSD
aided DQPSK may rely on the condition of 51gn(|t
|t{)"j | 1) for deciding the direction of SD’s zigzag path.

In more detail, the reduced-complexity soft-decision MS-
DSD is summarized in the form of its pseudo-code in Table I,
where the simplified Schnorr-Euchner search strategy specifi-
cally tailored for DBPSK and DQPSK is given by Tables II and
I, respectively. Furthermore, Fig. 3 revisits the specific ex-
ample of Fig. 1, where the reduced-complexity algorithms of
Tables I and III are invoked. It can be seen in Fig. 3 that
the proposed reduced-complexity MSDSD exhibits a reduced
number of visited nodes compared to the conventional MSDSD
exemplified by Fig. 1.

Sil=

oot = —V2RG-1) = V23G-1) +

——3 _ _
Ay y = V2REu-1) + V23 (E-1)

V2R Ep-1) — V23Ey—1) — La(b2) +
A, | = —2RGv1) + V23@o_1) — La(b)) +

— La(b1) — La(D2) +

Lolb) +La®D) _ e
= - 17 =1

v—

La(b1) + La(b2) _ .Re tlm
5 =ho Lo

L) +La®) _ ke, m
L)+ Eabs) _ _ppe

La(b1) + La(b2)

(25)
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TABLE 11
PSEUDO-CODE FOR THE SUBFUNCTIONS OF THE REDUCED-COMPLEXITY
SOFT-DECISION MSDSD OF TABLE I, WHERE DBPSK Is EMPLOYED

Subfunction: [Cyo_1,A
findBest-DBPSK({U , }V_,, {5:}77]

U lyr’LLllknvflL =
{LU }k:hca,vfl)

1 AMSDD 55 _1 Uy //lupdate according to (12)
2: BMSDD —(2”7 L5 U ) /fupdate according to (12)
37 Zy_1= A’VISDD(BMSDD)H /lupdatea ccording to (13)
4 Cy_q = HAMSDDH //update the constant of (23)

BMSDDH +Cap_1—05L 1

50 tRe = R(z,—1) — 0505 1!

6: Z,kl = —[tRe | /Mupdate the optimum candidate
7 my—1 = (tFe, <0)

8 mny_1=0 //initialize child node counter

Subfunection:[A,_1,my_1,ny—1] = findNext-DBPSK(A, _1,m,_1,
Ny — l)

//the second child node is opposite to the

optimum child node

//alter the optimum child node

//lupdate child node counter

P

I: v—1 = *Zu—l

20 Mmy—1=1—my—1
3 my—1=ny-1+1

Let us now consider the rotated 8PSK constellation portrayed
by Fig. 4(b) as an example, where the M = 8 constellation
points are arranged to M/4 =2 groups, which are Group
GO of {£cos (§) +jsin (%)} and Group G1 of {:I:sin(”):t

jcos (%)}. Accordingly, their probability metrics {A},_ l}m 0 y
of (24) may be expressed as:

B =09 =%, By = -,

By =R 4 R =R A @)

By =~ — L (by),

K?)—l =15l — " — Lu(b3),

By = R A L0y),

Ay =R 4~ La(by), @7b)
where the two pairs of real/imaginary terms are given by tRiol =
2c08(Z)-M(EZy—1) — @2, 70 = 2sin (F) - (Ey-1) — Ll

Rl =25in(Z)- NGy )—La(”z) and 1", =2 cos(Z)-3(Zy— 1) -
#. It can be seen in (27a) and (27b) that the only difference
between the four component probability metrics within each
group is the polarity of the real/imaginary terms. As a result,
the local minimum metrics of the M /4 = 2 groups may be ob-
tained by ZGOI = MiNye(0,2,4,6) Z:’j = —|tR‘90 |t1m | and
Agll_mmme{l 35 A = —|eRel | — |l | — Lo (b3), respec-

tively, which are evaluated W1thout invoking (24) for M = 8

times in (27). Finally, the global minimum over {AU l}M =7

of (24) may be simply obtained by comparing the two local

.. - e —Gl1
minima as A, =min{A _;, A _;}.

In summary, for a generic high-order MPSK scheme
(M > 4), we may firstly assign the M constellation points to
M /4 groups of QPSK-like constellation points that are associ-
ated with the same magnitudes but different polarities, so that
the local minimum metric for {Av ]} of (24) within each
group is simply given by:

G BPS
A = ZbkL (bp),

Reg
v—1

Img

— |t (28)

where the range for the group index is given by g € {0, -- -,
M /4 — 1}, while the real and imaginary parts of 7, are asso-
ciated with L, (b>) and L, (b1) respectively as follows:

Rey  —¢ oo o Loy(by) i =8 e
o =AT NG - 4N =B 3G -

La(b1)

(29)

The coordinates of the MPSK constellation points, which
are located in the first quadrant may be denoted by {(AS,

Bg)}M/4 ! and we have A° = 248 as well as Eg — 2B% in (29).
Asa result the global minimum for {AU 1} of (24) may be
simply given by:
- . ——Gg
Ay_1 = A, 30
T e Myaey G0

which is obtained by visiting a reduced-subset of M /4 constel-
lation points that correspond to the M /4 local minima of (28).

