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Abstract—Unlike a generic PSK/QAM detector, which may visit
a constellation diagram only once, a depth-first Sphere Decoder
(SD) has to re-visit the same constellation diagram multiple times.
Therefore, in order to prevent the SD from repeating the detection
operations, the Schnorr-Euchner search strategy of Schnorr and
Euchner may be invoked for optimizing the nodes’ search-order,
where the ideal case is for the SD to visit the constellation nodes
in a zigzag fashion. However, when the hard-decision Multiple-
Symbol Differential Sphere Detection (MSDSD) of Lampe et al. is
invoked for using multiple receive antennas NR ≥ 1, the Schnorr-
Euchner search strategy has to visit and sort all the MPSK
constellation points. A similar situation is encountered for the soft-
decision MSDSD of Pauli et al., when the a priori LLRs gleaned
from the channel decoder are taken into account. In order to tackle
these open problems, in this paper, we propose a correlation pro-
cess for the hard-decision MSDSD of Lampe et al. and a reduced-
complexity design for the soft-decision MSDSD of Pauli et al.,
so that the Schnorr-Euchner search strategy always opts for vis-
iting the MPSK constellation points in a zigzag fashion. Our simu-
lation results demonstrate that a substantial complexity reduction
is achieved by our reduced-complexity design without imposing any
performance loss. Explicitly, up to 88.7% complexity reduction is
attained for MSDSD (Nw = 4) aided D16PSK. This complexity
reduction is quite substantial, especially when the MSDSD is
invoked several times during turbo detection. Furthermore, in
order to offer an improved solution and a comprehensive study for
the soft-decision MSDSD, we also propose to modify the output of
the SD to harmonize its operation with the near-optimum Approx-
Log-MAP. Then the important subject of coherent versus nonco-
herent is discussed in the context of coded systems, which suggests
that MSDSD aided DPSK is an eminently suitable candidate for
turbo detection assisted coded systems operating at high Doppler
frequencies.

Index Terms—Multiple-symbol differential sphere detection,
DPSK, sphere decoding, Schnorr-Euchner search strategy, turbo
detection, soft-decision, coherent versus noncoherent.
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I. INTRODUCTION

THE history of Differential Phase Shift Keying (DPSK)
dates back to Lawton’s classic work [4], [5] in 1959–1960,

where the effect of false carrier-phase locking is mitigated by
the low-complexity Conventional Differential Detection (CDD).
More explicitly, the DPSK transmitter modulates the data-
carrying symbols onto the phase changes between consecutive
transmitted symbols, so that the CDD may recover the source
information by observing the phase change between every pair
of consecutive received samples. However, it was demonstrated
by Cahn [6] in 1959 that the CDD-aided DPSK scheme suffers
from a 3 dB performance penalty compared to its coherent
counterpart. Moreover, it was discovered by Bello and Nelin [7]
in 1962 that an irreducible error floor occurs for DPSK, when
the CDD, which was originally designed for AWGN channels,
is directly employed in rapidly fluctuating fading channels. In
order to mitigate this problem, the Multiple-Symbol Differen-
tial Detection (MSDD) philosophy was proposed by Divsalar
and Simon [8] in 1990 for DPSK invoked in AWGN channels
and by Ho as well as Fung [9] in 1992 for Rayleigh fading
channels. More explicitly, the MSDD extends the CDD’s obser-
vation window width of Nw = 2 to Nw ≥ 2, where a total num-
ber of (Nw − 1) data-carrying symbols are jointly detected. The
price paid is that the MSDD complexity grows exponentially
with (Nw − 1). In order to reduce the MSDD complexity, a
reduced-complexity algorithm was conceived for MSDD oper-
ating in AWGN channels by Mackenthun [10] in 1994, which
may also be invoked for slowly-fading channels exhibiting a
near-constant envelope for a block of signal transmission. As a
closely related result, it was demonstrated by Cavers [11] in
1991 that accurate channel estimation relying on the classic
Pilot Symbol Assisted Modulation (PSAM) may become es-
pecially challenging, when the normalized Doppler frequency
is increased. Therefore, as an attractive alternative to coherent
receivers, it is essentially important to implement MSDD in
rapidly fluctuating fading channels at an affordable complexity.

Another low-complexity design alternative, namely the
Decision-Feedback Differential Detection (DFDD) was orig-
inally proposed for AWGN channels by Leib and Pasupathy
[12] in 1988. Then in 1995 it was confirmed by Leib [13] that
the DFDD of [12] is equivalent to the MSDD of [8] operating
in decision-feedback mode. The DFDD design was further
extended to Rayleigh fading channels by Schober et al. [14] in
1999. However, the DFDD inevitably imposes a performance
loss due to its inherent error-propagation problem. In order
to retain the optimum MSDD performance, the state-of-the-art
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Multiple-Symbol Differential Sphere Detection (MSDSD) was
proposed by Lampe et al. [2] in 2005, where the MSDD is facil-
itated by invoking the Sphere Decoder (SD) [15]. Furthermore,
inspired by the revolutionary Turbo Code (TC) concept [16]
and the generalization of the “turbo principle” [17], the soft-
decision MSDSD was conceived for DPSK by Pauli et al. [3]
in 2006, so that the MSDSD may be invoked in turbo detection
for the sake of approaching the full capacity potential of the
DPSK systems.

Although the MSDD complexity may be effectively reduced
by the SD, it was demonstrated by Jalden and Ottersten [18]
in 2005 that the SD complexity still remains an exponential
function at low SNRs. Later, Hassibi and Vikalo [19], [20]
demonstrated that the expected SD complexity invoking the
Fincke-Pohst enumeration strategy [21] obeyed a polynomial
function. As an alternative, Kyrillidis and Karystinos [22] re-
cently proposed a new algorithm that aimed for maximizing the
Rayleigh quotient of PSK sequence detection in 2014, where
the complexity was a fixed polynomial function at all SNRs.
Nonetheless, further research efforts are required for enhanc-
ing this algorithm [22] in soft-decision-aided turbo detection
assisted coded systems. Therefore, in this paper, we focus our
attention on the MSDSD solutions [2], [3].

The classic MSDSD aided DPSK [2] was first invoked for a
single receive antenna (NR = 1). Since the recent developments
in the millimeter-wave band [23], [24] facilitate the employ-
ment of a large number of antennas, especially at the Base Sta-
tion (BS) [25], [26], DPSK systems relying on multiple receive
antennas NR ≥ 1 may be preferred. However, when the hard-
decision MSDSD of [2] is invoked for NR ≥ 1, the Schnorr-
Euchner search strategy has to visit and sort all the MPSK
constellation points. The similar situation is encountered for the
soft-decision MSDSD of [3], when the a priori LLRs gleaned
from the channel decoder are taken into account. Against this
background, we offer the following novel contributions in this
paper:

1) We propose to introduce a low-complexity correlation ope-
ration into the hard-decision MSDSD aided DPSK scheme
employing an arbitrary number of receive antennas, so
that the SD may visit the constellation points in a zigzag
fashion, which is similar to the scenario of NR = 1 in [2].

2) It was shown in [27], [28] that substantial complexity
reduction may be attained by exploring the symmetry
of the Gray-labelled MPSK constellation. Against this
background, we propose a reduced-complexity Schnorr-
Euchner search strategy for the soft-decision MSDSD of
[3] employing an arbitrary number of received antennas.
The proposed soft-decision MSDSD algorithm may visit a
reduced number of nodes and hence achieve a substantial
complexity reduction without imposing any performance
loss.

Moreover, in order to offer an improved solution and a com-
prehensive study for the soft-decision MSDSD, the following
novelties are also offered in this paper:

3) The soft-decision MSDSD proposed in [3] invokes the sub-
optimal Max-Log-MAP algorithm, where the SD produces
only the optimum candidate. Against this background, we

additionally propose to modify the output of the SD, where
multiple candidates may be produced so that the near-
optimum Approx-Log-MAP may be implemented.

4) Furthermore, the important subject of coherent versus
noncoherent detection is discussed for coded systems. Our
simulation results suggest that compared to the coherent
MPSK relying on realistic channel estimation, the DPSK
schemes employing MSDSD may be deemed as a more
suitable candidate for turbo detection aided coded systems
operating at high Doppler frequencies.

The rest of this paper is organized as follows. The hard-
decision MSDSD of [2] is extended to the case of NR ≥ 1 in
Section II, where the correlation operation is introduced. The
soft-decision MSDSD of [3] is introduced in Section III, and
then our reduced-complexity soft-decision MSDSD is proposed
in Section IV. Furthermore, the near-optimum Approx-Log-
MAP for the soft-decision MSDSD is proposed in Section V. We
provide simulation results in Section VI, where the coherent ver-
sus noncoherent discussion is offered, and our conclusions are
given in Section VII. Finally, in Appendix, we present the classic
SD aided V-BLAST employing MPSK [29]–[34] in the same
form as the MSDSD aided DPSK, so that the proposed reduced-
complexity Schnorr-Euchner search strategy and the Approx-
Log-MAP solution may be applied to the V-BLAST detection.

The following notations are used throughout the paper. The
operations (·)∗ and (·)H denote the conjugate of a complex num-
ber and the Hermitian transpose of a complex matrix, respec-
tively. The notations ln(·) and exp(·) refer to natural logarithm
and natural exponential functions, respectively. The notations
p(·) and E(·) denote the probability and the expectation, re-
spectively. The operation ⊗ represents the Kronecker product.
The notation rvec(A) forms a row vector by taking the rows of
matrix A one-by-one, while Toeplitz(a) refers to the symmetric
Toeplitz matrix generated from the vector a. Moreover, the
notations �(·) and �(·) take the real part and the imaginary part
of a complex number, respectively.

II. HARD-DECISION MSDSD

For an M-ary DPSK scheme, the transmitter firstly maps
BPS = log2 M source bits {bk}BPS

k=1 to an MPSK symbol xm =
exp

(
j 2π

M m̌
)

, where the phasor index m = bin2dec(b1 · · · bBPS)

is the Gray-coded index m̌. Following this, the differential
encoding may be performed as:

sn = xn−1sn−1. (1)

For a Single-Input Multiple-Output (SIMO) system, the signal
received by the NR receive antennas may be expressed as:

Yn = snHn + Vn, (2)

where the (1 × NR)-element vectors Yn, Hn and Vn refer to
the received signal vector, the Rayleigh fading vector and the
AWGN vector which has a zero mean and a variance of N0,
respectively. Furthermore, the Nw observations of (2) may be
modelled by MSDD as [9], [35]:

Y = SH + V, (3)
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where we drop the time index n, so that the matrices in (3) are
given by Y = [YT

Nw
, · · · , YT

1 ]T
, S = diag{[sNw , · · · , s1]}, H =

[HT
Nw

, · · · , HT
1 ]T

and V = [VT
Nw

, · · · , VT
1 ]T

. We note that the
matrices Y, H and V are of size (Nw × NR), while S has
(Nw × Nw) elements. Furthermore, since the first transmitted
symbol s1 in S is a common phase rotation of the following
symbols {st}Nw

t=2, the MSDD’s received signal model of (3) may
be rewritten as1:

Y = S̄H̄ + V, (4)

where the vth diagonal element in S̄ is given by s̄v = sv · s∗
1,

which leads to s̄1 = 1 and s̄v = xv−1s̄v−1 = ∏v−1
t=1 xt for v > 1,

while the vth row in H̄ is given by H̄v = s1Hv . The MSDD aims
for maximizing the following a posteriori probability:

p(S̄i|Y) = p(Y|S̄i)p(S̄i)∑
∀S̄j p(Y|S̄j)p(S̄j)

, (5)

where the a priori probability p(S̄i) may be assumed to
be a constant of 1

M(Nw−1) for the equiprobable candidates

{S̄i}M(Nw−1)−1
i=0 . Furthermore, the conditional probability p(Y|S̄i)

in (5) may be expressed as:

p(Y|S̄i) =
exp

{
−rvec(Y) · R−1

YY · [rvec(Y)]H
}

πNRNw det(RYY)
, (6)

where the equivalent signal model is given by rvec(Y) =
rvec(H̄) · (S̄ ⊗ INR) + rvec(V). As a result, the correlation ma-
trix in (6) may be formulated as:

RYY = E
{
[rvec(Y)]H · rvec(Y)

} =
[
(S̄i)

H
CS̄i

]
⊗ INR . (7)

More explicitly, the fading correlation matrix is given by
RH̄H̄ =E{[rvec(H̄)]H · rvec(H̄)}=Rhh ⊗ INR , where the fading
characteristic matrix is given by Rhh = Toeplitz([ρ0, ρ1, · · · ,

ρNw−1]). According to the Clarke model [36], the fading auto-
correlation is given by {ρv = J0(2π fd · v)}Nw−1

v=0 , where J0(·) is
the zero-order Bessel function of the first kind, while fd denotes
the normalized Doppler frequency. Moreover, the AWGN cor-
relation matrix is given by RVV = E{[rvec(V)]H · rvec(V)} =
Rvv ⊗ INR , where the AWGN characteristic matrix is simply
given by Rvv = N0INw . As a result, the channel characteris-
tic matrix in (7) is given by C = Rhh + Rvv . The transmission
matrix S̄ of (3) is a unitary matrix, hence the determinant

term in (6) is a constant of det(RYY) = {det[(S̄i)
H · det(C) ·

det(S̄i)]}NR = det(C)NR . In summary, the MSDD that maxi-
mizes the a posteriori probability of (5) may be formulated as:

Ŝ = arg min
∀S̄i

∥∥∥L(S̄i)
H

Y
∥∥∥2

, (8)

where L is a lower triangular matrix obtained from the
Cholesky decomposition of C−1 = LLH .

1We note that Y = [YT
Nw

, · · · , YT
1 ]T in (3) stores the received signal vectors

in a reverse order compared to Y = [YT
1 , · · · , YT

Nw
]T seen in [2], [3], so that

the MSDSD may detect the transmitted symbols according to their differential
encoding order of s̄v = xv−1 s̄v−1, instead of detecting them backwards as
s̄v = x∗

v s̄v+1.

In order to facilitate SD,2 the MSDD metric of (8) may be
revised to the Euclidean Distance (ED) as:

∥∥LH S̄HY
∥∥2 =

Nw∑
v=1

∥∥∥∥∥
v∑

t=1

s̄∗
t Ut,v

∥∥∥∥∥
2

≤ R2, (9)

where R denotes the SD’s sphere radius. The vectors {{Ut,v =
lNw−t+1,Nw−v+1Yt}vt=1}Nw

v=1 in (9) are invariant over the variables

{s̄v}Nw
v=2, where lNw−t+1,Nw−v+1 refers to the element taken from

the (Nw − t + 1)-th row and (Nw − v + 1)-th column of the
lower triangular matrix L in (8). We note that the superscript
i for S̄i in (8) is omitted in (9) for notational convenience.
Therefore, the MSDSD’s Partial Euclidean Distance (PED)
based on the ED of (9) may be defined as [2]:

dv =
v∑

v̄=1

∥∥∥∥∥
v̄∑

t=1

s̄∗
t Ut,v̄

∥∥∥∥∥
2

= dv−1 + �v−1, (10)

and the associated PED increment as:

�v−1 =
∥∥∥∥∥

v∑
t=1

s̄∗
t Ut,v

∥∥∥∥∥
2

=
∥∥∥∥∥s̄∗

v−1Uv,v + xv−1

(
v−1∑
t=1

s̄∗
t Ut,v

)∥∥∥∥∥
2

.

