
1

Convolutional-Code-Specific CRC Code Design
Chung-Yu Lou, Student Member, IEEE, Babak Daneshrad, Member, IEEE,

and Richard D. Wesel, Senior Member, IEEE

Abstract—Cyclic redundancy check (CRC) codes check if a
codeword is correctly received. This paper presents an algorithm
to design CRC codes that are optimized for the code-specific
error behavior of a specified feedforward convolutional code.
The algorithm utilizes two distinct approaches to computing
undetected error probability of a CRC code used with a specific
convolutional code. The first approach enumerates the error
patterns of the convolutional code and tests if each of them is
detectable. The second approach reduces complexity significantly
by exploiting the equivalence of the undetected error probability
to the frame error rate of an equivalent catastrophic convolu-
tional code. The error events of the equivalent convolutional code
are exactly the undetectable errors for the original concatenation
of CRC and convolutional codes. This simplifies the computation
because error patterns do not need to be individually checked
for detectability. As an example, we optimize CRC codes for
a commonly used 64-state convolutional code for information
length k=1024 demonstrating significant reduction in undetected
error probability compared to the existing CRC codes with the
same degrees. For a fixed target undetected error probability,
the optimized CRC codes typically require 2 fewer bits.

Index Terms—catastrophic code, convolutional code, cyclic
redundancy check (CRC) code, undetected error probability.

I. INTRODUCTION

ERROR-detecting codes and error-correcting codes work
together to guarantee a reliable link. The inner error-

correcting code tries to correct any errors caused by the
channel. If the outer error-detecting code detects any residual
errors, then the receiver will declare a failed transmission.

Undetected errors result when an erroneously decoded code-
word of the inner code has a message that is a valid codeword
of the outer code. This paper designs cyclic redundancy check
(CRC) codes for a given feedforward convolutional code such
that the undetected error probability is minimized.

A. Background and Previous Work

A necessary condition for a good joint design of error-
detecting and error-correcting codes, both using linear block
codes, is provided in [1]. However, this condition is based on
the minimum distances of the inner and outer codes and does
not consider the detailed code structure.

Most prior work on CRC design ignores the inner code
structure by assuming that the CRC code is essentially oper-
ating on a binary symmetric channel (BSC). We refer to this
as the BSC assumption. The BSC assumption does not take

C.-Y. Lou, B. Daneshrad, and R. D. Wesel are with the Department of
Electrical Engineering, University of California, Los Angeles, CA 90095 USA
(e-mail: chungyulou@ucla.edu; babak@ee.ucla.edu; wesel@ee.ucla.edu).

This material is based upon work supported by the National Science Foun-
dation under Grant Number 1162501. Any opinions findings, and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

advantage of the fact that the CRC code will only encounter
error sequences that are valid codewords of the inner code.

The undetected error probability of a CRC code under the
BSC assumption was evaluated using the weight enumerator
of its dual code in [2]. Fast algorithms to calculate dominant
weight spectrum and undetected error probability of CRC
codes under the BSC assumption were presented in [3], [4].

In [5], Koopman and Chakravarty list all standard and good
(under the BSC assumption) CRC codes with up to 16 parity
bits for information lengths up to 2048 bits. The authors
recommend CRC codes given the specific target redundancy
length and information length.

For more than 16 CRC parity bits, it is difficult to search
all possibilities and find the best CRC codes even under the
BSC assumption. Some classes of CRC codes with 24 and 32
bits were investigated under the BSC assumption in [6] and
an exhaustive search for 32-bit CRC codes under the BSC
assumption was performed later in [7].

Because all of these designs ignore the inner code by
assuming a BSC, there is no guarantee of optimality when
these CRC codes are used with a specific inner code.

A few papers do consider CRC and convolutional codes
together. In [8], the CRC code was jointly decoded with the
convolutional code and used to detect the message length
without much degradation of its error detection capability. In
[9], CRC bits were punctured to reach higher code rates. The
authors noticed that bursty bit errors caused an impact on the
performance of the punctured CRC code.

Recently, [10] and [11] have considered a CRC code used
for error correction jointly with convolutional and turbo codes,
respectively. However, in these cases, the error detection
capability of the CRC code is degraded. Such undetected error
probability as well as false alarm probability were analyzed
in [12] under the BSC assumption. The authors of [12] also
modeled the bursty error at the turbo decoder output using a
Gilbert-Elliott channel.

B. Main Contributions
We propose two methods to compute the undetected error

probability of a CRC code concatenated with a feedforward
convolutional code. The exclusion method enumerates possible
error patterns of the inner code and excludes them one by one
if they are detectable. The construction method constructs a
new convolutional code whose error events correspond exactly
to the undetectable error events of the original concatenation
of CRC and convolutional codes. With these two methods
as tools, we design CRC codes for the most common 64-
state convolutional code for information length k = 1024
and compare with existing CRC codes, demonstrating the
performance benefits of utilizing the inner code structure.

ar
X

iv
:1

50
6.

02
99

0v
1

 [
cs

.I
T

]
 9

 J
un

 2
01

5

2

Viterbi

Decoder

CRC

Decoder

QPSK

Modulator

Convolutional

Encoder

CRC

Encoder

AWGN

Channel
()f x () () () ()mx f x r x q x p x 

QPSK

Demodulator

() () ()q x p x xc

Fig. 1. Block diagram of a system employing CRC and convolutional codes.

This paper is organized as follows: Section II provides the
system model. Section III presents the exclusion and construc-
tion methods for computing the undetected error probability
of a CRC code concatenated with an inner convolutional
code. Section IV describes how these two methods can be
used to design a CRC code to minimize the undetected error
probability for a specific feedforward convolutional code and
information length. Section V applies this design approach to
the most common 64-state convolutional code for information
length k = 1024. Section VI concludes the paper.

II. SYSTEM MODEL

Fig. 1 shows the block diagram of our system model em-
ploying a CRC code concatenated with a convolutional code in
an additive white Gaussian noise (AWGN) channel. The k-bit
information sequence is expressed as a binary polynomial f(x)
of degree smaller than or equal to k−1. The m parity bits are
the remainder r(x) of xmf(x) divided by the degree-m CRC
generator polynomial p(x). Thus the n = k+m-bit sequence
described by xmf(x)+r(x) is divisible by p(x) producing the
k-bit quotient q(x) and a remainder of zero. The CRC-encoded
sequence can also be expressed as q(x)p(x). Thus q(x) has a
one-to-one relationship with f(x). Note that q(x)p(x) is the
result of processing the sequence xmq(x) (q(x) and m trailing
zeros) by the CRC encoder circuit described by p(x).

The transmitter uses a feedforward, terminated, rate- 1
N con-

volutional code having ν memories with generator polynomial
c(x) = [c1(x), c2(x), · · · , cN (x)]. The output q(x)p(x)c(x)
of the convolutional encoder is sent to the AWGN channel
using quadrature phase-shift keying (QPSK) modulation.

Because the CRC bits are added at the end of the sequence,
the highest degree term of f(x) is the bit that is first in time
and first to enter the convolutional encoder. Consistent with
this convention and in contrast to common representations, the
highest degree terms of c(x) represent the most recent encoder
input bits. Thus a convolutional encoder with the generator
G(D) = [1 +D3 +D4, 1 +D +D2] will have c(x) = [x4 +
x+ 1, x4 + x3 + x2].

The demodulated symbols are fed into a soft Viterbi de-
coder. The CRC decoder checks the n-bit sequence resulting
from Viterbi decoding. An undetected error occurs when the
receiver declares error-free decoding when the Viterbi decoder
identified an incorrect codeword.

This work can be applied to feedback convolutional codes as
well. Consider a feedback convolutional code with generator
polynomial c(x)/cFB(x), where cFB(x) is its feedback con-
nection polynomial. This feedback code has the same set of
codewords as a feedforward code with generator polynomial
c(x). Assume the Viterbi decoder selects a wrong message
t(x) at the feedforward convolutional decoder output. In most

cases, the same received signal is decoded as t(x)cFB(x) by
the feedback convolutional decoder. However, it is possible
that the message decoded by the feedback decoder is not a
multiple of cFB(x). Such trellis deviation must happen during
the termination of the codeword and corresponds to either a
long error sequence with large codeword Hamming distance
or a short error sequence occurring only at the end of the
codeword. Either of these cases should not dominate the
overall codeword error performance and thus we only consider
message errors of the form t(x)cFB(x).