We note that the procedures conceived for obtaining the
minimum probability metric of (30) are similar to those in
our previous work designed for generic soft-decision MPSK
detection in [28]. However, for the soft-decision MSDSD, the
Schnorr-Euchner search strategy also relies on the ranking order
of constellation points. Against this background, we propose to
complete the Schnorr-Euchner strategy by using a Comparison
Window (CW). More explicitly, the CW is initialized to have
M /4 local minima of (28), which correspond to local best
candidates. Then the CW may choose the global best candidate
which has the global minimum metric by invoking (30). This is
the subfunction of “findBest-DPSK” for the Schnorr-Euchner
search strategy tailored for MPSK (M > 4) in Table IV. Fur-
thermore, when the SD re-visits a specific SD index v, the
“findNext-DPSK” subfunction in Table IV may offer the next
constellation node. More explicitly, if previously a local min-
imum from Group Gg is chosen as the global candidate, i.e.
previously we have A, j = ZUGE from (30), then Group Gg
has to visit a new local candidate in a zigzag fashion by
comparing |tfe:g1| and |t{ﬁ§l |. Following this, the CW may once
again update the new global candidate by invoking (30).

Fig. 4 portrays the D8PSK example of Fig. 2, where the
reduced-complexity algorithms of Tables I and IV are invoked.
More explicitly, it can be seen in Fig. 4 that the “findBest-
DPSK” subfunction in Table IV may firstly initialize the CW

by the M/4 = 2 local minima of (28) as Ao, = —3.487 and

Avcll = —0.998, and then the CW invokes (30) in order to

obtain the global candidate of A, = Avcol = —3.487. More-

over, when the SD re-visits index v = 2 in Fig. 4, the “findNext-

DPSK” in Table IV may firstly update a new local candidate

Ucol = 4.364 from Group GO by visiting the QPSK-like con-

stellation points in a zigzag fashion relying on the relationship
between |t§i01| and |t{)”iol |, and then the CW invokes (30) again

in order to obtain the new global candidate of A,_; = ZUGi 1=

—0.998. As aresult, the reduced-complexity MSDSD exempli-
fied in Fig. 4 visits a reduced subset of the constellation points
compared to the conventional MSDSD exemplified in Fig. 2,
yet the same SD result is arrived at.

Moreover, it is worth pointing out that the conventional
MSDSD algorithm in [3] requires the Schnorr-Euchner search
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TABLE III
PSEUDO-CODE FOR THE SUBFUNCTIONS OF THE REDUCED-COMPLEXITY SOFT-DECISION MSDSD OF TABLE I, WHERE DQPSK Is EMPLOYED

Subfunction: [CU 1, |tL_1| |tt_1| Av 1, My—1,Ny— 1] = findBest- DQPSK({Ut L}t 15 {St};_ll, {LU Lk % 1> Ca,v—l)
1: AMSDD =35;_1Uup //update AMSDD according to Eq. (12)
2: BMSDD (22__11 57U ) //update BMSDD according to Eq. (12)
3: Z,f‘ﬂsiDSD AE’IE?];(BMSDD)H - exp (3%) /lupdate decision variable of Eq. (22)
4 Tyq = HAMSDDH BMS'{D’ + Cawey — 0.5(LY 0 4 LY~ 12) //update the constant of Eq. (23)

50 tRe = aR(zMSDPSD) _ o505 " /lrelate LE~ "2 to real part of zMSDPSD
6: tIm = V23(zMSDSD) _ o505~ ! /relate LY~V to imag part of zMSDSD
7. Av 1= —tfe | — [timy | /lupdate the optimum PED increment
8 by =(tIm <0) /lupdate the optimum candidate

9: by = (the, <0)

10: my—1 = bin2dec(b1b2) /translate binary bits to decimal index
I1: ny—1 =0 //initialize child node counter
Subfunction:  [Ay_1,Mmy—1,ny—1,cdy—1] = findNext-DQPSK ([t |, [tI™ |, Ay_1,my—1,ny—1,cdy—1)

