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Abstract

This paper studies a multiple-input single-output (MISO) broadcast channel (BC) featuring simultaneous

wireless information and power transfer (SWIPT), where a multi-antenna access point (AP) delivers both information

and energy via radio signals to multiple single-antenna receivers simultaneously, and each receiver implements either

information decoding (ID) or energy harvesting (EH). In particular, pseudo-random sequences that area priori

known and therefore can be cancelled at each ID receiver are used as the energy signals, and the information-

theoretically optimal dirty paper coding (DPC) is employedfor the information transmission. We characterize the

capacity region for ID receivers, by solving a sequence of weighted sum-rate (WSR) maximization (WSRMax)

problems subject to a maximum sum-power constraint for the AP, and a set of minimum harvested power constraints

for individual EH receivers. The problem corresponds to a new form of WSRMax problem in MISO-BC with

combined maximum and minimum linear transmit covariance constraints (MaxLTCCs and MinLTCCs), which

differs from the celebrated capacity region characterization problem for MISO-BC under a set of MaxLTCCs

only and is challenging to solve. By extending the general BC-multiple access channel (MAC) duality, which

is only applicable to WSRMax problems with MaxLTCCs, and applying the ellipsoid method, we propose an

efficient iterative algorithm to solve this problem globally optimally. Furthermore, we also propose two suboptimal

algorithms with lower complexity by assuming that the information and energy signals are designed separately.

Finally, numerical results are provided to validate our proposed algorithms.

Index Terms

Multiple-input multiple-output (MIMO), broadcast channel (BC), dirty paper coding (DPC), capacity region,

simultaneous wireless information and power transfer (SWIPT), energy harvesting, uplink-downlink duality.

I. INTRODUCTION

Wireless energy transfer (WET) using radio frequency (RF) signals is a promising technology to provide

perpetual power supplies for sensors, radio-frequency identification (RFID) tags, and other devices with

very low power consumption and which are difficult to access [1], [2]. In particular, RF-enabled WET
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enjoys many practical advantages, such as wide coverage, low production cost, small receiver form factor,

and efficient energy multicasting thanks to the broadcast nature of electromagnetic waves. Of course, RF

signals have also been widely used as a means for transmitting information. To enable a dual use of RF

signals, simultaneous wireless information and power transfer (SWIPT) has become a fast-emerging area

of research [3]–[20], where hybrid access points (APs) are deployed to simultaneously deliver both energy

and information to one or more receivers via RF signals.

The idea of SWIPT was first proposed by Varshney [3], in which apoint-to-point single-antenna

additive white Gaussian noise (AWGN) channel for SWIPT was investigated from an information-theoretic

standpoint. This work was then extended to frequency-selective AWGN channels in [4], where a non-

trivial tradeoff between information rate and harvested energy was shown by varying power allocation

over frequency. Prior works [3], [4] have studied the fundamental performance limits of wireless systems

with SWIPT, where the receiver is ideally assumed to be able to decode the information and harvest the

energy independently from the same received signal. However, this assumption implies that the received

signal used for harvesting energy can be reused for decodinginformation without any loss, which is

not realizable yet due to practical circuit limitations. Consequently, in [5], [6], various practical receiver

architectures for SWIPT were proposed, such as time-switching and power-splitting. The authors in [7]

studied SWIPT for fading AWGN channels subject to time-varying co-channel interference, and proposed

a new principle termed “opportunistic energy harvesting” where the receiver switches between harvesting

energy and decoding information based on the wireless channel condition and interference power level.

The practical implementation of SWIPT is limited by the severe path loss and fading of wireless chan-

nels, and multi-antenna processing is an appealing solution to improve the efficiency of both information

and energy transfer. Recently, there have been a handful of papers on studying the multi-antenna SWIPT

systems under various setups including broadcast channel (BC) [5], [8]–[13], multicast system [14]–[16],

interference channel [17]–[19], and relay channel [20]. Asfor the multi-antenna BC, the authors in [5] first

characterized the rate-energy (R-E) tradeoff for a simplified multiple-input multiple-output (MIMO) BC

with two (either separated or co-located) receivers implementing information decoding (ID) and energy

harvesting (EH), respectively. The study in [5] was then extended to the case with imperfect channel state

information (CSI) at the transmitter [8]. Moreover, [9], [10] and [11] studied the multiple-input single-

output (MISO) BC for SWIPT with multiple separated and co-located ID and EH receivers, respectively. In

[12], [13], physical layer security is considered under MISO BC for SWIPT by adding additional secrecy
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information transmission constraint, which reveal interesting new insights that the energy-carrying signal

can also play the role of artificial noise (AN) to ensure secrecy in information transmission. However,

all these prior works on multi-antenna BC consider low-complexity linear precoding/beamforming for

SWIPT, which is in general suboptimal. Therefore, the fundamental limits on the information and energy

transfer in general multi-antenna BC for SWIPT remain unknown, thus motivating this work.

This paper studies a MISO-BC for SWIPT, where a multi-antenna AP delivers both wireless information

and energy to multiple receivers each with a single antenna.Each receiver implements either ID or EH

alone1. Pseudo-random sequences that area priori known and therefore can be cancelled at each ID

receiver are used as the energy signals, and the information-theoretically optimal dirty paper coding (DPC)

[24] is employed for the information transmission. Under this setup, we characterize the fundamental

limits on the information and energy transfer of the considered MISO-BC for SWIPT, by establishing

the capacity region for the ID receivers while ensuring given minimum energy requirements for EH

receivers. Specifically, the capacity region is characterized by solving a sequence of weighted sum-rate

(WSR) maximization (WSRMax) problems for all ID receivers subject to a maximum transmit sum-power

constraint for the AP, and a set of minimum harvested power constraints for individual EH receivers.

Interestingly, these problems belong to a new form of WSRMaxproblem for MISO-BC with combined

maximum and minimum linear transmit covariance constraints (MaxLTCCs and MinLTCCs), which is non-

convex in general and thus difficult to be solved optimally bystandard convex optimization techniques.

It should be noted that the WSRMax problem with only MaxLTCCshas been investigated in [25]

to establish the capacity region of multi-antenna BC, in which a general BC-multiple access channel

(MAC) duality is applied to solve this problem optimally. However, the WSRMax problem in our case

is different and more challenging due to the newly introduced MinLTCCs that arise from the minimum

harvested power constraints for the EH receivers. As a result, the general BC-MAC duality does not

directly apply here. To overcome this challenge, we proposean efficient algorithm to optimally solve

the new WSRMax problem with combined MaxLTCCs and MinLTCCs,by extending the general BC-

MAC duality and applying the ellipsoid method. One more sideeffect of the MinLTCCs is that although

the solution generated by the ellipsoid method achieves theoptimal WSR, it may not be feasible to the

1Conventional wireless information and energy receivers are respectively designed to operate with very different power requirements (e.g.,

an EH receiver for a low-power sensor requires a received power of −10 dBm or more for real-time operation, while ID receivers such

as cellular and WiFi mobile receivers often operate with a received power less than−50 dBm [5]), and thus the existing RF front-end for

wireless EH cannot currently be used for ID and vice versa.
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primal problem. This is because the equivalent noise covariance matrix of the dual MAC may not be

of full rank, which implies an infinite number of possible solutions for the dual MAC. In this case, a

semi-definite program (SDP) needs to be further solved to obtain a primal feasible solution. To the best

of our knowledge, our approach is novel and has not been studied in the literature. It is shown that at the

optimal solution, the energy signals should be in the null space of all ID receivers’ channels (if it is not

an empty set). Furthermore, to reduce the implementation complexity of the optimal solution (especially

the iterative search with the ellipsoid method), we proposetwo suboptimal algorithms by separately

designing the information and energy signals. Finally, numerical results are provided to validate our

proposed algorithms.

The remainder of this paper is organized as follows. SectionII introduces the system model and problem

formulation. Section III and Section IV present the optimaland suboptimal solutions for the formulated

problem, respectively. Section V provides numerical examples to validate our results. Finally, Section VI

concludes this paper.

Notations: Boldface letters refer to vectors (lower case) or matrices(upper case). For a square matrix

S, Tr(S) and S−1 denote its trace and inverse, respectively, whileS � 0, S � 0 and S � 0 mean

that S is positive semidefinite, negative semidefinite and non-positive semidefinite, respectively. For an

arbitrary-size matrixM , MH , MT andM † denote the conjugate transpose, transpose and pseudo-inverse

of M , respectively. The distribution of a circularly symmetriccomplex Gaussian (CSCG) random vector

with mean vectorx and covariance matrixΣ is denoted byCN (x,Σ); and∼ stands for “distributed as”.