Let the greatest common divisor of p(x) and cFB(x) be
cgcd(x). The polynomial p(x) divides t(x)cFB(x) if and only
if p(x)/cgcd(x) divides t(x). Hence, the undetected error
probability of this CRC code concatenated with the feedback
convolutional code is approximated by that obtained by the
CRC code p(x)/cgcd(x) concatenated with the feedforward
convolutional code c(x) and can be analyzed using the meth-
ods presented in this paper. Furthermore, a smart choice when
using a CRC code concatenated with a feedback convolutional
code is to pick p(x) and cFB(x) relatively prime.

III. UNDETECTED ERROR PROBABILITY ANALYSIS

Let e(x) be the polynomial of error bits in the Viterbi-
decoded message so that the decoded n-bit sequence followed
by ν zeros (for termination) is expressed as q(x)p(x)xν+e(x).
If e(x) 6= 0 is divisible by p(x), then this error is undetectable
by the CRC decoder. This section presents two methods, the
exclusion method and the construction method, to calculate
the probability that a non-zero error e(x) occurs that is
undetectable.

A. Exclusion Method

The exclusion method enumerates the possible error patterns
of the convolutional code and excludes the patterns detectable
by the CRC code. The probability of the unexcluded error pat-
terns is the undetected error probability. The exclusion method
filters out part of the distance spectrum of the convolutional
code through a divisibility test to create the distance spectrum
of the undetectable errors of the concatenated code.

1) Undetectable Single Error: An error event occurs when
the decoded trellis path leaves the encoded trellis path once
and rejoins it once. Let ed,i(x) be the polynomial of message
error bits associated with the ith error event that leads to a
codeword distance d from the transmitted codeword, where
the range of i is later specified in (1). Note that in this paper,
the term “distance” always refers to the convolutional code
output Hamming distance. Let this error event have length ld,i.
Both ed,i(x) and ld,i are obtained through computer search of
the given convolutional code. The first (highest power) term
of ed,i(x) is xld,i−1 and the last (lowest power) term is xν

because every error event starts with a one and ends with a
one followed by ν consecutive zeros.

If the received data frame contains only one error event,
then the polynomial of message error bits can be expressed
as e(x) = xged,i(x), where g ∈ [0, n+ ν − ld,i] indicates the
possible locations where this error event may appear. If ed,i(x)

3

is divisible by p(x), this error event, including all of its offsets
g, will be undetectable.

The union bound of such error probability is given by

PUD,1 ≤
∞∑

d=dfree

ad∑

i=1

I(p(x) |ed,i(x))

max {0, n+ ν − ld,i + 1}P(d) , (1)

where dfree is the free distance of the convolutional code, ad is
the number of error events with output distance d, the indicator
function I(·) returns one when ed,i(x) is divisible by p(x) and
zero otherwise, and P(d) is the pairwise error probability of
an error event with distance d. The max operator ensures that
the number of possible locations is always nonnegative even
when ld,i is large. Note that while (1) does not explicitly use
the generator polynomial of the convolutional code, it does
implicitly depend on the generator polynomial because the
generator polynomial determines the valid trellis error events
ed,i(x). The subscript “1” in PUD,1 means that this probability
only includes undetectable errors that are single error events.
We call this type of error an undetectable single error.

For a QPSK system operated in an AWGN channel, P(d)
can be computed using the tail probability function of standard
normal distribution, i.e. Gaussian Q-function, as [13]

P(d) = Q
(√

2dγ
)
≤ Q

(√
2dfreeγ

)
e−(d−dfree)γ , (2)

where γ = Es/N0 is the signal-to-noise ratio (SNR) of a
QPSK symbol, and Es and N0/2 denote the received symbol
energy and one-dimensional noise variance, respectively. Note
that the accuracy of (2) comes in part from a knowledge of
dfree. A useful Q-function approximation when knowledge of
dfree is not available is presented in [14]. To generalize (2)
to a higher-order quadrature amplitude modulation (QAM)
system with bit-interleaved coded modulation using a random
interleaver, one can multiply γ with a modulation-dependent
factor to obtain an approximation. Details can be found in [14]
as well.

To compute PUD,1 each error event ed,i must first be
identified as either divisible by p(x) or not. One approach
is to truncate (1) at d̃ to get an approximation, in which
case all error events with distance d ≤ d̃ can be stored
and this set of error events can be tested for divisibility by
the CRC polynomial p(x). The choice of d̃ is based on the
computational and storage capacity available to implement an
efficient search such as [15]. The required memory size to
store the error events is proportional to

∑d̃
d=dfree

∑ad
i=1 ld,i.

The approximation of (1) can be quite tight if the probability
of the terms with d > d̃ is negligible. However, assuming that
all error events with d > d̃ are undetectable provides

PUD,1 ≤
∞∑

d=d̃+1

nad P(d) +

d̃∑

d=dfree

ad∑

i=1

{
P(d)

· I(p(x) | ed,i(x)) max {0, n+ ν − ld,i + 1}
}
, (3)

where ld,i for d > d̃ is replaced with ν+1 because the shortest
error event has length ν + 1. Note that (3) can be computed
because the error pattern ed,i(x) is only required for d ≤

g 2l 2g 1l 1

Fig. 2. An illustration of two error events.

d̃, and the distance spectrum ad for d > d̃ provided by the
transfer function [16] can be used for the first term of (3) as
in the frame error rate (FER) bounds of [17].

In addition to the undetectable single error events discussed
above, an undetectable error could consist of two or more error
events, even though each of the error events itself is detectable.
We will first discuss the case with two error events, and then
generalize it to multiple error events.

2) Undetectable Double Error: A double error involves two
error events ed1,i1(x) and ed2,i2(x) with respective lengths
ld1,i1 and ld2,i2 . To simplify notation, for u ∈ {1, 2} let eu(x)
and lu refer to edu,iu(x) and ldu,iu , respectively. In a data
frame with two error events, the polynomial of error bits in
the message can be expressed as e(x) = xg1+g2+l2e1(x) +
xg2e2(x), where the exponents of two x’s tell the locations
of the two error events. Furthermore, g1 ≥ 0 represents
the interval of symbols (gap) between two error events and
satisfies g1 + g2 + l1 + l2 ≤ n+ ν. If xg1+l2e1(x) + e2(x) is
divisible by p(x), the error is an undetectable double error.
Its length is l1 + l2 + g1 and its offset is g2.

An upper bound of the probability of an undetectable double
error occurring in the codeword is given by

PUD,2 ≤
∞∑

d1=dfree

∞∑

d2=dfree

ad1∑

i1=1

ad2∑

i2=1

n+ν−l1−l2∑

g1=0

P(d1 + d2)

· I
(
p(x) | xg1+l2e1(x) + e2(x)

)

· (n+ ν − l1 − l2 − g1 + 1) . (4)

The distance of the double error event is simply the sum of the
individual distances because the error events are completely
separated as shown in Fig. 2. Two error events that overlap
are simply a longer single error event, which was treated in
Section III-A1.

Computation of (4) exactly is problematic because it re-
quires infinite search depth. Replacing the l1 and l2 of large-
distance terms in (4) with ν + 1 yields a more computation-
friendly upper bound similar to (3) as follows:

PUD,2 ≤
∑

(d1,d2)∈Dd̃,2

ad1∑

i1=1

ad2∑

i2=1

n+ν−l1−l2∑

g1=0

P(d1 + d2)

· I
(
p(x) | xg1+l2e1(x) + e2(x)

)

· (n+ ν − l1 − l2 − g1 + 1)

+
∑

(d1,d2)/∈Dd̃,2

1

2
(n− ν) (n− ν − 1)

· ad1ad2 P(d1 + d2) , (5)

where Dd̃,2 =
{

(d1, d2)
∣∣∣d1, d2 ≥ dfree, d1 + d2 ≤ d̃

}
.

4

Because computational complexity limits the single error
event distance we can search, it is feasible to replace d̃ in Dd̃,2

with d̃+dfree. This is not particularly helpful because we have
already assumed errors with distance d > d̃ are negligible
or undetectable during the calculation of undetectable single
errors. We can also replace all l1 and l2 in (5) with ν + 1
and provide another upper bound which does not require any
length information.

As described in Appendix A, the number of g1 values at
which to check the divisibility of xg1+l2e1(x)+e2(x) by p(x)
can be significantly reduced from n+ ν − l1 − l2 + 1.

