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Abstract—We provide nonasymptotic upper and lower bounds
on the sum-rate capacity of Rayleigh block-fading multiple-access
channels for the set up wherea priori channel state information is
not available. The upper bound relies on a dual formula for chan-
nel capacity and on the assumption that the users can cooperate
perfectly. The lower bound is derived assuming a noncooperative
scenario where each user employs unitary space-time modulation
(independently from the other users). Numerical results show that
the gap between the upper and the lower bound is small already
at moderate SNR values. This suggests that the sum-rate capac-
ity gains obtainable through user cooperation are minimal for the
scenarios considered in the paper.

I. I NTRODUCTION

The multiple-access channel (MAC) models a scenario where
two or more noncooperating users communicate with a single
receiver. This scenario is relevant for the uplink of wireless
cellular networks, where the users may be mobile terminals and
the receiver may be a cellular base station. In this paper, we
consider the setup where neither the users nor the receiver have
a priori information on the realization of the fading process.
Such a situation arises in high mobility scenarios where it is not
desirable for the receiver to feed back channel state information
(CSI) to the users because it may be outdated [1]. It may also
arise in the initialization phase of a communication link, e.g.,
when a mobile terminal joins a cellular network. Capacity anal-
yses under assumption of noa priori CSI have the advantage of
capturing the cost of estimating the fading channel, and, hence,
yield more realistic throughput estimates than analyses based
on the assumptions of perfect CSI [2]–[4]. Indeed, under the
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assumption of no feedback from the receiver to the user termi-
nals, these capacity analyses provide a fundamental limit on the
performance of every communication scheme, irrespectively of
whether it relies on explicit channel estimation or not.

In this paper, we consider the case where the users as well as
the receiver are equipped with one or more antennas. We shall
focus on the so-called Rayleigh block-fadingmodel [5], [6]. The
two key features of this model are that i) the fading coefficients
associated to the channels between each transmit and receive
antenna pair are independent and identically distributed (i.i.d.)
circularly symmetric complex Gaussian random variables; ii)
each fading coefficient remains constant overtc channel uses
before changing to a new independent realization. The parame-
ter tc, which is the ratio between the channel coherence time
and the symbol duration, will be referred to in this paper as
coherence interval.

The capacity of Rayleigh block-fading channels under the
assumption of noa priori CSI has been studied extensively in
the point-to-point case. Specifically, considering a system with
nt transmit andnr receive antennas, Marzetta and Hochwald
proved that the capacity-achieving input matrixX ∈ Cnt×tc

can be expressed as [6, Thm. 2]

X = DQ (1)

whereD is a realnt×nt diagonal matrix whose diagonal entries
have a joint probability density function (p.d.f.) that is invariant
to permutation of its arguments, andQ ∈ Cnt×tc, independent
of D, is an isotropically distributed matrix with orthonormal
rows (truncated unitary matrix).

In spite of the partial characterization of the capacity-
achieving input distribution provided in [6, Thm. 2], no closed
form expression for capacity is available to date. However,
the high-SNR capacity behavior is well understood. Indeed,
extending a result obtained for the single-input single-output
case in [5], Zheng and Tse [7] proved that in the high-SNR
regime, the capacityC of a nt × nr multiple-input multiple-
output (MIMO) Rayleigh block-fading channel behaves as

C(ρ) = n∗

(

1−
n∗

tc

)

log(ρ) +O(1). (2)

Here,ρ stands for the SNR,n∗ = min(nt, nr, ⌊tc/2⌋), andO(1)
indicates a function whose magnitude is upper-bounded by a
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finite constant for sufficiently large SNR values. The asymptotic
expression (2) can be tightened to [7], [8]

C(ρ) = n∗

(

1−
n∗

tc

)

log(ρ) + c+ o(1) (3)

wherec is the constant given in [8, Eq. (9)] ando(1) denotes
a function that vanishes asρ → ∞. For the case whentc ≥
nt + nr, one can achieve (3) by choosingD in (1) to be a
scaled identity matrix [7]. The resulting probability distribution
onX is commonly referred to as unitary space-time modulation
(USTM) [5]. Whentc < nt+nr, the matrixDmust be chosen so
that its diagonal entries are distributed as the square rootof the
eigenvalues of a Beta-distributed random matrix of appropriate
size [8]. The resulting probability distribution onX is referred
to in [8] as Beta-variate space-time modulation (BSTM).