(11)

Observe in (10) and (11) that for a specific index v, all the pre-
viously tested transmitted symbols {s̄t}v−1

t=1 have been decided,
and the current SD search may opt for the best candidate for
representing xv−1, which is supposed to minimize �v−1.

When NR = 1 is used, it was demonstrated in [2] that the
best phasor index is given by m̌v−1 = 	pv−1
, where we have
pv−1 = M

2π
� (−s̄∗

v−1Uv,v/
∑v−1

t=1 s̄∗
t Ut,v). If the phase index m̌v−1

was rounded down from pv−1, i.e. we have the condition of
pv−1 − m̌v−1 ≥ 0, then the SD visits the remaining phasors in
a zigzag fashion according to the steps of m̌v−1 = m̌v−1 + 1,
m̌v−1 = m̌v−1−2, m̌v−1 = m̌v−1 + 3, etc. Otherwise, the SD may
visit the remaining phasors according to the steps of m̌v−1 =
m̌v−1 − 1, m̌v−1 = m̌v−1 + 2, m̌v−1 = m̌v−1 − 3, etc. How-
ever, for the more general case of using NR > 1, {{Ut,v}vt=1}Nw

v=1
in (11) become vectors, hence we cannot directly obtain pv−1.
In order to mitigate this problem, we rewrite (11) as:

�v−1 =
∥∥∥AMSDD

v−1 − xv−1BMSDD
v−1

∥∥∥2
, (12)

where we have AMSDD
v−1 = s̄∗

v−1Uv,v and BMSDD
v−1 =−∑v−1

t=1 s̄∗
t Ut,v .

As a result, a simple correlation process leads us to the follow-
ing decision variable:

zv−1 = AMSDD
v−1

(
BMSDD

v−1

)H
, (13)

which may be directly used for detecting xv−1. More explicitly,
the best phasor is now given by m̌v−1 = 	pv−1
, where we have
pv−1 = M

2π
� zv−1, and the Schnorr-Euchner search strategy may

visit the remaining phasors in a zigzag fashion in the same way
as the case of NR = 1 in [2].

2We note that the depth-first tree search strategy of [30] and the Schnorr-
Euchner constellation search strategy of [1] constitute the default choice for
the MSDSD [2], [3], which enables the MSDSD to achieve the same detection
capability as the MSDD.
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III. SOFT-DECISION MSDSD

According to the a posteriori probability of (5), the optimum
Log-MAP algorithm invoked by MSDD may be expressed as
[37], [38]

Lp(bk) = ln

∑
S̄i∈S̄bk=1

p(S̄i|Y)∑
S̄i∈S̄bk=0

p(S̄i|Y)

= ln

∑
S̄i∈S̄bk=1

exp(di)∑
S̄i∈S̄bk=0

exp(di)
= La(bk) + Le(bk),

(14)

where Lp(bk), Le(bk) and La(bk) represent the a posteriori LLR
and the extrinsic LLR produced by the MSDD as well as the
a priori LLR gleaned from a channel decoder, respectively.
Furthermore, S̄bk=1 and S̄bk=0 refer to the MSDD signal set
S̄, when the specific bit bk is set to 1 and 0, respectively. The

probability metric3 {di}M(Nw−1)−1
i=0 seen in (14) is given by di =

−
∥∥∥LH ¯(Si)

H
Y

∥∥∥2 + ∑(Nw−1)BPS
k̄=1

b̃k̄La(bk̄), where {̃bk̄}(Nw−1)BPS
k̄=1

denotes the bit-mapping corresponding to the MSDD candidate
Si. The Log-MAP algorithm of (14) may be simplied by the
low-complexity Max-Log-MAP [37] as:

Lp(bk) = max
S̄i∈S̄bk=1

di − max
S̄i∈S̄bk=0

di. (15)

Furthermore, in order to compensate for the sub-optimum Max-
Log-MAP, the Approx-Log-MAP was introduced as [39]:

Lp(bk) = jacS̄i∈S̄bk=1
di − jacS̄i∈S̄bk=0

di. (16)

where jac denotes the Jacobian algorithm of jac(d1, d2) =
max{d1, d2} + �{|d1 − d2|}, while the additional term of
�{|d1 − d2|} may take into account the difference between d1

and d2 according to a lookup table.
The Max-Log-MAP aims for finding the maximum proba-

bility metrics, which is similar to the action of hard-decision
detectors. Therefore, in order to invoke SD for the Max-Log-
MAP, the maximization of (15) has to be revised for the sake of
minimization, while the probability metrics should be guaran-
teed to have positive values. As a result, the MSDD probability
metric of (14) may be transformed into:

d=
Nw∑
v=1

∥∥∥∥∥
v∑

t=1

s̄∗
t Ut,v

∥∥∥∥∥
2

−
Nw∑
v=2

BPS∑
k̄v=1

[̃
bk̄v

La

(
bk̄v

)
− Ca,k̄v

]
, (17)

where the superscript i for di seen in (14) is deleted for the sake
of convenience, while the polarity of di in (14) is altered. Fur-
thermore, the constant Ca,k̄v

in (17) was formulated as Ca,k̄v
=

ln
∏BPS

k̄v=1{1 + exp[La(bk̄v
)]} in [3], which was originally

3We note that all multiplicative factors of the exp(di) term are elim-
inated by the division operation in (14), which include the denominator
[∑∀S̄j p(Y|S̄j)p(S̄j)] of p(S̄i|Y) in (5), the denominator [πNRNw det(RYY )] of

p(Y|S̄i) in (6) as well as the denominator
∏(Nw−1)BPS

k̄=1
{1 + exp[La(bk̄)]} in

the a priori probability of p(S̄i) = exp[∑(Nw−1)BPS
k̄=1

b̃k̄La(bk̄)]∏(Nw−1)BPS
k̄=1

{1+exp[La(bk̄)]} according to the

LLR definition of La = ln p(b=1)
p(b=0)

[37], [38].

eliminated by the the division of the Log-MAP of (14). How-
ever, in order to avoid excessive calculations in logarithm
domain, we adopt the method in [34], [40], which uses a simple
operation of Ca,k̄v

= 1
2 [|La(bk̄v

)| + La(bk̄v
)] to guarantee a non-

negative ED. As a result, the PED of soft-decision MSDSD may
be defined as [3]:

dv =
v∑

v̄=2

∥∥∥∥∥
v̄∑

t=1

s̄∗
t Ut,v̄

∥∥∥∥∥
2

−
v∑

v̄=2

BPS∑
k̄v̄=1

[̃
bk̄v̄

La

(
bk̄v̄

)
− Ca,k̄v̄

]
= dv−1 + �v−1,

(18)

where the PED increment is given by:

�v−1 =
∥∥∥∥∥s̄∗

v−1Uv,v + xm

(
v−1∑
t=1

s̄∗
t Ut,v

)∥∥∥∥∥
2

−
BPS∑
k̄v=1

[̃
bk̄v

La

(
bk̄v

)
− Ca,k̄v

]
. (19)

As introduced in [3], the Schnorr-Euchner search strategy may
search for xv−1 according to �v−1 of (19). However, unlike
the hard-decision MSDSD, the decision variable zv−1 of (13)
cannot be directly used, because the a priori information∑BPS

k̄v=1 [̃bk̄v
La(bk̄v

) − Ca,k̄v
] is not included in zv−1. As a result,

the conventional Schnorr-Euchner search strategy in [3] has to
visit all MPSK constellation points for xv−1 by evaluating and
sorting a total of M PED increment values �v−1 of (19).

The soft-decision MSDSD algorithm based on the PED of
(18) may now be implemented by the “MAP-MSDSD” function
in [3], which is exemplified for the cases of employing DQPSK
and D8PSK in Figs. 1 and 2, respectively. In summary, the
MSDSD algorithm in [3] is capable of finding both the global
minimum dMAP as well as the optimum constellation points
{x̂v−1}Nw−1

v=2 , which may be translated into the hard-bit decisions

of {bMAP
k }(Nw−1)BPS

k=1 . In order to produce soft-bit decisions, the
Max-Log-MAP algorithm of (15) may be completed as:

Lp(bk) =
{

−dMAP + d̄MAP, if bMAP
k = 1

−d̄MAP + dMAP, if bMAP
k = 0.

(20)

where d̄MAP is obtained by invoking the MSDSD again, where
the search space is halved by fixing bk to be the flipped version
of the MAP decision as bk = b̄MAP

k . In summary, when the con-
secutive MSDSD windows are simply overlapped by NOL = 1
observations, the MSDSD algorithm of [3] has to be invoked
once first for finding the global MAP solution dMAP in (20), and
then it is invoked for an additional (Nw − 1) log2 M number of
times for finding the local MAP solutions d̄MAP in (20), which
may be referred to as the Repeated Tree Search (RTS).

Alternatively, it’s recently proposed in [33], [34] that the
Single Tree Search (STS) [41] may opt to invoke the SD only
once for obtaining all the EDs of dMAP and d̄MAP, which may
induce a potential performance loss. More explicitly, if the
hypothesis bit-mapping arrangement for dMAP is updated and
changed, all the counter-hypothesis bit-mapping arrangements
for d̄MAP have to be changed accordingly. As a result, the previ-
ously dismissed candidates that obey the new bit-mapping can-
not be taken into account again. As a remedy, the sub-optimal
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Fig. 1. Example of soft-decision MSDSD aided DQPSK, recorded at SNR =
0 dB, where we have IA = 0.3, NR = 2 and Nw = 3. (a) Example of
Soft–Decision MSDSD Conceived for DQPSK Detection (labelled with PED
values). (b) Example of QPSK constellation digram visited by Soft–Decision
SD at index v = 2.

Fig. 2. Example of soft-decision MSDSD aided D8PSK, recorded at SNR =
3 dB, where we have IA = 0.3, NR = 2 and Nw = 3. (a) Example of Soft–
Decision MSDSD Conceived for D8PSK Detection. (b) Example of 8PSK
constellation digram visited by Soft–Decision SD at index v = 2.

detector has to invoke the LLR correction method [34] for
correcting the LLR results. Against this background, the RTS is
suggested in this paper. In fact, the STS’s motivation of visiting
a node at most once can still be accomplished by the RTS,
where the previously visited nodes may be labelled so that the
repeated calculations may be avoided by reading the previously
evaluated PED metrics.

IV. REDUCED-COMPLEXITY SOFT-DECISION MSDSD

It was demonstrated in Section III that the conventional
Schnorr-Euchner search strategy utilized by the soft-decision
MSDSD of [3] has to visit all MPSK constellation points. In this
section, we opt to propose a reduced-complexity soft-decision
MSDSD algorithm, where the Schnorr-Euchner search strategy
may once again visit the MPSK constellation points in a zigzag
fashion. More explicitly, the PED increment �v−1 of (19) may
be further extended as:

�v−1 =
∥∥∥AMSDD

v−1 − xv−1BMSDD
v−1

∥∥∥2−
BPS∑
k̄v=1

[̃
bk̄v

La

(
bk̄v

)
− Ca,k̄v

]

= −2�(
x̄∗
v−1z̄v−1

)−BPS∑
k̄v=1

b̃k̄v
La

(
bk̄v

)
+ La(b1)+La(b2)

2
+Cv−1,

(21)

where we deliberately rotate all the detected MPSK constel-
lations (except for BPSK4) anti-clockwise by (π/M) as sug-
gested by [28], i.e. we have x̄v−1 = xv−1 · exp

(
j π

M

)
, so that

there are exactly M/4 constellation points in each quadrant.
Furthermore, the new decision variable z̄v−1 seen in (21) is
given by:

z̄v−1 = AMSDD
v−1

(
BMSDD

v−1

)H · exp
(

j
π

M

)
, (22)

which is rotated anti-clockwise from the correlation decision
variable zMSDSD

v−1 of (13) by (π/M) for detecting x̄v−1, while the

constant of Cv−1 seen in (21) is given by:

Cv−1 =
∥∥∥AMSDD

v−1

∥∥∥2+
∥∥∥BMSDD

v−1

∥∥∥2 + Ca,v−1 − La(b1)+La(b2)

2
,

(23)

and we have the constant Ca,v−1 = ∑BPS
k̄v=1 Ca,k̄v

. We note that

Cv−1 of (23) is invariant over all the different candidates x̄v−1 in
(21). As a result, comparing the M candidates {xm}M−1

m=0 accord-
ing to their PED increment values �v−1 of (21) is equivalent to
comparing the following equivalent PED increment metric over
the variables x̄v−1 as:

�v−1 = −2�(x̄v−1)�(z̄v−1) − 2�(x̄v−1)�(z̄v−1)

−
BPS∑
k̄v=1

b̃k̄v
La

(
bk̄v

)
+ La(b1) + La(b2)

2
,

(24)

where we have the algebraic relationship of �(x̄∗
v−1z̄v−1) =

�(x̄v−1)�(z̄v−1) + �(x̄v−1)�(z̄v−1).
Considering the rotated QPSK as an example, the four proba-

bility metrics {�m
v−1}M−1=3

m=0 of (24) corresponding to the M = 4

rotated QPSK constellation points
{

x̄m = ± 1√
2

± j 1√
2

}M−1=3

m=0
may be expressed as (25), shown at the bottom of the next page.

4We note that rotating the BPSK constellation anti-clockwise by (π/M)

will only move the two BPSK constellation points from the real axis to the
imaginary axis, which is not neccessary.
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TABLE I
PSEUDO-CODE FOR REDUCED-COMPLEXITY SOFT-DECISION MSDSD AIDED DPSK

where we associate the real and imaginary parts of z̄v−1 with
La(b2) and La(b1) respectively as:

tRe
v−1 = √

2�(z̄v−1) − La(b2)

2
, tImv−1 = √

2�(z̄v−1) − La(b1)

2
.