3) Total Undetected Error Probability: In general, s error
events could possibly form an undetectable s-tuple error,
whether each of them is detectable or not. The error bits in
the message can be expressed as

e(x) =

s∑

u=1

(
s∏

v=u+1

xgv+lv

)
xgueu(x). (6)

This combined error will be undetectable if e(x) is divisible by
p(x). Therefore, the probability of undetectable s-tuple errors
PUD,s can be approximated or bounded in the same way as
(5). For simpler notation, define sets

Dd̃,s =

{
(d1, · · · , ds)

∣∣∣∣∣du ≥ dfree ∀u,
s∑

u=1

du ≤ d̃

}

Is = {(i1, · · · , is) |iu ∈ [1, adu] ∀u ∈ [1, s]}

Gs =

{
(g1, · · · , gs)

∣∣∣∣∣gu ≥ 0 ∀u,
s∑

u=1

gu ≤ n+ ν −
s+1∑

u=1

lu

}
.

Note that Gs is determined by all du and iu, and Is is
determined by all du.

Since an undetectable error may consist of any number of
error events, the probability of having an undetectable error
in the codeword PUD is upper bounded by

∑∞
s=1 PUD,s. Using

the computation-friendly bound of each term such as (3) and
(5), we obtain

PUD ≤
∞∑

s=1

P>d̃,s +

∞∑

s=2

{ ∑

(d1,··· ,ds)∈Dd̃,s

P

(
s∑

u=1

du

)

·
∑

(i1,··· ,is)∈Is

∑

(g1,··· ,gs−1)∈Gs−1

I(p(x) | e(x))

·

(
n+ ν −

s∑

u=1

lu −
s−1∑

u=1

gu + 1

)}
+

∑

d1∈Dd̃,1

{
P(d1)

·
∑

i1∈I1

I(p(x) | e1(x)) max {0, n+ ν − l1 + 1}
}
, (7)

where the composition of e(x) depends on the number of error
events s as in (6) and P>d̃,s is the sum of probability of all
s-tuple errors whose distances are greater than d̃.

The probability sum of all large-distance s-tuple errors is

P>d̃,s =
∑

(d1,··· ,ds)/∈Dd̃,s

(
n+ ν − sν

s

)(s∏

u=1

adu

)
P

(
s∑

u=1

du

)
, (8)

where the combinatorial number represents the number of
ways to have s length-(ν+ 1) error events in a length-(n+ν)
sequence. Using (2) P>d̃,1 can be upper bounded by

P>d̃,1 ≤ Q
(√

2dfreeγ
)
edfreeγ



P̄−

∑

d1∈Dd̃,1

nad1e
−d1γ



, (9)

where P̄ is defined as P̄ , nT(D,L)|D=e−γ,L=1 using the
transfer function [16]

T(D,L) =

∞∑

d=dfree

ad∑

i=1

DdLld,i . (10)

Therefore, the sum of P>d̃,s terms can be upper bounded by

∞∑

s=1

P>d̃,s ≤
∞∑

s=1

∑

(d1,··· ,ds)/∈Dd̃,s

ns

s!

(
s∏

u=1

adu

)
P

(
s∑

u=1

du

)

≤ Q
(√

2dfreeγ
)
edfreeγ

∞∑

s=1

{
ns

s!

·
∑

(d1,··· ,ds)/∈Dd̃,s

(
s∏

u=1

adue
−duγ

)}
(11a)

= Q
(√

2dfreeγ
)
edfreeγ

∞∑

s=1

{
1

s!
P̄s

− ns

s!

∑

(d1,··· ,ds)∈Dd̃,s

(
s∏

u=1

adue
−duγ

)}
(11b)

= Q
(√

2dfreeγ
)
edfreeγ

{
eP̄ − 1

−
∞∑

s=1

ns

s!

∑

(d1,··· ,ds)∈Dd̃,s

(
s∏

u=1

adue
−duγ

)}
. (11c)

The bound of Gaussian Q-function (2) is used in (11a), and
the transfer function is used to evaluate the sum of all s-tuple
errors in (11b). Using (7) and (11c), a bound of PUD can be
calculated. In fact, when an undetectable error occurs in a
codeword, the receiver may still detect an error if a detectable
error happens somewhere else in the codeword. Therefore,
PUD, which is the probability of having an undetectable error
in the codeword, is an upper bound of the undetected error
probability. When channel error rate is low, having a detected
error occur along with the undetected error is a rare event so
that our bound will be tight.

Due to the limitation of searchable depth d̃ of error events,
the exclusion method is only useful when undetectable errors
with distances d ≤ d̃ dominate. However, this requirement
could be violated by a powerful CRC code that detects
the short-distance errors. The next subsection introduces the
construction method, which allows the search depth to increase
to distance d̂ > d̃.

B. Construction Method

The construction method utilizes the fact that all unde-
tectable errors at the CRC decoder input are multiples of the

5

++

+

+ + +

+ +

2() 1p x x x  

2 2() 1x x x  
 

c

Original Convolutional

Code State

CRC Code State

Equivalent Convolutional

Code State

4 3 2 4 3() 1x x x x x x x      
 eq

c

()mx q x 

()mx q x 

Fig. 3. An example of CRC code, original convolutional code, and equivalent
convolutional code.

CRC generator p(x). This method constructs an equivalent
convolutional encoder ceq(x) = p(x)c(x) to isolate these
errors. The set of non-zero codewords of ceq(x) is exactly the
set of erroneous codewords (given an all-zeros transmission)
that lead to undetectable errors for the concatenation of the
CRC generator polynomial and the original convolutional
encoder. Thus the probability of undetectable error is exactly
the FER of ceq(x).

Fig. 3 shows an example of how ceq(x) is constructed from
c(x) and p(x), where q′(x) with m + ν trailing zeros is the
input that generates the undetectable erroneous codeword. The
input/output behavior of ceq(x) is exactly the same as the
concatenation of p(x) and c(x). For p(x) with m memory
elements and c(x) with ν memory elements, ceq(x) has m+ν
memory elements. At a given time, the state of the original
encoder c(x) can be inferred from the state of ceq(x) because
the state of ceq(x) contains the last m + ν inputs to p(x)
which are sufficient to compute the last ν outputs of p(x),
which exactly comprise the state of c(x).

1) States of the Equivalent Encoder: Define the all-zero
state SZ to be the state where all memory elements of the
equivalent encoder are zero. When the equivalent encoder is in
SZ, then the original encoder is also in its zero state. Avoiding
trivial cases by assuming that the xm−1 and x0 coefficients
of p(x) are 1, there are 2m − 1 equivalent encoder states
in addition to SZ that correspond to the all-zero state of the
original encoder. To see this, consider the top diagram in Fig. 3
in which the equivalent encoder state is shown as the state of
the CRC encoder extended with ν additional memories. Note
that whatever state the equivalent encoder is in, there is a
sequence of ν bits that will produce ν zeros at the output of
the CRC encoder that will drive the original encoder state to
zero. The specific set of ν bits is a function of the m-bits of
state in the CRC encoder. Thus for any m-bits pattern there
is a corresponding (m+ ν)-bit state of the equivalent encoder
that corresponds to the original encoder being in the zero state.

We call the 2m − 1 non-zero equivalent encoder states
for which the original encoder state is zero detectable-zero
states, forming a set SD, because they correspond to the
termination of a detectable error event in the original encoder.
The remaining 2m+ν − 2m states of the equivalent code
are called non-zero states, forming a set SN, because the
corresponding states of the original code are not zero. To
terminate an error event in the original encoder, the trellis of
the equivalent code transitions from a state in SN to SZ or to a

TABLE I
AN EXAMPLE OF STATE TYPES WITH p(x) = x2 + x+ 1 AND ν = 2.

State Equivalent Code Original Code
Time Type State Input State Input

0 SZ 0000 1 00 1
1 SN 0001 1 01 0
2 SN 0011 0 10 0
3 SD 0110 1 00 0
4 SD 1101 0 00 1
5 SN 1010 0 01 1
6 SN 0100 0 11 0
7 SN 1000 0 10 0
8 SZ 0000 00

state in SD. If the transition is to SD the cumulative errors are
detectable because the portion of q′(x)p(x) till this moment is
not divisible by p(x). If the transition is to SD, the cumulative
errors are detectable because the portion of q′(x)p(x) till this
moment is divisible by p(x).