I: ny—1 =ny—_1+1 //lupdate child node counter

2: switch ny—q

3: case 1: bibs = dec2bm(mv 1) //translate decimal index to binary bits

4: cdy—1 = sign(|tEe | — [t ) /lupdate the condition

5: ifcdy—1 ==1 //the case of [tFe| > [¢tI™ |

6: Ay—1 = —[tRe |+ |tImy| /falter the imaginary part of the PED increment

7: My—1 = bin2dec(b1b2) //alter by in the optimum child node

8: else //the case of [tFe | < [tI™ |

9: Ny = |tBe | — [tIm /falter the real part of the PED increment

10: My—1 = bm2dec(b1 bz) /falter by in the optimum child node

11: end if

12: break

13: case 2: Ay_1 = —Ay_1 //alter the decision made by the previous step

14: My—1 =3 — My—1

15: break

16: case 3: b1ba = dec2bin(my—1)

17 ANyoy = [tEe |+ [tIm) /falter the optimum child node

18: ifcdy—1 ==1my—1 = bm2dec(51b2) //alter by in the decision made by the previous step

19: else my_1 = bin2dec(b1b2) //alter b2 in the decision made by the previous step

20: break

21: end

v=1
e ™y [v=2
) (_LJ O v=3
7.28
-~ .~ the SD paths that are avoided

because of the reduced—complexity design

(b)
(Coo1 = 8.771)

—Find the best candidate at Step (D :

01 00 s |

] ®: , A, =7, =-3208

X! Ayt =Byy + Cpy = 5.563
ot 7\ —Find the next candidate at Step®):

| | o] |

o @0 Ny =B = —0.502

N A (c ondm@ [t | > [em )

Ayt =Byy + Cpy = 8.269

Fig. 3. Example of soft-decision MSDSD aided DQPSK, which corresponds
to the example seen in Fig. 1, subject to the difference that the reduced-
complexity algorithm of Tables I and III are invoked. (a) Example of Reduced—
Complexity Soft-Decision MSDSD Conceived for DQPSK Detection.
(b) Example of QPSK constellation diagram visited by Reduced—Complexity
Soft-Decision SD at index v = 2.

strategy to invoke a sorting algorithm, which was represented
by the “gsort” function on line F-6 in the pseudo-code algorithm
table of [3]. As a result, all M constellation points {x’”}ﬂm/lz_o1
are ranked according to an ascending order of the PED in-
crement values {A”" ]}M , which is explicitly exemplified by
Figs. 1 and 2. There are numerous sorting algorithms that may
be suitable, such as Bubble sort, Timsort, Library sort [42],
[43], etc., but the average number of comparisons required by
these algorithms is as high as O(MlogM). By contrast, the
reduced-complexity MSDSD of Tables II-IV does not require
any sorting algorithms. As exemplified by Figs. 3 and 4, the
proposed Schnorr-Euchner search strategy does not have to
maintain the complete ranking order of constellation points,
which dispenses with a considerable number of comparisons.

V. APPROX-LOG-MAP IMPLEMENTED BY MSDSD

The soft-decision MSDSD discussed in the Sections IIT and IV
aims to implement the Max-Log-MAP of (15), which may im-
pose a performance loss compared to the near-optimum Approx-
Log-MAP of (16). In order to mitigate this open problem, we
propose the Approx-Log-MAP solution for MSDSD as follows:

(1) Let us define the leaf nodes of a SD structure as the candi-
dates associated with the SD index v = N,,. For example,
the M = 4 candidates visited at the SD’s step of ) in
Fig. 1(a) as well as the M = 8 candidates visited at step Q)
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Group GO IAL _..

Group G1

A=A, =—3.487

ZfllfA ) = —0.998
. Ap_; = min {Al"l ,1}7
A =Dy 4 Oy = 3.499

.....Group GO .

~Find the next candidate at Step 3):

Group Gl

777777

Companson Wmdow
—G0

A =AY, = 4.364 (condition]t 0| > [tIm0])
A =AY = 0,908

o Ay_1 = min {EMI.Z?II} = —0.998
Ayt =Ay_i + Cyy = 5.988

Fig. 4. Example of the soft-decision MSDSD aided DSPSK, which corre-
sponds to the example seen in Fig. 2, subject to the difference that the
reduced-complexity algorithms of Tables I and IV are invoked. (a) Example of
Reduced—Complexity Soft-Decision MSDSD Conceived for D8PSK De-
tection. (b) Example of 8PSK constellation diagram visited by Reduced—
Complexity Soft-Decision SD at index v = 2.

in Fig. 2(a) are all leaf nodes. This leads us to the proposed
change of the MSDSD output scenario. When the MSDSD
algorithm is invoked for the first time, instead of just pro-
ducing the global optimum djz4 p and the MAP hard-bit deci-

sions {p¥AP }(NW R , all the PED values of the leaf nodes

{dcan = d, }VU_N as well as all the corresponding hard-

N,,—1)BPS
bit decisions {bCAN }( ’

duced. For example, the SD of Fig. 1(a) may produce both
the MAP solution, which is represented by dyap = 7.28

and {bMAP}(N w—DBPS _ = 1010, as well as all the leaf nodes,
which are represented by {dcan} = {18.4,25.331,7.28,