(26)

After assigning the a priori LLRs to the appropriate parts
of z̄v−1, the only difference between the four candidates

{�m
v−1}M−1=3

m=0 in (25) is the polarity of tRe
v−1 and tImv−1. This allows

us to directly obtain the minimum metric by simply evaluating
�v−1 = −|tRe

v−1| − |tImv−1|, and then the ranking order of the rest
of the candidates may be obtained by comparing |tRe

v−1| and
|tImv−1|. In more detail, if we have the condition of |tRe

v−1| >

|tImv−1|, then the SD may visit the remaining candidates in a zig-
zag fashion according to the steps of �v−1 = −|tRe

v−1| + |tImv−1|,
�v−1 = |tRe

v−1| − |tImv−1| and �v−1 = |tRe
v−1| + |tImv−1|. Other-

wise, the remaining steps should be �v−1 = |tRe
v−1| − |tImv−1|,

�v−1 = −|tRe
v−1| + |tImv−1| and �v−1 = |tRe

v−1| + |tImv−1|. In sum-
mary, similar to the condition of sign(pv−1 − 	pv−1
) for the
hard-decision MSDSD of Section II, the soft-decision MSDSD
aided DQPSK may rely on the condition of sign(|tRe

v−1| −
|tImv−1|) for deciding the direction of SD’s zigzag path.

In more detail, the reduced-complexity soft-decision MS-
DSD is summarized in the form of its pseudo-code in Table I,
where the simplified Schnorr-Euchner search strategy specifi-
cally tailored for DBPSK and DQPSK is given by Tables II and
III, respectively. Furthermore, Fig. 3 revisits the specific ex-
ample of Fig. 1, where the reduced-complexity algorithms of
Tables I and III are invoked. It can be seen in Fig. 3 that
the proposed reduced-complexity MSDSD exhibits a reduced
number of visited nodes compared to the conventional MSDSD
exemplified by Fig. 1.

�
0
v−1 = −√

2�(z̄v−1) − √
2�(z̄v−1) + La(b1) + La(b2)

2
= −tRe

v−1 − tImv−1,

�
1
v−1 = √

2�(z̄v−1) − √
2�(z̄v−1) − La(b2) + La(b1) + La(b2)

2
= tRe

v−1 − tImv−1,

�
2
v−1 = −√

2�(z̄v−1) + √
2�(z̄v−1) − La(b1) + La(b1) + La(b2)

2
= −tRe

v−1 + tImv−1,

�
3
v−1 = √

2�(z̄v−1) + √
2�(z̄v−1) − La(b1) − La(b2) + La(b1) + La(b2)

2
= tRe

v−1 + tImv−1, (25)
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TABLE II
PSEUDO-CODE FOR THE SUBFUNCTIONS OF THE REDUCED-COMPLEXITY

SOFT-DECISION MSDSD OF TABLE I, WHERE DBPSK IS EMPLOYED

Let us now consider the rotated 8PSK constellation portrayed
by Fig. 4(b) as an example, where the M = 8 constellation
points are arranged to M/4 = 2 groups, which are Group
G0 of

{± cos
(

π
8

) ± j sin
(

π
8

)}
and Group G1 of

{± sin
(

π
8

)±
j cos

(
π
8

)}
. Accordingly, their probability metrics {�m

v−1}M−1=7
m=0

of (24) may be expressed as:

�
0
v−1 = −tRe0

v−1 − tIm0
v−1, �

2
v−1 = tRe0

v−1 − tIm0
v−1,

�
4
v−1 = −tRe0

v−1 + tIm0
v−1, �

6
v−1 = tRe0

v−1 + tIm0
v−1, (27a)

�
1
v−1 = −tRe1

v−1 − tIm1
v−1 − La(b3),

�
3
v−1 = tRe1

v−1 − tIm1
v−1 − La(b3),

�
5
v−1 = −tRe1

v−1 + tIm1
v−1 − La(b3),

�
7
v−1 = tRe1

v−1 + tIm1
v−1 − La(b3), (27b)

where the two pairs of real/imaginary terms are given by tRe0
v−1 =

2 cos
(
π
8

)·�(z̄v−1)− La(b2)
2 , tIm0

v−1 = 2 sin
(

π
8

) · �(z̄v−1) − La(b1)
2 ,

tRe1
v−1 =2 sin

(
π
8

)·�(z̄v−1)− La(b2)
2 and tIm1

v−1 =2 cos
(
π
8

)·�(z̄v−1) −
La(b1)

2 . It can be seen in (27a) and (27b) that the only difference
between the four component probability metrics within each
group is the polarity of the real/imaginary terms. As a result,
the local minimum metrics of the M/4 = 2 groups may be ob-

tained by �
G0
v−1 = minm∈{0,2,4,6} �

m
v−1 = −|tRe0

v−1| − |tIm0
v−1| and

�
G1
v−1 =minm∈{1,3,5,7} �

m
v−1 =−|tRe1

v−1|−|tIm1
v−1|−La(b3), respec-

tively, which are evaluated without invoking (24) for M = 8

times in (27). Finally, the global minimum over {�m
v−1}M−1=7

m=0
of (24) may be simply obtained by comparing the two local

minima as �v−1 = min{�G0
v−1,�

G1
v−1}.

In summary, for a generic high-order MPSK scheme
(M > 4), we may firstly assign the M constellation points to
M/4 groups of QPSK-like constellation points that are associ-
ated with the same magnitudes but different polarities, so that
the local minimum metric for {�m

v−1}M−1
m=0 of (24) within each

group is simply given by:

�
Gg
v−1 = −

∣∣∣tReg
v−1

∣∣∣ −
∣∣∣tImg

v−1

∣∣∣ −
BPS∑
k̄=3

b̃k̄La(bk̄), (28)

where the range for the group index is given by g ∈ {0, · · · ,

M/4 − 1}, while the real and imaginary parts of z̄v−1 are asso-
ciated with La(b2) and La(b1) respectively as follows:

t
Reg
v−1 =A

g · �(z̄v−1)− La(b2)

2
, t

Img
v−1 = B

g · �(z̄v−1)− La(b1)

2
.

(29)

The coordinates of the MPSK constellation points, which
are located in the first quadrant may be denoted by {(Ag,

Bg)}M/4−1
g=0 , and we have A

g = 2Ag as well as B
g = 2Bg in (29).

As a result, the global minimum for {�m
v−1}M−1

m=0 of (24) may be
simply given by:

�v−1 = min
g∈{0,··· ,M/4−1} �

Gg
v−1, (30)

which is obtained by visiting a reduced-subset of M/4 constel-
lation points that correspond to the M/4 local minima of (28).

We note that the procedures conceived for obtaining the
minimum probability metric of (30) are similar to those in
our previous work designed for generic soft-decision MPSK
detection in [28]. However, for the soft-decision MSDSD, the
Schnorr-Euchner search strategy also relies on the ranking order
of constellation points. Against this background, we propose to
complete the Schnorr-Euchner strategy by using a Comparison
Window (CW). More explicitly, the CW is initialized to have
M/4 local minima of (28), which correspond to local best
candidates. Then the CW may choose the global best candidate
which has the global minimum metric by invoking (30). This is
the subfunction of “findBest-DPSK” for the Schnorr-Euchner
search strategy tailored for MPSK (M > 4) in Table IV. Fur-
thermore, when the SD re-visits a specific SD index v, the
“findNext-DPSK” subfunction in Table IV may offer the next
constellation node. More explicitly, if previously a local min-
imum from Group Gg is chosen as the global candidate, i.e.

previously we have �v−1 = �
Gg
v−1 from (30), then Group Gg

has to visit a new local candidate in a zigzag fashion by

comparing |tReg
v−1| and |tImg

v−1|. Following this, the CW may once
again update the new global candidate by invoking (30).

Fig. 4 portrays the D8PSK example of Fig. 2, where the
reduced-complexity algorithms of Tables I and IV are invoked.
More explicitly, it can be seen in Fig. 4 that the “findBest-
DPSK” subfunction in Table IV may firstly initialize the CW

by the M/4 = 2 local minima of (28) as �
G0
v−1 = −3.487 and

�
G1
v−1 = −0.998, and then the CW invokes (30) in order to

obtain the global candidate of �v−1 = �
G0
v−1 = −3.487. More-

over, when the SD re-visits index v = 2 in Fig. 4, the “findNext-
DPSK” in Table IV may firstly update a new local candidate

�
G0
v−1 = 4.364 from Group G0 by visiting the QPSK-like con-

stellation points in a zigzag fashion relying on the relationship
between |tRe0

v−1| and |tIm0
v−1|, and then the CW invokes (30) again

in order to obtain the new global candidate of �v−1 = �
G1
v−1 =

−0.998. As a result, the reduced-complexity MSDSD exempli-
fied in Fig. 4 visits a reduced subset of the constellation points
compared to the conventional MSDSD exemplified in Fig. 2,
yet the same SD result is arrived at.

Moreover, it is worth pointing out that the conventional
MSDSD algorithm in [3] requires the Schnorr-Euchner search
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TABLE III
PSEUDO-CODE FOR THE SUBFUNCTIONS OF THE REDUCED-COMPLEXITY SOFT-DECISION MSDSD OF TABLE I, WHERE DQPSK IS EMPLOYED

Fig. 3. Example of soft-decision MSDSD aided DQPSK, which corresponds
to the example seen in Fig. 1, subject to the difference that the reduced-
complexity algorithm of Tables I and III are invoked. (a) Example of Reduced–
Complexity Soft–Decision MSDSD Conceived for DQPSK Detection.
(b) Example of QPSK constellation diagram visited by Reduced–Complexity
Soft–Decision SD at index v = 2.

strategy to invoke a sorting algorithm, which was represented
by the “qsort” function on line F-6 in the pseudo-code algorithm
table of [3]. As a result, all M constellation points {xm}M−1

m=0
are ranked according to an ascending order of the PED in-
crement values {�m

v−1}M−1
m=0

, which is explicitly exemplified by
Figs. 1 and 2. There are numerous sorting algorithms that may
be suitable, such as Bubble sort, Timsort, Library sort [42],
[43], etc., but the average number of comparisons required by
these algorithms is as high as O(M log M). By contrast, the
reduced-complexity MSDSD of Tables II–IV does not require
any sorting algorithms. As exemplified by Figs. 3 and 4, the
proposed Schnorr-Euchner search strategy does not have to
maintain the complete ranking order of constellation points,
which dispenses with a considerable number of comparisons.

V. APPROX-LOG-MAP IMPLEMENTED BY MSDSD

The soft-decision MSDSD discussed in the Sections III and IV
aims to implement the Max-Log-MAP of (15), which may im-
pose a performance loss compared to the near-optimum Approx-
Log-MAP of (16). In order to mitigate this open problem, we
propose the Approx-Log-MAP solution for MSDSD as follows:

(1) Let us define the leaf nodes of a SD structure as the candi-
dates associated with the SD index v = Nw. For example,
the M = 4 candidates visited at the SD’s step of ©2 in
Fig. 1(a) as well as the M = 8 candidates visited at step ©2
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Fig. 4. Example of the soft-decision MSDSD aided D8PSK, which corre-
sponds to the example seen in Fig. 2, subject to the difference that the
reduced-complexity algorithms of Tables I and IV are invoked. (a) Example of
Reduced–Complexity Soft–Decision MSDSD Conceived for D8PSK De-
tection. (b) Example of 8PSK constellation diagram visited by Reduced–
Complexity Soft–Decision SD at index v = 2.

in Fig. 2(a) are all leaf nodes. This leads us to the proposed
change of the MSDSD output scenario. When the MSDSD
algorithm is invoked for the first time, instead of just pro-
ducingtheglobaloptimumdMAP andtheMAPhard-bitdeci-

sions {bMAP
k }(Nw−1)BPS

k=1 , all the PED values of the leaf nodes
{dCAN = dv}∀v=Nw

as well as all the corresponding hard-

bit decisions {bCAN
k }(Nw−1)BPS

k=1 may also be recorded and pro-
duced. For example, the SD of Fig. 1(a) may produce both
the MAP solution, which is represented by dMAP = 7.28

and {bMAP
k }(Nw−1)BPS

k=1 = 1010, as well as all the leaf nodes,
which are represented by {dCAN} = {18.4, 25.331, 7.28,

16.211} and {bMAP
k }(Nw−1)BPS

k=1 ={1000, 1001, 1010, 1011}.
(2) For each soft-bit output, the MSDSD algorithm is invoked

again with a fixed bit bk = b̄MAP
k . Similarly, whenever the

SD visits index v = Nw, the resultant M leaf candi-

dates {dbk=b̄MAP
k

CAN } may all be recorded and produced. For
example, when the SD of Fig. 1(a) is invoked again with
a fixed bit b1 = 0, the resultant SD structure is portrayed
in Fig. 5, where the two sub-groups of leaf nodes {25.118,
35.09, 18.97, 14.91} and {20.05, 24.09, 46.615, 35.05}

may be recorded as {dbk=b̄MAP
k

CAN }. We note that there may
only be M/2 leaf candidates, when the fixed bit bk = b̄MAP

k

is at the specific position in the range of k ∈ {(Nw −
2)BPS + 1, · · · , (Nw − 1)BPS}.

(3) Finally, the Max-Log-MAP of (20) may be revised for the
Approx-Log-MAP as:

Lp(bk) =

⎧⎪⎪⎨⎪⎪⎩
jac (−dCAN) − jac

(
−d

bk=b̄MAP
k

CAN

)
, if bMAP

k = 1

jac

(
−d

bk=b̄MAP
k

CAN

)
− jac(−dCAN), if bMAP

k =0.

(31)

We note that when the sizes of the two candidate groups

{dCAN} and {dbk=b̄MAP
k

CAN } are not the same, the size of the
larger group may be reduced, so that ideally both groups
disregard the same number of candidates. Ideally, any
potential deviations introduced both by the jac(−dCAN)

and by jac(−d
bk=b̄MAP

k
CAN ) operations may be cancelled out.

In practice, the SD’s output candidates for {dCAN} and

{dbk=b̄MAP
k

CAN } are always constituted by either the sub-group
of M leaf candidates or by the sub-group of M/2 leaf
candidates. Therefore, for the larger-sized group, we may
compare the best leaf candidates, which are supposed
to have the minimum PED values in each sub-groups,
and then we may delete the sub-groups associated with
the highest locally best leaf candidate’s PED value. For
the example of Fig. 5, we may delete the sub-group of
{20.05,24.09,46.615,35.05}, because the local best leaf
candidates from each sub-group have the relationship of
20.05>14.91. As a result, the Approx-Log-MAP of (31)
may be implemented for the example seen in Figs. 1(a) and
5 as Lp(b1) = jac (−{18.4, 25.331, 7.28, 16.211}) −
jac (−{25.118, 35.09, 18.97, 14.91}).