Table I shows an example using the set-up shown in Fig. 3
with p(x) = x2 + x + 1, q′(x) = x3 + x2 + 1, and ν = 2.
The original encoder c(x) does not need to be specified for
the results in Table I because any feedforward encoder will
produce the same state sequence. The zero state of the original
code is visited at time 0, 3, 4, and 8. At time 0, the state begins
from SZ. At time 3, the first c(x) error event ends. This error
event is detectable if the codeword ends at time 3 because the
input to the original code, i.e. x2, is not divisible by p(x) .
The state remains in SD at time 4. At time 5 a second c(x)
error event begins. At time 8, the ceq(x) state returns to SZ,
which is not only the end of the second c(x) error event but
also the end of an undetectable double error.

Note that ceq(x) is catastrophic because its generator poly-
nomials have a common factor p(x). The catastrophic behavior
is expressed through the zero distance loops that occur as the
equivalent encoder traverses a sequence of states in SD while
the original convolutional encoder stays in the zero state. Thus
time spent in SD between c(x) error events can lengthen an
undetectable error without increasing its distance.

2) Error Events in the Equivalent Encoder: Since the all-
zero codeword is assumed to be sent, the correct path remains
in SZ forever. An error event in the equivalent encoder occurs
if the trellis path leaves SZ and returns SZ without any visits to
SZ in between. We will classify these error events according to
the number of times it enters SD from SN during the deviation.
If a trellis path enters SD from SN s − 1 times, then it is
classified as an undetectable s-tuple error. In an undetectable
s-tuple error, there are exactly s segments of consecutive
transitions between states in SN, which correspond to s error
events of the original encoder. These segments are separated
by segments of consecutive transitions between states in SD.

Fig. 4 illustrates an undetectable triple error in a system
with ν = 2 and m = 2. The three error events of the original
code are separated by visits to SD. The path can leave SD right
after entering it as shown between the first and the second error
events; the path can also stay in SD for a while and then leave
SD from a state different from where it enters SD as shown
between the second and the third error events. Note that SZ is

6

1st error 2nd error 3rd error

S
Z

S
N

S
D

0000,0

0001,1

0010,2

0011,3

0100,4

0101,5

0111,7

1000,8

1001,9

1010,10

1100,12

1110,14

1111,15

0110,6

1011,11

1101,13

0000,0001,0010,0101,1011,0111,1110,1101,1011,0110,1101,1011,0110,1100,1000,0000

0,1,2,5,11,7,14,13,11,6,13,11,6,12,8,0

1st error 2nd error 3rd error

S
Z

S
N

S
D

Fig. 4. A trellis diagram of an equivalent convolutional code with ν = 2
and m = 2 having an undetectable triple error. The states are reordered such
that the all-zero state is at the top and the detectable-zero states are at the
bottom.

never directly connected to any state of SD.
The probability of undetectable single errors is bounded in

a similar way as (3) by

PUD,1≤ P>d̂,1+
∑

d∈Dd̂,1

aZZ
d∑

i=1

max
{
0, n+ ν − lZZ

d,i + 1
}

P(d), (12)

where aZZ
d is the number of error events with distance d

starting from SZ and ending at SZ while never traversing a
state in SD. The length lZZ

d,i is the length of the ith error event
counted in aZZ

d . Note that this expression requires the distance
spectrum aZZ

d and length spectrum lZZ
d,i for d ∈

[
dfree, d̂

]

obtained using computer search.
Unlike (3), (12) does not need to check the divisibility of

error events. Hence, there is no need to store the error patterns
anymore but only their distances and lengths. Consequently the
search depth d̂ can go beyond d̃.

Let SD
i be the ith state in SD, where i ∈ [1, 2m − 1].

Define ∆i as the subset of SD composed of all states con-
nected with SD

i through a path that only includes states in
SD. Appendix B shows that ∆i and the x-cyclotomic coset
modulo p(x) discussed in Appendix A are equivalent. Thus
if p(x) is a primitive polynomial, all sets ∆i are identical
and |∆i| = 2m − 1 is maximized. This may lead to fewer
undetectable double errors as shown below and is desirable in
the design of a CRC code.

Similar to (5), the probability of undetectable double errors
can be bounded by

PUD,2 ≤ P>d̂,2 +
∑

(d1,d2)∈Dd̂,2

P(d1 + d2)

2m−1∑

φ=1

∑

SD
ψ∈∆φ

aZD,φ
d1∑

i1=1

aDZ,ψ
d2∑

i2=1

b(n+ν−lmin)/|∆φ|c∑

t1=0

(
n+ ν − lmin − |∆φ| t1 + 1

)
, (13)

where
lmin = lZD,φ

d1,i1
+ lDZ,ψ

d2,i2
+ δφ,ψ (14)

is the shortest possible length of the undetectable double error
specified by (d1, d2, φ, ψ, i1, i2).

In (13), φ is the index of the state at which the trellis enters
SD at the end of the first error event, and ψ is the index of
the state at which the trellis leaves SD at the beginning of the
second error event. In (14), δφ,ψ < |∆φ| is the number of hops
required to go from SD

φ to SD
ψ without leaving SD for SD

ψ ∈∆φ,
where δφ,ψ = 0 if φ = ψ. The number of error events starting
at SZ and ending at SD

φ with distance d1 is aZD,φ
d1

, and the i1th

error event of them has length lZD,φ
d1,i1

, where both numbers are
obtained by computer search. The variables aDZ,ψ

d2
and lDZ,ψ

d2,i2

are defined in a similar way while the error event starts in SD
ψ

and ends in SZ. Furthermore, t1 specifies the number of cycles
the trellis stays in ∆φ and its upper limit makes sure that the
total length of the undetectable double error does not exceed
n+ ν, the number of trellis stages in the codeword. As in (5)
P>d̂,2 can often be neglected because terms with d1 + d2 > d̂
have negligible probability.

Although the number and lengths of error events connecting
SZ and states in SD are obtained by computer searches, the
required search depth is only d̂ − dfree. Moreover, aZD,φ

d1
and

lZD,φ
d1,i1

for all φ can be found while searching for aZZ
d and lZZ

d,i

because these two types of error events both start from SZ.
Regarding aDZ,ψ

d2
and lDZ,ψ

d2,i2
, the associated error events start

from 2m−1 different states and can be found through 2m−1
separated searches. Nevertheless, since these error events end
at SZ, only one backward search is necessary to capture all
of them. In the backward search, bits in shift registers move
backward. One can simply treat x as x−1 in polynomial
representations and apply the same search algorithm.

3) Undetected Error Probability: As shown in Fig. 4, an
undetectable s-tuple error is composed of several parts: one
error event from SZ to a state in SD, s−2 error events from a
state in SD to a state in SD with visits to SN in between, the
final error event from a state in SD to SZ, and also s−1 paths
inside SD connecting consecutive error events. Note that in the
example of Fig. 4, where s = 3, where the path connecting
the first and the second error events has a length of zero. Let
φu and ψu be the indices of the start and end states of the uth

transitions in SD, respectively. In Fig. 4, we have φ1 = ψ1 = 2
for the first transition; the second transition starts from SD

φ2
and

ends at SD
ψ2

, where φ2 = 3 and ψ2 = 1. Also, let the number of
error events started at SD

ψu−1
and ended at SD

φu with distance du
be aDD,ψu−1,φu

du
and the length of the iuth error event of them

be lDD,ψu−1,φu
du,iu

, where both numbers are obtained by computer
search. Although we need to perform 2m−1 separated searches
to obtain all aDD,ψu−1,φu

du
and l

DD,ψu−1,φu
du,iu

, a search depth of
d̂− (s− 1) dfree is sufficient.