Cx×y denotes the space ofx× y complex matrices.E[·] denotes the statistical expectation.‖x‖ denotes

the Euclidean norm of a complex vectorx, and |z| denotes the magnitude of a complex numberz.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a MISO-BC for SWIPT with an AP delivering both information and energy to multiple

receivers over a single frequency band as shown in Fig. 1, where each receiver implements either ID or EH.

Note that our results apply to arbitrary user locations/channel realizations and there is no restriction on the

locations of the EH/ID receivers. The receiver-location-based example in Fig. 1 is made for meeting the

practically different received power requirements of EH and ID receivers. In this system, there areKI ≥ 1

ID receivers andKE ≥ 1 EH receivers, denoted by the setsKI = {1, · · · , KI} andKE = {1, · · · , KE},

respectively. It is assumed that all ID and EH receivers are each equipped with one receive antenna,
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Fig. 1. A MISO broadcast system for simultaneous wireless information and power transfer (SWIPT), where EH receivers are close to the

AP for effective energy reception.

whereas the AP is equipped withN > 1 transmit antennas.

We assume a quasi-static channel model, and denotehi ∈ CN×1 andgj ∈ CN×1 as the channel vectors

from the AP to ID receiveri ∈ KI and to EH receiverj ∈ KE , respectively. The AP is assumed to perfectly

know the instantaneous values ofhi’s and gj ’s, while each ID receiver knows its own instantaneous

channel. In practice, the CSI of EH receivers can be acquiredat the AP by e.g. reverse-link channel

estimation based on training signals sent by the EH receivers via exploiting the channel reciprocity in

time-division duplex (TDD) systems [21], or forward-link channel estimation and limited feedback by the

EH receivers in frequency-division duplex (FDD) systems [22], [23].

Without loss of generality, the AP transmitsKI independent information signals, i.e.,xi ∈ CN×1, ∀i ∈

KI, one for each ID receiver, and one common energy signal2, i.e.,xE ∈ CN×1, for all the EH receivers.

Thus, the AP transmits theN-dimensional complex baseband signal

x =
∑

i∈KI

xi + xE (1)

For information signals, we consider Gaussian signalling,and thusxi’s are independent and identically

distributed (i.i.d.) CSCG vectors with zero mean and covariance matrixSi , E[xix
H
i ], i ∈ KI . For

the energy signal, sincexE does not carry any information, it can be implemented with a set of pseudo-

random sequences that mimics a stationaryN-dimensional random process with zero mean and covariance

2Since the energy signal does not contain any information, one common energy signal with arbitrary rank covariance is sufficient to achieve

the optimal energy transfer performance.
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matrix SE .3 Suppose that the maximum sum-power at the AP is denoted byPsum > 0. Then we have

E
[

xHx
]

= Tr
(
∑

i∈KI
Si + SE

)

≤ Psum.

We consider the information-theoretically optimal DPC forthe information transmission, for which the

causal interference can be pre-cancelled at the transmitter. To be more specific, consider the encoding

order asπ(1), . . . , π(KI), i.e., the information signalxπ(1) for ID receiverπ(1) is encoded first, that for

π(2) is encoded second, and so on, whereπ denotes some desired permutation overKI. In this case, for

any ID receiverπ(i), the causal interference due to ID receiversπ(1), . . . , π(i− 1) can be canceled via

DPC at the AP. As a result, the received signal for ID receiverπ(i) is expressed as

yπ(i) = hH
π(i)xπ(i) +

KI
∑

k=i+1

hH
π(i)xπ(k) + hH

π(i)xE + zi, i ∈ KI (2)

wherezi ∼ CN (0, σ2) denotes the additive white Gaussian noise (AWGN) at theith ID receiver with

noise power beingσ2, andhH
π(i)xE is the interference caused by the common energy signal.

Moreover, since the energy signalxE is pseudo-random, its resulting interference can be efficiently

cancelled by an extra interference cancellation operationat each ID receiver, explained as follows. Without

loss of generality,xE can be expressed asxE =
∑L

l=1 vls
E
l with 1 ≤ L ≤ N denoting the rank ofSE ,

vl’s denoting the energy beamforming vectors each with unit norm, andsE
l ’s denoting the independently

generated pseudo-random energy-bearing signals, whose waveforms can be assumed to be known at both

the AP and each ID receiver. Given prior knownsE
l ’s, in (2) we havehH

π(i)xE =
∑L

l=1

(

hH
π(i)vl

)

sEH
l . By

estimating the effective channel coefficientshH
π(i)vl’s at ID receiverπ(i), the resulting interference due to

energy signals can be cancelled with knownsE
l ’s. With the above interference cancellation, the received

signal for ID receiverπ(i) in (2) is re-expressed as

yπ(i) = hH
π(i)xπ(i) +

KI
∑

k=i+1

hH
π(i)xπ(k) + zi, i ∈ KI . (3)

With Gaussian signalling employed, the achievable rate region for ID receivers, defined as the rate-

tuples for all ID receivers (in bps/Hz) with given information covariance matrices{Si}, is thus given by

3Without loss of energy harvesting performance, we assume that the energy signal is pseudo-random instead of a deterministic sinusoidal

wave, in order for its power spectral density to satisfy certain regulations on microwave radiation. Specifically, withpseudo-random energy

signals, the transmit power spreads evenly over the operating frequency bands, which thus helps avoid a single power spike of the deterministic

sinusoidal signal.
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[29]

CBC ({Si}, {hi}) =
⋃

π∈Π

{

r ∈ RKI

+ :

rπ(i) ≤ log2





σ2 + hH
π(i)

(

∑KI

k=i Sπ(k)

)

hπ(i)

σ2 + hH
π(i)

(

∑KI

k=i+1 Sπ(k)

)

hπ(i)











(4)

whereΠ is the collection of all possible permutations overKI , andr = [r1, . . . , rKI
]T denotes the vector

of achievable rates for all ID receivers.

On the other hand, consider the WET. Due to the broadcast property of wireless channels, the energy

carried by all information and energy signals can be harvested at each EH receiver. As a result, the

harvested power for thejth EH receiver, denoted byQj, can be expressed as [5]

Qj = E
[

|gH
j x|2

]

= ζTr

[(

∑

i∈KI

Si + SE

)

Gj

]

, j ∈ KE (5)

where0 < ζ ≤ 1 denotes the energy harvesting efficiency [6] at each EH receiver andGj , gjg
H
j , ∀j ∈

KE .4 Sinceζ is a constant, we normalize it asζ = 1 for simplicity unless otherwise specified.

Now, we are ready to present the optimization problem of interest. To characterize the boundary points

of the capacity region for the MISO-BC with SWIPT, we maximize the WSR of all ID receivers subject to

the minimum harvested power constraints at individual EH receivers, as well as the maximum sum-power

constraint for the AP. By denoting the minimum harvested power requirement at EH receiverj ∈ KE as

Ej > 0, the WSRMax problem is formulated as

(P1) : Max.
{Si},r,SE

∑

i∈KI

αiri (6)

s.t. r ∈ CBC ({Si}, {hi}) (7)

Tr

[(

∑

i∈KI

Si + SE

)

Gj

]

≥ Ej, ∀j ∈ KE (8)

Tr

(

∑

i∈KI

Si + SE

)

≤ Psum (9)

SE � 0,Si � 0, ∀i ∈ KI (10)

whereαi > 0 denotes a given weight for ID receiveri ∈ KI . Note that by solving problem (P1) via

exhausting all possible{αi}, the whole capacity region can then be characterized. LetD denote the set

4Our results still hold when the antenna number of each EH receiver is larger than one, in which case the matrixGj ’s for EH receivers

are of higher rank instead of rank-one.
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containing all admissible information covariance matrices {Si} and all achievable rates{ri} specified by

the constraints in (7) and (10). It is then observed that (P1)is non-convex due to the non-convexity ofD,

and thus the globally optimal solution of (P1) is difficult toobtain in general. Note that one commonly

adopted approach to deal with this type of non-convex WSRMaxproblems for the multi-antenna BC is

to use the BC-MAC duality to transform it into an equivalent convex WSRMax problem for a dual MAC

[25]–[28]. However, the existing BC-MAC duality is only applicable to the case of MaxLTCCs5 with

information signals. In contrast, (P1) has both a MaxLTCC in(9) and a set of MinLTCCs6 in (8) as well

as an energy covariance matrixSE . As a result, solving problem (P1) is not a trivial exercise,and has

not been investigated yet in the literature. Note that our results are easily extendible to the case with

per-antenna individual power constraints for the AP, for which the single MaxLTCC in (9) is replaced by

a set of MaxLTCCs as in [25]. Also note that in this paper we focus on characterizing the fundamental

limit of MISO-BC for SWIPT with given user channel realizations. The results can be extended to the

general setup with time-varying (fading) channels where the channel capacity/harvested energy can be

measured from either ergodic (average) or non-ergodic (outage) perspectives.