Nonasymptotic (i.e., finite-SNR) lower bounds on the capac-
ity of point-to-point MIMO Rayleigh block-fading channels
have been obtained for specific probability distributions on X.
Specifically, an i.i.d. Gaussian input distribution is considered
in [9], USTM in [10], and BSTM in [11], where the analysis is
also extended to Rician block-fading and to land mobile satellite
channels. A key tool in the derivation of these nonasymptotic
lower bounds is the Itzykson-Zuber integral [12, Eq. (3.4)],
which allows one to obtain a closed-form expression for the
conditional probability distribution of the channel output given
the diagonal input matrixD in (1). The method employed so far
to assess the tightness of the bounds obtained in [9]–[11] isto
compare these lower bounds with the asymptotic expansion (3)
(with theo(1) term omitted). Unfortunately, this method is not
conclusive because the error incurred by omitting theo(1) term
in (3) is not quantified. A simple capacity upper bound can be
obtained by assuming that a genie provides the receiver with
perfect CSI. However, this bound is tight only whentc is large
and the channel estimation overhead negligible.

Leaving the point-to-point case and moving to the MAC, we
note that the independence constraint on the signals transmitted
by the various users implies that the partial characterization of
the capacity-achieving input distribution obtained for the point-
to-point case in [6, Thm. 2], as well as the asymptotic capacity
expansions in [7], [8] and the nonasymptotic capacity lower
bounds in [10], [11] do not carry over to the MAC sum-rate
capacity. The only exception is the i.i.d. Gaussian lower bound
obtained in [9], which also applies to the MAC because the trans-
mission of i.i.d. Gaussian signals does not require coordination
among the users.

Coarse upper and lower bounds on the MAC sum-rate ca-
pacity for the case whennu single-antenna users communicate
with a receiver equipped withnr antennas are provided in [13].
By examining these bounds in two different asymptotic regimes
(high SNR and largetc, for a fixednu/tc ratio) the authors con-
jecture that the sum-rate capacity is maximized whennu = tc.
In the same paper, the authors pose the question of whether
the constraint that the users transmit independent signalsyields
a sum-rate capacityprelog1 that is strictly lower than the one
achievable when the users can cooperate perfectly, and the MAC

1Theprelog (a.k.a. multiplexing gain) is the asymptotic ratio betweenthe
(sum-rate) capacity andlog(ρ) in the limit ρ → ∞.
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Fig. 1. Upper and lower bounds on the MAC sum-rate capacity:4 single-
antenna users; receiver with4 antennas; coherence interval of10 channel uses.

reduces to a point-to-point MIMO channel, for which (2) holds.
It follows from [7, Sec. V] that this is not the case, provided
that the users are able to transmit orthogonal pilot signals, used
at the receiver to estimate the channel.

Lin and Moser [14] characterized the high-SNR behavior of
the sum-rate capacity of an i.i.d. Rician-fading MAC (block-
fading channel with coherence intervaltc = 1). They showed
that the sum-rate capacity grows double-logarithmically in SNR,
and that the sum-rate capacity maximizing strategy at high SNR
is to switch off all users but one.

Contributions: We present nonasymptotic (i.e., finite-SNR)
upper and lower bounds on the sum-rate capacity of Rayleigh
block-fading MACs. Similarly to the nonasymptotic capacity
lower bounds previously reported in [9]–[11], our bounds are
not in closed form, but they can be evaluated numerically. Our
upper bound is obtained by assuming that the users can perfectly
cooperate, which turns the MAC into an equivalent MIMO point-
to-point channel. In addition, we use the duality upper bound on
mutual information reported in [15, Eq. (186)]. Asauxiliary out-
put distribution in the duality step, we choose the one induced
by USTM inputs in the absence of additive noise. This method
was used in [8] to establish the asymptotic expansion (3) for
the casent ≤ min(nr, ⌊tc/2⌋). Here, we provide a finite-SNR
analysis, which generalizes to MIMO the one reported in [4] for
the single-input single-output (SISO) case.

