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Abstract

This paper studies a multiple-input single-output (MISOpducast channel (BC) featuring simultaneous
wireless information and power transfer (SWIPT), where &iramtenna access point (AP) delivers both information
and energy via radio signals to multiple single-antenneivecs simultaneously, and each receiver implementsreithe
information decoding (ID) or energy harvesting (EH). In tmardar, pseudo-random sequences that agriori
known and therefore can be cancelled at each ID receiver see as the energy signals, and the information-
theoretically optimal dirty paper coding (DPC) is employfed the information transmission. We characterize the
capacity region for ID receivers, by solving a sequence ofylasted sum-rate (WSR) maximization (WSRMax)
problems subject to a maximum sum-power constraint for tReafid a set of minimum harvested power constraints
for individual EH receivers. The problem corresponds to & fierm of WSRMax problem in MISO-BC with
combined maximum and minimum linear transmit covariancastraints (MaxLTCCs and MinLTCCs), which
differs from the celebrated capacity region charactenmaproblem for MISO-BC under a set of MaxLTCCs
only and is challenging to solve. By extending the generatB@tiple access channel (MAC) duality, which
is only applicable to WSRMax problems with MaxLTCCs, and Igjmg the ellipsoid method, we propose an
efficient iterative algorithm to solve this problem glolyatiptimally. Furthermore, we also propose two suboptimal
algorithms with lower complexity by assuming that the imh@tion and energy signals are designed separately.
Finally, numerical results are provided to validate ourgmsed algorithms.

Index Terms

Multiple-input multiple-output (MIMO), broadcast chann@®C), dirty paper coding (DPC), capacity region,
simultaneous wireless information and power transfer (8WYJ energy harvesting, uplink-downlink duality.

. INTRODUCTION

Wireless energy transfer (WET) using radio frequency (Réfals is a promising technology to provide
perpetual power supplies for sensors, radio-frequenaytifisation (RFID) tags, and other devices with
very low power consumption and which are difficult to accéHs [2]. In particular, RF-enabled WET
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enjoys many practical advantages, such as wide coveraggrtmuction cost, small receiver form factor,
and efficient energy multicasting thanks to the broadcasstreaf electromagnetic waves. Of course, RF
signals have also been widely used as a means for trangnitfiormation. To enable a dual use of RF
signals, simultaneous wireless information and powersfean(SWIPT) has become a fast-emerging area
of research([3]+[20], where hybrid access points (APs) amayed to simultaneously deliver both energy
and information to one or more receivers via RF signals.

The idea of SWIPT was first proposed by Varshngy [3], in whiclpaint-to-point single-antenna
additive white Gaussian noise (AWGN) channel for SWIPT wagstigated from an information-theoretic
standpoint. This work was then extended to frequency-8eéee@WGN channels in[[4], where a non-
trivial tradeoff between information rate and harvestedrgm was shown by varying power allocation
over frequency. Prior works [3],[4] have studied the funéaimal performance limits of wireless systems
with SWIPT, where the receiver is ideally assumed to be abldetode the information and harvest the
energy independently from the same received signal. Howévs assumption implies that the received
signal used for harvesting energy can be reused for decadfogmation without any loss, which is
not realizable yet due to practical circuit limitations.r@equently, in[[5],[[6], various practical receiver
architectures for SWIPT were proposed, such as time-sinfichnd power-splitting. The authors in/ [7]
studied SWIPT for fading AWGN channels subject to time-uagyco-channel interference, and proposed
a new principle termed “opportunistic energy harvestindieve the receiver switches between harvesting
energy and decoding information based on the wireless @hammdition and interference power level.

The practical implementation of SWIPT is limited by the sevpath loss and fading of wireless chan-
nels, and multi-antenna processing is an appealing salttiamprove the efficiency of both information
and energy transfer. Recently, there have been a handfdpErp on studying the multi-antenna SWIPT
systems under various setups including broadcast chaB@g![6], [8]-[13], multicast systeni [14]-[16],
interference chann€el [17]-[19], and relay chanhel [20]féxsthe multi-antenna BC, the authors in [5] first
characterized the rate-energy (R-E) tradeoff for a singalifmultiple-input multiple-output (MIMO) BC
with two (either separated or co-located) receivers imgleting information decoding (ID) and energy
harvesting (EH), respectively. The study in [5] was thereeged to the case with imperfect channel state
information (CSI) at the transmittelr/[8]. Moreover] [9],0land [11] studied the multiple-input single-
output (MISO) BC for SWIPT with multiple separated and codted ID and EH receivers, respectively. In
[12], [13], physical layer security is considered under RIBSC for SWIPT by adding additional secrecy
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information transmission constraint, which reveal ins¢ireg new insights that the energy-carrying signal
can also play the role of artificial noise (AN) to ensure segrm information transmission. However,
all these prior works on multi-antenna BC consider low-ctemipy linear precoding/beamforming for
SWIPT, which is in general suboptimal. Therefore, the fundatal limits on the information and energy
transfer in general multi-antenna BC for SWIPT remain umkmothus motivating this work.

This paper studies a MISO-BC for SWIPT, where a multi-anéeAR delivers both wireless information
and energy to multiple receivers each with a single anteBaah receiver implements either ID or EH
annQ. Pseudo-random sequences that arpriori known and therefore can be cancelled at each ID
receiver are used as the energy signals, and the informttemretically optimal dirty paper coding (DPC)
[24] is employed for the information transmission. Undeistketup, we characterize the fundamental
limits on the information and energy transfer of the congdeMISO-BC for SWIPT, by establishing
the capacity region for the ID receivers while ensuring givainimum energy requirements for EH
receivers. Specifically, the capacity region is charaoteriby solving a sequence of weighted sum-rate
(WSR) maximization (WSRMax) problems for all ID receivetdhgect to a maximum transmit sum-power
constraint for the AP, and a set of minimum harvested poweasttaints for individual EH receivers.
Interestingly, these problems belong to a new form of WSRMeoblem for MISO-BC with combined
maximum and minimum linear transmit covariance constsgiltaxLTCCs and MinLTCCs), which is non-
convex in general and thus difficult to be solved optimallydbgndard convex optimization techniques.

It should be noted that the WSRMax problem with only MaxLTCiss been investigated in_[25]
to establish the capacity region of multi-antenna BC, inoha general BC-multiple access channel
(MAC) duality is applied to solve this problem optimally. Wever, the WSRMax problem in our case
is different and more challenging due to the newly introdud&nLTCCs that arise from the minimum
harvested power constraints for the EH receivers. As a trethd general BC-MAC duality does not
directly apply here. To overcome this challenge, we propasesfficient algorithm to optimally solve
the new WSRMax problem with combined MaxLTCCs and MinLTC®g, extending the general BC-
MAC duality and applying the ellipsoid method. One more sffect of the MinLTCCs is that although
the solution generated by the ellipsoid method achieveoptienal WSR, it may not be feasible to the

*Conventional wireless information and energy receiveesraspectively designed to operate with very different pawguirements (e.g.,
an EH receiver for a low-power sensor requires a receivedep@i —10 dBm or more for real-time operation, while 1D receivers such
as cellular and WiFi mobile receivers often operate with @reed power less than50 dBm [5]), and thus the existing RF front-end for
wireless EH cannot currently be used for ID and vice versa.



primal problem. This is because the equivalent noise camaeé matrix of the dual MAC may not be
of full rank, which implies an infinite number of possible sbns for the dual MAC. In this case, a
semi-definite program (SDP) needs to be further solved taiola primal feasible solution. To the best
of our knowledge, our approach is novel and has not beenestudithe literature. It is shown that at the
optimal solution, the energy signals should be in the nudicepof all ID receivers’ channels (if it is not
an empty set). Furthermore, to reduce the implementatiomptexity of the optimal solution (especially
the iterative search with the ellipsoid method), we proptwe suboptimal algorithms by separately
designing the information and energy signals. Finally, atioal results are provided to validate our
proposed algorithms.