Prior to solving problem (P1), we first check its feasibility. It can be observed that (P1) is feasible if and

only if its feasibility is guaranteed by ignoring all the ID receivers, i.e., settingSi = 0 andri = 0, ∀i ∈ KI.

Thus, the feasibility of (P1) can be verified by solving the following problem:

find SE

s.t. Tr [SEGj ] ≥ Ej, ∀j ∈ KE

Tr(SE) ≤ Psum, SE � 0. (11)

Since problem (11) is a convex semi-definite program (SDP), it can be solved by standard convex

optimization techniques such as the interior point method [33]. In the rest of this paper, we only focus

on the case that (P1) is feasible. In practice, (P1) can be infeasible due to e.g. poor channel conditions,

insufficient transmit power or high minimum harvested powerconstraints. In such cases, the minimum

harvested power constraints can be reduced (smallerEj) for some EH receives to make (P1) feasible.

5The MaxLTCC is expressed as Tr(SQ) ≤ P , whereS is the transmit covariance matrix to be optimized,Q is a given positive semi-

definite matrix (which is identify matrix in (9)), andP ≥ 0 is a prescribed power constraints. Note that our defined MaxLTCC is the same

as the general LTCC (GLTCC) in [25].
6Similar to the MaxLTCC, the MinLTCC is defined as Tr(SQ) ≥ P .
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III. OPTIMAL SOLUTION

In this section, we present the optimal solution to problem (P1) by transforming it into a series of

equivalent WSRMax sub-problems with a single MaxLTCC and accordingly solving these sub-problems

via the BC-MAC duality. Specifically, we first define the following auxiliary functiong({λj}) as

g({λj}) = Max.
{Si},r,SE

∑

i∈KI

αiri (12)

s.t. r ∈ CBC ({Si}, {hi}) (13)
∑

i∈KI

Tr(ASi) + Tr(ASE) ≤ PA (14)

SE � 0,Si � 0, ∀i ∈ KI (15)

where λj ≥ 0, j ∈ {0} ∪ KE are auxiliary variables,A = λ0I −∑j∈KE
λjGj and PA = λ0Psum −

∑

j∈KE
λjEj . Note thatg({λj}) is generally not the dual function of problem (P1); however,it serves as

an upper bound on the optimal value of (P1) for any{λj ≥ 0}. This is because any feasible solution to

problem (P1) is also feasible to (12), but not necessarily vice versa. We then define the following problem

by minimizing g({λj}) over {λj}:

(P2) : Min.
{λj≥0}

g({λj}). (16)

In general the optimal value of problem (P2) also serves as anupper bound on that of (P1). However, as

will be rigorously shown later (see Lemma 3.4), this upper bound is indeed tight. As a result, we will

solve (P1) by equivalently solving problem (P2). In the following, we first solve problem (12) to obtain

g({λj}) under any given{λj ≥ 0}, based on which the strong duality between problems (P1) and(P2)

is then proved. Next, we solve problem (P2) to obtain the optimal {λj}, and finally, we construct the

optimal solution to (P1) based on that to (P2).

A. Solving Problem (12) to Obtain g({λj})

To start, we present some important properties of problem (12) in the following lemma.

Lemma 3.1: In order for problem (12) to be feasible andg({λj}) to have an upper-bounded value, i.e.,

g({λj}) < +∞, the following conditions must be satisfied:

1) A is positive semi-definite, i.e.,A � 0.

2) The null space ofA lies in the null space ofH ,
∑

i∈KI
hih

H
i ∈ CN×N , i.e., Null(A) ⊆ Null (H),

where Null(A) ,
{

x ∈ CN×1 : Ax = 0
}

.
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3) PA ≥ 0.

Proof: See Appendix A.

From Lemma 3.1, it is sufficient for us to solve (12) withA � 0, Null(A) ⊆ Null (H) andPA ≥ 0.

Suppose that rank(A) = m, where rank(H) ≤ m ≤ N due to the second condition in Lemma 3.1.

Then, the singular value decomposition (SVD) ofA can be expressed as

A = [U 1,U 2]Λ [U 1,U 2]
H (17)

whereU 1 ∈ CN×m andU 2 ∈ CN×(N−m) consist of the firstm and the lastN −m left singular vectors of

A, which correspond to the non-zero and zero singular values in Λ, respectively. Therefore, the vectors

in U 1 andU 2 form the orthogonal basis for the range and null space ofA, respectively. Then we have

the optimalSE for problem (12), denoted bȳSE, as follows.

Lemma 3.2: The optimal energy covariance matrix in problem (12) is expressed as

S̄E = U 2ĒUH
2 (18)

where Ē ∈ C(N−m)×(N−m) can be any positive semi-definite matrix. That is, anyS̄E � 0 satisfying

AS̄E = 0 is optimal to problem (12). Note that whenm = N , i.e.,A is of full rank, U 2 does not exist.

In this case, we havēSE = 0.

Proof: See Appendix B.

Lemma 3.2 shows that the optimal energy covariance matrixS̄E of problem (12) lies in the null space

of A. By using this result, problem (12) can thus be simplified to

Max.
{Si},r

∑

i∈KI

αiri

s.t. r ∈ CBC ({Si}, {hi})
∑

i∈KI

Tr(ASi) ≤ PA

Si � 0, ∀i ∈ KI . (19)

Now, it remains to solve (19) to obtain the optimal information covariance matrices, denoted by{S̄i}.

Note that problem (19) corresponds to a WSRMax problem in MISO-BC under a single MaxLTCC. For

the special case ofA having full rank, this problem has been solved by the generalBC-MAC duality

[25]. To handle the general case ofA being rank deficient, which has not been addressed in the literature,

we present the following lemma.
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Lemma 3.3: The optimal information covariance matrices, i.e.,
{

S̄i

}

, in problem (19) can be expressed

as

S̄i = U 1B̄iU
H
1 +U 1C̄iU

H
2 +U 2C̄

H
i U

H
1

+U 2D̄iU
H
2 , ∀i ∈ KI (20)

whereB̄i ∈ Cm×m is the unique solution of problem (21) below,C̄ i ∈ Cm×(N−m) andD̄i ∈ C(N−m)×(N−m)

can be any matrices with appropriate dimensions such thatS̄i � 0.

Max.
{Bi},r

∑

i∈KI

αiri

s.t. r ∈ CBC

(

{Bi}, {ĥi}
)

∑

i∈KI

Tr(ÂBi) ≤ PA

Bi � 0, ∀i ∈ KI (21)

whereĥi = UH
1 hi ∈ Cm×1, ∀i ∈ KI andÂ = UH

1 AU 1 ∈ Cm×m.

Proof: See Appendix C.

Note thatÂ is of full rank, and thus problem (21) can be solved by the general BC-MAC duality as

in [25]. By combining Lemmas 3.2 and 3.3, we obtain the optimal solution to (12).

Remark 3.1: Note that if A is of full rank, i.e.,m = N , thenU 2 does not exist. In this case, the

optimal solution to (11) is unique and can be expressed as

S̄i = U 1B̄iU
H
1 , ∀i ∈ KI and S̄E = 0. (22)

However, if A is rank deficient, i.e.,m < N , thenU 2 does exist in general. In this case, there exist

infinite sets of optimal solution
{

{S̄i}, S̄E

}

based on Lemmas 3.2 and 3.3, and as a result the optimal

solution to problem (12) is not unique. For simplicity, we employ the specific optimal solution in (22) to

solve (12) for obtainingg({λj}).

B. Solving Problem (P2)

In this section, we first prove the strong duality between (P1) and (P2) before solving (P2) to find the

optimal {λj} for maximizingg({λj}).

Lemma 3.4: The optimal value of problem (P1) is equal to that of problem (P2).

Proof: See Appendix D.

11



Next, we proceed to solve (P2). Sinceg({λj}) is upper bounded only when the conditions in Lemma

3.1 are satisfied, we can rewrite (P2) as follows by adding these conditions as explicit constraints.

(P3) : Min.
{λj≥0}

g({λj}) (23)

s.t. Null(A) ⊆ Null (H) (24)

λ0I −
KE
∑

j=1

λjGj � 0 (25)

λ0Psum−
KE
∑

j=1

λjEj ≥ 0. (26)

Note that for problem (P3), the objective functiong({λj}) is not necessarily differentiable. Nonetheless,

we have the following lemma.