The nonasymptotic lower bound is obtained by allowing each
user to transmit a USTM signal over the available antennas.
We call the resulting input distribution MAC-USTM. Note that
MAC-USTM does not yield a global USTM input distribution,
because independence among users imply that orthogonality
among them cannot be enforced. Numerical evidence (see Fig.1
and Fig. 2) suggests that for the scenarios considered in the
paper:

• Our upper and lower bounds characterize accurately the
sum-rate capacity (see Fig. 1).

• The gain in sum-rate capacity obtainable by allowing user
co-operation is minimal. This follows because the upper
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Fig. 2. Upper bound, MAC-USTM lower bound, and i.i.d. Gaussian lower
bound on the MAC sum-rate capacity:4 single-antenna users; receiver with4
antennas; coherence interval of10 channel uses.

bound is obtained under the assumption of perfect coopera-
tion between users. A similar observation has been recently
reported in [16] for the nonfading asynchronous Gaussian
MAC.

• Orthogonal pilot transmission is not required to obtain
rates close to the full-cooperation case (cf. [13], [7, Sec.
V]).

• The MAC-USTM lower bound is tighter than the i.i.d.
Gaussian lower bound, although the gain is marginal when
the users are equipped with a single antenna (see Fig. 2).
This suggests that i.i.d. Gaussian inputs are almost sum-
rate capacity optimal already at moderate SNR values,
which confirms an observation reported in [9] for the point-
to-point MIMO case.

Notation: Uppercase letters denote matrices,2 lowercase let-
ters designate scalars, and boldface letters denote randomquan-
tities. The superscript† stands for Hermitian transposition. For
a random variablex with p.d.f. fx(x), we write x ∼ fx(x).
When two random variablesx andy have the same p.d.f., we
write x ∼ y. For a matrixX, we letXij denote its entry on the
ith row and thejth column. Withdet(f(i, j)) we indicate the
determinant of a matrix whose entry on theith row and thejth
column is given byf(i, j), for some arbitrary functionf(·, ·).
It will turn out convenient to define the following function

P(n) =











n
∏

i=1

Γ(i), n ∈ N

1, n = 0

(4)

whereΓ(·) is the Gamma function [17, Sec. 6.1]. Withβ(·, ·)
we denote the Beta function [17, Sec. 6.2] andψ(·) denotes
the Digamma function [17, Sec. 6.3]. The identity matrix of
dimensionn×n is denoted byIn.We letdiag{d1, d2, . . . , dn}

2We do not distinguish between vectors and matrices. We treatn-
dimensional vectors as1× n or n× 1 matrices.

be the diagonal matrix with entriesd1, d2, . . . , dn on its diago-
nal. For a Hermitian matrixA ∈ Cn×n with ordered eigenval-
uesa1 > a2 > · · · > an we denote the determinant of the
Vandermonde matrix constructed froma1, a2, . . . , an as

V(A) =
∏

1≤i<j≤n

(ai − aj). (5)

We shall often use the following two functions

K(A, k) = V(A) det(A)k (6)

whereA ∈ Cn×n is Hermitian andk ∈ N, and

γ(x, n) = ex −
n−1
∑

k=0

xk

k!
(7)

wherex ∈ R andn ∈ N. The set of unitary matrices inCn×n

is denoted byU(n) (unitary group) and the set of matrices
U ∈ Cn×m,m ≥ n with UU † = In is denoted byS(n,m)
(Stiefel manifold). With Ex[f(x)], we denote the expectation of
the functionf(x) over the random variablex. We leth(x) de-
note the differential entropy of a continuous random variablex;
furthermore,I(y; z) stands for the mutual information between
the random variablesy andz. The set of all diagonal matrices in
Rn×m with ordered and distinct positive entries on their main
diagonal is denoted byDn×m.With 0n×m we indicate then×m
zero matrix. We useCN (0, σ2) to denote a circularly symmetric
complex Gaussian random variable with zero mean and variance
σ2, andBeta(a, b) to denote a Beta-distributed random variable
with parametersa andb.