The remainder of this paper is organized as follows. Sefilioiroduces the system model and problem
formulation. Sectiof1ll and Sectidn 1V present the optiraat suboptimal solutions for the formulated
problem, respectively. Sectign V provides numerical exXaspo validate our results. Finally, Section] VI
concludes this paper.

Notations: Boldface letters refer to vectors (lower case) or matrigggper case). For a square matrix
S, Tr(S) and S~' denote its trace and inverse, respectively, wifile- 0, S < 0 and S % 0 mean
that S is positive semidefinite, negative semidefinite and noritpessemidefinite, respectively. For an
arbitrary-size matrixVf, M?, M* and M denote the conjugate transpose, transpose and pseudseinve
of M, respectively. The distribution of a circularly symmetcomplex Gaussian (CSCG) random vector
with mean vectore and covariance matriX is denoted byC NV (x, 32); and ~ stands for “distributed as”.
C**v denotes the space afx y complex matricesE|[-| denotes the statistical expectatidjx:|| denotes

the Euclidean norm of a complex vectsr and |z| denotes the magnitude of a complex number

1. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a MISO-BC for SWIPT with an AP delivering bothamhation and energy to multiple
receivers over a single frequency band as shown inFig. lrendech receiver implements either ID or EH.
Note that our results apply to arbitrary user locationgicieh realizations and there is no restriction on the
locations of the EH/ID receivers. The receiver-locati@séd example in Fidl] 1 is made for meeting the
practically different received power requirements of EH D receivers. In this system, there dkg > 1
ID receivers and<’; > 1 EH receivers, denoted by the séfs = {1,--- , K;} andKs = {1,--- | Kg},

respectively. It is assumed that all ID and EH receivers aehezquipped with one receive antenna,
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Fig. 1. A MISO broadcast system for simultaneous wirelegsrination and power transfer (SWIPT), where EH receiveescmse to the
AP for effective energy reception.

whereas the AP is equipped wiiki > 1 transmit antennas.

We assume a quasi-static channel model, and denoteC"*! andg; € CV*! as the channel vectors
from the AP to ID receivef € K7 and to EH receivej € K¢, respectively. The AP is assumed to perfectly
know the instantaneous values bf's and g,’s, while each ID receiver knows its own instantaneous
channel. In practice, the CSI of EH receivers can be acquatethe AP by e.g. reverse-link channel
estimation based on training signals sent by the EH recivier exploiting the channel reciprocity in
time-division duplex (TDD) systems [21], or forward-linka@nnel estimation and limited feedback by the
EH receivers in frequency-division duplex (FDD) systemz2][223].

Without loss of generality, the AP transmits; independent information signals, i.e:;, € CV*! Vi ¢
Kz, one for each ID receiver, and one common energy sighal, xz € CV*!, for all the EH receivers.
Thus, the AP transmits th&'-dimensional complex baseband signal

m:ZmewE (1)

€KXt

For information signals, we consider Gaussian signallarg thusx;’'s are independent and identically
distributed (i.i.d.) CSCG vectors with zero mean and caraeé matrixS; = E[x;x], i € K. For

the energy signal, since does not carry any information, it can be implemented witletao$ pseudo-
random sequences that mimics a stationsirdimensional random process with zero mean and covariance

%Since the energy signal does not contain any informatioe,aammon energy signal with arbitrary rank covariance ifigaft to achieve
the optimal energy transfer performance.



matrix SEH Suppose that the maximum sum-power at the AP is denoteé,hy > 0. Then we have

E[z"z] =Tr (Y ,cc, Si+ Se) < Pam

We consider the information-theoretically optimal DPC fioe information transmission, for which the
causal interference can be pre-cancelled at the transmittebe more specific, consider the encoding
order asr(1),...,7(K7), i.e., the information signat,.) for ID receiverr(1) is encoded first, that for
7(2) is encoded second, and so on, wherdenotes some desired permutation okigr In this case, for
any ID receiverr(i), the causal interference due to ID receive(s),...,n(i — 1) can be canceled via

DPC at the AP. As a result, the received signal for ID receiMgj is expressed as
Ki

Yr(i) = hf(i):cw(i) + Z hWH(i)wﬂ(k) + hf(l-).’BE + 2,1 € K7 (2)
k=i+1

where z; ~ CN (0, 0?) denotes the additive white Gaussian noise (AWGN) atithelD receiver with
noise power being?, andhf(i):cE is the interference caused by the common energy signal.
Moreover, since the energy signal; is pseudo-random, its resulting interference can be effigie
cancelled by an extra interference cancellation operati@ach ID receiver, explained as follows. Without
loss of generalityz; can be expressed as; = 3. v;sF with 1 < L < N denoting the rank o5,
v;'s denoting the energy beamforming vectors each with unitm@nds;’s denoting the independently
generated pseudo-random energy-bearing signals, whosdosas can be assumed to be known at both
the AP and each ID receiver. Given prior knowfis, in (@) we havehﬁi)wE =3, (hf(i)fvl) sFH. By
estimating the effective channel coeﬁiciemﬁi)vl’s at ID receivern (i), the resulting interference due to
energy signals can be cancelled with knosfis. With the above interference cancellation, the received
signal for ID receiverr (i) in (@) is re-expressed as

Ky
Yu(i) = Py @iy + Z hloTa) + 2,1 € K. (3
k=it1

With Gaussian signalling employed, the achievable ratéorefpr ID receivers, defined as the rate-
tuples for all ID receivers (in bps/Hz) with given informati covariance matrice§S,}, is thus given by

3without loss of energy harvesting performance, we assumietile energy signal is pseudo-random instead of a detesticisinusoidal
wave, in order for its power spectral density to satisfy aiarregulations on microwave radiation. Specifically, wigeudo-random energy
signals, the transmit power spreads evenly over the opgrtequency bands, which thus helps avoid a single pow&e gifithe deterministic
sinusoidal signal.



Coc ({Si} {hi}) = | J {r e RE":

mell
0%+ h’fi ( lf:lz SW(’C)) hz )
K
o + h7r(2 <Ek:li+1 Sﬂ(’f)) bz

wherell is the collection of all possible permutations ov¥éf, andr = [r1,...,7,]” denotes the vector

) < log, (4)

of achievable rates for all ID receivers.

On the other hand, consider the WET. Due to the broadcasepyopf wireless channels, the energy
carried by all information and energy signals can be haedesit each EH receiver. As a result, the
harvested power for thgth EH receiver, denoted b§;, can be expressed as [5]

Q =E[lg"z? —CTrKZS +SE> ],je/cg 5)

€KXt

where0 < ¢ < 1 denotes the energy harvesting efficiency [6] at each EHvecendG; = g]gJ H Y5 e
el Since( is a constant, we normalize it @s= 1 for simplicity unless otherwise specified.