16.211} and {pMAPY™ =D _ 11000, 1001, 1010, 1011},
(2) For each soft-bit output, the MSDSD algorithm is invoked
again with a fixed bit by = l_JQ’IAP . Similarly, whenever the
SD visits 11}\145‘1%)( v = N,,, the resultant M leaf candi-
dates {d}éA 1\5) ¥} may all be recorded and produced. For
example, when the SD of Fig. 1(a) is invoked again with
a fixed bit b1 = 0, the resultant SD structure is portrayed
in Fig. 5, where the two sub-groups of leaf nodes {25.118,
35.09, 18.97, 1491} and {20 05, 24.09, 46.615, 35.05}

HMAP
k

may also be recorded and pro-

may be recorded as {dCA ~  }. We note that there may
only be M /2 leaf candidates, when the fixed bit by = bkMAP

is at the specific position in the range of k € {(N,, —
2)BPS+1,---, (N, — 1)BPS}.

(3) Finally, the Max-Log-MAP of (20) may be revised for the
Approx-Log-MAP as:

. . br=bYAP o MAP
jac (=dcan) — jac | —dun . ifp =1

Ly (b) by =bMAP
jac <—dCAN" ) —jac(—dcan),  if BYAP =0.
(1)

We note that when the sizes of the two candidate groups

—_,MAP
{dcan} and {dlgAﬁk } are not the same, the size of the
larger group may be reduced, so that ideally both groups
disregard the same number of candidates. Ideally, any

potential deviations introduced both by the jac(—dcan)
_MAP

and by jac(— dCANk ) operations may be cancelled out.
In pI’E_lCthC the SD’s output candidates for {dcay} and

AP

{d. A7Vk } are always constituted by either the sub-group
of M leaf candidates or by the sub-group of M/2 leaf
candidates. Therefore, for the larger-sized group, we may
compare the best leaf candidates, which are supposed
to have the minimum PED values in each sub-groups,
and then we may delete the sub-groups associated with
the highest locally best leaf candidate’s PED value. For
the example of Fig. 5, we may delete the sub-group of
{20.05,24.09,46.615,35.05}, because the local best leaf
candidates from each sub-group have the relationship of
20.05>14.91. As a result, the Approx-Log-MAP of (31)
may be implemented for the example seen in Figs. 1(a) and
5 as Ly(by) =jac (—{18.4,25.331,7.28,16.211}) —
jac (—{25.118, 35.09, 18.97, 14.91}).

One may argue that the SD does not visit all the MSDD
candidates, which means that the group sizes of {dcan} and

VAP
{dCA N" } seen in (31) may be smaller than the group sizes of

Sie Sp=1 and Sie Shk —o seen in (16). In other words, ideally,
the Approx-Log-MAP of (16) may include all the MSDD
candidates, but naturally the SD may only visit a subset of them.
Nonetheless, as suggested by [39], when the Approx-Log-
MAP corrects the difference between two probability metrics
of |[d' — d?|, only 8 values corresponding to |d' — d?| ranging
between 0 and 5.0 may be taken into account. This implies
that large differences of |d! — d?| > 5.0 are inherently ignored
by the Approx-Log-MAP. Therefore, we may assume that the
leaf candidates ignored by the SD may also be ignored by the
Approx-Log-MAP, so that no extra complexity is imposed on
the SD by our proposed Approx-Log-MAP.

We note that for a better implementation, Step (2) may be

executed for all BPS(N,, — 1) fixed bits {by = pMAPY> > N D

before proceeding to Step (3), so that all the leaf nodes v1sited

by the repeated SD searches may be utilized in Step (3). As
CAN MAP

a result, {dcan} in (31) may be replaced by {dCAN =bi }, and

CAN_bMAP bM

then both {dCAN kY and {dCAN" } in (31) may include all

the leaf nodes obtained from Steps (1) and (2) corresponding to

the specific bit by being bkMAP and l_JkMAP , respectively.
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v

PSEUDO-CODE FOR THE SUBFUNCTIONS OF THE REDUCED-COMPLEXITY SOFT-DECISION MSDSD OF TABLE I, WHERE DPSK (M > 4) IS EMPLOYED

Regy

Subfunction: [{|tv71|}1\1/471 {|t1m,,|}1\1/471 (cw? 1}1\1/4 1 {CWm? 71}1\1/4 1 1}1\1/4 U Ay 1.Co 1.
My—1,M0—1] = findBest-DPSK({ Uy, }V_,, {5 }V=1, {Lo ™" < 2_ 1,@ w1, {PI_ Y/