Lemma 3.5: For the functiong({λj}) at any two non-negative points[λ̇0, λ̇1, · · · , λ̇KE
] and[λ̈0, λ̈1, · · · , λ̈KE

],

we have

g({λ̇j}) ≥ g({λ̈j}) + c
[

Psum− Tr(S̈I),Tr(S̈IG1)− E1, · · · ,

Tr(S̈IGKE
)−EKE

] (

[λ̇0, λ̇1, · · · , λ̇KE
]− [λ̈0, λ̈1, · · · , λ̈KE

]
)T

(27)

where S̈I =
∑

i∈KI
S̈i with {S̈i} being the optimal solution of problem (12) givenλj = λ̈j , j =

0, 1, · · · , KE , andc ≥ 0 is a constant.

Proof: The proof is similar to that of [25, Proposition 6], and is thus omitted for brevity.

Lemma 3.5 ensures that compared to the arbitrary point[λ̈0, λ̈1, · · · , λ̈KE
], the optimal point that minimizes

g({λj}) cannot belong to the set of points[λ̇0, λ̇1, · · · , λ̇KE
] with

[

Psum− Tr(S̈I),Tr(S̈IG1)−E1, · · · ,Tr(S̈IGKE
)− EKE

]

·
(

[λ̇0, λ̇1, · · · , λ̇KE
]− [λ̈0, λ̈1, · · · , λ̈KE

]
)T

> 0 (28)

and thus this set should be eliminated when searching for theoptimal {λj}. This property motivates us

to use the ellipsoid method [34] to solve problem (P3). In order to successfully implement the ellipsoid

method, we need to further obtain the sub-gradients for the constraints Null(A) ⊆ Null (H) in (24) and

λ0I −∑KE

j=1 λjGj � 0 in (25), which are shown in the following two lemmas.

Lemma 3.6: The constraint in (24) is equivalent to the following linearconstraints

fl({λj}) , −λ0 +

KE
∑

j=1

λj|vH
l gj |2 < 0, ∀l ≤ t (29)
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where t denotes the rank of matrixH, and vl, l = 1, · · · , t, denote thet left singular vectors ofH

corresponding to its non-zero singular values. As a result,the sub-gradient offl({λj}) at given{λj} can

be expressed as
[

−1, |vH
l g1|2, · · · , |vH

l gKE
|2
]T

, l = 1, · · · , t.

Proof: See Appendix E.

Lemma 3.7: Define F ({λj}) = −λ0I +
∑KE

j=1 λjGj. Then the constraint in (25) is equivalent to

F ({λj}) � 0. Let z denote the dominant eigenvector ofF ({λj}), i.e., z = arg max
‖z‖=1

zHF ({λj})z.

Then, the sub-gradient ofF ({λj}) at given{λj} is
[

−‖z‖2, zHG1z, · · · , zHGKE
z
]T

.

Proof: Also see Appendix E.

With Lemma 3.5 and the sub-gradients in Lemmas 3.6 and 3.7 in hand, we can successfully solve

problem (P2) by applying the ellipsoid method to update{λj} towards the optimal solution{λ∗
j}.

Remark 3.2: Although we cannot prove the convexity of problem (P2), the convergence of the ellipsoid

method can be ensured as explained in the following. The Lagrangian function of problem (P1) can be

written as
KI
∑

i=1

αiri +

KE
∑

j=1

[

θj

(

Tr

[(

∑

i∈KI

Si + SE

)

Gj

]

−Ej

)

−θ0

(

Tr

[

∑

i∈KI

Si + SE

]

− Psum

)]

(30)

whereθ0 and{θj}KE

j=1 are the Lagrange multipliers with respect to the constraints in (9) and (8), respec-

tively. On the other hand, the Lagrangian function of problem (12) can be written as

KI
∑

i=1

αiri − β

[

λ0Tr

[

∑

i∈KI

SI + SE

]

−
KE
∑

j=1

λjTr

[(

∑

i∈KI

SI + SE

)

Gj

]

− λ0Psum+

KE
∑

j=1

λjEj

]

(31)

whereβ is the Lagrange variable associated with the constraint of (14). By observing (30) and (31), we

can see that the two Lagrangian functions are identical to each other if we chooseθj = βλj, ∀j ∈ KE .

Thus, the auxiliary variables{λj} can be viewed as the scaled (by a factor of1/β) Lagrange dual variables

of problem (P1). Correspondingly,g({λj}) is related to the dual function of problem (P1), which is known

to be convex. However, since the optimal dual solution forβ in problem (12) varies with{λj}, g({λj}),

it is not necessarily a convex function. Nevertheless, the above relationship reveals that in Lemma 3.5, the

vector
[

Psum− Tr(S̈I),Tr(S̈IG1)− E1, · · · ,Tr(S̈IGKE
)−EKE

]

is indeed the exact sub-gradient for the

13



convex dual function of problem (P1), given the fact thatS̈E with Tr(AS̈E) = 0 is optimal to problem (12)

from Lemma 3.2. Thus, the convergence of the ellipsoid method based on this sub-gradient is guaranteed.

C. Finding Primal Optimal Solution to (P1)

So far, we have obtained the optimal solution to (P2), i.e.,{λ∗
j}, as well as the corresponding optimal

solution to (12) given in (22). According to Remark 3.1, ifA∗ , λ∗
0I −∑KE

j=1 λ
∗
jGj is of full rank, (22)

is the unique solution to (12), which is thus optimal to (P1).However, ifA∗ is not of full rank, (22) is

not the unique solution to (12), and thus may not meet the minimum harvested power constraints in (8).

In the latter case, we need to find one feasible (thus optimal)solution of (P1), denoted by{{S∗
i },S∗

E},

from all the optimal solutions of (12) given in (18) and (20) with {λ∗
j}.

Denote the SVD ofA∗ as [U ∗
1,U

∗
2]Λ

∗ [U ∗
1,U

∗
2]

H . Then following (18) and (20), we can write the

information and energy covariance matrices as

Si = U ∗
1B

∗
i (U

∗
1)

H +U ∗
1C i (U

∗
2)

H +U ∗
2C

H
i (U ∗

1)
H

+U ∗
2Di (U

∗
2)

H , ∀i ∈ KI (32)

SE = U ∗
2E (U ∗

2)
H (33)

whereB∗
i is obtained by solving (21) with{λ∗

j}. Therefore, it remains to find a feasible and optimal

set of {Ci}, {Di} andE such that the minimum harvested power constraints in (P1) are all satisfied.

Since r∗i does not depend on the choice of{Ci}, {Di} and E, ∀i ∈ KI, finding the primal optimal

solution corresponds to solving a feasibility problem onlyinvolving the constraints in (9) and (10). Note

that in general, there can be more than one feasible solutions to such a feasibility problem. Among them,

we are interested in the solution with low-rank informationcovariance matrices in order to minimize

the decoding complexity at the ID receiver. Therefore, we propose to minimize the sum of the ranks of

all information covariance matrices, i.e.,
∑

i∈KI
rank(Si). However, the rank function is not convex. By

applying the convex approximation of the rank function [30]and using the fact that the nuclear norm of
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a covariance matrix equals to its trace, we solve the following problem to find a desired optimal solution.

(P4) : Min.
{C i},{Di},E

∑

i∈KI

Tr (Si) (34)

s.t. Tr

[(

∑

i∈KI

Si + SE

)

Gj

]

≥ Ej , ∀j ∈ KE (35)

Tr

(

∑

i∈KI

Si + SE

)

≤ Psum (36)

SE � 0,Si � 0, ∀i ∈ KI (37)

whereSi andSE are given in (32) and (33), respectively. As a result, the primal optimal solution to (P1)

is finally obtained. Note that in the case that the obtained solution of (P2) with (22) is not feasible to (P1),

the information covariance matrices may need to be expandedaccording to (32) if adding dedicated energy

signal still cannot satisfy the energy requirements of all EH receivers. By combining the procedures in

Sections III-A, III-B and III-C, the overall algorithm for solving problem (P1) is summarized in Table I.

For the algorithm given in Table I, the computation time is dominated by the ellipsoid method in steps

1)-3) and the SDP in step 4). In particular, the time complexity of step a) is of orderm3K2
I + m2K3

I

by standard interior point method [34], wherem is the rank of matrixA. Therefore, the worst case

complexity is of orderN3K2
I + N2K3

I . For step b), the complexity for computing the sub-gradients of

g({λj}) and the constraints in (24), (25) and (26) is of orderN2KE , and that for updating{λj} is

of order K2
E . Thus, the time complexity of steps a)-b) isO(N3K2

I + N2K3
I + N2KE + K2

E) in total.