Now, we are ready to present the optimization problem ofré@stie To characterize the boundary points
of the capacity region for the MISO-BC with SWIPT, we maxisithe WSR of all ID receivers subject to
the minimum harvested power constraints at individual E¢éreers, as well as the maximum sum-power
constraint for the AP. By denoting the minimum harvested gorequirement at EH receivgre K¢ as

E; > 0, the WSRMax problem is formulated as

(P1) : {SI:/I}aiSE ZEZ,CI a;r; (6)
s.t. 7€ Cac ({Si}. {hi}) (7)

E;,Vj € Ke (8)

Tr [(Z S+ SE> G,
i€z
Tr (Z Si + SE) S Psum (9)

€KXt
where «; > 0 denotes a given weight for ID receiverc Kz. Note that by solving problem (P1) via
exhausting all possibl¢a;}, the whole capacity region can then be characterized ILeenote the set

4Our results still hold when the antenna number of each EHivece larger than one, in which case the matfi%’s for EH receivers
are of higher rank instead of rank-one.



containing all admissible information covariance masi¢&;} and all achievable ratels;} specified by
the constraints i {7) and_(1L0). It is then observed that (®hpn-convex due to the non-convexity Df
and thus the globally optimal solution of (P1) is difficult ébtain in general. Note that one commonly
adopted approach to deal with this type of non-convex WSRFtablems for the multi-antenna BC is
to use the BC-MAC duality to transform it into an equivalenheex WSRMax problem for a dual MAC
[25]-[28]. However, the existing BC-MAC duality is only alpgable to the case of MaxLTCGswith
information signals. In contrast, (P1) has both a MaxLTC@nand a set of MinLTCCsin (8) as well
as an energy covariance mati$;. As a result, solving problem (P1) is not a trivial exerciaad has
not been investigated yet in the literature. Note that ogulte are easily extendible to the case with
per-antenna individual power constraints for the AP, foichithe single MaxLTCC in[{9) is replaced by
a set of MaxLTCCs as ir_[25]. Also note that in this paper weufoon characterizing the fundamental
limit of MISO-BC for SWIPT with given user channel realizatis. The results can be extended to the
general setup with time-varying (fading) channels whem ¢hannel capacity/harvested energy can be
measured from either ergodic (average) or non-ergodi@a@@tperspectives.

Prior to solving problem (P1), we first check its feasibilitycan be observed that (P1) is feasible if and
only if its feasibility is guaranteed by ignoring all the IBaeivers, i.e., settin§; = 0 andr; = 0,Vi € K7.

Thus, the feasibility of (P1) can be verified by solving thédeing problem:

find SE
s.t. Tr [SEG]] > Ej,\VIj € ICg

Tr(SE) S PSLITTh SE t 0. (11)

Since problem[(11) is a convex semi-definite program (SDPxan be solved by standard convex
optimization techniques such as the interior point mett88].[In the rest of this paper, we only focus
on the case that (P1) is feasible. In practice, (P1) can leasible due to e.g. poor channel conditions,
insufficient transmit power or high minimum harvested powenstraints. In such cases, the minimum
harvested power constraints can be reduced (smallefor some EH receives to make (P1) feasible.

*The MaxLTCC is expressed as (BQ) < P, whereS is the transmit covariance matrix to be optimizd,is a given positive semi-
definite matrix (which is identify matrix if{9)), ané& > 0 is a prescribed power constraints. Note that our defined M&xL is the same
as the general LTCC (GLTCC) ih_[25].

®Similar to the MaxLTCC, the MinLTCC is defined as (BQ) > P.



1. OPTIMAL SOLUTION

In this section, we present the optimal solution to probldét)(by transforming it into a series of
equivalent WSRMax sub-problems with a single MaxLTCC ancbadingly solving these sub-problems

via the BC-MAC duality. Specifically, we first define the follmg auxiliary functiong({},}) as

g({N}) = {quﬁi;SE Z—gc;_ ;T (12)
sit. reCac({Si}, {h:}) (13)
> Tr(AS;) + Tr(ASp) < P4 (14)

€L
Sp>=0,8;,=0,ViekKs (15)

where \; > 0,5 € {0} U K¢ are auxiliary variablesA = A\I — ) NG, and Py = A\oPsum —

JEKe
> ick. AiEj. Note thatg({);}) is generally not the dual function of problem (P1); howeveserves as

an upper bound on the optimal value of (P1) for gy > 0}. This is because any feasible solution to
problem (P1) is also feasible to {12), but not necessarig viersa. We then define the following problem

by minimizing g({)\;}) over {\,}:

(P2): Min g({A}) (16)

In general the optimal value of problem (P2) also serves agpger bound on that of (P1). However, as
will be rigorously shown later (see Lemrha13.4), this uppeurmbis indeed tight. As a result, we will

solve (P1) by equivalently solving problem (P2). In the daling, we first solve probleni(12) to obtain
g({),;}) under any given{\; > 0}, based on which the strong duality between problems (P1)(Bay

is then proved. Next, we solve problem (P2) to obtain thenogiti{ \;}, and finally, we construct the

optimal solution to (P1) based on that to (P2).

A. Solving Problem (I2) to Obtain g({),})

To start, we present some important properties of proble) il the following lemma.
Lemma 3.1: In order for problem[(12) to be feasible ap{);}) to have an upper-bounded value, i.e.,
g({\;}) < +oo, the following conditions must be satisfied:
1) A is positive semi-definite, i.eA > 0.
2) The null space ofd lies in the null space off £ Y, . h;h[" € CV*V, i.e., Nul(A) C Null (H),
where NullA) £ {z € CV*!: Az = 0}.



3) P4 >0.
Proof: See Appendix_A. [
From Lemmd_3]1, it is sufficient for us to sohe12) with>= 0, Null(A) C Null () and P4 > 0.
Suppose that rarild) = m, where rankH) < m < N due to the second condition in Lemral3.1.

Then, the singular value decomposition (SVD)Afcan be expressed as
A=[U, U, JA[U,, U, " (17)

whereU; € CVN*™ andU, € CVN*(N=m) consist of the firsin and the lastV —m left singular vectors of
A, which correspond to the non-zero and zero singular values, irespectively. Therefore, the vectors
in U, andU, form the orthogonal basis for the range and null spacél pfespectively. Then we have
the optimal S for problem [I2), denoted b$ ;, as follows.

Lemma 3.2: The optimal energy covariance matrix in probldm](12) is egped as
Sp=U,EUY (18)

where E ¢ CNV=m)x(N=m) can be any positive semi-definite matrix. That is, asly = 0 satisfying
AS; =0 is optimal to problem[{712). Note that when = N, i.e., A is of full rank, U, does not exist.
In this case, we hav& ; = 0.

Proof: See AppendixB. [
Lemmal[3.2 shows that the optimal energy covariance m&yixof problem [I2) lies in the null space

of A. By using this result, probleni (IL2) can thus be simplified to

s.t. r € Cpc ({S:},{hi})

> Tr(AS) < Py

€Kz
S; = 0,Yi e K. (19)
Now, it remains to solve (19) to obtain the optimal inforneaticovariance matrices, denoted ¥} .
Note that problem[(19) corresponds to a WSRMax problem in®AEEC under a single MaxLTCC. For
the special case oA having full rank, this problem has been solved by the genB@MAC duality
[25]. To handle the general case Afbeing rank deficient, which has not been addressed in thatlite,

we present the following lemma.
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Lemma 3.3: The optimal information covariance matrices, |{3§ZZ} in problem [19) can be expressed

as
S, =U,BU" +U,CUY +U,C'U"
+U,D,UY Vie Kz (20)
whereB,; € C™*™ is the unique solution of problemi (21) belo@; € C™*N-") andD, € CN—m)*x(N-m)
can be any matrices with appropriate dimensions suchShat 0.

Max. ;T
(e D

€K7

s.t. r € Cge <{Bi}, {i'/z}>

> Tr(AB;) < Py

€Kt
B; = 0,Vi € Kz (21)
whereh; = Ul'h, e O™ Vi e K; and A = U? AU, € C"™,
Proof: See Appendix . [
Note thatA is of full rank, and thus probleni{21) can be solved by the gdnBC-MAC duality as
in [25]. By combining LemmaB 3.2 arid 8.3, we obtain the optistdution to [12).
Remark 3.1: Note that if A is of full rank, i.e.,m» = N, thenU, does not exist. In this case, the

optimal solution to (11) is unique and can be expressed as
S, =U,B,UY Vic Kz andSp = 0. (22)

However, if A is rank deficient, i.e.;m < N, thenU, does exist in general. In this case, there exist
infinite sets of optimal solutiof{{S;}, Sr} based on Lemmds 3.2 ahd13.3, and as a result the optimal
solution to problem[(12) is not unique. For simplicity, we @oy the specific optimal solution in_(P2) to

solve [12) for obtaining;({\;}).