II. SYSTEM MODEL

We consider a Rayleigh block-fading MAC wherenu users
communicate with a receiver havingnr antennas, and the chan-
nel coherence interval istc (same for all users, which corre-
sponds to a scenario where users with similar mobility require-
ments are scheduled together). We assume that each user is
equipped with one or more antennas and denote byni the
number of antennas at useri, i = 1, . . . , nu. The received
signalY ∈ Cnr×tc over an arbitrary coherence interval can be
compactly written in matrix notation as follows:

Y =

nu
∑

i=1

SiXi +W. (8)

Here,Xi ∈ Cni×tc denotes the signal transmitted by useri over
the coherence interval, and the matrixSi ∈ Cnr×ni contains
the fading coefficients associated to the channels between each
transmit antenna of useri and the receive antennas, within the
coherence interval. We assume thatSi has i.i.d.CN (0, 1)entries
and that the channel matrices{Si}

nu
i=1 are independent. Finally,

the matrixW ∈ C
nr×tc, whose entries are i.i.d.CN (0, 1)-

distributed, denotes the additive noise. Let

nt =

nu
∑

i=1

ni (9)

be the total number of transmit antennas. We can rewrite (8) as

Y = SX+W (10)
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where

S =
[

S1 S2 · · · Snu

]

∈ C
nr×nt (11)

and

X =











X1

X2

...
Xnu











∈ C
nt×tc. (12)

We assume thatW andS are independent, and that their proba-
bility law does not depend onX. Throughout the paper, we also
assume thattc ≥ max(nt, nr) and focus on the scenario where
neither the transmitter nor the receiver have prior knowledge of
matrixS (noa priori CSI). It will turn out convenient to define
the following two constants

l = min(nt, nr) (13)

p = max(nt, nr). (14)

The sum-rate capacity of the MAC in (10) is given by

C(ρ) =
1

tc
sup I(X;Y) (15)

where the supremum is over all probability distributions onX

for which
1) {Xi}

nu
i=1 are independent;

2) the per-user power constraint

E

[

Tr{XiX
†
i}
]

≤
tcniρ

nt
, i = 1, 2, . . . , nu (16)

is satisfied.
Here,ρ can be thought of as the total energy per channel use
available over all users. The particular form of average power
constraint in (16) allows all users to transmit at the same average
power per antenna. As reviewed in Section I,C(ρ) is not known
in closed form.

In the next section, we provide nonasymptotic upper and
lower bounds on the sum-rate capacityC(ρ) in (15). These
bounds will be numerically evaluated in Section IV, and con-
clusions be drawn in Section V.

III. B OUNDS ONCAPACITY

Theorem 1 below provides a nonasymptotic upper bound on
C(ρ). The upper bound is obtained by dropping the requirement
that the{Xi}

nu
i=1 are independent (which enlarges the set of

distributions over which the maximization in (15) is performed),
and by bounding the mutual information in (15) using the du-
ality bound [15, Eq. (186)]. The duality approach requires the
specification of an auxiliary p.d.f. on the channel outputY,
which, following [8], we choose so that i)Y is isotropic; ii)
the largestl singular values ofY are distributed as the singular
values of the noiseless channel outputSX, with X following a
USTM distribution; iii) the remainingnr − l singular values are
distributed as the singular values of an additive noise matrix of
appropriate dimension.

Theorem 1: The sum-rate capacityC(ρ) in (15) of the
Rayleigh block-fading MAC (8) is upper-bounded by

C(ρ) ≤ u(ρ) +
1

tc
inf
λ≥0

sup
D∈Dnt×nt

g(D,λ). (17)

Here,

u(ρ) = − nr +
nrnt

tc
log

(

tcρ

nt

)

+
1

tc
log

(

P(nr − l)P(tc − l)P(nt)

P(tc)P(p− l)

)

+
1

tc
log(κ(ρ))