One may argue that the SD does not visit all the MSDD
candidates, which means that the group sizes of {dCAN} and

{dbk=b̄MAP
k

CAN } seen in (31) may be smaller than the group sizes of
S̄i ∈ S̄bk=1 and S̄i ∈ S̄bk=0 seen in (16). In other words, ideally,
the Approx-Log-MAP of (16) may include all the MSDD
candidates, but naturally the SD may only visit a subset of them.
Nonetheless, as suggested by [39], when the Approx-Log-
MAP corrects the difference between two probability metrics
of |d1 − d2|, only 8 values corresponding to |d1 − d2| ranging
between 0 and 5.0 may be taken into account. This implies
that large differences of |d1 − d2| > 5.0 are inherently ignored
by the Approx-Log-MAP. Therefore, we may assume that the
leaf candidates ignored by the SD may also be ignored by the
Approx-Log-MAP, so that no extra complexity is imposed on
the SD by our proposed Approx-Log-MAP.

We note that for a better implementation, Step (2) may be

executed for all BPS(Nw − 1) fixed bits {bk = b̄MAP
k }BPS(Nw−1)

k=1
before proceeding to Step (3), so that all the leaf nodes visited
by the repeated SD searches may be utilized in Step (3). As

a result, {dCAN} in (31) may be replaced by {dbCAN
k =bMAP

k
CAN }, and

then both {dbCAN
k =bMAP

k
CAN } and {dbk=b̄MAP

k
CAN } in (31) may include all

the leaf nodes obtained from Steps (1) and (2) corresponding to
the specific bit bk being bMAP

k and b̄MAP
k , respectively.
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TABLE IV
PSEUDO-CODE FOR THE SUBFUNCTIONS OF THE REDUCED-COMPLEXITY SOFT-DECISION MSDSD OF TABLE I, WHERE DPSK (M > 4) IS EMPLOYED

The Approx-Log-MAP may also be straightforwardly ap-
plied to the reduced-complexity soft-decision MSDSD of
Section IV, where the simplified Schnorr-Euchner strategy
of Tables II–IV can be invoked for all SD indice satisfying
v < Nw. However, the original Schnorr-Euchner strategy of [3]
has to be invoked for the specific SD index v = Nw, because all
the leaf nodes at v = Nw have to be recorded and produced for
the Approx-Log-MAP.

VI. PERFORMANCE RESULTS

A. Approx-Log-MAP Versus Max-Log-MAP

First of all, the accuracy of the extrinsic LLRs produced
by the Approx-Log-MAP and Max-Log-MAP algorithms are
tested as portrayed in Fig. 6, where the two PDFs
{p(Le|b)}b={0,1} may be obtained by estimating the histograms
of Le, with the source bits being b = {0, 1}. If the LLR
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Fig. 5. Example of the soft-decision MSDSD conceived for DQPSK imple-
menting Approx-Log-MAP, which invokes the SD seen in Fig. 1 with a fixed
bit of b1 = 0.

Fig. 6. LLR accuracy test for DQPSK and D16PSK employing both Approx-
Log-MAP and Max-Log-MAP aided Subset MSDSD (Nw = 4), recorded at
SNR = 0 dB and IA = 0, where we have NR = 2 and fd = 0.03.

definition of Le = ln p(Le|b=1)
p(Le|b=0)

is statistically true, then the LLRs
accuracy test is supposed to result in a diagonal line in Fig. 6.
However, the LLRs of the Max-Log-MAP suffer from a notice-
able deviation, which is effectively improved by the proposed
Approx-Log-MAP, as evidenced by Fig. 6

It is worthy to note that the so-called Subset MSDSD is
employed throughout this section. More explicitly, it was dis-
covered in [44] that the symbols at the middle of the MSDSD
window may be more reliably detected than those at its edges.
Therefore, the Subset MSDSD overlaps the consecutive detec-
tion windows by NOL = 3 observations, so that the (NOL −
1 = 2) symbols detected at the edges may be discarded.5 The
BER performance of Fig. 7 further confirms the advantage of
the proposed Approx-Log-MAP algorithm in both TC coded
and IRCC-URC coded DPSK systems, where the simulation
parameters are summarized in Table V.

B. Complexity Reduction

To elaborate, the asymptotic complexity analysis of MSDSD
was presented in [45] following the same guideline as the SD

5We note that the choice of NOL is independent of Nw, and it was demon-
strated in [44] that increasing NOL beyond three does not provide any further
advantage.

Fig. 7. BER performance of TC/IRCC-URC coded DPSK employing Subset
MSDSD (Nw = 4), where we have NR = 2 and fd = 0.03.

TABLE V
SYSTEM PARAMETERS

TABLE VI
COMPLEXITY OF SOFT-DECISION MSDSD SUBFUNCTIONS

aided BLAST of [18], which was only feasible when invoking
the sub-optimal Fincke-Pohst strategy of [21]. By contrast, in
this work, we focus our attention on the complexity reduction
achieved for the optimal Schnorr-Euchner strategy of [1].
Against this background, the detection complexities of the soft-
decision MSDSD subfunctions are summarized in Table VI,6

where “sortDelta” refers to the conventional Schnorr-Euchner
search strategy in [3], while the rest of the proposed subfunc-
tions are given by Tables II–IV. It can be seen in Table VI that
the proposed Schnorr-Euchner search strategy visits a reduced

6We note that unneccessary calculations are eliminated for Table VI. For

example, both {0.5Lv−1,1
a }∀v and {0.5Lv−1,2

a }∀v may be calculated before
invoking the MSDSD’s subfunctions. Furthermore, the function of [b1 · · ·
bBPS] = dec2bin(m) may be implemented by a pre-stored lookup table
for bit-mapping, while its inverse function m = bin2dec(b1 · · · bBPS) = b1 ·
2BPS-1 + b2 · 2BPS-2 + · · · + bBPS−1 · 2 + bBPS may require a total number
of (BPS − 1) multiplications as well as (BPS − 1) additions.
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Fig. 8. Complexity (number of real-valued multiplications) comparison be-
tween the conventional MSDSD algorithm of [3] associated with Nw = 4
and the reduced-complexity MSDSD algorithm of Tables I and III for coded
DQPSK, where we have NR = 2 and fd = 0.03. (a) Eb/N0 = 0 ∼ 15 dB.
(b) IA = 0 ∼ 1.

Fig. 9. Complexity-Reduction Ratio (CRR) achieved by the reduced-
complexity MSDSD algorithm of Table I compared to the conventional
MSDSD algorithm of [3] recorded at Eb/N0 = 0 dB and IA = 1, where we
have NR = 2 and fd = 0.03. (a) Nw = {3, 4, 5, 6}. (b) M = {2, 4, 8, 16}.

number of nodes, which results in a reduced complexity in all
categories.

The complexity of the conventional MSDSD algorithm and
that of the proposed MSDSD algorithm conceived for coded
DQPSK are compared in Fig. 8 in terms of the total number
of real-valued multiplications. It is confirmed by Fig. 8(a)
and (b) that the complexities of the MSDSD algorithms may
converge to their lower bounds, as Eb/N0 and/or IA increase.
Fig. 8 demonstrates that the proposed MSDSD of Table I sub-
stantially reduces the complexity of the conventional MSDSD
in [3]. The Complexity-Reduction Ratios (CRRs) achieved by
our reduced-complexity design are further presented in Fig. 9.

We note that for the conventional MSDSD, the Approx-Log-
MAP and the Max-Log-MAP impose the same number of real-
valued multiplications. By contrast, for the proposed MSDSD,
the Approx-Log-MAP has to invoke the conventional Schnorr-
Euchner strategy for the specific SD index v = Nw, which
results in a higher number of multiplications than the Max-Log-
MAP. Nonetheless, Fig. 9(a) and (b) demonstrate that substan-
tial complexity reductions of up to CRR = 48.0% and CRR =
52.2% are achieved by the Subset MSDSD (Nw = 6) aided
DQPSK and by the Subset MSDSD (Nw = 4) aided D16PSK,
when the Approx-Log-MAP is implemented. Furthermore,
even more substantial complexity reductions of CRR = 66.7%
and CRR = 88.7% are achieved by the Subset MSDSD (Nw =
6) aided DQPSK and by the Subset MSDSD (Nw = 4) aided
D16PSK, when the Max-Log-MAP is implemented. We note
that the complexity reductions achieved by the proposed
MSDSD are especially significant, when the MSDSD is iter-
atively invoked several times by the turbo detected systems.

Once again, we note that the proposed soft-decision MS-
DSD algorithm presented in Tables I–IV has exactly the same
detection capability as the conventional soft-decision MSDSD
algorithm presented in Appendix I of [3]. We have arranged
for them to decode the same channel output associated with the
same a priori soft input, and we found that they always produce
exactly the same SD decisions.

C. Coherent Versus Noncoherent

Last but not least, MSDSD aided DQPSK is compared to its
PSAM aided coherent QPSK counterpart. First of all, Fig. 107

demonstrates that when we have fd = 0.03, the LLRs produced
by the PSAM aided QPSK detector suffer from severe deviation
from the true probabilities, which may result in disproportion-
ately high LLR values that may misinform the channel decoder.

Secondly, Fig. 118 demonstrates that when we have
fd = 0.001, the coherent PSAM aided QPSK significantly
outperforms the Subset MSDSD aided DQPSK in both our TC
and IRCC-URC coded systems. However, when the normalized
Doppler frequency is increased to fd = 0.03, the PSAM aided
QPSK’s performance degrades substantially, while the Subset
MSDSD aided DQPSK only suffers from a small BER per-
formance degradation, which gives the noncoherent schemes a
0.7 dB and a 1.4 dB performance advantage over their coherent
counterparts in the context of our TC and IRCC-URC coded
systems, respectively, as evidenced by Fig. 11. Therefore, we
may conclude that the DPSK schemes employing MSDSD may
be deemed to be a more suitable candidate for channel coded
systems operating at high Doppler frequencies.

7When we have fd = 0.03, the PSAM’s pilot spacing NPS is reduced to 12
in order to sample the channel more frequently, while the PSAM’s observation
window length NOW (number of filter coefficients) is also reduced to 12, due to
the weak temporal correlation.

8There is no iteration between the QPSK detector and the channel decoder in
Fig. 11, because the QPSK detection does not produce any iteration gain [28].
Nonetheless, the coded coherent schemes and their noncoherent counterparts
have the same total number of iterations for turbo detection.
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Fig. 10. LLR accuracy test for PSAM [11] aided coherent QPSK, recorded at
SNR = 0 dB and IA = 0, where we have NR = 2.

Fig. 11. BER performance comparison between TC/IRCC-URC coded PSAM
[11] aided coherent QPSK and TC/IRCC-URC coded Subset MSDSD aided
DQPSK, where the Approx-Log-MAP is invoked, while NR = 2 receive anten-
nas are used. (a) TC coded systems. (b) IRCC-URC coded systems.

VII. CONCLUSION

In this paper, the Schnorr-Euchner search strategy was con-
figured to always visit the MPSK constellation points in a zig-
zag fashion both for the hard-decision MSDSD of Section II
and for the soft-decision MSDSD of Section IV. The com-
plexity results of Figs. 8 and 9 demonstrated that our proposed
design offers a substantial complexity reduction. Furthermore,
the Approx-Log-MAP algorithm implemented by the MSDSD
was proposed in Section V, which improved the Max-Log-
MAP, as demonstrated by Figs. 6 and 7. Finally, our comparison
of the channel-coded coherent and noncoherent schemes char-
acterized in Figs. 10 and 11 suggested that the DPSK schemes

employing MSDSD may be deemed to be more suitable can-
didates for channel coded systems operating at high Doppler
frequencies.

APPENDIX

In this section, we aim to conceive the SD aided V-BLAST
employing MPSK [29]–[34] in the same form as the MSDSD
aided DPSK, so that the reduced-complexity Schnorr-Euchner
search strategy proposed in Section IV and the Approx-Log-
MAP proposed in Section V may also be applied to the
V-BLAST detection.

Explicitly, the (1 × NT)-element V-BLAST transmission
matrix is given by:

S = [
s1, · · · , sNT

] =
[

sm1√
NT

, · · · , s
mNT√

NT

]
, (32)

where the MPSK/QAM symbols are separately modulated as
{smv }NT

v=1, while the factor
√

NT normalizes the transmission
power. The signal received by the NR antenna elements at the
receiver may be modelled as:

Y = SH + V, (33)

where the (1 × NT)-element vector S and the (1 × NR)-element
vector Y represent the input and output signals of the MIMO
channels, respectively. Furthermore, the (NT × NR)-element H
matrix of (33) models the MIMO’s Rayleigh fading channels,
while the (1 × NR)-element AWGN vector V of (33) models the
zero-mean Gaussian random variables with a common complex
variance of N0, whose PDF is given by p(V) = p(Y|Si) =

1
(πN0)

NRNP
exp

( − ‖Y−SiH‖2

N0

)
, where there is a total number of

MNT combinations {Si}MNT −1
i=0 for the MIMO transmission ma-

trix S in (33). In order to invoke the classic SD, the V-BLAST
receiver may apply QR decomposition to HH [31]–[34], which
results in H = (QU)H = LQH , where the (NR × NT)-element
matrix Q has orthogonal columns QHQ = INT , while U and
L = UH are upper- and lower- triangular matrices, respectively.
As a result, (33) may be reformulated as:

Ỹ = YQ = SL + VQ, (34)

where VQ has exactly the same statistics as the AWGN vector
V. Based on the conditional probability p(Y|Si) as well as on
the Bayes’s theorem of (5), the ED to be minimized by the SD
may be expressed as [34], [40]:

d=
∑NT

v=1

∣∣∣̃Yv−∑NT
t=v lt,vst

∣∣∣2

N0
−

NT∑
v=1

BPS∑
k̄v=1

[̃
bk̄v

La

(
bk̄v

)
−C

SD
a,k̄v

]
,

(35)

where an extra constant C
SD
a,k̄v

= 1
2 [|La(bk̄v

)| + La(bk̄v
)] is intro-

duced in order to guarantee that the ED remains non-negative
[34], [40]. According to the ED of (35), the SD’s PED may be
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formulated as dv = dv+1 + �v , where the PED increment �v

may be expressed as:

�v =
∣∣∣̃Yv − ∑NT

t=v lt,vst

∣∣∣2

N0
−

BPS∑
k̄v=1

[̃
bk̄v

La

(
bk̄v

)
− C

SD
a,k̄v

]

=
∣∣∣̃ASD

v − sm
v B̃SD

v

∣∣∣2 −
BPS∑
k̄v=1

[̃
bk̄v

La

(
bk̄v

)
− C

SD
a,k̄v

]
, (36)

where we have ÃSD
v = Ỹv−∑NT

t=v+1 lt,vst√
N0

and B̃SD
v = lv,v√

N0NT
. As a

result, (36) is in the same form as the MSDSD’s PED increment
of (19) in Section III and (21) in Section IV. Therefore, the
reduced-complexity Schnorr-Euchner search strategy and the
proposed Approx-Log-MAP solution may be directly applied
to the SD aided V-BLAST employing MPSK.
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Abstract—Unlike a generic PSK/QAM detector, which may visit
a constellation diagram only once, a depth-first Sphere Decoder
(SD) has to re-visit the same constellation diagram multiple times.
Therefore, in order to prevent the SD from repeating the detection
operations, the Schnorr-Euchner search strategy of Schnorr and
Euchner may be invoked for optimizing the nodes’ search-order,
where the ideal case is for the SD to visit the constellation nodes
in a zigzag fashion. However, when the hard-decision Multiple-
Symbol Differential Sphere Detection (MSDSD) of Lampe et al. is
invoked for using multiple receive antennas NR ≥ 1, the Schnorr-
Euchner search strategy has to visit and sort all the MPSK
constellation points. A similar situation is encountered for the soft-
decision MSDSD of Pauli et al., when the a priori LLRs gleaned
from the channel decoder are taken into account. In order to tackle
these open problems, in this paper, we propose a correlation pro-
cess for the hard-decision MSDSD of Lampe et al. and a reduced-
complexity design for the soft-decision MSDSD of Pauli et al.,
so that the Schnorr-Euchner search strategy always opts for vis-
iting the MPSK constellation points in a zigzag fashion. Our simu-
lation results demonstrate that a substantial complexity reduction
is achieved by our reduced-complexity design without imposing any
performance loss. Explicitly, up to 88.7% complexity reduction is
attained for MSDSD (Nw = 4) aided D16PSK. This complexity
reduction is quite substantial, especially when the MSDSD is
invoked several times during turbo detection. Furthermore, in
order to offer an improved solution and a comprehensive study for
the soft-decision MSDSD, we also propose to modify the output of
the SD to harmonize its operation with the near-optimum Approx-
Log-MAP. Then the important subject of coherent versus nonco-
herent is discussed in the context of coded systems, which suggests
that MSDSD aided DPSK is an eminently suitable candidate for
turbo detection assisted coded systems operating at high Doppler
frequencies.