B. Solving Problem (P2)
In this section, we first prove the strong duality between) @1id (P2) before solving (P2) to find the
optimal {\;} for maximizing g({\;}).
Lemma 3.4: The optimal value of problem (P1) is equal to that of problé?)(
Proof: See AppendixD. [ |
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Next, we proceed to solve (P2). Singg{);}) is upper bounded only when the conditions in Lemma

3.1 are satisfied, we can rewrite (P2) as follows by addingetmmnditions as explicit constraints.

(P3): Min g({A;}) (23)
s.t. Null(A) C Null (H) (24)
Kg
MI =Y NG =0 (25)
j=1
Kg
AoPam— Y NE; > 0. (26)
j=1

Note that for problem (P3), the objective functigf{ \,}) is not necessarily differentiable. Nonetheless,
we have the following lemma.
Lemma 3.5: For the functiony({);}) at any two non-negative points, A, - - - , Ax,.] and[Xo, A1, - - -, Ak,
we have
(A = 9{AD) + ¢ [Paum—Tr(81), THS1GY) — B, -

Tr(81Gs) = Brce| (s Ar, o+ Ae] = o, Jus -, A ]) (27)

where §; = 3., S; with {S;} being the optimal solution of probleni {12) givey = \;,j =

0,1,---,Kg, andec > 0 is a constant.
Proof: The proof is similar to that of [25, Proposition 6], and is shamitted for brevity. [ |
Lemma3.5 ensures that compared to the arbitrary Qb@mﬁl, s XKE], the optimal point that minimizes

g({)\;}) cannot belong to the set of points, Ay, - - - , Ax,] with

|:P5um— Tr(s.'[),Tr(s'[Gl) — El, s ,Tr(S.’IGKE) — EKE

(oA ) = Bo A+ Agl) >0 (28)
and thus this set should be eliminated when searching fooplienal {\;}. This property motivates us
to use the ellipsoid method [B4] to solve problem (P3). Ineortb successfully implement the ellipsoid
method, we need to further obtain the sub-gradients for émstcaints NullA) C Null (H) in (24) and

Aol — ijl A;G; = 0 in (25), which are shown in the following two lemmas.

Lemma 3.6: The constraint in[(24) is equivalent to the following lineamstraints

Kg
AENDH 2 =X+ D Nlvfg P <o vi<t (29)

=1
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wheret denotes the rank of matriff, andv;,l = 1,--- ¢, denote thet left singular vectors ofH

corresponding to its non-zero singular values. As a rethdtsub-gradient of;({);}) at given{},} can

be expressed as-1, [vf g, |?, - - ,\fungKEﬂT, l=1,---,t.
Proof: See AppendiXE. [
Lemma 3.7: Define F({\;}) = —XoI + ijl A;G;. Then the constraint in((25) is equivalent to

F({)\;}) = 0. Let z denote the dominant eigenvector &f({)\;}), i.e., z = arg&ﬁ]ngF({)\j})z.
Then, the sub-gradient df ({);}) at given{)\;} is [—| 2| 2" G:z, - - ,zHGKEz}T.
Proof: Also see Appendik E. [ |
With Lemmal3.5 and the sub-gradients in Lemrhag 3.6[and 3.7amd,hwe can successfully solve
problem (P2) by applying the ellipsoid method to updgie} towards the optimal solutiofi\}}.
Remark 3.2: Although we cannot prove the convexity of problem (P2), tbevergence of the ellipsoid

method can be ensured as explained in the following. Thedmgan function of problem (P1) can be

€KXt
—f (Tr > S+ 8Sp| - Psum>

€KXt
wheref, and {Hj}fjl are the Lagrange multipliers with respect to the constsaimt{9) and [(8), respec-

written as

K; Kg
E ;T + g
i=1 j=1

(30)

tively. On the other hand, the Lagrangian function of prabl@2) can be written as

Ky
Zam— —5 [)\QTr Z S[+SE
=1

€KXt

Kp Kp
_Z)\jTr [(Z S[+SE> Gj] - )\OPsum+Z)‘jEj
j=1

1€z j=1

(31)

where 3 is the Lagrange variable associated with the constrairll4f. By observing[(30) and_(81), we
can see that the two Lagrangian functions are identical ¢ @ther if we choos#; = S\;,Vj € K.
Thus, the auxiliary variableg\;} can be viewed as the scaled (by a factot 0f) Lagrange dual variables
of problem (P1). Correspondingly({);}) is related to the dual function of problem (P1), which is kmow
to be convex. However, since the optimal dual solution/fdan problem [I2) varies witq \;}, g({);}),

it is not necessarily a convex function. Nevertheless, timva relationship reveals that in Lemimal3.5, the

vector [Psum— Tr(S;), Tr(S:G1) — B, -, Tr(§,Gk,) — Ek, | is indeed the exact sub-gradient for the
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convex dual function of problem (P1), given the fact tBatwith Tr(AS) = 0 is optimal to problem{12)

from Lemmd_3.R. Thus, the convergence of the ellipsoid ntbthased on this sub-gradient is guaranteed.

C. Finding Primal Optimal Solution to (P1)

So far, we have obtained the optimal solution to (P2), i.&;}, as well as the corresponding optimal
solution to [I2) given in[(22). According to Remdrk13.1,Af = \*T — ijl ;G is of full rank, (22)
is the unique solution td (12), which is thus optimal to (PApwever, if A* is not of full rank, [22) is
not the unique solution td (12), and thus may not meet thermim harvested power constraints [ih (8).
In the latter case, we need to find one feasible (thus optis@ijtion of (P1), denoted by{S’}, S%},
from all the optimal solutions of(12) given in (18) arid (20)tw{\}.

Denote the SVD ofA* as [U}, Ui A*[U*,U3". Then following [I8) and[{20), we can write the

information and energy covariance matrices as
S, =U;B; (U)" +UiC; (Uy)" + UsCi (U7)"
+UD; (U Vie Kz (32)

Sy =U;E (U)" (33)

where B; is obtained by solving[{(21) wit{\}}. Therefore, it remains to find a feasible and optimal
set of {C;}, {D;} and E such that the minimum harvested power constraints in (P4 )a#rsatisfied.

Since r does not depend on the choice of';}, {D;} and E, Vi € Kz, finding the primal optimal

solution corresponds to solving a feasibility problem oimyolving the constraints if {9) an@ ([10). Note
that in general, there can be more than one feasible sofutmauch a feasibility problem. Among them,
we are interested in the solution with low-rank informaticovariance matrices in order to minimize
the decoding complexity at the ID receiver. Therefore, wappse to minimize the sum of the ranks of
all information covariance matrices, i.©.,, . rank(S;). However, the rank function is not convex. By

applying the convex approximation of the rank function! [30d using the fact that the nuclear norm of
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a covariance matrix equals to its trace, we solve the foligwiroblem to find a desired optimal solution.