1 AMSDD — g« 1Uv v //update AMSPD according to Eq. (12)

2 BMSDD —(0Z}) 5 U ) //update BMSDD according to Eq. (12)

3: 2{}1 SlDSD AQASI{D(BMSDD H . exp (§75) /lupdate decision variable of Eq. (22)

4: Cyor = HAzAE?DH BIXIE?DHZ +Cap—1— 0.5(Ly~ 4 Ly~h?) /lupdate the constant of Eq. (23)

5: for g=0to (M/4—1)

6: tff‘{ =A7. R(zMSDPSDY) 0.50,8~ 2 Jfrelate LE™12 to real part of zMSDSD

7: tf}Tf =BY.g(zM5DPSD) _q. 5Lv71’1 Iirelate LY~ to imag part of zMSDSD

8: cwd_, = f|tRe"| - |t1m"| -PJ_, //update the local minimum PED increment

9: by = (.M < 0)

100 by = (tRe" < 0)

11: CWm?_, = bin2dec(b1b2b3 - - - bgps) /lwe have [b3 - - - bgps] = dec2bin(g)

12: n571 =0 //update child node counter for each group

13: end for

14: [Ay-1,4] = min({CWY_, }2A J/the global minimum is A,_; = CW9_,

15: my—1 = CWm1§)71 //record the global optimum index

16: ny—1 =0 //update global child node counter

Subfunction: [{CW? 1}M/4 ! {CW 71}M/4 !
Reg yM/4—1 ;| Img \M/4—1
(G o (T ol Vot

v—1

M/4—1 ]\14
3 /A {cw ,1} A

M/4—1 M/4—1
nd_ 30 {edd_ 30

_vfl;mv 1,ny—1] = findNext-DPSK(

1 1\[41 M/4—1 M/4—1
{CWm ,1}/ nd_ 30 fedd_ 3

Av 1,My—1,My—1)
1:  [b1---bgps] = dec2bin(my—1) //obtain the previously tested child node
2: g = bin2dec(bs - - bgps) //update the previously tested group’s index
3: nz_l + 4+ //update child node counter
4: switch nd_,
5 case 1: cdv 1 = sign(|t, e”| - |t1m" D /lupdate the condition of group g
6: ifcd? | ==1
i g Re,/ I'm4 . . ..

7: CWoy = —It, g1+ 1t,—71 = PJ_4 /falter the imaginary part of local minimum
8: CWmU_1 = bm2dec(b1b2b3 bes) //alter by in the local optimum child node
9: else
10: CWg_1 = |tRe" | — |t1m"| - /lalter the real part of local minimum
11: CWmU71 = bin2dec(b1b2bs - - bes) //alter by in the local optimum child node
12: end if
13: break B
14: case 2: CW9_, = —A,_1 —2PJ_, //alter the second child node
15: CWm?_, = bin2dec(b1b2bs - - - bpps) /falter both by and b2 in the previous decision
16: break

. g Reg Img . .
17: case 3: CWY_, = [t "9+ [t,_7| - PI_, /falter the local optimum child node
18: if cdg o, ==1 CW777,971 = bm2dec(b1 b2bs3 - - - bps) //alter by in the previous decision
19: else Cng 1= bin2dec(b1b2b3 - - - bps) //alter by in the previous decision
20: break
21: Eld switch
22: Ay—_1 = inf //initialize global minimum
23: for g =0 to (M/4 1)
24: if CW571 < Ay—1 and anl <=3 //compare local minimums from un-full groups
25: Ny_1 = ng 1 //update global minimum
26: My—1 = CWmv 1
27: end if
28: end for
29 ny—1 =ny—1+1 //update global child node

The Approx-Log-MAP may also be straightforwardly ap-
plied to the reduced-complexity soft-decision MSDSD of
Section IV, where the simplified Schnorr-Euchner strategy
of Tables II-IV can be invoked for all SD indice satisfying
v < N,,. However, the original Schnorr-Euchner strategy of [3]
has to be invoked for the specific SD index v = N,,, because all
the leaf nodes at v = N,, have to be recorded and produced for
the Approx-Log-MAP.

VI. PERFORMANCE RESULTS

A. Approx-Log-MAP Versus Max-Log-MAP

First of all, the accuracy of the extrinsic LLRs produced
by the Approx-Log-MAP and Max-Log-MAP algorithms are
tested as portrayed in Fig. 6, where the two PDFs
{p(Le|b)}p=10,1) may be obtained by estimating the histograms
of L., with the source bits being b = {0, 1}. If the LLR
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Fig. 5. Example of the soft-decision MSDSD conceived for DQPSK imple-
menting Approx-Log-MAP, which invokes the SD seen in Fig. 1 with a fixed
bit of by = 0.