To simplify the notation, define the following sets:

Φs = {(φ1, · · · , φs) |φu ∈ [1, 2m − 1] ∀u ∈ [1, s]}
Ψs = {(ψ1, · · · , ψs) |ψu ∈∆φu ∀u ∈ [1, s]}

I′s =
{

(i1, · · · , is)
∣∣∣i1 ∈

[
1, aZD,φ1

d1

]
, is ∈

[
1, a

DZ,ψs−1

ds

]
,

iu ∈
[
1, a

DD,ψu−1,φu
du

]
∀u ∈ [2, s− 1]

}

Ts =

{
(t1, · · · , ts)

∣∣∣∣∣tu ≥ 0 ∀u ∈ [1, s] ,

7

s∑

u=1

|∆φu | tu ≤ n+ ν − lmin
s+1

}
,

where lmin
s is the shortest possible length of the undetectable

s-tuple error specified in a similar way as (14) and given by

lmin
s = lZD,φ1

d1,i1
+

s−1∑

u=2

l
DD,ψu−1,φu
du,iu

+ l
DZ,ψs−1

ds,is
+

s−1∑

u=1

δφu,ψu . (15)

Similar to (7), the probability of having an undetectable
error is now bounded by

PUD ≤
∑

d1∈Dd̂,1

aZZ
d1∑

i=1

max
{

0, n+ ν − lZZ
d1,i + 1

}
P(d1)

+

∞∑

s=2

∑

(d1,··· ,ds)∈Dd̂,s

P

(
s∑

u=1

du

) ∑

(φ1,··· ,φs−1)∈Φs−1∑

(ψ1,··· ,ψs−1)∈Ψs−1

∑

(i1,··· ,is)∈I′s

∑

(t1,··· ,ts−1)∈Ts−1(
n+ ν − lmin

s −
s−1∑

u=1

|∆φu | tu + 1

)
+

∞∑

s=1

P>d̂,s. (16)

The last term is the probability sum of all large-distance errors,
which are assumed to be undetectable, and can be calculated
using (11c). By letting P>d̂,s = 0, we obtain an approximation.
By letting all lZZ, lZD, lDD, and lDZ equal to ν+1, we obtain a
looser bound which does not require any length information.
These two techniques are applicable to every PUD,s, including
(12) and (13).

C. Comparison

The main benefit of the construction method is that it is
often able to search deeper than the exclusion method because
the output pattern is not required. However, the required
memory size scales with the number of states 2m+ν rather
than 2ν so this approach can encounter difficulty in analyzing
high-order CRC codes. In contrast, the error events searched
in the exclusion method belong to the original convolutional
code, whose number of states is just 2ν and is independent of
the degree of the CRC code. In fact, both methods create the
dominant parts (till d̃ or d̂) of the distance spectrum of the
equivalent catastrophic convolutional code with finite length.
As explained in Section IV, we found it useful to draw on both
approaches as we searched for optimal CRC polynomials for a
specific convolutional code. The exclusion method is suitable
for short-distance (d ≤ d̃) undetectable single errors, and the
construction method is preferred when we search for longer
undetectable single errors and double errors.

Fig. 5 compares the simulated undetected error probability
to the bounds produced by the exclusion and construction
methods. We consider the CRC code p(x) = x3 + x + 1
concatenated with the memory size ν = 4 convolutional code
with generator polynomial (23, 35)8 in octal and dfree = 7.
The information length is k = 1021 bits and thus the CRC
codeword length is n = 1024 bits. The FER of this original
convolutional code is plotted as a reference. The equivalent

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/N0 (dB)

P
ro

b
ab

il
it

y

 Original Code FER

Equivalent Code FER

Undetected Error Prob.

PUD (Exclusion)
∑∞

s=1 P>14,s

PUD (Construction)
∑∞

s=1 P>20,s

Fig. 5. A comparison of the simulated undetected error probability with the
simulated frame error rate of the equivalent code and the analyses from the
exclusion and construction methods. The system is equipped with the CRC
code p(x) = x3 + x + 1 and the convolutional code (23, 35)8. The CRC
codeword length is n = 1024 bits.

catastrophic convolutional code is (255, 317)8 and its FER is
also simulated.

We can see from Fig. 5 that the undetected error probability
is upper bounded by the FER of the equivalent code, which
equals PUD, the probability of having an undetectable error
in the CRC codeword, and this bound gets tighter as SNR
increases. The equivalent code FER is above the probability
of undetected error because it is possible that a frame has
both an undetectable error event and a detectable error event,
which causes a frame error in the equivalent code but does
not cause an undetected error in the concatenated CRC and
convolutional codes.

The upper bounds of PUD are computed using the exclusion
method (7) and construction method (16). In our calculation,
the search depth limit of the exclusion method is d̃ = 14,
and d̂ = 20 is the depth limit for the construction method.
Since dfree = 7, only undetectable single and double errors
are considered. The probability sum of all large-distance terms
given by (11c) are plotted to verify that they are negligible,
except for the exclusion method at SNR below 0.75 dB.
Although the construction method used a deeper search, it
is still quite close to the exclusion method even in the low
SNR region. It can be seen that these analysis methods deliver
accurate bounds at high SNR for both the undetected error
probability and the FER of the catastrophic code.

IV. SEARCH PROCEDURE FOR OPTIMAL CRC CODES

In this section, we will present an efficient way to find
the optimal degree-m CRC code for a targeted convolutional
code and information length k. Note that the performance
of a CRC code depends on the information length [5]. A
CRC code may be powerful for short sequences but have
numerous undetectable long errors that are produced by a
specific convolutional code.

Since the coefficients of xm and x0 terms are both one,
there are 2m−1 candidates of degree-m CRC generator poly-
nomials p(x). In principle, either the exclusion method or

8

the construction method can produce the undetected error
probability for each candidate allowing selection of the best
p(x). However, this process is time-consuming if m is large.
Both exclusion and construction methods need to compute the
distance spectrum of undetectable errors up to some distance d.
We can reduce the computation time by skipping the distance
spectrum searches of suboptimal CRC codes.

When the FER is low, the undetectable error rate of a CRC
code is dominated by the undetectable errors with the smallest
distance. Let the smallest distance of the undetectable errors be
dmin. We can evaluate a CRC-convolutional concatenated code
by its distance spectrum at around dmin. To be more precise, a
polynomial should be removed from the candidate list if it has
a smaller dmin than the others or if it has more undetectable
errors associated to the same dmin. In a convolutional code,
since the number of error events ad grows exponentially as the
associated distance d increases, the cost to find all undetectable
errors grows exponentially as well. Hence, the CRC code
search starts with d = dfree and updates the candidate list by
keeping only the CRC generator polynomials with the fewest
undetectable errors. Next, repeat the procedure with the next
higher d until only one polynomial remains in the list.

When d < 2dfree, only single errors are possible. The
exclusion method can count the number of undetectable single
errors of each candidate when d ≤ d̃. We can perform a
computer search for error events of the original code and check
the divisibility of each of them. Note that if an error event is
found to be undetectable, all of its possible offsets in the code-
word should be counted. Since all candidates check the same
set of error events, only one computer search with multiple
divisibility checks (one for each CRC code) is sufficient. In
contrast, using the construction method requires construction
of equivalent encoders for each candidate separately. Hence,
for the initial values of d near dfree, checking the divisibility
via the exclusion method is preferred. Of course, once d > d̃,
searching for undetectable single errors of the equivalent codes
as in the construction method is the only approach.

When d ≥ 2dfree, undetectable double errors need to be
considered in addition to single errors. The divisibility test
should be applied to all combinations of error event patterns
e1(x), e2(x), and their gaps g1. Even if the concept of
cyclotomic cosets discussed in Appendix A is utilized, we
still need to construct all cyclotomic cosets through about
2m divisions and also check if each of the remainder of
e2(x) divided by p(x) is in the same cyclotomic coset as the
remainder of e1(x) divided by p(x).

Alternatively, undetectable double errors can be directly
created using the construction method. In the construction
method, the error events connecting SZ and states in SD

with distances between dfree and d − dfree are found through
computer searches. In fact, these events can be generated using
the detectable error events of the original code previously
found by exclusion if d − dfree ≤ d̃. For example, since the
detectable error pattern e1(x) is known, the corresponding
error event in the equivalent encoder trellis starts from SZ

and traverses the trellis with the input sequence given by the
quotient of xme1(x) divided by p(x). The state SD

φ, where it
ends, is thus determined by the last m+ ν input bits, and its

length lZD,φ
d1,i1

has already been provided by the degree of e1(x).
For error events starting from states in SD and ending in SZ

with pattern e2(x) previously obtained by exclusion, traverse
the trellis in reverse from SZ with the input sequence given by
the quotient of xm+ν+l′e2(x−1) divided by xmp(x−1), where
l′ = lDZ,ψ

d2,i2
−1 is the degree of e2(x). Note that xl

′
e2(x−1) and

xmp(x−1) are the reverse bit-order polynomial representations
of e2(x) and p(x), respectively. The state SD

ψ where the error
event begins is determined by the last m + ν input bits in
reverse order.