(P4):  Min. > Tr(S)) (34)
[CyDyE 5
s.t. Tr [(Z Sz+SE> Gj ZEJ,\V/] EICg (35)
1€EKXT
Tr <Z Si + SE) S Psum (36)
€KXt
Sp =08 = 0Vicky 37)

whereS; and Sz are given in[(3R) and (33), respectively. As a result, thenptioptimal solution to (P1)
is finally obtained. Note that in the case that the obtainédatism of (P2) with [22) is not feasible to (P1),
the information covariance matrices may need to be expaaceatding to[(3R) if adding dedicated energy
signal still cannot satisfy the energy requirements of &l i€ceivers. By combining the procedures in
Sectiong 1II-A,[1II-B and1Il-G, the overall algorithm foradving problem (P1) is summarized in Taljle I.
For the algorithm given in Tablé I, the computation time ismioated by the ellipsoid method in steps
1)-3) and the SDP in step 4). In particular, the time compyerf step a) is of ordem3K? + m*K3
by standard interior point method [34], where is the rank of matrixA. Therefore, the worst case
complexity is of orderN3K? + N2K?%. For step b), the complexity for computing the sub-gradiesft
g({)\;}) and the constraints i (R4)_(25) arld1(26) is of ordétK;, and that for updating\;} is
of order K%. Thus, the time complexity of steps a)-b) @(N*K? + N?K? + N?Kgp + K3%) in total.
Note that step 2) iterate® (K %) times to converge [34], thus the total time complexity ofpstd)-3) is
O (K%4(N*K} + N?*K} + N?Kp + K%)). The time complexity of solving SDP in step 4)(% K} N3 +
K?) [82]. Thus, the overall complexity i© (KZ(N3*K? + N2K3} + N?Kg + K%) + K3;N35 + K}) at
most for the algorithm in Tablg I.
It is worth pointing out that in general there exist threeesafor the optimal solution of (P1) obtained
by the algorithm in Tablél I. For convenience, we denSfe= ). S;.
1) S; =0 andS7% > 0:in this case, no information can be transferred withoutating the minimum
harvested power constraints. This situation only occuremnwtine channel of each ID receiver is
orthogonal to that of any EH receiver (i.eh;-ng =0,Vi € Kz,j € K¢), and full transmit power

is used for ensuring the harvested power constraints. Nateunder practical setup with randomly

generated wireless channels, this case does not occur.
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TABLE |
ALGORITHM 1: ALGORITHM FOR SOLVING PROBLEM (P1)

1) Initialize \; > 0,V5 € Ke.
2) Repeat:
a) Obtain{S;} by solving problem[{21) with gived\;};
b) Compute the sub-gradients @f{\;}) and the constraints il (24]. ([?5) and(26), and updatg accordingly using the ellipsoid
method [33].
3) Until {\;} converges within a prescribed accuracy.
4) SetX; = \;,Vj € Ke. If A" is not of full rank and the obtained solution Hy{22) is notsiée to (P1), then find the optimal
covariance matrices for information and energy transfesdlying problem (P4).

2) S7 > 0 andS} = 0: in this case, no dedicated energy signal is required. Tdrigesponds to that
the energy harvested from the information signals at eachrdgidiver is sufficient to satisfy the
harvested power constraints. One situation for this casedar is that ifH is of full rank, thenA*
is also full rank such that the unique optimal solution tokgpeon (12) (and thus optimal to (P1)) is
S =U'B (U})" Vie Kz, andS% = 0 from Remark311.

3) S7 = 0 and S} > 0: in this case, dedicated energy signal is required to gteeatie harvested
power constraints while maximizing the WSR. Interestinglyen the strong duality between (P1)
and (P2) as well as Lemma_ 8.2, the optimal dedicated enegmalsis orthogonal to the MISO
channels of all the ID receiver§herefore, the extra processing of pre-canceling the interference

caused by energy signals at the AP (via DPC) or at each ID receiver is not needed.

Note that the obtained optimal information and energy davae matrices can have a rank larger than
unity in general. However, our extensive simulation trigsl®ow that Algorithm 1 always returns rank-
one information covariance matrices thanks to the appratéch rank minimization employed in (P4).
Nevertheless, it is difficult for us to guarantee the exis¢eaf optimal rank-one information covariance
matrices in general.

Remark 3.3: To further provide insights on the transmit covariance e expansion in (P4), we
present an intuitive explanation on how the obtaid€d} and {D;} can help ensure the harvested
power constraints at all the EH receivers. First, denotentiddle two terms in[(32) involving{C;}

as0,, i.e., 0, =U:C,(U)" + U,c? (U™ Vi € K;. Since the columns o/* and U}, form the
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orthogonal basis for the range and null spaceddf O; has the following two properties:

Tr(0;) =0,Vi € Kz (38)

Tr(0;A*) =0,Vi € K. (39)
Based on[(38) and (89) with some manipulations, it followe th

Kg
> XTr(0:G)) =0,Vi € K. (40)

=1

From (38), it is observed th&®,’s do not cost any transmission power. Furthermore, acagrtti (39) and
the second point of Lemnia_3.0,’s do not affect the data rate of ID receivers, iwe,Vi € K;. However,
based on[(40), it is observed th@t's serve the purpose of re-allocating the power harvestedet EH
receiver from the information embedded signals withoue@thg the data rate of each ID receiver. This
reallocation is necessary if there exigtss K¢ such that T{(Eie,cz U:B: (U + S*E) Gj] < L.
Finally, from the theory of Schur complement [33], it is kmowhat ST > 0 if and only if (iff) the

following conditions are satisfied:

B >0 (41)
(I-B;B)H)C;=0 (42)
D; - C{(B))'C; - 0. (43)

Therefore,D; may be required to ensure th&f > 0.

V. SEPARATE INFORMATION AND ENERGY SIGNAL DESIGN

So far, we have optimally solved problem (P1) by jointly desng the information and energy signals,
which however requires significant computational compiegiue to the iterative implementation based
on the ellipsoid method. To reduce the complexity, in thigtisa, we propose two suboptimal algorithms
with separate information and energy signal design, narni@ligZH oriented separate information and
energy signal design (IDSIED/EHSIED). Note that since sa&gainformation and energy signal design
is assumed in both suboptimal algorithms, unlike the odtso&ution, the energy signal is in general not
orthogonal to the channels of all the ID receivers; as a teth# extra processing of pre-canceling the

interference caused by energy signals at the AP (via DPCJ eaeh ID receiver is needed.
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A. ID Oriented Separate Information and Energy Signal Design

In this algorithm, the total transmit powét,n, is divided into two parts?; and Psym— P; (0 < P; <
Psum), Which are exclusively allocated to information and egesignals, respectively. With any given
power allocation, i.e.P;, the information covariance matricdsS;} are first designed to maximize the

WSR for all ID receivers, by solving the following optimizah problem:

K
Max Z ;T
{S:pr I

s.t. {ri} € Cec ({hi}, {S:})

Tr (Z SZ) <P

1€EKT
Si ~ O,Vi - ICI. (44)
Note that problem[{44) is a WSRMax problem in MISO-BC underirgle MaxLTCC, which can be
solved by the general BC-MAC duality with a guaranteed rank-solution.
Next, Iet{S;(PI)} be the optimal solution of (44) giveRi; > 0. The energy covariance matri&y is

then optimized to ensure that the harvested power consthigach EH receiver is satisfied, as follows:

find SE
st. Tr (Z Si(Pr) + SE> G;| > E;,Vj € Ke
1€EKT
Tr(SE) S Psum_PI
Sg = 0. (45)

Since problem[(45) is a standard SDP, it thus can be solvedamylard convex optimization techniques,
e.g. the ellipsoid method [34].

Note that problem[(45) can be infeasible, which means thatcttrresponding power allocation is
not admissible. In order to find a feasible optimal poweradtmn between the information and energy
signals, under which the WSR of all ID receivers is maximized the harvested power constraints of
all EH receivers are satisfied, we further employ bisecti@thod to updaté’;, as summarized in Table
M The convergence of this algorithm is guaranteed if peablP1) is feasible. It is because problém] (45)
is equivalent to the feasibility problerh (11) with = 0.
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TABLE Il
ALGORITHM 2: ID ORIENTED SEPARATE INFORMATION AND ENERGY SIGNAL DESIGN

1) Given Puin(20) < P} < Pmax(2 Psum).
2) Repeat
a) Pr= 2 (Pmin+ Pma)-
b) Obtain{S;(PI)} by solving problem[{Z4).
c) Solve problem[(45).
d) If problem [45%) is feasible givet;, set Pmin <+ Pr; otherwise, senax < Pr.