-------- (1) DQPSK, MSDSD (Max-Log-MAP)
———- (2) DQPSK, MSDSD (Approx-Log-MAP)
—— (3) D16PSK, MSDSD (Max-Log-MAP)
——=- (4) D16PSK, MSDSD (Approx-Log-MAP)

0))

=1)/Pr(Le|b=

In(Pr(Le|b

Fig. 6. LLR accuracy test for DQPSK and D16PSK employing both Approx-
Log-MAP and Max-Log-MAP aided Subset MSDSD (,, = 4), recorded at
SNR = 0 dB and Iy = 0, where we have Ng = 2 and f; = 0.03.

definition of L, = In 1% is statistically true, then the LLRs
accuracy test is supposed to result in a diagonal line in Fig. 6.
However, the LLRs of the Max-Log-MAP suffer from a notice-
able deviation, which is effectively improved by the proposed
Approx-Log-MAP, as evidenced by Fig. 6

It is worthy to note that the so-called Subset MSDSD is
employed throughout this section. More explicitly, it was dis-
covered in [44] that the symbols at the middle of the MSDSD
window may be more reliably detected than those at its edges.
Therefore, the Subset MSDSD overlaps the consecutive detec-
tion windows by Nor = 3 observations, so that the (Nor —
1 = 2) symbols detected at the edges may be discarded.’ The
BER performance of Fig. 7 further confirms the advantage of
the proposed Approx-Log-MAP algorithm in both TC coded
and IRCC-URC coded DPSK systems, where the simulation
parameters are summarized in Table V.

B. Complexity Reduction

To elaborate, the asymptotic complexity analysis of MSDSD
was presented in [45] following the same guideline as the SD

SWe note that the choice of Nop, is independent of Ny, and it was demon-
strated in [44] that increasing Ny, beyond three does not provide any further
advantage.

—@- IR1c=4, IRrcmspsp=4 (Approx-Log-MAP)
—©— IR1c=4, IRycvspsp=4 (Max-Log-MAP)

~—# IRyrc-mspsp=2, IRirec-{ure-mspspy =30 (Approx-Log-MAP)
<O~ IRyre-mspsp=2. IR[Rec-(urc-Mspspy =30 (Max-Log-MAP)
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Fig. 7. BER performance of TC/IRCC-URC coded DPSK employing Subset
MSDSD (N,, = 4), where we have Ng = 2 and f; = 0.03.

TABLE V
SYSTEM PARAMETERS

Channel TC coded DPSK (Schematics Fig. 3.1 in [38])
Coding IRCC-URC coded DPSK (Schematics Fig. 5.1 in [38])
TC coded I Rp¢ iterations within TC decoder; IR _prspsp
DPSK iterations between TC decoder and MSDSD
IRCC-URC [ Ry rc—MmsDspiterations between URC decoder and
coded MSDSD; It rcc—{URCc-MSDSD} iterations between
DPSK [RCC and the amalgamated URC-MSDSD decoder.
Frame length | 1 000 000 bits
TABLE VI
COMPLEXITY OF SOFT-DECISION MSDSD SUBFUNCTIONS
real-valued mul- | real-valued comparisons | visited
tiplications additions nodes
sortDelta (4Ngv + (ANgv + O(MlogM)| M
6Ng)M 2NR)M
ffindBest-DBPSK UNgv +8Ngr |UNgrv+4Np 2 1
ffindNext-DBPSK |0 2 0 1
ffindBest-DQPSK UNgv+8Ngr+ UNgrv+4Ngp+ | 4 1
7 6
findNext-DQPSK_|< 1 <4 <3 1
ffindBest-DPSK ~ ANpv+8Ngp+ UNgv+4Ng+ | 5M/4 M/4
M4 4 3M/2+2
findNext-DPSK__|< 3 <7 <M/2+2 | 1

aided BLAST of [18], which was only feasible when invoking
the sub-optimal Fincke-Pohst strategy of [21]. By contrast, in
this work, we focus our attention on the complexity reduction
achieved for the optimal Schnorr-Euchner strategy of [1].
Against this background, the detection complexities of the soft-
decision MSDSD subfunctions are summarized in Table VI,°
where “sortDelta” refers to the conventional Schnorr-Euchner
search strategy in [3], while the rest of the proposed subfunc-
tions are given by Tables II-IV. It can be seen in Table VI that
the proposed Schnorr-Euchner search strategy visits a reduced