Note that step 2) iteratesO(K2
E) times to converge [34], thus the total time complexity of steps 1)-3) is

O (K2
E(N

3K2
I +N2K3

I +N2KE +K2
E)). The time complexity of solving SDP in step 4) isO(K3

IN
3.5+

K4
I ) [32]. Thus, the overall complexity isO (K2

E(N
3K2

I +N2K3
I +N2KE +K2

E) +K3
IN

3.5 +K4
I ) at

most for the algorithm in Table I.

It is worth pointing out that in general there exist three cases for the optimal solution of (P1) obtained

by the algorithm in Table I. For convenience, we denoteS∗
I =

∑

i∈KI
S∗

i .

1) S∗
I = 0 andS∗

E � 0: in this case, no information can be transferred without violating the minimum

harvested power constraints. This situation only occurs when the channel of each ID receiver is

orthogonal to that of any EH receiver (i.e.,hH
i gj = 0, ∀i ∈ KI , j ∈ KE), and full transmit power

is used for ensuring the harvested power constraints. Note that under practical setup with randomly

generated wireless channels, this case does not occur.
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TABLE I

ALGORITHM 1: ALGORITHM FOR SOLVING PROBLEM (P1)

1) Initialize λj ≥ 0, ∀j ∈ KE .

2) Repeat:

a) Obtain{S̄i} by solving problem (21) with given{λj};

b) Compute the sub-gradients ofg({λj}) and the constraints in (24), (25) and (26), and update{λj} accordingly using the ellipsoid

method [33].

3) Until {λj} converges within a prescribed accuracy.

4) Setλ∗

j = λj ,∀j ∈ KE . If A∗ is not of full rank and the obtained solution by (22) is not feasible to (P1), then find the optimal

covariance matrices for information and energy transfer bysolving problem (P4).

2) S∗
I � 0 andS∗

E = 0: in this case, no dedicated energy signal is required. This corresponds to that

the energy harvested from the information signals at each EHreceiver is sufficient to satisfy the

harvested power constraints. One situation for this case tooccur is that ifH is of full rank, thenA∗

is also full rank such that the unique optimal solution to problem (12) (and thus optimal to (P1)) is

S∗
i = U ∗

1B
∗
i (U

∗
1)

H , ∀i ∈ KI , andS∗
E = 0 from Remark 3.1.

3) S∗
I � 0 andS∗

E � 0: in this case, dedicated energy signal is required to guarantee the harvested

power constraints while maximizing the WSR. Interestingly, given the strong duality between (P1)

and (P2) as well as Lemma 3.2, the optimal dedicated energy signal is orthogonal to the MISO

channels of all the ID receivers.Therefore, the extra processing of pre-canceling the interference

caused by energy signals at the AP (via DPC) or at each ID receiver is not needed.

Note that the obtained optimal information and energy covariance matrices can have a rank larger than

unity in general. However, our extensive simulation trialsshow that Algorithm 1 always returns rank-

one information covariance matrices thanks to the approximated rank minimization employed in (P4).

Nevertheless, it is difficult for us to guarantee the existence of optimal rank-one information covariance

matrices in general.

Remark 3.3: To further provide insights on the transmit covariance matrices expansion in (P4), we

present an intuitive explanation on how the obtained{C∗
i } and {D∗

i } can help ensure the harvested

power constraints at all the EH receivers. First, denote themiddle two terms in (32) involving{Ci}

asOi, i.e., Oi = U ∗
1Ci (U

∗
2)

H + U ∗
2C

H
i (U ∗

1)
H , ∀i ∈ KI. Since the columns ofU ∗

1 andU ∗
2 form the
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orthogonal basis for the range and null space ofA∗, Oi has the following two properties:

Tr (Oi) = 0, ∀i ∈ KI (38)

Tr (OiA
∗) = 0, ∀i ∈ KI . (39)

Based on (38) and (39) with some manipulations, it follows that

KE
∑

j=1

λ∗
jTr (OiGj) = 0, ∀i ∈ KI . (40)

From (38), it is observed thatOi’s do not cost any transmission power. Furthermore, according to (39) and

the second point of Lemma 3.1,Oi’s do not affect the data rate of ID receivers, i.e.,ri, ∀i ∈ KI. However,

based on (40), it is observed thatOi’s serve the purpose of re-allocating the power harvested ateach EH

receiver from the information embedded signals without affecting the data rate of each ID receiver. This

reallocation is necessary if there existsj ∈ KE such that Tr
[(

∑

i∈KI
U ∗

1B
∗
i (U

∗
1)

H + S∗
E

)

Gj

]

< Ej .

Finally, from the theory of Schur complement [33], it is known that S∗
i � 0 if and only if (iff) the

following conditions are satisfied:

B∗
i � 0 (41)

(

I −B∗
i (B

∗
i )

†
)

C i = 0 (42)

Di −CH
i (B

∗
i )

†C i � 0. (43)

Therefore,Di may be required to ensure thatS∗
i � 0.

IV. SEPARATE INFORMATION AND ENERGY SIGNAL DESIGN

So far, we have optimally solved problem (P1) by jointly designing the information and energy signals,

which however requires significant computational complexity due to the iterative implementation based

on the ellipsoid method. To reduce the complexity, in this section, we propose two suboptimal algorithms

with separate information and energy signal design, namelyID/EH oriented separate information and

energy signal design (IDSIED/EHSIED). Note that since separate information and energy signal design

is assumed in both suboptimal algorithms, unlike the optimal solution, the energy signal is in general not

orthogonal to the channels of all the ID receivers; as a result, the extra processing of pre-canceling the

interference caused by energy signals at the AP (via DPC) or at each ID receiver is needed.
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A. ID Oriented Separate Information and Energy Signal Design

In this algorithm, the total transmit powerPsum is divided into two parts:PI andPsum− PI (0 ≤ PI ≤

Psum), which are exclusively allocated to information and energy signals, respectively. With any given

power allocation, i.e.,PI , the information covariance matrices{Si} are first designed to maximize the

WSR for all ID receivers, by solving the following optimization problem:

Max.
{Si},r

KI
∑

i=1

αiri

s.t. {ri} ∈ CBC ({hi}, {Si})

Tr

(

∑

i∈KI

Si

)

≤ PI

Si � 0, ∀i ∈ KI . (44)

Note that problem (44) is a WSRMax problem in MISO-BC under a single MaxLTCC, which can be

solved by the general BC-MAC duality with a guaranteed rank-one solution.

Next, let
{

S
′

i(PI)
}

be the optimal solution of (44) givenPI ≥ 0. The energy covariance matrixSE is

then optimized to ensure that the harvested power constraint of each EH receiver is satisfied, as follows:

find SE

s.t. Tr

[(

∑

i∈KI

S
′

i(PI) + SE

)

Gj

]

≥ Ej , ∀j ∈ KE

Tr (SE) ≤ Psum− PI

SE � 0. (45)

Since problem (45) is a standard SDP, it thus can be solved by standard convex optimization techniques,

e.g. the ellipsoid method [34].

Note that problem (45) can be infeasible, which means that the corresponding power allocation is

not admissible. In order to find a feasible optimal power allocation between the information and energy

signals, under which the WSR of all ID receivers is maximizedand the harvested power constraints of

all EH receivers are satisfied, we further employ bisection method to updatePI , as summarized in Table

II. The convergence of this algorithm is guaranteed if problem (P1) is feasible. It is because problem (45)

is equivalent to the feasibility problem (11) withPI = 0.
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TABLE II

ALGORITHM 2: ID ORIENTED SEPARATE INFORMATION AND ENERGY SIGNAL DESIGN

1) Given Pmin(, 0) ≤ P ∗

I < Pmax(, Psum).

2) Repeat

a) PI = 1
2
(Pmin + Pmax).

b) Obtain
{

S
′

i(PI)
}

by solving problem (44).

c) Solve problem (45).

d) If problem (45) is feasible givenPI , setPmin← PI ; otherwise, setPmax← PI .

3) Until |Pmax− Pmin| < δ whereδ is a small positive constant that controls the algorithm accuracy.

B. EH Oriented Separate Information and Energy Signal Design

In this algorithm, the energy signals are first designed to meet all the harvested power requirements at

EH receivers while using the minimum transmit power, by solving the following problem:

Min.
SE

Tr (SE)

s.t. Tr [SEGj ] ≥ Ej, ∀j ∈ KE

SE � 0. (46)

Note that (46) is again a standard SDP, which thus can be solved by standard convex optimization

techniques, e.g. the ellipsoid method [34].