3) Until |Pnax— Pmin| < 0 whered is a small positive constant that controls the algorithmusacy.

B. EH Oriented Separate Information and Energy Sgnal Design

In this algorithm, the energy signals are first designed tetraél the harvested power requirements at

EH receivers while using the minimum transmit power, by s@uhe following problem:

Min. Tr (SE)

E

s.t. Tr[SgG;| > E;,Vj € K¢
Sp 0. (46)
Note that [(46) is again a standard SDP, which thus can be ddlyestandard convex optimization
techniques, e.g. the ellipsoid methad|[34].
Let S’E be the optimal solution of problerh_ (46). Then, the remaimower is allocated to information
signals to maximize the WSR, i.e.,

Ky
Max. Ty
e > air

i=1

s.t. re CBC ({hi}7 {Sz})

Tr (Z SZ) < Pam—Tr (S5,)

€Kz
S; = 0,Vi € Kz. (47)
Similarly to (44), problem[(47) is a WSRMax problem in MISGzBunder a single MaxLTCC, which
thus can be solved. Compared with IDSIED in Secfion IV-A, HES has even lower complexity with
no iterative updating of power allocation required. Howevke performance of EHSIED is in general
worse than IDSIED in terms of WSRMax. This is because thertdmutton of information signals to the
EH receivers is not considered in EHSIED, such that the tnéngower for energy signals is in general

over-allocated.
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Proposition 4.1: If the channel of each ID receiver is orthogonal to that of &ty receiver, i.e.,
hfgj =0,Vi € Kz,Vj € K¢, both IDSIED and EHSIED have the same performance as Algurit,
i.e., IDSIED and EHSIED are both optimal.

Proof: Proposition_ 4.l can be proved by identifying the fact thathwihe channels of all the ID
receivers being orthogonal to those of all the EH receivershblem (P1) can be effectively decomposed
into two subproblems: one for information and the other far ¢nergy transmission design, which interact
through power allocation only. Given the objective of WSRi& is not difficult to see that allocating the
minimum power to energy transfer is optimal, i.e., EHSIEDhieh means the iterative power updating

or IDSIED is not necessary. The details are omitted for lyevi [ ]

V. NUMERICAL RESULTS

In this section, numerical examples are provided to vadidair results. It is assumed that the signal
attenuation from the AP to all EH receiversiisdB corresponding to an equal distance of 5 meter, and that

to all ID receivers is 70 dB at an equal distance of 20 meterstte purpose of exposition, we define the
hi'g,|

Ihlig; 1’
the correlation matriy be the collection of all correlation coefficients wil; ; = p; ;, Vi € Kz,Vj € K.

(channel) correlation between ID receivieand EH receiver asp; ; = Vi e Kz,V) € Ke. Let

We also set the harvested power constraints of all the EHvesseidentical for simplicity, i.e.F; =
E.Vj € Ke. For convenience, we further denot,.« as the maximum allowable value @ for (P1)
to be feasible. Note that the value Bf,,x depends on the exact channel realization of all EH receivers

which can be obtained by solving the following SDP:

Max. Fmax
EmaxO E

s.t. Tr(SpG;] > Emax Vj € K¢

Tr (SE) < Psum, SE ~ 0. (48)
Finally, we setPs,m = 5 Watt(W) ando? = —50 dBm.

A. lllustration of Optimal Information and Energy Sgnals

In this subsection, we provide one numerical example to detnate the necessity of expanding the
obtained solution to (P2) according {0 {32), for the case tta optimal solution of problem (P2) in_(22)
is not feasible to (P1). It is assumed thet= 10, K; = 1, Kg = 10, E = 0.9Ehax and the correlations
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between ID and EH receivers are distributedpas = 277,V; € K¢, for the purpose of demonstration.
The results are summarized in Tablé Il (in mW), in which tteevested power of each EH receiver with
the optimal solution to (P2), the optimal information sigt@a(P1) after expansion, and both the optimal
information and energy signals to (P1) are listed in the sécthird and fourth column, respectively.

By comparing the second and last columns of Table Ill, it istfobserved that the obtained solution
to (P2) results in imbalanced harvested power distribugimong EH receivers, and in particular does not
meet the minimum harvested power constraints for EH receivand10. For the imbalanced distribution,
it is also interesting to observe that for any two EH receviej € K¢, p1,;, > p1, i.€., the channel of
EH receiver: has higher spatial correlation with that of ID receiver, slo®t mean that EH receiver
can harvest more power from the information embedded sidias is because the information transfer
needs to be compromised for energy transfer and shift itsmnéssion direction away from that of rate
maximization. According to the third column of Talle] lll,etharvested power levels of different EH
receivers are re-allocated to achieve a more balancedbdisbn after expanding the information signal
based on[(32), which confirms the results in Renlark 3.3. Kirgihcep; 1o = 27'° = 0, i.e, EH receiver
10 is almost orthogonal to the ID receiver, extra dedicatedgnsignal is necessary to satisfy its harvested

power requirement.

TABLE I
RESULTS ONFINDING PRIMAL FEASIBLE SOLUTION FOR PROBLEM(P1)

EH | TuiBi w6, | risic) | TSt + S0 Gl | B
receiver; (mW) (mW) (mwW) (mwW)
1 0.5035 0.4995 0.4995 0.4995
2 0.4995 0.4995 0.4995 0.4995
3 0.5013 0.4995 0.4995 0.4995
4 0.5005 0.4995 0.4995 0.4995
5 0.5079 0.4995 0.4995 0.4995
6 0.5000 0.4995 0.4995 0.4995
7 0.4996 0.4995 0.4995 0.4995
8 0.5057 0.4995 0.4995 0.4995
9 0.4881 0.4995 0.4995 0.4995
10 0.4603 0.4693 0.4995 0.4995

B. Capacity Region Comparison

In this subsection, we illustrate the capacity regions vatid without harvested power constraints for

the case ofN = 5, K; = 2 and Kz = 3 in Fig.[2 and Fig[B. The achievable rate regions obtained
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by the two benchmark algorithms, i.e., IDSIED and EHSIED atso presented for comparison. The
harvested power requirement is set toBe= 0.5 Enax for Fig.[2(a) and Figl 3(&), and = 0.9 Eqax for
Fig.[2(b) and Fig[ 3(B). For the correlations between EH dhdeceivers, we consider the following two
configurations:

1) Highly correlated setup (HCS): for Figl 2, each ID receigeassumed to be highly correlated with

all EH receivers as

wes |1/2 174 178
p _[1 1/2 1/4] (49)

2) Less correlated setup (LCS): for Fig. 3, we consider a tsselated setup. In particular, it is
assumed that ID receiver is orthogonal to EH receive? and ID receiver2 is orthogonal to all

EH receivers. Thus, the correlation matrix is given as

s |1/2 0 1/8
p _[0 0 0] (50)

From Fig[2, it is first observed that the capacity loss withveated power constraints for EH receivers
is not significant under HCS for both the casesif= 0.5Enx and 0.9 Ena. This observation can be
explained as follows: with the channels of ID receivers geirghly correlated to those of EH receivers,
each EH receiver can harvest significant amount of power fiioeninformation signals intending for
ID receivers. As a result, the harvested power requiremar@smore easily satisfied while maximizing
the transmission rate of ID receivers. Moreover, it is obsérthat EHSIED performs much worse than
IDSIED and the optimal algorithm. It is because that EHSIEDares the fact that information signals
can also contribute to EH due to their broadcast propertgh ghat only a small porion of power is
allocated for information transfer. Finally, &s increases, the performance gap between IDSIED and the
optimal algorithm increases due to the separation of infdiom and energy signal design.