Index Terms—Multiple-symbol differential sphere detection,
DPSK, sphere decoding, Schnorr-Euchner search strategy, turbo
detection, soft-decision, coherent versus noncoherent.
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I. INTRODUCTION

THE history of Differential Phase Shift Keying (DPSK)
dates back to Lawton’s classic work [4], [5] in 1959–1960,

where the effect of false carrier-phase locking is mitigated by
the low-complexity Conventional Differential Detection (CDD).
More explicitly, the DPSK transmitter modulates the data-
carrying symbols onto the phase changes between consecutive
transmitted symbols, so that the CDD may recover the source
information by observing the phase change between every pair
of consecutive received samples. However, it was demonstrated
by Cahn [6] in 1959 that the CDD-aided DPSK scheme suffers
from a 3 dB performance penalty compared to its coherent
counterpart. Moreover, it was discovered by Bello and Nelin [7]
in 1962 that an irreducible error floor occurs for DPSK, when
the CDD, which was originally designed for AWGN channels,
is directly employed in rapidly fluctuating fading channels. In
order to mitigate this problem, the Multiple-Symbol Differen-
tial Detection (MSDD) philosophy was proposed by Divsalar
and Simon [8] in 1990 for DPSK invoked in AWGN channels
and by Ho as well as Fung [9] in 1992 for Rayleigh fading
channels. More explicitly, the MSDD extends the CDD’s obser-
vation window width of Nw = 2 to Nw ≥ 2, where a total num-
ber of (Nw − 1) data-carrying symbols are jointly detected. The
price paid is that the MSDD complexity grows exponentially
with (Nw − 1). In order to reduce the MSDD complexity, a
reduced-complexity algorithm was conceived for MSDD oper-
ating in AWGN channels by Mackenthun [10] in 1994, which
may also be invoked for slowly-fading channels exhibiting a
near-constant envelope for a block of signal transmission. As a
closely related result, it was demonstrated by Cavers [11] in
1991 that accurate channel estimation relying on the classic
Pilot Symbol Assisted Modulation (PSAM) may become es-
pecially challenging, when the normalized Doppler frequency
is increased. Therefore, as an attractive alternative to coherent
receivers, it is essentially important to implement MSDD in
rapidly fluctuating fading channels at an affordable complexity.

Another low-complexity design alternative, namely the
Decision-Feedback Differential Detection (DFDD) was orig-
inally proposed for AWGN channels by Leib and Pasupathy
[12] in 1988. Then in 1995 it was confirmed by Leib [13] that
the DFDD of [12] is equivalent to the MSDD of [8] operating
in decision-feedback mode. The DFDD design was further
extended to Rayleigh fading channels by Schober et al. [14] in
1999. However, the DFDD inevitably imposes a performance
loss due to its inherent error-propagation problem. In order
to retain the optimum MSDD performance, the state-of-the-art

0090-6778 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Multiple-Symbol Differential Sphere Detection (MSDSD) was
proposed by Lampe et al. [2] in 2005, where the MSDD is facil-
itated by invoking the Sphere Decoder (SD) [15]. Furthermore,
inspired by the revolutionary Turbo Code (TC) concept [16]
and the generalization of the “turbo principle” [17], the soft-
decision MSDSD was conceived for DPSK by Pauli et al. [3]
in 2006, so that the MSDSD may be invoked in turbo detection
for the sake of approaching the full capacity potential of the
DPSK systems.

Although the MSDD complexity may be effectively reduced
by the SD, it was demonstrated by Jalden and Ottersten [18]
in 2005 that the SD complexity still remains an exponential
function at low SNRs. Later, Hassibi and Vikalo [19], [20]
demonstrated that the expected SD complexity invoking the
Fincke-Pohst enumeration strategy [21] obeyed a polynomial
function. As an alternative, Kyrillidis and Karystinos [22] re-
cently proposed a new algorithm that aimed for maximizing the
Rayleigh quotient of PSK sequence detection in 2014, where
the complexity was a fixed polynomial function at all SNRs.
Nonetheless, further research efforts are required for enhanc-
ing this algorithm [22] in soft-decision-aided turbo detection
assisted coded systems. Therefore, in this paper, we focus our
attention on the MSDSD solutions [2], [3].

The classic MSDSD aided DPSK [2] was first invoked for a
single receive antenna (NR = 1). Since the recent developments
in the millimeter-wave band [23], [24] facilitate the employ-
ment of a large number of antennas, especially at the Base Sta-
tion (BS) [25], [26], DPSK systems relying on multiple receive
antennas NR ≥ 1 may be preferred. However, when the hard-
decision MSDSD of [2] is invoked for NR ≥ 1, the Schnorr-
Euchner search strategy has to visit and sort all the MPSK
constellation points. The similar situation is encountered for the
soft-decision MSDSD of [3], when the a priori LLRs gleaned
from the channel decoder are taken into account. Against this
background, we offer the following novel contributions in this
paper:

1) We propose to introduce a low-complexity correlation ope-
ration into the hard-decision MSDSD aided DPSK scheme
employing an arbitrary number of receive antennas, so
that the SD may visit the constellation points in a zigzag
fashion, which is similar to the scenario of NR = 1 in [2].

2) It was shown in [27], [28] that substantial complexity
reduction may be attained by exploring the symmetry
of the Gray-labelled MPSK constellation. Against this
background, we propose a reduced-complexity Schnorr-
Euchner search strategy for the soft-decision MSDSD of
[3] employing an arbitrary number of received antennas.
The proposed soft-decision MSDSD algorithm may visit a
reduced number of nodes and hence achieve a substantial
complexity reduction without imposing any performance
loss.

Moreover, in order to offer an improved solution and a com-
prehensive study for the soft-decision MSDSD, the following
novelties are also offered in this paper:

3) The soft-decision MSDSD proposed in [3] invokes the sub-
optimal Max-Log-MAP algorithm, where the SD produces
only the optimum candidate. Against this background, we

additionally propose to modify the output of the SD, where
multiple candidates may be produced so that the near-
optimum Approx-Log-MAP may be implemented.

4) Furthermore, the important subject of coherent versus
noncoherent detection is discussed for coded systems. Our
simulation results suggest that compared to the coherent
MPSK relying on realistic channel estimation, the DPSK
schemes employing MSDSD may be deemed as a more
suitable candidate for turbo detection aided coded systems
operating at high Doppler frequencies.

The rest of this paper is organized as follows. The hard-
decision MSDSD of [2] is extended to the case of NR ≥ 1 in
Section II, where the correlation operation is introduced. The
soft-decision MSDSD of [3] is introduced in Section III, and
then our reduced-complexity soft-decision MSDSD is proposed
in Section IV. Furthermore, the near-optimum Approx-Log-
MAP for the soft-decision MSDSD is proposed in Section V. We
provide simulation results in Section VI, where the coherent ver-
sus noncoherent discussion is offered, and our conclusions are
given in Section VII. Finally, in Appendix, we present the classic
SD aided V-BLAST employing MPSK [29]–[34] in the same
form as the MSDSD aided DPSK, so that the proposed reduced-
complexity Schnorr-Euchner search strategy and the Approx-
Log-MAP solution may be applied to the V-BLAST detection.

The following notations are used throughout the paper. The
operations (·)∗ and (·)H denote the conjugate of a complex num-
ber and the Hermitian transpose of a complex matrix, respec-
tively. The notations ln(·) and exp(·) refer to natural logarithm
and natural exponential functions, respectively. The notations
p(·) and E(·) denote the probability and the expectation, re-
spectively. The operation ⊗ represents the Kronecker product.
The notation rvec(A) forms a row vector by taking the rows of
matrix A one-by-one, while Toeplitz(a) refers to the symmetric
Toeplitz matrix generated from the vector a. Moreover, the
notations �(·) and �(·) take the real part and the imaginary part
of a complex number, respectively.

II. HARD-DECISION MSDSD

For an M-ary DPSK scheme, the transmitter firstly maps
BPS = log2 M source bits {bk}BPS

k=1 to an MPSK symbol xm =
exp

(
j 2π

M m̌
)

, where the phasor index m = bin2dec(b1 · · · bBPS)

is the Gray-coded index m̌. Following this, the differential
encoding may be performed as:

sn = xn−1sn−1. (1)

For a Single-Input Multiple-Output (SIMO) system, the signal
received by the NR receive antennas may be expressed as:

Yn = snHn + Vn, (2)

where the (1 × NR)-element vectors Yn, Hn and Vn refer to
the received signal vector, the Rayleigh fading vector and the
AWGN vector which has a zero mean and a variance of N0,
respectively. Furthermore, the Nw observations of (2) may be
modelled by MSDD as [9], [35]:

Y = SH + V, (3)
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where we drop the time index n, so that the matrices in (3) are
given by Y = [YT

Nw
, · · · , YT

1 ]T
, S = diag{[sNw, · · · , s1]}, H =

[HT
Nw

, · · · , HT
1 ]T

and V = [VT
Nw

, · · · , VT
1 ]T

. We note that the
matrices Y, H and V are of size (Nw × NR), while S has
(Nw × Nw) elements. Furthermore, since the first transmitted
symbol s1 in S is a common phase rotation of the following
symbols {st}Nw

t=2, the MSDD’s received signal model of (3) may
be rewritten as1:

Y = S̄H̄ + V, (4)

where the vth diagonal element in S̄ is given by s̄v = sv · s∗
1,

which leads to s̄1 = 1 and s̄v = xv−1s̄v−1 = ∏v−1
t=1 xt for v > 1,

while the vth row in H̄ is given by H̄v = s1Hv . The MSDD aims
for maximizing the following a posteriori probability:

p(S̄i|Y) = p(Y|S̄i)p(S̄i)∑
∀S̄j p(Y|S̄j)p(S̄j)

, (5)

where the a priori probability p(S̄i) may be assumed to
be a constant of 1

M(Nw−1) for the equiprobable candidates

{S̄i}M(Nw−1)−1
i=0 . Furthermore, the conditional probability p(Y|S̄i)

in (5) may be expressed as:

p(Y|S̄i) =
exp

{
−rvec(Y) · R−1

YY · [rvec(Y)]H
}

πNRNw det(RYY)
, (6)

where the equivalent signal model is given by rvec(Y) =
rvec(H̄) · (S̄ ⊗ INR) + rvec(V). As a result, the correlation ma-
trix in (6) may be formulated as:

RYY = E
{
[rvec(Y)]H · rvec(Y)

} =
[
(S̄i)

H
CS̄i

]
⊗ INR . (7)

More explicitly, the fading correlation matrix is given by
RH̄H̄ =E{[rvec(H̄)]H · rvec(H̄)}=Rhh ⊗ INR , where the fading
characteristic matrix is given by Rhh = Toeplitz([ρ0, ρ1, · · · ,

ρNw−1]). According to the Clarke model [36], the fading auto-
correlation is given by {ρv = J0(2π fd · v)}Nw−1

v=0 , where J0(·) is
the zero-order Bessel function of the first kind, while fd denotes
the normalized Doppler frequency. Moreover, the AWGN cor-
relation matrix is given by RVV = E{[rvec(V)]H · rvec(V)} =
Rvv ⊗ INR , where the AWGN characteristic matrix is simply
given by Rvv = N0INw . As a result, the channel characteris-
tic matrix in (7) is given by C = Rhh + Rvv . The transmission
matrix S̄ of (3) is a unitary matrix, hence the determinant

term in (6) is a constant of det(RYY) = {det[(S̄i)
H · det(C) ·

det(S̄i)]}NR = det(C)NR . In summary, the MSDD that maxi-
mizes the a posteriori probability of (5) may be formulated as:

Ŝ = arg min
∀S̄i

∥∥∥L(S̄i)
H

Y
∥∥∥2

, (8)

where L is a lower triangular matrix obtained from the
Cholesky decomposition of C−1 = LLH .

1We note that Y = [YT
Nw

, · · · , YT
1 ]T in (3) stores the received signal vectors

in a reverse order compared to Y = [YT
1 , · · · , YT

Nw
]T seen in [2], [3], so that

the MSDSD may detect the transmitted symbols according to their differential
encoding order of s̄v = xv−1 s̄v−1, instead of detecting them backwards as
s̄v = x∗

v s̄v+1.

In order to facilitate SD,2 the MSDD metric of (8) may be
revised to the Euclidean Distance (ED) as:

∥∥LH S̄HY
∥∥2 =

Nw∑
v=1

∥∥∥∥∥
v∑

t=1

s̄∗
t Ut,v

∥∥∥∥∥
2

≤ R2, (9)

where R denotes the SD’s sphere radius. The vectors {{Ut,v =
lNw−t+1,Nw−v+1Yt}vt=1}Nw

v=1 in (9) are invariant over the variables

{s̄v}Nw
v=2, where lNw−t+1,Nw−v+1 refers to the element taken from

the (Nw − t + 1)-th row and (Nw − v + 1)-th column of the
lower triangular matrix L in (8). We note that the superscript
i for S̄i in (8) is omitted in (9) for notational convenience.
Therefore, the MSDSD’s Partial Euclidean Distance (PED)
based on the ED of (9) may be defined as [2]:

dv =
v∑

v̄=1

∥∥∥∥∥
v̄∑

t=1

s̄∗
t Ut,v̄

∥∥∥∥∥
2

= dv−1 + �v−1, (10)

and the associated PED increment as:

�v−1 =
∥∥∥∥∥

v∑
t=1

s̄∗
t Ut,v

∥∥∥∥∥
2

=
∥∥∥∥∥s̄∗

v−1Uv,v + xv−1

(
v−1∑
t=1

s̄∗
t Ut,v

)∥∥∥∥∥
2

.