+
ntnr

tcρ
+

(nr − l)(tc − l)

tc

−
(tc − nt)(nr − l)

tc
log(µ) (18)

and

g(D,λ) =
ntnr Tr{D2}

tcρ

+ (tc − nt)EG

[

log det
(

G(Int +D2)G† + µInr

)]

− nr log det
(

Int +D2
)

+ λ(tcρ− Tr{D2}) (19)

whereP(·) is given in (4),G is annr × nt complex random
matrix with i.i.d.CN (0, 1) entries andµ is the expected value
of the square of the largest singular value of annr × (tc − nt)
complex random matrix with i.i.d.CN (0, 1) entries. Finally,
with κ(ρ) we denote the probability that the lowest nonzero
singular value of annr × nt complex random matrix with i.i.d.
CN (0, tcρ/nt) entries is greater than the largest singular value
of an independent(nr − l) × (tc − l) complex random matrix
with i.i.d. CN (0, 1) entries.

Proof: See Appendix B.
Whennt = nr, the sum-rate upper bound (17) can be tight-

ened. This result is given in the following corollary.
Corollary 2: The sum-rate capacityC(ρ) in (15) of the

Rayleigh block-fading MAC (8) for the casent = nr = n is
upper-bounded by

C(ρ) ≤ u∗(ρ) +
1

tc
inf
λ≥0

sup
D∈Dn×n

g∗(D,λ). (20)

Here,

u∗(ρ) = − n+
n2

tc
log

(

tcρ

n

)

+
n2

tcρ

+
1

tc
log

(

P(n)P(tc − n)

P(tc)

)

(21)

and

g∗(D,λ) =
n2 Tr{D2}

tcρ
− n log det

(

In +D2
)

+ λ(tcρ− Tr{D2})

+
(tc − n)

∑n
k=1 det

(

Rk(In +D2)
)

K(D2, tc − n) det(In +D2)−tc+n+1
(22)

whereP(·) is given in (4) andK(·, ·) is given in (6). The matrix
Rk(A) in (22), which is a function of then×n diagonal matrix
A, is defined as follows. Leta1 > a2 > · · · > an denote the
ordered diagonal entries ofA. Let then× n real matrixPk(A)
and the(tc −n)×n real matrixTk, k = 1, 2, . . . , n be defined
as follows:

[Pk(A)]ij =



















an−k+1
i (log(ai) + ψ(n− k + 1)),

1 ≤ i ≤ n, j = k

an−j+1
i ,

1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= k

(23)
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and

[Tk]ij =







































































1

β(n− j + 1, tc − n− i)
,

1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= k
ψ(tc − i− k + 1)

β(n− k + 1, tc − i)
,

1 ≤ i ≤ tc − n− 1, j = k

1,

i = tc − n, 1 ≤ j ≤ n, j 6= k

ψ(n− k + 1),

i = tc − n, j = k

(24)

where β(·, ·) is defined in the notation section. Finally, let
Q(A) ∈ Rn×(tc−n) andS ∈ R(tc−n)×(tc−n) be given by

[Q(A)]ij = (−ai)
j+n−tc , 1 ≤ i ≤ n, 1 ≤ j ≤ tc − n (25)

and

Sij =



















(−1)i−j

β(i − j + 1, tc − n− i)
, 1 ≤ j ≤ i ≤ tc − n− 1

(−1)i−j , 1 ≤ j ≤ i = tc − n

0, 1 ≤ i < j ≤ tc − n.

(26)

Then,

Rk(A) = Pk(A)−Q(A)S−1Tk. (27)

Proof: See Appendix C.
In Theorem 3 below we provide a lower bound onC(ρ). This

lower bound is obtained by evaluating the mutual information
in (15) for the MAC-USTM input distribution introduced in
Section I. Specifically, we set

Xi =

√

tcρ

nt
Vi (28)

with Vi uniformly distributed onS(ni, tc). With this choice,
the power constraint in (16) is satisfied with equality. Similar
to the bounds developed in [9]–[11], our lower bound relies
on the Itzykson-Zuber integral [12, Eq. (3.4)]. In order to give
a compact expression for our lower bound, we shall focus on
the setup where each user is equipped with a single antenna
i.e.,ni = 1, i = 1, 2, . . . , nu. We will address the case when
the users have multiple antennas at the end of this section.