From Fig.[3, it is observed that under LCS the capacity logstdiharvested power constraints is much
larger than that under HCS (cf. Fig. 2), which also increabamatically ast’ increases. This is because
the information signals for ID receivers have limited cdnition to the EH receivers. One interesting
result shown in Figl13 is that the performance gap betweeropiienal and two benchmark algorithms
reduces as ID receiver being given higher priority, and converges to zero while iimézing the rate of
ID receiver2 exclusively. Since the channel of ID receiviis orthogonal to all EH receivers, problem
(P1) witha; = 0 anda, > 0 can be decomposed into two subproblems as explained in Sitigpd4.].

Consequently, IDSIED and EHSIED have the same performasi¢heaoptimal algorithm.
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C. Sum-rate Comparison

To further evaluate the performance of the optimal and twachmark algorithms, Fid.l4 compares
their achieved sum-rate versus different EH constrainteslof £, where the configurations for Fig.
and Fig[ 4(b) are the same as those for Hig. 2 and[Fig.spectively. It is first observed that the
optimal algorithm outperforms both the two suboptimal aidpons, and the performance gap increases
as I increases. This observation further validate our thewaktiesults and the effectiveness of joint

information and energy signals design. Note that all thedtalgorithms achieve the same sum-rate when
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E = 0, which is the maximum sum-rate achievable without harvegeergy constraint. Second, we
observe that the optimal algorithm and the IDSIED have simplerformance whet is small. This is
because that whe#R' is sufficiently small, the information signals obtained bgximizing the sum-rate
are sufficient to guarantee the harvested power constratirgach EH receiver. However, &sincreases,
the information transfer needs to be compromised for engagsfer, such that the optimal directions of
the information signals are shifted from those obtained byimizing the sum-rate. Finally, by comparing
IDSIED and EHSIED, it is observed that IDSIED outperforms$HBD over the entire range of values
of E. As F increases, IDSIED diverges from EHSIED under HCS in Fig)|#(& converges to EHSIED
under LCS in Fig[ 4(B). This is because under LCS, the infdiona&mbedded signals can no longer make
significant contribution to EH receivers, such that IDSIE& Hess noticeable advantage over EHSIED,

especially when the harvested power constraints beconmgesiit.
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Fig. 4. Sum-rate performance comparison of optimal veramhmark algorithms: (a) HCS; (b) LCS.

At last, in Fig.[%, we illustrate the average sum-rate penfamce of the optimal and two benchmark
algorithms versus different values afover200 randomly generated channels (various channel correlation
between ID and EH receivers) for the case/ot= 5, K; = 2 and Kz = 3. The channel vectoh;’s are
generated from i.i.d. Rayleigh fading. However, due to therstransmission distance of EH receivers,
for which the line-of-sight (LOS) signal is dominaigt;’s are generated based on the Rician fading model
used in[9]. It is observed that, on average, the performgapebetween the optimal and two benchmark

algorithms increases ds increases. However, the difference between IDSIED and EBSitays roughly
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the same from moderate to large valuestobf

VI. CONCLUSION

In this paper, we study a MISO-BC for SWIPT, where a multiesama AP delivers information and
energy simultaneously to multiple single-antenna recsiwd/e characterize the capacity region for the 1D
receivers by maximizing their WSR subject to the sum-povegrstraint at the AP and a set of minimum
harvested power constraints at EH receivers. This probtamesponds to a new type of WSRMax problem
for MISO-BC with combined MaxLTCC and MinLTCCs, for which @&w optimal algorithm is proposed
by extending the BC-MAC duality and applying the ellipsoidttmod. Suboptimal algorithms with separate
information and energy signal designs are also presenteslpfoposed algorithms provide useful insights
on solving general WSRMax problems with both MaxLTCCs andIMICCs, and the established capacity
region provides a performance upper bound on all pracyicgatiplementable precoding/beamforming

algorithms for SWIPT in MISO-BC.

APPENDIX A
PROOF OFLEMMA 31

The first two conditions of Lemm@a_3.1 can be proved by conttamhi. For convenience, we define

S, £ ZZ_E,CI S; as the sum of all information covariance matrices. Furtlogenit is sufficient to consider
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only the case tha§; can be expressed as

N

n=1
whereu,, € CV*! is the nth eigenvector ofA, i.e., [uy, - ,uy| = [Uy,U,] from (@I37), andy, is a
non-negative real numben, = 1,---, N. As a result,y .. Tr(AS;) = Tr(AS;) can be expressed as

Yoy ol Au,.

Suppose thatd # 0, i.e., at least one of the eigenvalues Af is negative, andy({);}) has an
upper bounded value gf({);}) < +oo. Without loss of generality, we assume that is one of the
eigenvectors associated with the negative eigenvalued.ofhen, it follows thatu!’ Au; < 0 and
wruil Auy, — —oo as yu;, approachest-oo. Therefore, it is easy to verify that by choosi®g based on
(&I) andsS; = K%S;,W € Kz with u, being large enoughy;, Vi # k can be set to be arbitrary large
such that we can achieve arbitrary large WSR for ID receivétiout violating [14), which results in
g({);}) = +oo. ConsequentlyA has to be positive semi-definite. Since similar argumentsbeEused
to verify the second condition of Lemna B.1, the details arstted for brevity.

Next, we prove the third condition of LemrhaB.1. Givdrbeing positive semi-definite, it has a positive
semi-definite square root, i.e4 = A'/?AY2. Therefore, TfAS;) and T{ASy) can be expressed as
Tr(AY28;AY?) and T(AY2S ; A/?), respectively. Since botd/2S; A2 and A'/2S; A'/? are positive
semi-definite, it follows that TrA'/28;A'/?) > 0 and T(A'/2S5A"?) > 0. Lemmal3.1 is thus proved.

APPENDIX B
PROOF OFLEMMA [3.2

From the proof of Lemm& 3.1 in AppendiX A, ., Tr(AS;) > 0 and T(ASg) > 0. Given the fact
that only {S;} is related to the information transfer, any solution to peab (I12) with T ASg) > 0
reduces the transmit power allocated to the informationsfier and is thus suboptimal. Therefore, the
optimal energy covariance matrix needs to satisfyAl$ ;) = 0 equivalently ASz = 0, which means
S lies in the null space ofA. According to [I¥), the vectors il , form the orthogonal basis for the null
space ofA. Therefore,S in general can be expressed$is = U,EU, whereE ¢ CV-"x(N-m) g
any positive semi-definite matrix. Note that for caserof= N, i.e., A is of full rank, AS; = 0 implies

that Sz = 0. Lemmal3.2 is thus proved.
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APPENDIX C
PROOF OFLEMMA 3.3

Without loss of generalityS; can be expressed as

Bi Cz H
=U,BUY +U,Cc,UY +U,CclUT +U,D;UY (53)

where B, €¢ C™*™, D; €¢ CN-mx(N=m) gand C; € C™*N-") ¥ ¢ k7. Note thatB; = BY and

D, = D¥. SinceUs, lies in the null space oA (from Lemma3.2) and consequently in the null space of
H (from Lemma3.1), it is observed that and Zie,cz Tr(AS;) do not depend oi”; and D;, Vi € K7.
Consequently, it is optimal to s€t; = 0 and D; = 0, Vi € Kz, and accordingly probleni (19) with given
{\;} can be further simplified a§ (1) given in Lemfmal3.3. Withbeing full rank, problem[{21) can be
solved by the general BC-MAC duality as in [25], and resuftsinique rank-one information covariance
matrices, i.e.UléiUf,i € Kz, the details of which are illustrated below.