(11)

Observe in (10) and (11) that for a specific index v, all the pre-
viously tested transmitted symbols {s̄t}v−1

t=1 have been decided,
and the current SD search may opt for the best candidate for
representing xv−1, which is supposed to minimize �v−1.

When NR = 1 is used, it was demonstrated in [2] that the
best phasor index is given by m̌v−1 = 	pv−1
, where we have
pv−1 = M

2π
� (−s̄∗

v−1Uv,v/
∑v−1

t=1 s̄∗
t Ut,v). If the phase index m̌v−1

was rounded down from pv−1, i.e. we have the condition of
pv−1 − m̌v−1 ≥ 0, then the SD visits the remaining phasors in
a zigzag fashion according to the steps of m̌v−1 = m̌v−1 + 1,
m̌v−1 = m̌v−1−2, m̌v−1 = m̌v−1 + 3, etc. Otherwise, the SD may
visit the remaining phasors according to the steps of m̌v−1 =
m̌v−1 − 1, m̌v−1 = m̌v−1 + 2, m̌v−1 = m̌v−1 − 3, etc. How-
ever, for the more general case of using NR > 1, {{Ut,v}vt=1}Nw

v=1
in (11) become vectors, hence we cannot directly obtain pv−1.
In order to mitigate this problem, we rewrite (11) as:

�v−1 =
∥∥∥AMSDD

v−1 − xv−1BMSDD
v−1

∥∥∥2
, (12)

where we have AMSDD
v−1 = s̄∗

v−1Uv,v and BMSDD
v−1 =−∑v−1

t=1 s̄∗
t Ut,v .

As a result, a simple correlation process leads us to the follow-
ing decision variable:

zv−1 = AMSDD
v−1

(
BMSDD

v−1

)H
, (13)

which may be directly used for detecting xv−1. More explicitly,
the best phasor is now given by m̌v−1 = 	pv−1
, where we have
pv−1 = M

2π
� zv−1, and the Schnorr-Euchner search strategy may

visit the remaining phasors in a zigzag fashion in the same way
as the case of NR = 1 in [2].

2We note that the depth-first tree search strategy of [30] and the Schnorr-
Euchner constellation search strategy of [1] constitute the default choice for
the MSDSD [2], [3], which enables the MSDSD to achieve the same detection
capability as the MSDD.
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III. SOFT-DECISION MSDSD

According to the a posteriori probability of (5), the optimum
Log-MAP algorithm invoked by MSDD may be expressed as
[37], [38]

Lp(bk) = ln

∑
S̄i∈S̄bk=1

p(S̄i|Y)∑
S̄i∈S̄bk=0

p(S̄i|Y)

= ln

∑
S̄i∈S̄bk=1

exp(di)∑
S̄i∈S̄bk=0

exp(di)
= La(bk) + Le(bk),

(14)

where Lp(bk), Le(bk) and La(bk) represent the a posteriori LLR
and the extrinsic LLR produced by the MSDD as well as the
a priori LLR gleaned from a channel decoder, respectively.
Furthermore, S̄bk=1 and S̄bk=0 refer to the MSDD signal set
S̄, when the specific bit bk is set to 1 and 0, respectively. The

probability metric3 {di}M(Nw−1)−1
i=0 seen in (14) is given by di =

−
∥∥∥LH ¯(Si)

H
Y

∥∥∥2 + ∑(Nw−1)BPS
k̄=1

b̃k̄La(bk̄), where {̃bk̄}(Nw−1)BPS
k̄=1

denotes the bit-mapping corresponding to the MSDD candidate
Si. The Log-MAP algorithm of (14) may be simplied by the
low-complexity Max-Log-MAP [37] as:

Lp(bk) = max
S̄i∈S̄bk=1

di − max
S̄i∈S̄bk=0

di. (15)

Furthermore, in order to compensate for the sub-optimum Max-
Log-MAP, the Approx-Log-MAP was introduced as [39]:

Lp(bk) = jacS̄i∈S̄bk=1
di − jacS̄i∈S̄bk=0

di. (16)

where jac denotes the Jacobian algorithm of jac(d1, d2) =
max{d1, d2} + �{|d1 − d2|}, while the additional term of
�{|d1 − d2|} may take into account the difference between d1

and d2 according to a lookup table.
The Max-Log-MAP aims for finding the maximum proba-

bility metrics, which is similar to the action of hard-decision
detectors. Therefore, in order to invoke SD for the Max-Log-
MAP, the maximization of (15) has to be revised for the sake of
minimization, while the probability metrics should be guaran-
teed to have positive values. As a result, the MSDD probability
metric of (14) may be transformed into:

d=
Nw∑
v=1

∥∥∥∥∥
v∑

t=1

s̄∗
t Ut,v

∥∥∥∥∥
2

−
Nw∑
v=2

BPS∑
k̄v=1

[̃
bk̄v

La

(
bk̄v

)
− Ca,k̄v

]
, (17)

where the superscript i for di seen in (14) is deleted for the sake
of convenience, while the polarity of di in (14) is altered. Fur-
thermore, the constant Ca,k̄v

in (17) was formulated as Ca,k̄v
=

ln
∏BPS

k̄v=1{1 + exp[La(bk̄v
)]} in [3], which was originally

3We note that all multiplicative factors of the exp(di) term are elim-
inated by the division operation in (14), which include the denominator
[∑∀S̄j p(Y|S̄j)p(S̄j)] of p(S̄i|Y) in (5), the denominator [πNRNw det(RYY )] of

p(Y|S̄i) in (6) as well as the denominator
∏(Nw−1)BPS

k̄=1
{1 + exp[La(bk̄)]} in

the a priori probability of p(S̄i) = exp[∑(Nw−1)BPS
k̄=1

b̃k̄La(bk̄)]∏(Nw−1)BPS
k̄=1

{1+exp[La(bk̄)]} according to the

LLR definition of La = ln p(b=1)
p(b=0)

[37], [38].

eliminated by the the division of the Log-MAP of (14). How-
ever, in order to avoid excessive calculations in logarithm
domain, we adopt the method in [34], [40], which uses a simple
operation of Ca,k̄v

= 1
2 [|La(bk̄v

)| + La(bk̄v
)] to guarantee a non-

negative ED. As a result, the PED of soft-decision MSDSD may
be defined as [3]:

dv =
v∑

v̄=2

∥∥∥∥∥
v̄∑

t=1

s̄∗
t Ut,v̄

∥∥∥∥∥
2

−
v∑

v̄=2

BPS∑
k̄v̄=1

[̃
bk̄v̄

La

(
bk̄v̄

)
− Ca,k̄v̄

]
= dv−1 + �v−1,

(18)

where the PED increment is given by:

�v−1 =
∥∥∥∥∥s̄∗

v−1Uv,v + xm

(
v−1∑
t=1

s̄∗
t Ut,v

)∥∥∥∥∥
2

−
BPS∑
k̄v=1

[̃
bk̄v

La

(
bk̄v

)
− Ca,k̄v

]
. (19)

As introduced in [3], the Schnorr-Euchner search strategy may
search for xv−1 according to �v−1 of (19). However, unlike
the hard-decision MSDSD, the decision variable zv−1 of (13)
cannot be directly used, because the a priori information∑BPS

k̄v=1 [̃bk̄v
La(bk̄v

) − Ca,k̄v
] is not included in zv−1. As a result,

the conventional Schnorr-Euchner search strategy in [3] has to
visit all MPSK constellation points for xv−1 by evaluating and
sorting a total of M PED increment values �v−1 of (19).

The soft-decision MSDSD algorithm based on the PED of
(18) may now be implemented by the “MAP-MSDSD” function
in [3], which is exemplified for the cases of employing DQPSK
and D8PSK in Figs. 1 and 2, respectively. In summary, the
MSDSD algorithm in [3] is capable of finding both the global
minimum dMAP as well as the optimum constellation points
{x̂v−1}Nw−1

v=2 , which may be translated into the hard-bit decisions

of {bMAP
k }(Nw−1)BPS

k=1 . In order to produce soft-bit decisions, the
Max-Log-MAP algorithm of (15) may be completed as:

Lp(bk) =
{

−dMAP + d̄MAP, if bMAP
k = 1

−d̄MAP + dMAP, if bMAP
k = 0.

(20)

where d̄MAP is obtained by invoking the MSDSD again, where
the search space is halved by fixing bk to be the flipped version
of the MAP decision as bk = b̄MAP

k . In summary, when the con-
secutive MSDSD windows are simply overlapped by NOL = 1
observations, the MSDSD algorithm of [3] has to be invoked
once first for finding the global MAP solution dMAP in (20), and
then it is invoked for an additional (Nw − 1) log2 M number of
times for finding the local MAP solutions d̄MAP in (20), which
may be referred to as the Repeated Tree Search (RTS).

Alternatively, it’s recently proposed in [33], [34] that the
Single Tree Search (STS) [41] may opt to invoke the SD only
once for obtaining all the EDs of dMAP and d̄MAP, which may
induce a potential performance loss. More explicitly, if the
hypothesis bit-mapping arrangement for dMAP is updated and
changed, all the counter-hypothesis bit-mapping arrangements
for d̄MAP have to be changed accordingly. As a result, the previ-
ously dismissed candidates that obey the new bit-mapping can-
not be taken into account again. As a remedy, the sub-optimal
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Fig. 1. Example of soft-decision MSDSD aided DQPSK, recorded at SNR =
0 dB, where we have IA = 0.3, NR = 2 and Nw = 3. (a) Example of
Soft–Decision MSDSD Conceived for DQPSK Detection (labelled with PED
values). (b) Example of QPSK constellation digram visited by Soft–Decision
SD at index v = 2.

Fig. 2. Example of soft-decision MSDSD aided D8PSK, recorded at SNR =
3 dB, where we have IA = 0.3, NR = 2 and Nw = 3. (a) Example of Soft–
Decision MSDSD Conceived for D8PSK Detection. (b) Example of 8PSK
constellation digram visited by Soft–Decision SD at index v = 2.

detector has to invoke the LLR correction method [34] for
correcting the LLR results. Against this background, the RTS is
suggested in this paper. In fact, the STS’s motivation of visiting
a node at most once can still be accomplished by the RTS,
where the previously visited nodes may be labelled so that the
repeated calculations may be avoided by reading the previously
evaluated PED metrics.

IV. REDUCED-COMPLEXITY SOFT-DECISION MSDSD

It was demonstrated in Section III that the conventional
Schnorr-Euchner search strategy utilized by the soft-decision
MSDSD of [3] has to visit all MPSK constellation points. In this
section, we opt to propose a reduced-complexity soft-decision
MSDSD algorithm, where the Schnorr-Euchner search strategy
may once again visit the MPSK constellation points in a zigzag
fashion. More explicitly, the PED increment �v−1 of (19) may
be further extended as:

�v−1 =
∥∥∥AMSDD

v−1 − xv−1BMSDD
v−1

∥∥∥2−
BPS∑
k̄v=1

[̃
bk̄v

La

(
bk̄v

)
− Ca,k̄v

]

= −2�(
x̄∗
v−1z̄v−1

)−BPS∑
k̄v=1

b̃k̄v
La

(
bk̄v

)
+ La(b1)+La(b2)

2
+Cv−1,

(21)

where we deliberately rotate all the detected MPSK constel-
lations (except for BPSK4) anti-clockwise by (π/M) as sug-
gested by [28], i.e. we have x̄v−1 = xv−1 · exp

(
j π

M

)
, so that

there are exactly M/4 constellation points in each quadrant.
Furthermore, the new decision variable z̄v−1 seen in (21) is
given by:

z̄v−1 = AMSDD
v−1

(
BMSDD

v−1

)H · exp
(

j
π

M

)
, (22)

which is rotated anti-clockwise from the correlation decision
variable zMSDSD

v−1 of (13) by (π/M) for detecting x̄v−1, while the

constant of Cv−1 seen in (21) is given by:

Cv−1 =
∥∥∥AMSDD

v−1

∥∥∥2+
∥∥∥BMSDD

v−1

∥∥∥2 + Ca,v−1 − La(b1)+La(b2)

2
,

(23)

and we have the constant Ca,v−1 = ∑BPS
k̄v=1 Ca,k̄v

. We note that

Cv−1 of (23) is invariant over all the different candidates x̄v−1 in
(21). As a result, comparing the M candidates {xm}M−1

m=0 accord-
ing to their PED increment values �v−1 of (21) is equivalent to
comparing the following equivalent PED increment metric over
the variables x̄v−1 as:

�v−1 = −2�(x̄v−1)�(z̄v−1) − 2�(x̄v−1)�(z̄v−1)

−
BPS∑
k̄v=1

b̃k̄v
La

(
bk̄v

)
+ La(b1) + La(b2)

2
,

(24)

where we have the algebraic relationship of �(x̄∗
v−1z̄v−1) =

�(x̄v−1)�(z̄v−1) + �(x̄v−1)�(z̄v−1).
Considering the rotated QPSK as an example, the four proba-

bility metrics {�m
v−1}M−1=3

m=0 of (24) corresponding to the M = 4

rotated QPSK constellation points
{

x̄m = ± 1√
2

± j 1√
2

}M−1=3

m=0
may be expressed as (25), shown at the bottom of the next page.

4We note that rotating the BPSK constellation anti-clockwise by (π/M)

will only move the two BPSK constellation points from the real axis to the
imaginary axis, which is not neccessary.
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TABLE I
PSEUDO-CODE FOR REDUCED-COMPLEXITY SOFT-DECISION MSDSD AIDED DPSK

where we associate the real and imaginary parts of z̄v−1 with
La(b2) and La(b1) respectively as:

tRe
v−1 = √

2�(z̄v−1) − La(b2)

2
, tImv−1 = √

2�(z̄v−1) − La(b1)

2
.