Let S
′

E be the optimal solution of problem (46). Then, the remainingpower is allocated to information

signals to maximize the WSR, i.e.,

Max.
{Si},r

KI
∑

i=1

αiri

s.t. r ∈ CBC ({hi}, {Si})

Tr

(

∑

i∈KI

Si

)

≤ Psum− Tr
(

S
′

E

)

Si � 0, ∀i ∈ KI . (47)

Similarly to (44), problem (47) is a WSRMax problem in MISO-BC under a single MaxLTCC, which

thus can be solved. Compared with IDSIED in Section IV-A, EHSIED has even lower complexity with

no iterative updating of power allocation required. However, the performance of EHSIED is in general

worse than IDSIED in terms of WSRMax. This is because the contribution of information signals to the

EH receivers is not considered in EHSIED, such that the transmit power for energy signals is in general

over-allocated.
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Proposition 4.1: If the channel of each ID receiver is orthogonal to that of anyEH receiver, i.e.,

hH
i gj = 0, ∀i ∈ KI , ∀j ∈ KE , both IDSIED and EHSIED have the same performance as Algorithm 1,

i.e., IDSIED and EHSIED are both optimal.

Proof: Proposition 4.1 can be proved by identifying the fact that with the channels of all the ID

receivers being orthogonal to those of all the EH receivers,problem (P1) can be effectively decomposed

into two subproblems: one for information and the other for the energy transmission design, which interact

through power allocation only. Given the objective of WSRMax, it is not difficult to see that allocating the

minimum power to energy transfer is optimal, i.e., EHSIED, which means the iterative power updating

or IDSIED is not necessary. The details are omitted for brevity.

V. NUMERICAL RESULTS

In this section, numerical examples are provided to validate our results. It is assumed that the signal

attenuation from the AP to all EH receivers is30 dB corresponding to an equal distance of 5 meter, and that

to all ID receivers is 70 dB at an equal distance of 20 meters. For the purpose of exposition, we define the

(channel) correlation between ID receiveri and EH receiverj asρi,j =

∣

∣

∣
h

H

i gj

∣

∣

∣

‖hi‖‖gj
‖
, ∀i ∈ KI , ∀j ∈ KE . Let

the correlation matrixρ be the collection of all correlation coefficients with[ρ]i,j = ρi,j , ∀i ∈ KI , ∀j ∈ KE .

We also set the harvested power constraints of all the EH receivers identical for simplicity, i.e.,Ej =

E, ∀j ∈ KE . For convenience, we further denoteEmax as the maximum allowable value ofE for (P1)

to be feasible. Note that the value ofEmax depends on the exact channel realization of all EH receivers,

which can be obtained by solving the following SDP:

Max.
Emax,SE

Emax

s.t. Tr [SEGj ] ≥ Emax, ∀j ∈ KE

Tr (SE) ≤ Psum, SE � 0. (48)

Finally, we setPsum = 5 Watt(W) andσ2 = −50 dBm.

A. Illustration of Optimal Information and Energy Signals

In this subsection, we provide one numerical example to demonstrate the necessity of expanding the

obtained solution to (P2) according to (32), for the case that the optimal solution of problem (P2) in (22)

is not feasible to (P1). It is assumed thatN = 10, KI = 1, KE = 10, E = 0.9Emax, and the correlations
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between ID and EH receivers are distributed asρ1,j = 2−j, ∀j ∈ KE , for the purpose of demonstration.

The results are summarized in Table III (in mW), in which the harvested power of each EH receiver with

the optimal solution to (P2), the optimal information signal to (P1) after expansion, and both the optimal

information and energy signals to (P1) are listed in the second, third and fourth column, respectively.

By comparing the second and last columns of Table III, it is first observed that the obtained solution

to (P2) results in imbalanced harvested power distributionamong EH receivers, and in particular does not

meet the minimum harvested power constraints for EH receivers 9 and10. For the imbalanced distribution,

it is also interesting to observe that for any two EH receivers i, j ∈ KE , ρ1,i > ρ1,j, i.e., the channel of

EH receiveri has higher spatial correlation with that of ID receiver, does not mean that EH receiveri

can harvest more power from the information embedded signal. This is because the information transfer

needs to be compromised for energy transfer and shift its transmission direction away from that of rate

maximization. According to the third column of Table III, the harvested power levels of different EH

receivers are re-allocated to achieve a more balanced distribution after expanding the information signal

based on (32), which confirms the results in Remark 3.3. Finally, sinceρ1,10 = 2−10 ≈ 0, i.e, EH receiver

10 is almost orthogonal to the ID receiver, extra dedicated energy signal is necessary to satisfy its harvested

power requirement.

TABLE III

RESULTS ONFINDING PRIMAL FEASIBLE SOLUTION FOR PROBLEM(P1)

EH Tr
[

U∗
1B

∗
1 (U

∗
1)

H
Gj

]

Tr [S∗
1Gj ] Tr [(S∗

1 + S∗

E)Gj ] Ej

receiverj (mW) (mW) (mW) (mW)

1 0.5035 0.4995 0.4995 0.4995

2 0.4995 0.4995 0.4995 0.4995

3 0.5013 0.4995 0.4995 0.4995

4 0.5005 0.4995 0.4995 0.4995

5 0.5079 0.4995 0.4995 0.4995

6 0.5000 0.4995 0.4995 0.4995

7 0.4996 0.4995 0.4995 0.4995

8 0.5057 0.4995 0.4995 0.4995

9 0.4881 0.4995 0.4995 0.4995

10 0.4603 0.4693 0.4995 0.4995

B. Capacity Region Comparison

In this subsection, we illustrate the capacity regions withand without harvested power constraints for

the case ofN = 5, KI = 2 and KE = 3 in Fig. 2 and Fig. 3. The achievable rate regions obtained
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by the two benchmark algorithms, i.e., IDSIED and EHSIED, are also presented for comparison. The

harvested power requirement is set to beE = 0.5Emax for Fig. 2(a) and Fig. 3(a), andE = 0.9Emax for

Fig. 2(b) and Fig. 3(b). For the correlations between EH and ID receivers, we consider the following two

configurations:

1) Highly correlated setup (HCS): for Fig. 2, each ID receiver is assumed to be highly correlated with

all EH receivers as

ρHCS =

[

1/2 1/4 1/8

1 1/2 1/4

]

(49)

2) Less correlated setup (LCS): for Fig. 3, we consider a lesscorrelated setup. In particular, it is

assumed that ID receiver1 is orthogonal to EH receiver2 and ID receiver2 is orthogonal to all

EH receivers. Thus, the correlation matrix is given as

ρLCS =

[

1/2 0 1/8

0 0 0

]

(50)

From Fig. 2, it is first observed that the capacity loss with harvested power constraints for EH receivers

is not significant under HCS for both the cases ofE = 0.5Emax and 0.9Emax. This observation can be

explained as follows: with the channels of ID receivers being highly correlated to those of EH receivers,

each EH receiver can harvest significant amount of power fromthe information signals intending for

ID receivers. As a result, the harvested power requirementsare more easily satisfied while maximizing

the transmission rate of ID receivers. Moreover, it is observed that EHSIED performs much worse than

IDSIED and the optimal algorithm. It is because that EHSIED ignores the fact that information signals

can also contribute to EH due to their broadcast property, such that only a small porion of power is

allocated for information transfer. Finally, asE increases, the performance gap between IDSIED and the

optimal algorithm increases due to the separation of information and energy signal design.

From Fig. 3, it is observed that under LCS the capacity loss due to harvested power constraints is much

larger than that under HCS (cf. Fig. 2), which also increasesdramatically asE increases. This is because

the information signals for ID receivers have limited contribution to the EH receivers. One interesting

result shown in Fig. 3 is that the performance gap between theoptimal and two benchmark algorithms

reduces as ID receiver2 being given higher priority, and converges to zero while maximizing the rate of

ID receiver2 exclusively. Since the channel of ID receiver2 is orthogonal to all EH receivers, problem

(P1) withα1 = 0 andα2 > 0 can be decomposed into two subproblems as explained in Proposition 4.1.

Consequently, IDSIED and EHSIED have the same performance as the optimal algorithm.
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Fig. 2. Capacity region under HCS: (a)E = 0.5Emax; (b) E = 0.9Emax.
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Fig. 3. Capacity region under LCS: (a)E = 0.5Emax; (b) E = 0.9Emax.