According to the discussion at the end of Appendix A, dmin

is not likely to be much greater than 2dfree when information
length k is long enough. In other words, the CRC code search
algorithm is usually finished before reaching 3dfree and does
not need to count the number of undetectable triple errors.

V. CRC DESIGN EXAMPLE FOR ν = 6, k = 1024

As an example we present the best CRC codes of degree
m ≤ 16 specifically for the popular memory size ν = 6
convolutional code with generator polynomial (133, 171)8

with information length k = 1024 bits. Note that the proposed
design method is applicable to all convolutional codes and
information lengths, and not limited to the choices used for
this example. The corresponding undetected error probability
is also calculated and compared with existing CRC codes.

Table II shows the standard CRC codes listed in [5] and the
best CRC codes found by the search procedure in Section IV.
For degrees with no standard codes, those recommended by
Koopman and Chakravarty in [5] are listed and called K&C.
The notation of generator polynomials is in hexadecimal as
used in [5]. For example, CRC-8 has generator polynomial
x8 + x7 + x6 + x4 + x2 + 1 expressed as 0xEA, where the
most and least significant bits represent the coefficients of x8

and x1 terms, respectively. The coefficient of x0 term is always
one and thus omitted.

Table II also gives the distance spectrum of undetectable
single errors aZZ

d of each CRC code up to d = 22. The distance
spectrum of the original convolutional code ad is given as a
reference. Note that, since this convolutional code has dfree =
10, a smaller aZZ

20 or aZZ
22 does not mean fewer undetectable

errors at distance d = 20 or 22. Undetectable double errors
should also be counted for d ≥ 20 to judge a candidate.

During the search for the best CRC codes with degrees
m ≤ 11, only single errors need to be considered because one
candidate will outperform all the others before looking at d =
20. Although the best degree-11 CRC code has dmin = 20, all
the other candidates have dmin < 20 and are eliminated before
the end of the d = 18 round. Since the lengths of single errors
ld,i for d < 20, ranging from 7 to 43, are much shorter than n+
ν, a candidate that has fewer types of dominant undetectable
error events will have fewer dominant undetectable errors in
total. In other words, when undetectable single errors dominate
and information length k is long enough, the best CRC code
should possess the smallest aZZ

d .
When dmin ≥ 2dfree, the dominant undetectable errors

include double errors. In this case, a smaller aZZ
d does not

mean a better code because it only considers single errors.

9

TABLE II
STANDARD CRC CODES OR CRC CODES RECOMMENDED BY KOOPMAN

AND CHAKRAVARTY (K&C) [5], AND THE BEST CRC CODES FOR
CONVOLUTIONAL CODE (133, 171)8 WITH k = 1024 BITS.

Gen. Undetectable Single Distance Spectrum aZZ
d

Name Poly. d 10 12 14 16 18 20 22

K&C-3 0x5 1 5 19 170 941 5050 29290
Best-3 0x7 0 7 24 169 879 5111 29363
CRC-4 0xF 1 2 11 79 464 2504 14719
Best-4 0xD 0 1 17 91 462 2537 14674
CRC-5 0x15 1 2 9 52 267 1378 8005
Best-5 0x11 0 0 4 52 230 1257 7275
CRC-6 0x21 0 1 4 21 124 572 3659
Best-6 0x29 0 0 1 22 124 641 3650
CRC-7 0x48 0 0 1 14 55 298 1877
Best-7 0x47 0 0 0 7 70 322 1867
CRC-8 0xEA 0 0 0 4 36 174 871
Best-8 0x89 0 0 0 1 29 177 938
K&C-9 0x167 0 0 0 4 13 73 477
Best-9 0x177 0 0 0 0 14 104 437

CRC-10 0x319 0 0 0 1 8 41 239
Best-10 0x314 0 0 0 0 3 49 223
CRC-11 0x5C2 0 0 0 0 7 17 107
Best-11 0x507 0 0 0 0 0 24 113
CRC-12 0xC07 0 0 0 0 3 12 48
Best-12 0xA10 0 0 0 0 0 4 66
K&C-13 0x102A 0 0 0 0 1 7 36
Best-13 0x1E0F 0 0 0 0 0 1 29
K&C-14 0x21E8 0 0 0 0 1 2 15
Best-14 0x314E 0 0 0 0 0 0 11
K&C-15 0x4976 0 0 0 0 1 1 6
Best-15 0x604C 0 0 0 0 0 0 3
CRC-16 0xA001 0 0 0 0 0 1 3
Best-16 0x8E61 0 0 0 0 0 0 1

Original Distance Spectrum ad 11 38 193 1331 7275 40406 234969

For example, the degree-16 polynomials 0xF8F1 and 0x8E61
both have dmin = 22. The former has aZZ

22 = 0 while the latter
has aZZ

22 = 1. However, at d = 22, the former has so many
(2860) undetectable double errors that the number is greater
than the total count of undetectable single and double errors
(1011 + 1424) of the latter, when the information length is
k = 1024 bits. However, when k = 512 bits, the former has
fewer undetectable errors and becomes optimal.

Therefore, different information lengths may lead to differ-
ent optimal CRC designs. The authors of [5] have included the
information length k as a key design parameter and proposed
a methodology to determine “good” CRC codes for a range
of k. The same rule can be applied here. First, find the
CRC polynomials possessing the largest dmin for the longest
k. Then, consider shorter k and keep the CRC polynomials
having the largest dmin, which might increase as k decreases.
Table III shows the best CRC codes for k = 256, 512, or
1024 bits and identifies the “good” codes for this range of
information lengths. The bold numbers indicate the k for
which the code is designed. For example, the code 0xA10
is the best degree-12 code at lengths k = 256 and 1024 bits.
Note that the codes with degrees m ≤ 11 are not shown since
undetectable single errors dominate and thus the best CRC
codes for these k are identical. In fact, the best CRC code
for the largest k is usually “good” for shorter k. In our case,

TABLE III
THE BEST CRC CODES FOR CONVOLUTIONAL CODE (133, 171)8 WITH
k = 256, 512, OR 1024 BITS. BOLD NUMBERS INDICATE THE k FOR

WHICH THE CODE IS DESIGNED. THE “GOOD” CODES FOR THIS RANGE
OF k ARE SPECIFIED.

Gen. (dmin, count of undetectable errors at dmin)

Degree Poly. k 256 bits 512 bits 1024 bits

12 0xA10 (good) (20, 1664) (20, 5525) (20, 17732)
0x8DC (good) (20, 1904) (20, 4748) (20, 19283)

13 0x18F6 (good) (20, 169) (20, 1474) (20, 7452)
0x1E0F (good) (20, 289) (20, 1187) (20, 5301)

14 0x2E20 (22, 3196) (20, 520) (20, 2056)
0x314E (good) (22, 4698) (22, 12324) (20, 198)
0x6D80 (22, 962) (20, 253) (20, 765)

15 0x76AD (22, 1210) (22, 2808) (20, 1382)
0x604C (good) (22, 1767) (22, 4414) (22, 13329)
0xA219 (24, 7396) (22, 316) (20, 454)

16 0xF8F1 (good) (24, 9823) (22, 219) (22, 2860)
0x8E61 (22, 243) (22, 629) (22, 2435)

5 6 7 8 9 10 11 12
10

−40

10
−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Es/N0 (dB)

U
n

d
et

ec
te

d
 E

rr
o

r
P

ro
b

ab
il

it
y

 Conv. FER

CRC-4

CRC-6

CRC-8

CRC-10

CRC-12

K&C-14

CRC-16

Best-4

Best-6

Best-8

Best-10

Best-12

Best-14

Best-16
∑∞

s=1 P>28,s

Fig. 6. The undetected error probability of the existing and best CRC codes
for convolutional code (133, 171)8 with information length k = 1024 bits
computed using the construction method.

the best k = 1024 CRC codes have no more than 0.1dB loss
compared to the best k = 256 and the best k = 512 CRC codes
at information lengths k = 256 and 512 bits, respectively,
except for the degree-16 codes.