(26)

After assigning the a priori LLRs to the appropriate parts
of z̄v−1, the only difference between the four candidates

{�m
v−1}M−1=3

m=0 in (25) is the polarity of tRe
v−1 and tImv−1. This allows

us to directly obtain the minimum metric by simply evaluating
�v−1 = −|tRe

v−1| − |tImv−1|, and then the ranking order of the rest
of the candidates may be obtained by comparing |tRe

v−1| and
|tImv−1|. In more detail, if we have the condition of |tRe

v−1| >

|tImv−1|, then the SD may visit the remaining candidates in a zig-
zag fashion according to the steps of �v−1 = −|tRe

v−1| + |tImv−1|,
�v−1 = |tRe

v−1| − |tImv−1| and �v−1 = |tRe
v−1| + |tImv−1|. Other-

wise, the remaining steps should be �v−1 = |tRe
v−1| − |tImv−1|,

�v−1 = −|tRe
v−1| + |tImv−1| and �v−1 = |tRe

v−1| + |tImv−1|. In sum-
mary, similar to the condition of sign(pv−1 − 	pv−1
) for the
hard-decision MSDSD of Section II, the soft-decision MSDSD
aided DQPSK may rely on the condition of sign(|tRe

v−1| −
|tImv−1|) for deciding the direction of SD’s zigzag path.

In more detail, the reduced-complexity soft-decision MS-
DSD is summarized in the form of its pseudo-code in Table I,
where the simplified Schnorr-Euchner search strategy specifi-
cally tailored for DBPSK and DQPSK is given by Tables II and
III, respectively. Furthermore, Fig. 3 revisits the specific ex-
ample of Fig. 1, where the reduced-complexity algorithms of
Tables I and III are invoked. It can be seen in Fig. 3 that
the proposed reduced-complexity MSDSD exhibits a reduced
number of visited nodes compared to the conventional MSDSD
exemplified by Fig. 1.

�
0
v−1 = −√

2�(z̄v−1) − √
2�(z̄v−1) + La(b1) + La(b2)

2
= −tRe

v−1 − tImv−1,

�
1
v−1 = √

2�(z̄v−1) − √
2�(z̄v−1) − La(b2) + La(b1) + La(b2)

2
= tRe

v−1 − tImv−1,

�
2
v−1 = −√

2�(z̄v−1) + √
2�(z̄v−1) − La(b1) + La(b1) + La(b2)

2
= −tRe

v−1 + tImv−1,

�
3
v−1 = √

2�(z̄v−1) + √
2�(z̄v−1) − La(b1) − La(b2) + La(b1) + La(b2)

2
= tRe

v−1 + tImv−1, (25)
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TABLE II
PSEUDO-CODE FOR THE SUBFUNCTIONS OF THE REDUCED-COMPLEXITY

SOFT-DECISION MSDSD OF TABLE I, WHERE DBPSK IS EMPLOYED

Let us now consider the rotated 8PSK constellation portrayed
by Fig. 4(b) as an example, where the M = 8 constellation
points are arranged to M/4 = 2 groups, which are Group
G0 of

{± cos
(

π
8

) ± j sin
(

π
8

)}
and Group G1 of

{± sin
(

π
8

) ±
j cos

(
π
8

)}
. Accordingly, their probability metrics {�m

v−1}M−1=7
m=0

of (24) may be expressed as:

�
0
v−1 = −tRe0

v−1 − tIm0
v−1, �

2
v−1 = tRe0

v−1 − tIm0
v−1,

�
4
v−1 = −tRe0

v−1 + tIm0
v−1, �

6
v−1 = tRe0

v−1 + tIm0
v−1, (27a)

�
1
v−1 = −tRe1

v−1 − tIm1
v−1 − La(b3),

�
3
v−1 = tRe1

v−1 − tIm1
v−1 − La(b3),

�
5
v−1 = −tRe1

v−1 + tIm1
v−1 − La(b3),

�
7
v−1 = tRe1

v−1 + tIm1
v−1 − La(b3), (27b)

where the two pairs of real/imaginary terms are given by tRe0
v−1 =

2 cos
(
π
8

)·�(z̄v−1)− La(b2)
2 , tIm0

v−1 = 2 sin
(

π
8

) · �(z̄v−1) − La(b1)
2 ,

tRe1
v−1 =2 sin

(
π
8

)·�(z̄v−1)− La(b2)
2 and tIm1

v−1 =2 cos
(
π
8

)·�(z̄v−1) −
La(b1)

2 . It can be seen in (27a) and (27b) that the only difference
between the four component probability metrics within each
group is the polarity of the real/imaginary terms. As a result,
the local minimum metrics of the M/4 = 2 groups may be ob-

tained by �
G0
v−1 = minm∈{0,2,4,6} �

m
v−1 = −|tRe0

v−1| − |tIm0
v−1| and

�
G1
v−1 =minm∈{1,3,5,7} �

m
v−1 =−|tRe1

v−1|−|tIm1
v−1|−La(b3), respec-

tively, which are evaluated without invoking (24) for M = 8

times in (27). Finally, the global minimum over {�m
v−1}M−1=7

m=0
of (24) may be simply obtained by comparing the two local

minima as �v−1 = min{�G0
v−1,�

G1
v−1}.

In summary, for a generic high-order MPSK scheme
(M > 4), we may firstly assign the M constellation points to
M/4 groups of QPSK-like constellation points that are associ-
ated with the same magnitudes but different polarities, so that
the local minimum metric for {�m

v−1}M−1
m=0 of (24) within each

group is simply given by:

�
Gg
v−1 = −

∣∣∣tReg
v−1

∣∣∣ −
∣∣∣tImg

v−1

∣∣∣ −
BPS∑
k̄=3

b̃k̄La(bk̄), (28)

where the range for the group index is given by g ∈ {0, · · · ,

M/4 − 1}, while the real and imaginary parts of z̄v−1 are asso-
ciated with La(b2) and La(b1) respectively as follows:

t
Reg
v−1 =A

g · �(z̄v−1)− La(b2)

2
, t

Img
v−1 = B

g · �(z̄v−1)− La(b1)

2
.

(29)

The coordinates of the MPSK constellation points, which
are located in the first quadrant may be denoted by {(Ag,

Bg)}M/4−1
g=0 , and we have A

g = 2Ag as well as B
g = 2Bg in (29).

As a result, the global minimum for {�m
v−1}M−1

m=0 of (24) may be
simply given by:

�v−1 = min
g∈{0,··· ,M/4−1} �

Gg
v−1, (30)

which is obtained by visiting a reduced-subset of M/4 constel-
lation points that correspond to the M/4 local minima of (28).

We note that the procedures conceived for obtaining the
minimum probability metric of (30) are similar to those in
our previous work designed for generic soft-decision MPSK
detection in [28]. However, for the soft-decision MSDSD, the
Schnorr-Euchner search strategy also relies on the ranking order
of constellation points. Against this background, we propose to
complete the Schnorr-Euchner strategy by using a Comparison
Window (CW). More explicitly, the CW is initialized to have
M/4 local minima of (28), which correspond to local best
candidates. Then the CW may choose the global best candidate
which has the global minimum metric by invoking (30). This is
the subfunction of “findBest-DPSK” for the Schnorr-Euchner
search strategy tailored for MPSK (M > 4) in Table IV. Fur-
thermore, when the SD re-visits a specific SD index v, the
“findNext-DPSK” subfunction in Table IV may offer the next
constellation node. More explicitly, if previously a local min-
imum from Group Gg is chosen as the global candidate, i.e.

previously we have �v−1 = �
Gg
v−1 from (30), then Group Gg

has to visit a new local candidate in a zigzag fashion by

comparing |tReg
v−1| and |tImg

v−1|. Following this, the CW may once
again update the new global candidate by invoking (30).

Fig. 4 portrays the D8PSK example of Fig. 2, where the
reduced-complexity algorithms of Tables I and IV are invoked.
More explicitly, it can be seen in Fig. 4 that the “findBest-
DPSK” subfunction in Table IV may firstly initialize the CW

by the M/4 = 2 local minima of (28) as �
G0
v−1 = −3.487 and

�
G1
v−1 = −0.998, and then the CW invokes (30) in order to

obtain the global candidate of �v−1 = �
G0
v−1 = −3.487. More-

over, when the SD re-visits index v = 2 in Fig. 4, the “findNext-
DPSK” in Table IV may firstly update a new local candidate

�
G0
v−1 = 4.364 from Group G0 by visiting the QPSK-like con-

stellation points in a zigzag fashion relying on the relationship
between |tRe0

v−1| and |tIm0
v−1|, and then the CW invokes (30) again

in order to obtain the new global candidate of �v−1 = �
G1
v−1 =

−0.998. As a result, the reduced-complexity MSDSD exempli-
fied in Fig. 4 visits a reduced subset of the constellation points
compared to the conventional MSDSD exemplified in Fig. 2,
yet the same SD result is arrived at.

Moreover, it is worth pointing out that the conventional
MSDSD algorithm in [3] requires the Schnorr-Euchner search
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TABLE III
PSEUDO-CODE FOR THE SUBFUNCTIONS OF THE REDUCED-COMPLEXITY SOFT-DECISION MSDSD OF TABLE I, WHERE DQPSK IS EMPLOYED

Fig. 3. Example of soft-decision MSDSD aided DQPSK, which corresponds
to the example seen in Fig. 1, subject to the difference that the reduced-
complexity algorithm of Tables I and III are invoked. (a) Example of Reduced–
Complexity Soft–Decision MSDSD Conceived for DQPSK Detection.
(b) Example of QPSK constellation diagram visited by Reduced–Complexity
Soft–Decision SD at index v = 2.

strategy to invoke a sorting algorithm, which was represented
by the “qsort” function on line F-6 in the pseudo-code algorithm
table of [3]. As a result, all M constellation points {xm}M−1

m=0
are ranked according to an ascending order of the PED in-
crement values {�m

v−1}M−1
m=0

, which is explicitly exemplified by
Figs. 1 and 2. There are numerous sorting algorithms that may
be suitable, such as Bubble sort, Timsort, Library sort [42],
[43], etc., but the average number of comparisons required by
these algorithms is as high as O(M log M). By contrast, the
reduced-complexity MSDSD of Tables II–IV does not require
any sorting algorithms. As exemplified by Figs. 3 and 4, the
proposed Schnorr-Euchner search strategy does not have to
maintain the complete ranking order of constellation points,
which dispenses with a considerable number of comparisons.

V. APPROX-LOG-MAP IMPLEMENTED BY MSDSD

The soft-decision MSDSD discussed in the Sections III and IV
aims to implement the Max-Log-MAP of (15), which may im-
pose a performance loss compared to the near-optimum Approx-
Log-MAP of (16). In order to mitigate this open problem, we
propose the Approx-Log-MAP solution for MSDSD as follows:

(1) Let us define the leaf nodes of a SD structure as the candi-
dates associated with the SD index v = Nw. For example,
the M = 4 candidates visited at the SD’s step of ©2 in
Fig. 1(a) as well as the M = 8 candidates visited at step ©2
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Fig. 4. Example of the soft-decision MSDSD aided D8PSK, which corre-
sponds to the example seen in Fig. 2, subject to the difference that the
reduced-complexity algorithms of Tables I and IV are invoked. (a) Example of
Reduced–Complexity Soft–Decision MSDSD Conceived for D8PSK De-
tection. (b) Example of 8PSK constellation diagram visited by Reduced–
Complexity Soft–Decision SD at index v = 2.

in Fig. 2(a) are all leaf nodes. This leads us to the proposed
change of the MSDSD output scenario. When the MSDSD
algorithm is invoked for the first time, instead of just pro-
ducingtheglobaloptimumdMAP andtheMAPhard-bitdeci-

sions {bMAP
k }(Nw−1)BPS

k=1 , all the PED values of the leaf nodes
{dCAN = dv}∀v=Nw

as well as all the corresponding hard-

bit decisions {bCAN
k }(Nw−1)BPS

k=1 may also be recorded and pro-
duced. For example, the SD of Fig. 1(a) may produce both
the MAP solution, which is represented by dMAP = 7.28

and {bMAP
k }(Nw−1)BPS

k=1 = 1010, as well as all the leaf nodes,
which are represented by {dCAN} = {18.4, 25.331, 7.28,

16.211} and {bMAP
k }(Nw−1)BPS

k=1 ={1000, 1001, 1010, 1011}.
(2) For each soft-bit output, the MSDSD algorithm is invoked

again with a fixed bit bk = b̄MAP
k . Similarly, whenever the

SD visits index v = Nw, the resultant M leaf candi-

dates {dbk=b̄MAP
k

CAN } may all be recorded and produced. For
example, when the SD of Fig. 1(a) is invoked again with
a fixed bit b1 = 0, the resultant SD structure is portrayed
in Fig. 5, where the two sub-groups of leaf nodes {25.118,
35.09, 18.97, 14.91} and {20.05, 24.09, 46.615, 35.05}

may be recorded as {dbk=b̄MAP
k

CAN }. We note that there may
only be M/2 leaf candidates, when the fixed bit bk = b̄MAP

k

is at the specific position in the range of k ∈ {(Nw −
2)BPS + 1, · · · , (Nw − 1)BPS}.

(3) Finally, the Max-Log-MAP of (20) may be revised for the
Approx-Log-MAP as:

Lp(bk) =

⎧⎪⎪⎨⎪⎪⎩
jac (−dCAN) − jac

(
−d

bk=b̄MAP
k

CAN

)
, if bMAP

k = 1

jac

(
−d

bk=b̄MAP
k

CAN

)
− jac(−dCAN), if bMAP

k =0.

(31)

We note that when the sizes of the two candidate groups

{dCAN} and {dbk=b̄MAP
k

CAN } are not the same, the size of the
larger group may be reduced, so that ideally both groups
disregard the same number of candidates. Ideally, any
potential deviations introduced both by the jac(−dCAN)

and by jac(−d
bk=b̄MAP

k
CAN ) operations may be cancelled out.

In practice, the SD’s output candidates for {dCAN} and

{dbk=b̄MAP
k

CAN } are always constituted by either the sub-group
of M leaf candidates or by the sub-group of M/2 leaf
candidates. Therefore, for the larger-sized group, we may
compare the best leaf candidates, which are supposed
to have the minimum PED values in each sub-groups,
and then we may delete the sub-groups associated with
the highest locally best leaf candidate’s PED value. For
the example of Fig. 5, we may delete the sub-group of
{20.05,24.09,46.615,35.05}, because the local best leaf
candidates from each sub-group have the relationship of
20.05>14.91. As a result, the Approx-Log-MAP of (31)
may be implemented for the example seen in Figs. 1(a) and
5 as Lp(b1) = jac (−{18.4, 25.331, 7.28, 16.211}) −
jac (−{25.118, 35.09, 18.97, 14.91}).