C. Sum-rate Comparison

To further evaluate the performance of the optimal and two benchmark algorithms, Fig. 4 compares

their achieved sum-rate versus different EH constraint values ofE, where the configurations for Fig.

4(a) and Fig. 4(b) are the same as those for Fig. 2 and Fig. 3, respectively. It is first observed that the

optimal algorithm outperforms both the two suboptimal algorithms, and the performance gap increases

as E increases. This observation further validate our theoretical results and the effectiveness of joint

information and energy signals design. Note that all the three algorithms achieve the same sum-rate when
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E = 0, which is the maximum sum-rate achievable without harvested energy constraint. Second, we

observe that the optimal algorithm and the IDSIED have similar performance whenE is small. This is

because that whenE is sufficiently small, the information signals obtained by maximizing the sum-rate

are sufficient to guarantee the harvested power constraintsat each EH receiver. However, asE increases,

the information transfer needs to be compromised for energytransfer, such that the optimal directions of

the information signals are shifted from those obtained by maximizing the sum-rate. Finally, by comparing

IDSIED and EHSIED, it is observed that IDSIED outperforms EHSIED over the entire range of values

of E. As E increases, IDSIED diverges from EHSIED under HCS in Fig. 4(a) but converges to EHSIED

under LCS in Fig. 4(b). This is because under LCS, the information embedded signals can no longer make

significant contribution to EH receivers, such that IDSIED has less noticeable advantage over EHSIED,

especially when the harvested power constraints become stringent.
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Fig. 4. Sum-rate performance comparison of optimal versus benchmark algorithms: (a) HCS; (b) LCS.

At last, in Fig. 5, we illustrate the average sum-rate performance of the optimal and two benchmark

algorithms versus different values ofE over200 randomly generated channels (various channel correlation

between ID and EH receivers) for the case ofN = 5, KI = 2 andKE = 3. The channel vectorhi’s are

generated from i.i.d. Rayleigh fading. However, due to the short transmission distance of EH receivers,

for which the line-of-sight (LOS) signal is dominant,gj ’s are generated based on the Rician fading model

used in [9]. It is observed that, on average, the performancegap between the optimal and two benchmark

algorithms increases asE increases. However, the difference between IDSIED and EHSIED stays roughly
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the same from moderate to large values ofE.

VI. CONCLUSION

In this paper, we study a MISO-BC for SWIPT, where a multi-antenna AP delivers information and

energy simultaneously to multiple single-antenna receivers. We characterize the capacity region for the ID

receivers by maximizing their WSR subject to the sum-power constraint at the AP and a set of minimum

harvested power constraints at EH receivers. This problem corresponds to a new type of WSRMax problem

for MISO-BC with combined MaxLTCC and MinLTCCs, for which a new optimal algorithm is proposed

by extending the BC-MAC duality and applying the ellipsoid method. Suboptimal algorithms with separate

information and energy signal designs are also presented. The proposed algorithms provide useful insights

on solving general WSRMax problems with both MaxLTCCs and MinLTCCs, and the established capacity

region provides a performance upper bound on all practically implementable precoding/beamforming

algorithms for SWIPT in MISO-BC.

APPENDIX A

PROOF OFLEMMA 3.1

The first two conditions of Lemma 3.1 can be proved by contradiction. For convenience, we define

SI ,
∑

i∈KI
Si as the sum of all information covariance matrices. Furthermore, it is sufficient to consider
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only the case thatSI can be expressed as

SI =

N
∑

n=1

µnunu
H
n (51)

whereun ∈ CN×1 is the nth eigenvector ofA, i.e., [u1, · · · ,uN ] = [U 1,U 2] from (17), andµn is a

non-negative real number,n = 1, · · · , N . As a result,
∑

i∈KI
Tr(ASi) = Tr (ASI) can be expressed as

∑N
n=1 µnu

H
n Aun.

Suppose thatA � 0, i.e., at least one of the eigenvalues ofA is negative, andg({λj}) has an

upper bounded value org({λj}) < +∞. Without loss of generality, we assume thatuk is one of the

eigenvectors associated with the negative eigenvalues ofA. Then, it follows thatuH
k Auk < 0 and

µku
H
k Auk → −∞ asµk approaches+∞. Therefore, it is easy to verify that by choosingSI based on

(51) andSi =
1
KI

SI , ∀i ∈ KI with µk being large enough,µi, ∀i 6= k can be set to be arbitrary large

such that we can achieve arbitrary large WSR for ID receiverswithout violating (14), which results in

g({λj}) = +∞. Consequently,A has to be positive semi-definite. Since similar arguments can be used

to verify the second condition of Lemma 3.1, the details are omitted for brevity.

Next, we prove the third condition of Lemma 3.1. GivenA being positive semi-definite, it has a positive

semi-definite square root, i.e.,A = A1/2A1/2. Therefore, Tr(ASI) and Tr(ASE) can be expressed as

Tr(A1/2SIA
1/2) and Tr(A1/2SEA

1/2), respectively. Since bothA1/2SIA
1/2 andA1/2SEA

1/2 are positive

semi-definite, it follows that Tr(A1/2SIA
1/2) ≥ 0 and Tr(A1/2SEA

1/2) ≥ 0. Lemma 3.1 is thus proved.

APPENDIX B

PROOF OFLEMMA 3.2

From the proof of Lemma 3.1 in Appendix A,
∑

i∈KI
Tr(ASi) ≥ 0 and Tr(ASE) ≥ 0. Given the fact

that only {Si} is related to the information transfer, any solution to problem (12) with Tr(ASE) > 0

reduces the transmit power allocated to the information transfer and is thus suboptimal. Therefore, the

optimal energy covariance matrix needs to satisfy Tr(AS̄E) = 0 equivalentlyAS̄E = 0, which means

S̄E lies in the null space ofA. According to (17), the vectors inU 2 form the orthogonal basis for the null

space ofA. Therefore,S̄E in general can be expressed asS̄E = U 2ĒUH
2 , whereĒ ∈ C(N−m)×(N−m) is

any positive semi-definite matrix. Note that for case ofm = N , i.e.,A is of full rank,AS̄E = 0 implies

that S̄E = 0. Lemma 3.2 is thus proved.
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APPENDIX C

PROOF OFLEMMA 3.3

Without loss of generality,Si can be expressed as

Si = [U 1,U 2]

[

Bi Ci

CH
i Di

]

[U 1,U 2]
H (52)

= U 1BiU
H
1 +U 1CiU

H
2 +U 2C

H
i U

H
1 +U 2DiU

H
2 (53)

whereBi ∈ Cm×m, Di ∈ C(N−m)×(N−m) and Ci ∈ Cm×(N−m), ∀i ∈ KI. Note thatBi = BH
i and

Di = DH
i . SinceU 2 lies in the null space ofA (from Lemma 3.2) and consequently in the null space of

H (from Lemma 3.1), it is observed thatri and
∑

i∈KI
Tr(ASi) do not depend onC i andDi, ∀i ∈ KI.

Consequently, it is optimal to setCi = 0 andDi = 0, ∀i ∈ KI, and accordingly problem (19) with given

{λj} can be further simplified as (21) given in Lemma 3.3. WithÂ being full rank, problem (21) can be

solved by the general BC-MAC duality as in [25], and results in unique rank-one information covariance

matrices, i.e.,U 1B̄iU
H
1 , i ∈ KI, the details of which are illustrated below.

Without loss of generality, we assume thatα1 ≥ α2 ≥ · · · ≥ αKI
≥ 0. For the MISO-BC, its dual

single-input multiple-output (SIMO) MAC consists ofKI single-antenna transmitters that send independent

information to one common receiver withN antennas. At transmitteri, i ∈ KI , let pi be its transmit power,

s
(m)
i be a CSCG random variable representing its transmitted information signal, and̂h

H

i be its channel

vector to the receiver. Then the received signal in the dual SIMO-MAC is expressed as

y(m) =

KI
∑

i=1

ĥ
H

i

√
pis

(m)
i + z(m) (54)

wherez(m) ∼ CN
(

0, Â
)

.

According to [25], problem (21) is equivalent to its dual MACproblem expressed as

Max.
{pi≥0}

KI
∑

i=1

αir
(m)
i

s.t.