Theorem 3: The sum-rate capacityC(ρ) in (15) of the
Rayleigh block-fading MAC (8) for the case when all transmit-
ters have a single antenna, i.e.,ni = 1, i = 1, 2, . . . , nu is
lower-bounded as follows:

C(ρ) ≥ log

(

P(tc − l)

P(tc)

)

+ nrtcρ

− nr E
[

log det
(

Int +D2
)]

+ E
[

log
(

K(YY†, tc − nr)
)]

− E

[

log

(

ED

[

det
(

M(YY†,E)
)

det(Int +D2)nrK(E, tc − nt)

])]

.

(29)

Here,D is annt×nt real diagonal matrix with entries containing
the singular values of the input matrixX, which is assumed to
follow the MAC-USTM distribution (28). Furthermore, thent×
nt matrix E is defined asE = (D−2 + Int)

−1, P(·) is given
in (4), andK(·, ·) is given in (6). Finally, thep × p real matrix
M(A,B) is defined as follows:

[M(A,B)]ij

=











γ(aibj, tc − p) , 1 ≤ i ≤ nr, 1 ≤ j ≤ nt

btc−i
j , nr + 1 ≤ i ≤ p, 1 ≤ j ≤ nt

atc−j
i , 1 ≤ i ≤ nr, nt + 1 ≤ j ≤ p.

(30)

Here,a1 > a2 > · · · > anr are the ordered eigenvalues of
the positive-definite matrixA ∈ Cnr×nr ; similarly b1 > b2 >
· · · > bnt are the ordered eigenvalues of the positive-definite
matrixB ∈ Cnt×nt ; the functionγ(·, ·) in (30) is given in (7).

Proof: See Appendix D.
The lower bound (29) involves expectations that are not

known in closed form. Hence, we resort to Monte-Carlo meth-
ods for the evaluation of (29). One exception is the two-user
casenu = 2, for which the expectation overD in (29) admits
a closed-form integral expression. This result is presented in
Corollary 4 below. The proof of this corollary exploits thatfor
the two-user case, the probability distribution of the eigenvalues
of XX† can be obtained from the p.d.f. ofdet

(

XX†
)

, which
can be calculated through Bartlett’s decomposition [18, Prop.
2.1]. This approach does not extend to the casenu > 2 ornt > 2.

Corollary 4: The sum-rate capacityC(ρ) in (15) of the
Rayleigh block-fading MAC (8) withnu = 2 andni = 1, i =
1, 2 is lower-bounded as follows:

C(ρ) ≥ log

(

P(tc − l)

P(tc)

)

+ nrtcρ+ log

(

tcρ

2

)

− nr(tc − 1)

[
∫ 1

0

log
(

µ2 − α
)

(1− α)tc−2dα

]

+ E
[

log
(

K(YY†, tc − nr)
)]

− log(tc − 1)

− E

[

log

(
∫ 1

0

det
(

M(YY†, E(α))
) (

µ2 − α2
)tc−nr−1

dα

)]

.

(31)

Here,µ = 1 + 2/tcρ and

E(α) = diag

{

1 + α

1 + µ(1 + α)
,

1− α

1 + µ(1− α)

}

. (32)

Furthermore,M(·, ·) is given in (30),P(·) is given in (4), and
K(·, ·) is given in (6).

Proof: See Appendix E.
For the case when the users are equipped with multiple an-

tennas, the singular values of the input matrixX are no longer
distinct, and (29) needs to be further simplified using L’Hôpital’s
rule. The final expression of the resulting lower bound is omitted
because it is involved. Instead, numerical results are provided in
Section IV.