One may argue that the SD does not visit all the MSDD
candidates, which means that the group sizes of {dCAN} and

{dbk=b̄MAP
k

CAN } seen in (31) may be smaller than the group sizes of
S̄i ∈ S̄bk=1 and S̄i ∈ S̄bk=0 seen in (16). In other words, ideally,
the Approx-Log-MAP of (16) may include all the MSDD
candidates, but naturally the SD may only visit a subset of them.
Nonetheless, as suggested by [39], when the Approx-Log-
MAP corrects the difference between two probability metrics
of |d1 − d2|, only 8 values corresponding to |d1 − d2| ranging
between 0 and 5.0 may be taken into account. This implies
that large differences of |d1 − d2| > 5.0 are inherently ignored
by the Approx-Log-MAP. Therefore, we may assume that the
leaf candidates ignored by the SD may also be ignored by the
Approx-Log-MAP, so that no extra complexity is imposed on
the SD by our proposed Approx-Log-MAP.

We note that for a better implementation, Step (2) may be

executed for all BPS(Nw − 1) fixed bits {bk = b̄MAP
k }BPS(Nw−1)

k=1
before proceeding to Step (3), so that all the leaf nodes visited
by the repeated SD searches may be utilized in Step (3). As

a result, {dCAN} in (31) may be replaced by {dbCAN
k =bMAP

k
CAN }, and

then both {dbCAN
k =bMAP

k
CAN } and {dbk=b̄MAP

k
CAN } in (31) may include all

the leaf nodes obtained from Steps (1) and (2) corresponding to
the specific bit bk being bMAP

k and b̄MAP
k , respectively.
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TABLE IV
PSEUDO-CODE FOR THE SUBFUNCTIONS OF THE REDUCED-COMPLEXITY SOFT-DECISION MSDSD OF TABLE I, WHERE DPSK (M > 4) IS EMPLOYED

The Approx-Log-MAP may also be straightforwardly ap-
plied to the reduced-complexity soft-decision MSDSD of
Section IV, where the simplified Schnorr-Euchner strategy
of Tables II–IV can be invoked for all SD indice satisfying
v < Nw. However, the original Schnorr-Euchner strategy of [3]
has to be invoked for the specific SD index v = Nw, because all
the leaf nodes at v = Nw have to be recorded and produced for
the Approx-Log-MAP.

VI. PERFORMANCE RESULTS

A. Approx-Log-MAP Versus Max-Log-MAP

First of all, the accuracy of the extrinsic LLRs produced
by the Approx-Log-MAP and Max-Log-MAP algorithms are
tested as portrayed in Fig. 6, where the two PDFs
{p(Le|b)}b={0,1} may be obtained by estimating the histograms
of Le, with the source bits being b = {0, 1}. If the LLR
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Fig. 5. Example of the soft-decision MSDSD conceived for DQPSK imple-
menting Approx-Log-MAP, which invokes the SD seen in Fig. 1 with a fixed
bit of b1 = 0.

Fig. 6. LLR accuracy test for DQPSK and D16PSK employing both Approx-
Log-MAP and Max-Log-MAP aided Subset MSDSD (Nw = 4), recorded at
SNR = 0 dB and IA = 0, where we have NR = 2 and fd = 0.03.

definition of Le = ln p(Le|b=1)
p(Le|b=0)

is statistically true, then the LLRs
accuracy test is supposed to result in a diagonal line in Fig. 6.
However, the LLRs of the Max-Log-MAP suffer from a notice-
able deviation, which is effectively improved by the proposed
Approx-Log-MAP, as evidenced by Fig. 6

It is worthy to note that the so-called Subset MSDSD is
employed throughout this section. More explicitly, it was dis-
covered in [44] that the symbols at the middle of the MSDSD
window may be more reliably detected than those at its edges.
Therefore, the Subset MSDSD overlaps the consecutive detec-
tion windows by NOL = 3 observations, so that the (NOL −
1 = 2) symbols detected at the edges may be discarded.5 The
BER performance of Fig. 7 further confirms the advantage of
the proposed Approx-Log-MAP algorithm in both TC coded
and IRCC-URC coded DPSK systems, where the simulation
parameters are summarized in Table V.

B. Complexity Reduction

To elaborate, the asymptotic complexity analysis of MSDSD
was presented in [45] following the same guideline as the SD

5We note that the choice of NOL is independent of Nw, and it was demon-
strated in [44] that increasing NOL beyond three does not provide any further
advantage.

Fig. 7. BER performance of TC/IRCC-URC coded DPSK employing Subset
MSDSD (Nw = 4), where we have NR = 2 and fd = 0.03.

TABLE V
SYSTEM PARAMETERS

TABLE VI
COMPLEXITY OF SOFT-DECISION MSDSD SUBFUNCTIONS

aided BLAST of [18], which was only feasible when invoking
the sub-optimal Fincke-Pohst strategy of [21]. By contrast, in
this work, we focus our attention on the complexity reduction
achieved for the optimal Schnorr-Euchner strategy of [1].
Against this background, the detection complexities of the soft-
decision MSDSD subfunctions are summarized in Table VI,6

where “sortDelta” refers to the conventional Schnorr-Euchner
search strategy in [3], while the rest of the proposed subfunc-
tions are given by Tables II–IV. It can be seen in Table VI that
the proposed Schnorr-Euchner search strategy visits a reduced

6We note that unneccessary calculations are eliminated for Table VI. For

example, both {0.5Lv−1,1
a }∀v and {0.5Lv−1,2

a }∀v may be calculated before
invoking the MSDSD’s subfunctions. Furthermore, the function of [b1 · · ·
bBPS] = dec2bin(m) may be implemented by a pre-stored lookup table
for bit-mapping, while its inverse function m = bin2dec(b1 · · · bBPS) = b1 ·
2BPS-1 + b2 · 2BPS-2 + · · · + bBPS−1 · 2 + bBPS may require a total number
of (BPS − 1) multiplications as well as (BPS − 1) additions.
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Fig. 8. Complexity (number of real-valued multiplications) comparison be-
tween the conventional MSDSD algorithm of [3] associated with Nw = 4
and the reduced-complexity MSDSD algorithm of Tables I and III for coded
DQPSK, where we have NR = 2 and fd = 0.03. (a) Eb/N0 = 0 ∼ 15 dB.
(b) IA = 0 ∼ 1.

Fig. 9. Complexity-Reduction Ratio (CRR) achieved by the reduced-
complexity MSDSD algorithm of Table I compared to the conventional
MSDSD algorithm of [3] recorded at Eb/N0 = 0 dB and IA = 1, where we
have NR = 2 and fd = 0.03. (a) Nw = {3, 4, 5, 6}. (b) M = {2, 4, 8, 16}.

number of nodes, which results in a reduced complexity in all
categories.

The complexity of the conventional MSDSD algorithm and
that of the proposed MSDSD algorithm conceived for coded
DQPSK are compared in Fig. 8 in terms of the total number
of real-valued multiplications. It is confirmed by Fig. 8(a)
and (b) that the complexities of the MSDSD algorithms may
converge to their lower bounds, as Eb/N0 and/or IA increase.
Fig. 8 demonstrates that the proposed MSDSD of Table I sub-
stantially reduces the complexity of the conventional MSDSD
in [3]. The Complexity-Reduction Ratios (CRRs) achieved by
our reduced-complexity design are further presented in Fig. 9.

We note that for the conventional MSDSD, the Approx-Log-
MAP and the Max-Log-MAP impose the same number of real-
valued multiplications. By contrast, for the proposed MSDSD,
the Approx-Log-MAP has to invoke the conventional Schnorr-
Euchner strategy for the specific SD index v = Nw, which
results in a higher number of multiplications than the Max-Log-
MAP. Nonetheless, Fig. 9(a) and (b) demonstrate that substan-
tial complexity reductions of up to CRR = 48.0% and CRR =
52.2% are achieved by the Subset MSDSD (Nw = 6) aided
DQPSK and by the Subset MSDSD (Nw = 4) aided D16PSK,
when the Approx-Log-MAP is implemented. Furthermore,
even more substantial complexity reductions of CRR = 66.7%
and CRR = 88.7% are achieved by the Subset MSDSD (Nw =
6) aided DQPSK and by the Subset MSDSD (Nw = 4) aided
D16PSK, when the Max-Log-MAP is implemented. We note
that the complexity reductions achieved by the proposed
MSDSD are especially significant, when the MSDSD is iter-
atively invoked several times by the turbo detected systems.

Once again, we note that the proposed soft-decision MS-
DSD algorithm presented in Tables I–IV has exactly the same
detection capability as the conventional soft-decision MSDSD
algorithm presented in Appendix I of [3]. We have arranged
for them to decode the same channel output associated with the
same a priori soft input, and we found that they always produce
exactly the same SD decisions.

C. Coherent Versus Noncoherent

Last but not least, MSDSD aided DQPSK is compared to its
PSAM aided coherent QPSK counterpart. First of all, Fig. 107

demonstrates that when we have fd = 0.03, the LLRs produced
by the PSAM aided QPSK detector suffer from severe deviation
from the true probabilities, which may result in disproportion-
ately high LLR values that may misinform the channel decoder.

Secondly, Fig. 118 demonstrates that when we have
fd = 0.001, the coherent PSAM aided QPSK significantly
outperforms the Subset MSDSD aided DQPSK in both our TC
and IRCC-URC coded systems. However, when the normalized
Doppler frequency is increased to fd = 0.03, the PSAM aided
QPSK’s performance degrades substantially, while the Subset
MSDSD aided DQPSK only suffers from a small BER per-
formance degradation, which gives the noncoherent schemes a
0.7 dB and a 1.4 dB performance advantage over their coherent
counterparts in the context of our TC and IRCC-URC coded
systems, respectively, as evidenced by Fig. 11. Therefore, we
may conclude that the DPSK schemes employing MSDSD may
be deemed to be a more suitable candidate for channel coded
systems operating at high Doppler frequencies.

7When we have fd = 0.03, the PSAM’s pilot spacing NPS is reduced to 12
in order to sample the channel more frequently, while the PSAM’s observation
window length NOW (number of filter coefficients) is also reduced to 12, due to
the weak temporal correlation.

8There is no iteration between the QPSK detector and the channel decoder in
Fig. 11, because the QPSK detection does not produce any iteration gain [28].
Nonetheless, the coded coherent schemes and their noncoherent counterparts
have the same total number of iterations for turbo detection.
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Fig. 10. LLR accuracy test for PSAM [11] aided coherent QPSK, recorded at
SNR = 0 dB and IA = 0, where we have NR = 2.

Fig. 11. BER performance comparison between TC/IRCC-URC coded PSAM
[11] aided coherent QPSK and TC/IRCC-URC coded Subset MSDSD aided
DQPSK, where the Approx-Log-MAP is invoked, while NR = 2 receive anten-
nas are used. (a) TC coded systems. (b) IRCC-URC coded systems.

VII. CONCLUSION

In this paper, the Schnorr-Euchner search strategy was con-
figured to always visit the MPSK constellation points in a zig-
zag fashion both for the hard-decision MSDSD of Section II
and for the soft-decision MSDSD of Section IV. The com-
plexity results of Figs. 8 and 9 demonstrated that our proposed
design offers a substantial complexity reduction. Furthermore,
the Approx-Log-MAP algorithm implemented by the MSDSD
was proposed in Section V, which improved the Max-Log-
MAP, as demonstrated by Figs. 6 and 7. Finally, our comparison
of the channel-coded coherent and noncoherent schemes char-
acterized in Figs. 10 and 11 suggested that the DPSK schemes

employing MSDSD may be deemed to be more suitable can-
didates for channel coded systems operating at high Doppler
frequencies.

APPENDIX

In this section, we aim to conceive the SD aided V-BLAST
employing MPSK [29]–[34] in the same form as the MSDSD
aided DPSK, so that the reduced-complexity Schnorr-Euchner
search strategy proposed in Section IV and the Approx-Log-
MAP proposed in Section V may also be applied to the
V-BLAST detection.

Explicitly, the (1 × NT)-element V-BLAST transmission
matrix is given by:

S = [
s1, · · · , sNT

] =
[

sm1√
NT

, · · · , s
mNT√

NT

]
, (32)

where the MPSK/QAM symbols are separately modulated as
{smv }NT

v=1, while the factor
√

NT normalizes the transmission
power. The signal received by the NR antenna elements at the
receiver may be modelled as:

Y = SH + V, (33)

where the (1 × NT)-element vector S and the (1 × NR)-element
vector Y represent the input and output signals of the MIMO
channels, respectively. Furthermore, the (NT × NR)-element H
matrix of (33) models the MIMO’s Rayleigh fading channels,
while the (1 × NR)-element AWGN vector V of (33) models the
zero-mean Gaussian random variables with a common complex
variance of N0, whose PDF is given by p(V) = p(Y|Si) =

1
(πN0)

NRNP
exp

( − ‖Y−SiH‖2

N0

)
, where there is a total number of

MNT combinations {Si}MNT −1
i=0 for the MIMO transmission ma-

trix S in (33). In order to invoke the classic SD, the V-BLAST
receiver may apply QR decomposition to HH [31]–[34], which
results in H = (QU)H = LQH , where the (NR × NT)-element
matrix Q has orthogonal columns QHQ = INT , while U and
L = UH are upper- and lower- triangular matrices, respectively.
As a result, (33) may be reformulated as:

Ỹ = YQ = SL + VQ, (34)

where VQ has exactly the same statistics as the AWGN vector
V. Based on the conditional probability p(Y|Si) as well as on
the Bayes’s theorem of (5), the ED to be minimized by the SD
may be expressed as [34], [40]:

d=
∑NT

v=1

∣∣∣̃Yv−∑NT
t=v lt,vst

∣∣∣2

N0
−

NT∑
v=1

BPS∑
k̄v=1

[̃
bk̄v

La

(
bk̄v

)
−C

SD
a,k̄v

]
,

(35)

where an extra constant C
SD
a,k̄v

= 1
2 [|La(bk̄v

)| + La(bk̄v
)] is intro-

duced in order to guarantee that the ED remains non-negative
[34], [40]. According to the ED of (35), the SD’s PED may be



IE
EE

Pr
oo

f

14 IEEE TRANSACTIONS ON COMMUNICATIONS

formulated as dv = dv+1 + �v , where the PED increment �v

may be expressed as:

�v =
∣∣∣̃Yv − ∑NT

t=v lt,vst

∣∣∣2

N0
−

BPS∑
k̄v=1

[̃
bk̄v

La

(
bk̄v

)
− C

SD
a,k̄v

]

=
∣∣∣̃ASD

v − sm
v B̃SD

v

∣∣∣2 −
BPS∑
k̄v=1

[̃
bk̄v

La

(
bk̄v

)
− C

SD
a,k̄v

]
, (36)

where we have ÃSD
v = Ỹv−∑NT

t=v+1 lt,vst√
N0

and B̃SD
v = lv,v√

N0NT
. As a

result, (36) is in the same form as the MSDSD’s PED increment
of (19) in Section III and (21) in Section IV. Therefore, the
reduced-complexity Schnorr-Euchner search strategy and the
proposed Approx-Log-MAP solution may be directly applied
to the SD aided V-BLAST employing MPSK.
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