Without loss of generality, we assume that > ay > --- > ak, > 0. For the MISO-BC, its dual
single-input multiple-output (SIMO) MAC consists éf; single-antenna transmitters that send independent
information to one common receiver wifti antennas. At transmittér: € Kz, letp; be its transmit power,
s'™ be a CSCG random variable representing its transmitteanreEton signal, and%f be its channel

vector to the receiver. Then the received signal in the dUMICBMAC is expressed as
Z by pis™ + 2 (54)

wherez(™ ~ CN (0, A).
According to [25], problem[(21) is equivalent to its dual MA®Coblem expressed as

Ky
(m)
Max. ;T
{p:i>0} ; v

Ky
> pi< Py (55)
=1

(m)

wherer;”” is given as

A ; N A
)A—sz 1pkhkhk‘

due to the polymatroid structure of the MAC capacity regiBd]][ and the user decoding order being

log, (56)

determined by the magnitude af’s. Since problem(35) is convex, it can be solved efficiemitystandard
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convex optimization techniques. With the optimal solutiorproblem [(55), i.e.{p}}, at hand, the optimal
receive beamforming vector can be obtained based on thenmmimean-squared-error (MMSE) principle

as

~

(A + Ek 1pkhk’h’k ) h;
v = Vi€ Ky (57)

Z (A +30 1pkhkhk )_1 h;

After obtaining the optimal solution ofwv?, p;} for the uplink problem[(55), we then map the solution

to {w;} for the downlink problem[(21). As shown in_[25], since the ddwk transmit beamforming
vectors are identical to the uplink receive beamformingtamescup to certain scaling factora;; can be

expressed aw; = ¥, Vi € Kz. Furthermore, the rate-tuples achieved for both the BC aA(d€ Mre
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identical. Therefore, the following set of equations canukibzed to find {¢;}:

q%|iﬁm|2 ‘A + 3 pihih, )
log, [ 1+ 7 = log, Vi e Kz (58)
Zk z+1qk|hi vil* +1 ‘A_'_Zk 1pkhkh’k ’

ie.,
(m))* K
2(T2 ) -1 d ~H .
= (Z ailh, v;2|2+1> i € Kz, (59)
lh; viP k=i
Finally, the optimal solution to problenh (1) can be compluds
B; = w}(w)" Vi € K7. (60)
Lemmal3.8 is thus proved.
APPENDIX D

PROOF OFLEMMA [3.4

Since the encoding order of the BC is the reverse of the degaatider of its dual MACI[25], which
can be obtained from Section IItA while solving probleim](2hd is assumed to be in accordance with

the ID receiver index without loss of generality, probldn8)(tan now be written explicitly as

K
Max Z ;T
{S:pr I
st. Y Tr(AS;) <Py
€KXt
S; = 0,Vi € Kz (61)
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wherer; is given by

0% + hH ( K_flsk) h;
r; = log, ) (62)

o2+ bl (12, 8i) b
The KKT optimality conditions of probleni_(61) are given by

0 i ,
2035'1 =wA+ Y, Vie Kt
w [Z Tr(AS;) — =0
€KXt

wherew > 0 and ¥, = 0,Vi € K7 are the Lagrange multipliers associated wWth_,. Tr(AS;) < P4
and S; = 0,Vi € Kz, respectively.

This lemma can be proven by first showing that the duality getveen problem{61) and its Lagrange
dual problem is zero, and the KKT conditions given[inl(63) suéficient for a solution to be optimal for
problem [€1). Since the proofs are similar that [of|[25, Psifan 2] and [25, Proposition 3], they are
omitted for brevity. To complete the proof, we need furthieows that the optimal value of problerh (19)
is equal to that of (P1) with any fixed encoding order, the itket# which are given as follows.

We first consider a fixed encoding order for problem (P1) teraseproblem (P1F), given by the optimal
encoding order for problem (P2), which has been assumed tbebsame as the ID receiver index order.
Under this encoding order, the information rate for ID reeei is given in [62).

Note that the optimal solution of problem (P1F) is a lower twn the optimal solution of problem

(P1). The KKT conditions of problem (P1F) can be written as

82K’ T K
# = 0o — ;ejaj +Q,,Vie Ky (64)
82 T Ky
—== =01 — 0,G; + 2
0Sg ; iGit S (63)
8]- (Tr [(S[ + SE')GJ] — EJ) = O,VJ S ]Cg (66)

where {6, }j 1, 0o, {2} and Qg are the Lagrange multipliers with respect to the constsaint(8),
@) and [10), respectively. For convenience, we deffhe2 > iex, Si- When the optimal solution of
problem (P1F) is achieved, we assume that the correspomgitigial primal and dual solutions as;,

Se, {0,155, 0y, {0} and Q.
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We now write the KKT conditions of probleni {19) with, = 6, and Aj = éj,Vj, as follows:

821 1T2 .
e = (901 29G>+\I:i,vze/cz

Kg
QQTI' S[ Z@ Tr S[ éoPsum+ ZéjEj =0. (68)

=1

~A ~A
If we chooseS; = S; + SE : WhereSE = U1U SEUlU and U, consists of the orthogonal basis

defining the range ofA = 6,I — E 9 G, similar as that in[(I7)w = 1, and ¥, = Q;,Vi € Kz, then
KKT conditions in [68) are satisfied. Acc~ording to the facattthe duality gap between problem}61) and
its Lagrange dual problem is zer§, + 5;4 is optimal for problem[(119). Therefore, the optimal value of
problem [I9) with), = 6, and Aj = éj,Vj, is equal to the optimal value of problem (P1F). Therefore,
the optimal value of problem (P1F), which is a lower bound lo@ dptimal value of problem (P1), meets
the optimal value of probleni (19) with, = 6, and Aj = éj,Vj, which is an upper bound on the optimal
value of problem (P1). The above results also imply that theimum value ofg({),}) over {)\;} is

achieved when\, = §, and \; = 6;, 4. The proof of Lemma 314 thus follows.

APPENDIX E
PROOF OFLEMMA [B.6AND LEMMA [3.7

We start with proving Lemm@&_3.6. It is first observed that themdition NulllA) C Null (H) is
equivalent to that; ¢ Null(A),V: < ¢, wheret denotes the rank of matriff, andv;,i = 1,--- ,1,
denote the left singular vectors @& corresponding to its non-zero singular values. Furthegmngiven
A = 0, the conditionv; ¢ Null(A),Vi < t, can be further expressed a8 Av; > 0,V:i < ¢. The proof
of Lemmal3.6 thus follows.

Next, we proceed to show Lemnia13.7. For the purpose of ildtisti, we defineF'(A) = —\,I +
ijl NG, whereX = [\, -+, Ag,]7. Then the constraint ifi{25) is equivalentB{\) < 0. First, the
semi-definite constrainE’(A) < 0 can be equivalently expressed as a scalar inequality ednisas

FN) £ Amax(F(X)) <0 (69)
where A\max (-) denotes the largest eigenvalue. Thus, the above constainbe equivalently written as
f(A) = max 2F(M\)z <o0. (70)

1212=1
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Given a query point\; = [A\o1, -, Ax,1]7, we can find the normalized eigenvecter of F(\;)

corresponding to\max (F'(A1)). Consequently, we can determine the value of the scalartreamsat a

query point asf(A;) = 27 F(A1)z; = Amax(F(A1)). To obtain a subgradient, we show the following:

where the last equality follows from the affine structure lvé semi-definite constraint. Lemrhal3.7 thus

FA) = f(\) = max 2"F(N)z — 21 F(A)z1 (71)
>z [F(A) = F(N)] z) (72)

Kg
= [lz11* (o — dox) = D (21 Gyz1) (A — ) (73)

follows.
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