IV. N UMERICAL RESULTS

Focusing on the setup where the total number of transmit
antennasnt is equal to the number of receive antennasnr, we
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Fig. 3. Upper bounds (20) and (33), and lower bound (29) on thesum-rate
capacity of the MAC (8);nu = 2 single-antenna users,nr = 2, tc ∈ {4, 10}.

numerically evaluate in this section the upper bound (20) and
the lower bound (29) on the sum-rate capacity (15).3

We also evaluate the i.i.d. Gaussian lower bound developed
by Ruseket al. [9], which is obtained by settingX =

√

ρ/ntG

in (15), withG having i.i.d.CN (0, 1) entries. For this choice
of X, the expectation overD in (29) can be evaluated in closed
form using the properties of Wishart matrices and the integral
formula [19, Cor. 2]. See [9], [11] for details.

We also consider the simple capacity upper bound obtained by
assuming that the receiver has perfect knowledge of the channel
matrixS in (11). This bound is given by [20]

C(ρ) ≤ E

[

log det

(

Inr +
ρ

nt
SS†

)]

. (33)

We start by considering the case of single-antenna users. In
Figs. 3–5, we depict the upper bounds (20) and (33), and the
lower bound (29) on the sum-rate capacity of the MAC (8) for
different values of number of usersnu, number of receive anten-
nasnr, and coherence intervaltc. For the choice of parameters
in Figs. 3–5, the upper bound (20) and the lower bound (29)
characterize the sum-rate capacity accurately already at SNR
values as low as10 dB. The tightness of the bounds increases
as the coherence intervaltc or the SNR increases. This last ob-
servation comes as no surprise, since the choice of the auxiliary
distribution in the derivation of the upper bound (20) is dictated
by high-SNR considerations.

The tightness of our bounds implies that the sum-rate capacity
of the MAC (8) is well-approximated by the capacity of an
equivalent point-to-point MIMO channel with the same SNR
and the same total numberof transmit and receive antennas. This
follows because the upper bound is derived under the assump-
tion of perfect cooperation among the users. Furthermore, we
observe that the perfect-CSI sum-rate capacity upper bound(33)

3Numerical routines implementing the upper
bound (20) and lower bound (29) can be downloaded at
https://github.com/infotheorychalmers/maccapacity bounds
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Fig. 4. Upper bounds (20) and (33), and lower bound (29) on thesum-rate
capacity of the MAC (8);nu = 3 single-antenna users,nr = 3, tc ∈ {6, 10}.
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Fig. 5. Upper bounds (20) and (33), and lower bound (29) on thesum-rate
capacity of the MAC (8);nu = 4 single-antenna users,nr = 4, tc ∈ {8, 10}.

is loose for the relatively smalltc values considered in this
section.

As shown in Fig. 2 (see Section I) for the casenu = nr = 4
and tc = 10, the MAC-USTM lower bound is tighter than
the i.i.d. Gaussian lower bound in the high-SNR regime, al-
though marginally so. The same consideration holds for the case
nu = nr = 2 andnu = nr = 3 considered in Fig. 3 and Fig. 4.
Furthermore, the gap between the two bounds gets smaller fortc
values smaller than10.

In Fig. 6, we consider the case whennt = nr = 4andtc = 10,
but the available4 antennas are divided unevenly among the
users. Specifically, we assumenu = 2 (two users) and that the
first user has one antenna(n1 = 1) whereas the second user
has three antennas(n2 = 3). Note that the upper bound and the
i.i.d. Gaussian lower bound depend only on the total number of
antennasnt and not on the way the antennas are divided among

https://github.com/infotheorychalmers/mac_capacity_bounds


7

20 21 22 23 24 25

13

14

15

16

i.i.d. Gaussian

MAC-USTM

Upper bound

ρ [dB]

R
at

e
[b

it
s/

ch
.

u
se

]

Fig. 6. Upper bound (20), MAC-USTM lower bound (29), and i.i.d. Gaussian
lower bound [9];nu = 2 with n1 = 1 andn2 = 3; furthermore,nr = 4 and
tc = 10.

users. Hence, these two curves coincide with the curves drawn
in Fig. 1 and Fig. 2. On the contrary, the MAC-USTM bound
depends onn1 andn2, and, for the asymmetric antenna scenario
considered in Fig. 6, is tighter than the i.i.d. Gaussian bound,
although marginally so.