In Fig. 6, the bounds of undetected error probability of the
existing and best CRC codes for information length k = 1024
bits are shown. For clarity, only even degrees of the CRC codes
are displayed. The upper bound of the original convolutional
code FER without any CRC code, calculated using transfer
function techniques [14], is plotted as a reference. In our
calculation, the search depth limit of the exclusion method is
d̃ = 22 and not enough for high degree CRC codes. Therefore,
the construction method (16) was used with d̂ = 28.

The probability sum of all large-distance terms calculated
using (11c) is also plotted to illustrate that the large-distance
terms really are negligible even assuming they are all un-
detectable, except for the best degree-16 CRC code at SNR
below 7 dB and some other codes at SNR below 6 dB. Note
that since the operation eP̄ − 1 in (11c) causes non-negligible
rounding errors in the high SNR region, it was approximated

10

4 6 8 10 12 14 16
10

−30

10
−25

10
−20

10
−15

10
−10

CRC Length (bit)

U
n
d
et

ec
te

d
 E

rr
o
r

P
ro

b
ab

il
it

y

Existing CRC Codes

Best CRC Codes

Fig. 7. The undetected error probability of the existing and best CRC codes
for convolutional code (133, 171)8 with information length k = 1024 bits
at SNR = 8 dB.

by the first ten terms, which results a similar expression as
(11b) but only carried out for 1 ≤ s ≤ 10.

Since d̂ < 3dfree, it is not necessary to evaluate triple or
higher order errors under this truncation. It is clearly seen from
the figure that the best degree-m CRC codes found by our
procedure outperform the existing degree-m codes for all m.
Furthermore, their performance is either better than or similar
to the existing degree-(m + 2) code except for m = 6. In
other words, the proposed design can typically save 2 check
bits while keeping the same error detection capability.

We can compare the error detection capability of all codes
at a fixed SNR. If we draw a vertical line at SNR = 8 dB
on Fig. 6, the intersections can be plotted along with the
associated CRC lengths m in Fig. 7. The largest reduction of
undetected error probability is about five orders of magnitude
at m = 5 where the existing CRC code has an undetected error
probability of 1.01×10−12 and the newly designed CRC code
has an undetected error probability of 1.36 × 10−17, based
on the analysis. Note that these numbers are calculated at
8 dB SNR, and the reduction gets more significant as SNR
increases.

Since the existing CRC codes are not tailored to the
convolutional code, a higher degree code does not necessarily
have a better performance. We observe that there are three
almost horizontal region for the existing CRCs with degrees
m ranging from 3 to 5, from 8 to 9, and from 13 to 15. The
reason is that the codes in each region have similar number
of dominant undetectable errors as can be seen in Table II. In
contrast, the CRC codes designed using our procedure show
steady improvement as the degree increases.

The existing and best CRC codes can also be compared
in terms of the required CRC length to achieve a certain
undetected error probability. Assume our target is to reach
undetected error probability below 10−25. This can be shown
by drawing a horizontal line at the target probability level on
Fig. 6 and plotting the CRC lengths associated to the crossed
points as a function of SNR as in Fig. 8. For most of the
SNR levels, the best CRC codes requires two fewer check
bits than the existing CRC codes to achieve the same error
detection capability. At SNR around 10.5 dB, the best CRC
code requires three fewer check bits than the existing CRC
code. Since the existing code required six check bits, this is a
50% reduction.

7.5 8 8.5 9 9.5 10 10.5 11

4

6

8

10

12

14

16

Es/N0 (dB)

R
eq

u
ir

ed
 C

R
C

 L
en

g
th

 (
b

it
)

Existing CRC Codes

Best CRC Codes

Fig. 8. The required CRC lengths for the existing and best CRC codes for
convolutional code (133, 171)8 with information length k = 1024 bits to
achieve undetected error probability below 10−25.

VI. CONCLUSION

A good CRC code in a convolutionally coded system should
minimize the undetected error probability. To calculate this
probability, two methods based on distance spectrum are
proposed. The exclusion method starts with all possible single
and multiple error patterns of the convolutional code and
excludes them one by one by testing if they are detectable.
In the construction method, undetectable errors are mapped to
error events of an equivalent convolutional code, which is the
combination of the CRC code and the original convolutional
code. The computer search for error events in the construction
method does not need to record the error patterns and thus
can go deeper than the search in the exclusion method.
However, the construction method could encounter difficulties
while dealing with high-degree CRC codes. Moreover, the
construction method is generally applicable to the performance
analysis of catastrophic convolutional codes.

We also propose a search procedure to identify the best CRC
codes for a specified convolutional encoder and information
length. A candidate CRC code is excluded if it has more
low-distance undetectable errors. Therefore, the best CRC
polynomial is guaranteed to have the fewest dominant unde-
tectable errors and minimizes the probability of undetected
error when SNR is high enough. When undetectable double
errors dominate, the choice of the best CRC polynomial is
more dependent on the information length. In an example
application of the design procedure for the popular 64-state
convolutional code with information length k = 1024, new
CRC codes provided significant reduction in undetected error
probability compared to the existing CRC codes with the same
degrees. With the proposed design, we are able to save two
check bits in most cases while having the same error detection
capability.

It is an open problem to generalize this work to other error-
correcting codes, such as turbo or low-density parity-check
(LDPC) codes. The construction method can only be applied
when the encoder has the convolutional structure. We note
that convolutional LDPC codes have such a structure. For
turbo codes, the construction method can be used to analyze
one of the recursive systematic convolutional (RSC) codes but
analyzing the other RSC code is not straightforward due to
the existence of the interleaver. Nevertheless, the exclusion
method can be generalized to any other error-correcting codes

11

if the dominant error events are identified.

APPENDIX A
EFFICIENT SEARCH FOR UNDETECTABLE DOUBLE ERRORS

In (4) and (5), the indicator function is evaluated for every
g1 given e1(x) and e2(x). However, there is a more efficient
way to check the divisibility and can save a lot of computation
time when n+ ν is large.

The remainder of any polynomial in GF(2)[x] divided by
p(x) forms a quotient ring GF(2)[x]/p(x). Two polynomials
mapped to the same element of the quotient ring are called
congruent. If xg1+l2e1(x) is congruent to e2(x) modulo p(x),
then their combination forms an undetectable double error. To
characterize the remainder of xg1+l2e1(x) modulo p(x), we
apply the concept of cyclotomic coset [18], which is origi-
nally defined for integers, to polynomials. For polynomials in
GF(2)[x], define x-cyclotomic coset modulo p(x) containing
e(x) as

Ce(x) =
{
xhe(x) (mod p(x))

∣∣h = 0, 1, · · ·
}
, (17)

which includes the remainder of all possible offsets of e(x)
divided by p(x). One can verify that two cyclotomic cosets
are either identical or disjoint, so all of the distinct x-
cyclotomic cosets modulo p(x) form a partition of quotient
ring GF(2)[x]/p(x). For example, consider a degree-2 primi-
tive polynomial p(x) = x2+x+1, and we have C0 = {0} and
C1 = {1, x, x+ 1} forming a partition of GF(2)[x]/p(x);
consider a degree-2 non-primitive polynomial p(x) = x2 + 1,
and we have C0 = {0}, C1 = {1, x}, and Cx+1 = {x+ 1}
forming a partition of GF(2)[x]/p(x). In both cases, C0

is trivial since it only contains the “zero” element. In the
primitive case, C1 is the only non-trivial cyclotomic coset and
its cardinality is |C1| = |GF(2)[x]/p(x)|−1 = 2m−1. In the
non-primitive case, there are multiple non-trivial cyclotomic
cosets and their sizes are smaller than 2m − 1. In fact, there
is only one unique non-trivial cyclotomic coset if p(x) is a
primitive polynomial.

It is obvious that if e1(x) and e2(x) belong to different
cyclotomic cosets, there is no way to have a g1 that makes
xg1+l2e1(x) congruent to e2(x) modulo p(x). In other words,
it is unnecessary to check whether any g1 creates an un-
detectable double error with the specific e1(x) and e2(x).
If e1(x) and e2(x) belong to the same cyclotomic coset
Ce1(x), only one proper g1 ∈

[
0,
∣∣Ce1(x)

∣∣− 1
]

can make
xg1+l2e1(x)+e2(x) divisible by p(x). Denote this particular g1

as g′1. Once we find g′1, all possible g1 that create undetectable
double errors are just g1 = g′1 + u

∣∣Ce1(x)

∣∣ for non-negative
integer u satisfying g1 + l1 + l2 ≤ n+ ν.