OWe note that unneccessary calculations are eliminated for Table VI. For
example, both {O.Sszl’]}Vv and {O.Sszl’z}Vv may be calculated before
invoking the MSDSD’s subfunctions. Furthermore, the function of [by ---
bgps] = dec2bin(m) may be implemented by a pre-stored lookup table
for bit-mapping, while its inverse function m = bin2dec(b; - - - bgps) = by -
2BPS-1 4 by - 2BPS-2 4 4 bpps—1 - 2 + bpps may require a total number
of (BPS — 1) multiplications as well as (BPS — 1) additions.
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Fig. 8. Complexity (number of real-valued multiplications) comparison be-
tween the conventional MSDSD algorithm of [3] associated with N,, =4
and the reduced-complexity MSDSD algorithm of Tables I and IIT for coded
DQPSK, where we have Ng =2 and f; = 0.03. (a) E;/Ng =0~ 15 dB.
(b)Iy =0~ 1.
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Fig. 9. Complexity-Reduction Ratio (CRR) achieved by the reduced-
complexity MSDSD algorithm of Table I compared to the conventional
MSDSD algorithm of [3] recorded at Ep/Ng = 0 dB and I4 = 1, where we
have Ng = 2 and f; = 0.03. (a) Ny, = {3,4,5,6}. (b) M = {2, 4,8, 16}.

number of nodes, which results in a reduced complexity in all
categories.

The complexity of the conventional MSDSD algorithm and
that of the proposed MSDSD algorithm conceived for coded
DQPSK are compared in Fig. 8 in terms of the total number
of real-valued multiplications. It is confirmed by Fig. 8(a)
and (b) that the complexities of the MSDSD algorithms may
converge to their lower bounds, as Ej,/Ny and/or I4 increase.
Fig. 8 demonstrates that the proposed MSDSD of Table I sub-
stantially reduces the complexity of the conventional MSDSD
in [3]. The Complexity-Reduction Ratios (CRRs) achieved by
our reduced-complexity design are further presented in Fig. 9.

IEEE TRANSACTIONS ON COMMUNICATIONS

We note that for the conventional MSDSD, the Approx-Log-
MAP and the Max-Log-MAP impose the same number of real-
valued multiplications. By contrast, for the proposed MSDSD,
the Approx-Log-MAP has to invoke the conventional Schnorr-
Euchner strategy for the specific SD index v = N,,, which
results in a higher number of multiplications than the Max-Log-
MAP. Nonetheless, Fig. 9(a) and (b) demonstrate that substan-
tial complexity reductions of up to CRR = 48.0% and CRR =
52.2% are achieved by the Subset MSDSD (N,, = 6) aided
DQPSK and by the Subset MSDSD (N,, = 4) aided D16PSK,
when the Approx-Log-MAP is implemented. Furthermore,
even more substantial complexity reductions of CRR = 66.7%
and CRR = 88.7% are achieved by the Subset MSDSD (N,, =
6) aided DQPSK and by the Subset MSDSD (N,, = 4) aided
D16PSK, when the Max-Log-MAP is implemented. We note
that the complexity reductions achieved by the proposed
MSDSD are especially significant, when the MSDSD is iter-
atively invoked several times by the turbo detected systems.

Once again, we note that the proposed soft-decision MS-
DSD algorithm presented in Tables I-IV has exactly the same
detection capability as the conventional soft-decision MSDSD
algorithm presented in Appendix I of [3]. We have arranged
for them to decode the same channel output associated with the
same a priori soft input, and we found that they always produce
exactly the same SD decisions.

C. Coherent Versus Noncoherent

Last but not least, MSDSD aided DQPSK is compared to its
PSAM aided coherent QPSK counterpart. First of all, Fig. 10
demonstrates that when we have f; = 0.03, the LLRs produced
by the PSAM aided QPSK detector suffer from severe deviation
from the true probabilities, which may result in disproportion-
ately high LLR values that may misinform the channel decoder.

Secondly, Fig. 11% demonstrates that when we have
f4=0.001, the coherent PSAM aided QPSK significantly
outperforms the Subset MSDSD aided DQPSK in both our TC
and IRCC-URC coded systems. However, when the normalized
Doppler frequency is increased to f; = 0.03, the PSAM aided
QPSK’s performance degrades substantially, while the Subset
MSDSD aided DQPSK only suffers from a small BER per-
formance degradation, which gives the noncoherent schemes a
0.7 dB and a 1.4 dB performance advantage over their coherent
counterparts in the context of our TC and IRCC-URC coded
systems, respectively, as evidenced by Fig. 11. Therefore, we
may conclude that the DPSK schemes employing MSDSD may
be deemed to be a more suitable candidate for channel coded
systems operating at high Doppler frequencies.

7When we have fa = 0.03, the PSAM’s pilot spacing Npg is reduced to 12
in order to sample the channel more frequently, while the PSAM’s observation
window length Now (number of filter coefficients) is also reduced to 12, due to
the weak temporal correlation.