KI
∑

i=1

pi ≤ PA (55)

wherer(m)
i is given as

log2

∣

∣

∣
Â+

∑i
k=1 pkĥkĥ

H

k

∣

∣

∣

∣

∣

∣
Â+

∑i−1
k=1 pkĥkĥ

H

k

∣

∣

∣

(56)

due to the polymatroid structure of the MAC capacity region [31], and the user decoding order being

determined by the magnitude ofαi’s. Since problem (55) is convex, it can be solved efficientlyvia standard
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convex optimization techniques. With the optimal solutionto problem (55), i.e.,{p⋆i }, at hand, the optimal

receive beamforming vector can be obtained based on the minimum-mean-squared-error (MMSE) principle

as

v∗
i =

(

Â+
∑i−1

k=1 p
∗
kĥkĥ

H

k

)−1

ĥi
∥

∥

∥

∥

(

Â+
∑i−1

k=1 p
∗
kĥkĥ

H

k

)−1

ĥi

∥

∥

∥

∥

, ∀i ∈ KI . (57)

After obtaining the optimal solution of{v∗
i , p

∗
i } for the uplink problem (55), we then map the solution

to {w∗
i } for the downlink problem (21). As shown in [25], since the downlink transmit beamforming

vectors are identical to the uplink receive beamforming vectors up to certain scaling factors,w∗
i can be

expressed asw∗
i =

√

q∗i v
∗
i , ∀i ∈ KI. Furthermore, the rate-tuples achieved for both the BC and MAC are

identical. Therefore, the following set of equations can beutilized to find{q∗i }:

log2

(

1 +
q∗i |ĥ

H

i v
∗
i |2

∑KI

k=i+1 q
∗
k|ĥ

H

i v
∗
k|2 + 1

)

= log2

∣

∣

∣
Â+

∑i
k=1 p

∗
kĥkĥ

H

k

∣

∣

∣

∣

∣

∣
Â+

∑i−1
k=1 p

∗
kĥkĥ

H

k

∣

∣

∣

, ∀i ∈ KI (58)

i.e.,

q∗i =
2

(

r
(m)
i

)∗

− 1

|ĥH

i v
∗
i |2

(

KI
∑

k=i+1

q∗k|ĥ
H

i v
∗
k|2 + 1

)

, ∀i ∈ KI . (59)

Finally, the optimal solution to problem (21) can be computed as

B̄i = w∗
i (w

∗
i )

H , ∀i ∈ KI . (60)

Lemma 3.3 is thus proved.

APPENDIX D

PROOF OFLEMMA 3.4

Since the encoding order of the BC is the reverse of the decoding order of its dual MAC [25], which

can be obtained from Section III-A while solving problem (21) and is assumed to be in accordance with

the ID receiver index without loss of generality, problem (19) can now be written explicitly as

Max.
{Si},r

KI
∑

i=1

αiri

s.t.
∑

i∈KI

Tr(ASi) ≤ PA

Si � 0, ∀i ∈ KI (61)
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whereri is given by

ri = log2





σ2 + hH
i

(

∑KI

k=iSk

)

hi

σ2 + hH
i

(

∑KI

k=i+1Sk

)

hi



 . (62)

The KKT optimality conditions of problem (61) are given by

∂
∑KI

i=1 ri
∂Si

= ωA+Ψi, ∀i ∈ KI

ω

[

∑

i∈KI

Tr(ASi)− PA

]

= 0

Tr (ΨiSi) = 0, ∀i ∈ KI (63)

whereω ≥ 0 andΨi � 0, ∀i ∈ KI are the Lagrange multipliers associated with
∑

i∈KI
Tr(ASi) ≤ PA

andSi � 0, ∀i ∈ KI , respectively.

This lemma can be proven by first showing that the duality gap between problem (61) and its Lagrange

dual problem is zero, and the KKT conditions given in (63) aresufficient for a solution to be optimal for

problem (61). Since the proofs are similar that of [25, Proposition 2] and [25, Proposition 3], they are

omitted for brevity. To complete the proof, we need further show that the optimal value of problem (19)

is equal to that of (P1) with any fixed encoding order, the details of which are given as follows.

We first consider a fixed encoding order for problem (P1) termed as problem (P1F), given by the optimal

encoding order for problem (P2), which has been assumed to bethe same as the ID receiver index order.

Under this encoding order, the information rate for ID receiver i is given in (62).

Note that the optimal solution of problem (P1F) is a lower bound on the optimal solution of problem

(P1). The KKT conditions of problem (P1F) can be written as

∂
∑KI

i=1 ri
∂Si

= θ0I −
KE
∑

j=1

θjGj +Ωi, ∀i ∈ KI (64)

∂
∑KI

i=1 ri
∂SE

= θ0I −
KE
∑

j=1

θjGj +ΩE (65)

θj (Tr [(SI + SE)Gj ]− Ej) = 0, ∀j ∈ KE (66)

θ0 (Tr [SI + SE ]− Psum) = 0 (67)

where {θj}KE

j=1, θ0, {Ωi} and ΩE are the Lagrange multipliers with respect to the constraints in (8),

(9) and (10), respectively. For convenience, we defineSI ,
∑

i∈KI
Si. When the optimal solution of

problem (P1F) is achieved, we assume that the correspondingoptimal primal and dual solutions arẽSI ,

S̃E , {θ̃j}KE

j=1, θ̃0, {Ω̃i} and Ω̃E.
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We now write the KKT conditions of problem (19) withλ0 = θ̃0 andλj = θ̃j , ∀j, as follows:

∂
∑KI

i=1 ri
∂Si

= ω

(

θ̃0I −
KE
∑

j=1

θ̃jGj

)

+Ψi, ∀i ∈ KI

ω

[

θ̃0Tr (SI)−
KE
∑

j=1

θ̃jTr (SIGj)− θ̃0Psum+

KE
∑

j=1

θ̃jEj

]

= 0. (68)

If we chooseSI = S̃I + S̃
Ã
E , whereS̃

Ã
E = Ũ 1Ũ

H

1 S̃EŨ 1Ũ
H

1 and Ũ 1 consists of the orthogonal basis

defining the range of̃A = θ̃0I −∑KE

j=1 θ̃jGj similar as that in (17),ω = 1, andΨi = Ω̃i, ∀i ∈ KI , then

KKT conditions in (68) are satisfied. According to the fact that the duality gap between problem (61) and

its Lagrange dual problem is zero,̃SI + S̃
Ã
E is optimal for problem (19). Therefore, the optimal value of

problem (19) withλ0 = θ̃0 andλj = θ̃j , ∀j, is equal to the optimal value of problem (P1F). Therefore,

the optimal value of problem (P1F), which is a lower bound on the optimal value of problem (P1), meets

the optimal value of problem (19) withλ0 = θ̃0 andλj = θ̃j , ∀j, which is an upper bound on the optimal

value of problem (P1). The above results also imply that the minimum value ofg({λj}) over {λj} is

achieved whenλ0 = θ̃0 andλj = θ̃j , ∀j. The proof of Lemma 3.4 thus follows.

APPENDIX E

PROOF OFLEMMA 3.6 AND LEMMA 3.7

We start with proving Lemma 3.6. It is first observed that the condition Null(A) ⊆ Null (H) is

equivalent to thatvi * Null(A), ∀i ≤ t, where t denotes the rank of matrixH, andvi, i = 1, · · · , t,

denote the left singular vectors ofH corresponding to its non-zero singular values. Furthermore, given

A � 0, the conditionvi * Null(A), ∀i ≤ t, can be further expressed asvH
i Avi > 0, ∀i ≤ t. The proof

of Lemma 3.6 thus follows.

Next, we proceed to show Lemma 3.7. For the purpose of illustration, we defineF (λ) = −λ0I +
∑KE

j=1 λjGj , whereλ = [λ0, · · · , λKE
]T . Then the constraint in (25) is equivalent toF (λ) � 0. First, the

semi-definite constraintF (λ) � 0 can be equivalently expressed as a scalar inequality constraint as

f(λ) , λmax(F (λ)) ≤ 0 (69)

whereλmax(·) denotes the largest eigenvalue. Thus, the above constraintcan be equivalently written as

f(λ) = max
‖z‖2=1

zHF (λ)z ≤ 0. (70)
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Given a query pointλ1 = [λ0,1, · · · , λKE,1]
T , we can find the normalized eigenvectorz1 of F (λ1)

corresponding toλmax(F (λ1)). Consequently, we can determine the value of the scalar constraint at a

query point asf(λ1) = zH
1 F (λ1)z1 = λmax(F (λ1)). To obtain a subgradient, we show the following:

f(λ)− f(λ1) = max
‖z‖2=1

zHF (λ)z − zH
1 F (λ1)z1 (71)

≥ zH
1 [F (λ1)− F (λ)]z1 (72)

= ‖z1‖2(λ0 − λ0,1)−
KE
∑

j=1

(

zH
1 Gjz1

)

(λj − λj,1) (73)

where the last equality follows from the affine structure of the semi-definite constraint. Lemma 3.7 thus

follows.
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