Note that when e1(x) = e2(x), they will belong to the same
cyclotomic coset no matter what CRC generator polynomial
p(x) is. That is to say, no CRC code is able to detect such dou-
ble error if these two error events have a proper gap g1. Fortu-
nately, the smallest proper gap is g′1 = −l2

(
mod

∣∣Ce1(x)

∣∣) so
the total length of the undetectable double error is

∣∣Ce1(x)

∣∣+l1.
Hence, when n + ν is small enough, such double error will
never occur. On the other hand, when n + ν is large, dmin,
which is the shortest distance of the undetectable errors, will
be upper bounded by 2dfree.

APPENDIX B
THE RELATIONSHIP BETWEEN ∆i AND Ce(x)

Define the state of the equivalent code at time n−g as q′g(x),
which is a polynomial with maximum degree m+ν−1 repre-
senting consecutive m+ν bits from the xg+m+ν−1 term to the
xg term in xmq′(x) for g ∈ [−ν, n]. The corresponding state
of the original code is given by the coefficients of the terms
from xm+ν−1 to xm in polynomial q′g(x)p(x). Let q′g,u and pu
be the coefficients of xu in q′g(x) and p(x), respectively. Then
the coefficient of xu for u ∈ [m,m+ ν − 1] in q′g(x)p(x) is
given by

m∑

v=0

q′g,u−v pv. (18)

Assume that the all-zero codeword is sent, i.e. q(x) = 0, and
the trellis path enters a detectable-zero state SD

i at time n− g.
Also, let e(x) be a polynomial of degree smaller than or equal
to n− g−1 representing the length-(n− g) input sequence of
the original convolutional encoder from the beginning to time
n− g, and it is given by the coefficients from the xn−1 term
to the xg term in q′(x)p(x). Since the state at time n − g is
SD
i , e(x) must be non-divisible by p(x).
The remainder of e(x) divided by p(x) is given by

e(x) (mod p(x)) =

m−1∑

u=0

xu
m∑

v=u+1

q′g,m+u−vpv, (19)

which is totally governed by q′g(x), or SD
i . If the remainder

is known, the bits q′g,v for v ∈ [0,m− 1] can be solved
uniquely through back substitution for u = m−1,m−2, · · · , 0
because pm = 1. Furthermore, the whole polynomial q′g(x),
or SD

i , can be solved by letting (18) equal to zero for
u = m + ν − 1,m + ν − 2, · · · ,m because the state of the
original code is just ν zeros. Hence, the remainder of e(x)
divided by p(x) determines a detectable-zero state SD

i , and
vice versa. Furthermore, each of the 2m−1 non-zero elements
in GF(2)[x]/p(x) corresponds to a unique state in SD.

To find all states in ∆i, we can specify q′g−h,0, the input bit
to the equivalent encoder at time n− g + h, for h = 1, 2, · · ·
such that the input bits to the original convolutional encoder
after time n−g are all zeros and thus the following states are in
SD. By doing so, we know that the polynomials q′g−h(x) will
represent the states in ∆i. This procedure is finished when
certain q′g−h(x) represents SD

i again. During this procedure,
the corresponding input sequence to the original encoder from
the beginning to time n− g+h is simply xhe(x) because the
input bits after time n−g are all zeros. By the definition given
in (17), the remainder of xhe(x) divided by p(x) is an element
of Ce(x). In addition, we know that this remainder corresponds
to a state in ∆i. Therefore, ∆i and Ce(x) contain the same
elements but just represented in different forms.

ACKNOWLEDGMENT

The authors would like to thank Dr. A. R. Williamson with
Communications Systems Laboratory (CSL) at University of
California, Los Angeles (UCLA) for useful discussions and
Mr. K. Vakilinia with CSL at UCLA for his kind help.

12

REFERENCES

[1] T. Klove and M. Miller, “The detection of errors after error-correction
decoding,” IEEE Trans. Commun., vol. 32, no. 5, pp. 511–517, May
1984.

[2] S. Leung-Yan-Cheong, E. R. Barnes, and D. Friedman, “On some
properties of the undetected error probability of linear codes,” IEEE

Trans. Inform. Theory, vol. 25, no. 1, pp. 110–112, Jan. 1979.
[3] P. Kazakov, “Fast calculation of the number of minimum-weight words

of CRC codes,” IEEE Trans. Inform. Theory, vol. 47, no. 3, pp. 1190–
1195, Mar. 2001.

[4] R.-D. Lin and W.-S. Chen, “Fast calculation algorithm of the undetected
errors probability of CRC codes,” in Proc. 2005 IEEE 19th Int. Conf.

Advanced Inform. Networking and Applicat. (AINA), vol. 2, Mar. 2005,
pp. 480–483.

[5] P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC)
polynomial selection for embedded networks,” in Proc. 2004 IEEE Int.

Conf. Dependable Syst. and Networks (DSN), Jun. 2004, pp. 145–154.
[6] G. Castagnoli, S. Brauer, and M. Herrmann, “Optimization of cyclic

redundancy-check codes with 24 and 32 parity bits,” IEEE Trans.

Commun., vol. 41, no. 6, pp. 883–892, Jun. 1993.
[7] P. Koopman, “32-bit cyclic redundancy codes for internet applications,”

in Proc. 2002 IEEE Int. Conf. Dependable Syst. and Networks (DSN),
2002, pp. 459–468.

[8] S.-L. Shieh, P.-N. Chen, and Y. S. Han, “Flip CRC modification for
message length detection,” IEEE Trans. Commun., vol. 55, no. 9, pp.
1747–1756, Sep. 2007.

[9] M. Ghosh and F. LaSita, “Puncturing of CRC codes for IEEE 802.11ah,”
in Proc. 2013 IEEE 78th Veh. Technology Conf. (VTC Fall), Sep. 2013,
pp. 1–5.

[10] R. Wang, W. Zhao, and G. Giannakis, “CRC-assisted error correction in
a convolutionally coded system,” IEEE Trans. Commun., vol. 56, no. 11,
pp. 1807–1815, Nov. 2008.

[11] Y. Wei, M. Jiang, B. Xia, W. Chen, and Y. Yang, “A CRC-aided hybrid
decoding algorithm for turbo codes,” IEEE Wireless Commun. Lett.,
vol. 2, no. 5, pp. 471–474, Oct. 2013.

[12] M. El-Khamy, J. Lee, and I. Kang, “Detection analysis of CRC-assisted
decoding,” IEEE Wireless Commun. Lett., vol. 19, no. 3, pp. 483–486,
Mar. 2015.

[13] A. J. Viterbi and J. K. Omura, Principles of digital communication and

coding. Courier Dover Publications, 2009.
[14] C.-Y. Lou and B. Daneshrad, “PER prediction for convolutionally coded

MIMO OFDM systems—an analytical approach,” in Proc. 2012 IEEE

Military Commun. Conf. (MILCOM), Oct. 2012, pp. 1–6.
[15] M. Cedervall and R. Johannesson, “A fast algorithm for computing

distance spectrum of convolutional codes,” IEEE Trans. Inform. Theory,
vol. 35, no. 6, pp. 1146–1159, Nov. 1989.

[16] A. Viterbi, “Convolutional codes and their performance in communi-
cation systems,” IEEE Trans. Commun. Technol., vol. 19, no. 5, pp.
751–772, Oct. 1971.

[17] E. Malkamaki and H. Leib, “Evaluating the performance of convolu-
tional codes over block fading channels,” IEEE Trans. Inform. Theory,
vol. 45, no. 5, pp. 1643–1646, Jul. 1999.

[18] S. Ling, Coding theory: a first course. Cambridge University Press,
2004.

	I Introduction
	I-A Background and Previous Work
	I-B Main Contributions

	II System Model
	III Undetected Error Probability Analysis
	III-A Exclusion Method
	III-A1 Undetectable Single Error
	III-A2 Undetectable Double Error
	III-A3 Total Undetected Error Probability

	III-B Construction Method
	III-B1 States of the Equivalent Encoder
	III-B2 Error Events in the Equivalent Encoder
	III-B3 Undetected Error Probability

	III-C Comparison

	IV Search Procedure for Optimal CRC Codes
	V CRC Design Example for =6, k=1024
	VI Conclusion
	Appendix A: Efficient Search for Undetectable Double Errors
	Appendix B: The Relationship between i and Ce(x)
	References