8There is no iteration between the QPSK detector and the channel decoder in
Fig. 11, because the QPSK detection does not produce any iteration gain [28].
Nonetheless, the coded coherent schemes and their noncoherent counterparts
have the same total number of iterations for turbo detection.
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Fig. 10. LLR accuracy test for PSAM [11] aided coherent QPSK, recorded at
SNR = 0 dB and I4 = 0, where we have Ng = 2.
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Fig. 11. BER performance comparison between TC/IRCC-URC coded PSAM
[11] aided coherent QPSK and TC/IRCC-URC coded Subset MSDSD aided
DQPSK, where the Approx-Log-MAP is invoked, while Ng = 2 receive anten-
nas are used. (a) TC coded systems. (b) IRCC-URC coded systems.

VII. CONCLUSION

In this paper, the Schnorr-Euchner search strategy was con-
figured to always visit the MPSK constellation points in a zig-
zag fashion both for the hard-decision MSDSD of Section II
and for the soft-decision MSDSD of Section IV. The com-
plexity results of Figs. 8 and 9 demonstrated that our proposed
design offers a substantial complexity reduction. Furthermore,
the Approx-Log-MAP algorithm implemented by the MSDSD
was proposed in Section V, which improved the Max-Log-
MAP, as demonstrated by Figs. 6 and 7. Finally, our comparison
of the channel-coded coherent and noncoherent schemes char-
acterized in Figs. 10 and 11 suggested that the DPSK schemes

employing MSDSD may be deemed to be more suitable can-
didates for channel coded systems operating at high Doppler
frequencies.

APPENDIX

In this section, we aim to conceive the SD aided V-BLAST
employing MPSK [29]-[34] in the same form as the MSDSD
aided DPSK, so that the reduced-complexity Schnorr-Euchner
search strategy proposed in Section IV and the Approx-Log-
MAP proposed in Section V may also be applied to the
V-BLAST detection.

Explicitly, the (1 x Nt)-element V-BLAST transmission
matrix is given by:

S:[Sls T, SNT]:I:;Y/LNI*Tﬂ T %:Iv (32)

where the MPSK/QAM symbols are separately modulated as
{5 }IUVL], while the factor /N7 normalizes the transmission
power. The signal received by the Np antenna elements at the
receiver may be modelled as:

Y=SH+V, (33)

where the (1 x N7)-element vector S and the (1 x Ng)-element
vector Y represent the input and output signals of the MIMO
channels, respectively. Furthermore, the (N7 x Ng)-element H
matrix of (33) models the MIMO’s Rayleigh fading channels,
while the (1 x Ng)-element AWGN vector V of (33) models the
zero-mean Gaussian random variables with a common complex
variance of Ny, whose PDF is given by p(V) = p(Y|Si) =
__nY—sﬁﬂf)
No

1 .
GNo R exp ( , Where there is a total number of

MNT combinations {S"}?ﬁf*l for the MIMO transmission ma-
trix S in (33). In order to invoke the classic SD, the V-BLAST
receiver may apply QR decomposition to H [31]-[34], which
results in H = (QU)” = LQX, where the (Ng x Nr)-element
matrix Q has orthogonal columns Q”Q = Iy, while U and
L = U¥ are upper- and lower- triangular matrices, respectively.
As aresult, (33) may be reformulated as:
Y = YQ = SL + VQ, (34)
where VQ has exactly the same statistics as the AWGN vector
V. Based on the conditional probability p(Y|S?) as well as on

the Bayes’s theorem of (5), the ED to be minimized by the SD
may be expressed as [34], [40]:

~ 2
Yo Vo=, sy Mo BES —SD
d= " =33 [Bta(tr,)-Ca, |
v=1}, =1

(35)

where an extra constant E’jﬁ%v = %[|La (b,-{v)| + L, (b,-{v)] is intro-
duced in order to guarantee that the ED remains non-negative
[34], [40]. According to the ED of (35), the SD’s PED may be



formulated as d, = dy+1 + Ay, where the PED increment A,
may be expressed as:

- 2
‘Yv - Z?/:Tv It vsy BPS ~ —SD
AU = NO - _Z I:b]_nga (b/_cu> - Cj,]_(vil
ky=1
N ~ 2 BPS » —sD
=[5 B[ - 3 [ () -T2 00
k=1

Yo=2" 2y st

ASD _ BSD _ v
where we have A)” = and B)” = TN As a

result, (36) is in the same form aos the MSDSD’s PED increment
of (19) in Section III and (21) in Section IV. Therefore, the
reduced-complexity Schnorr-Euchner search strategy and the
proposed Approx-Log-MAP solution may be directly applied
to the SD aided V-BLAST employing MPSK.
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