V. CONCLUSION

We presented finite-SNR upper and lower bounds on the sum-
rate capacity of Rayleigh block-fading channels for the scenario
where neither the transmitters nor the receiver have accessto
a priori CSI. The upper bound, which is based on duality, is
derived under the assumption that the transmitters can cooperate
perfectly. This transforms the MAC into an equivalent point-to-
point MIMO channel. We obtain the lower bound by assuming
that a USTM signal is independently transmitted by each user
over its available antennas (MAC-USTM). The gap between the
upper and the lower bounds is less than8% at 10 dB for the
case of4 single-antenna transmitters communicating with a4-
antenna receiver over a MAC with coherence interval10. The
gap reduces further when the SNR or the coherence interval
get larger. This implies that the capacity gains obtainableby
allowing cooperation among transmitters are minimal in this
case. Our numerical results show also that MAC-USTM yields
rates that are only marginally larger than the ones obtainable
using i.i.d. Gaussian inputs. This suggests that i.i.d. Gaussian
inputs are almost sum-rate capacity optimal for the Rayleigh
block-fading MACs considered in Section IV.

APPENDIX A
PRELIMINARY RESULTS

A. An Integral Formula

The following lemma is useful in the evaluation of integrals
that involve matrix determinants. We shall need this lemma in
the proof of Corollary 2.

Lemma 5: Let a, b ∈ R, with a < b. Let {fi(·)}ni=1 and
{gi(·)}ni=1 be arbitrary integrable functions over[a, b). LetA =
A(x1, x2, . . . , xn) andB = B(x1, x2, . . . , xn) ben × n and
m×m matrices(m ≥ n) whose entries depend on the scalars
x1, x2, . . . , xn as follows:

Aij =

{

fi(xj), 1 ≤ i ≤ m, 1 ≤ j ≤ n

cij , 1 ≤ i ≤ m, n+ 1 ≤ j ≤ m
(34)

Bij = gi(xj), 1 ≤ i ≤ n, 1 ≤ j ≤ n (35)

wherecij are arbitrary scalar real constants. Finally, letE ∈
Rm×m be defined as

Eij =











∫ b

a

fi(x)gj(x)dx, 1 ≤ i ≤ m, 1 ≤ j ≤ n

cij , 1 ≤ i ≤ m, n+ 1 ≤ j ≤ m.

(36)

Then
∫

· · ·

∫

a≤xn≤xn−1···≤x1<b

det(A) det(B)dx1dx2 . . . dxn = det(E).

(37)

Proof: See [21, Lem. 2].

B. Limits of Determinants

The following lemma, which characterizes the limiting be-
havior of the ratio between the determinant of a certain matrix
and a Vandermonde determinant, will be needed in the proof of
Corollary 2.

Lemma 6: LetA ∈ Cm×m be a positive-definite matrix with
ordered eigenvaluesa1 > a2 > · · · > am. Let C ∈ Cm×m

be a matrix with entriesCi,j = fi(aj), for some differentiable
functions{fi(·)}mi=1. Then for every integern < m, and every
scalar real constanta0,

lim
{an+1,an+2,...,am}→a0

det(C)

V(A)

=
det(E)

P(m− n)K(A0 − a0In,m− n)
(38)

whereA0 = diag{a1, a2, . . . , an},P(·) is given in (4),V(·) is
given in (5),K(·, ·) is given in (6), and the entries of them×m
matrixE are

Ei,j =

{

fi(aj), 1 ≤ i ≤ m, 1 ≤ j ≤ n

f
(m−j)
i (a0), 1 ≤ i ≤ m, n+ 1 ≤ j ≤ m.

(39)

Here,f (k)
i (·) denotes thekth-order derivative offi(·).

Proof: See [22, Lem. 5].

C. Expectation of the Log Determinant of a Gaussian
Quadratic Form

The following lemma gives a closed-form expression for
E
[

log det
(

XLX†
)]

whereX has i.i.d.CN (0, 1) entries andL
is a certain positive-definite matrix. A closed-form expression
for the case when the eigenvalues ofL are distinct is provided
in [23, Lem. 2]. Here, we derive a different closed-form expres-
sion, which does not require the eigenvalues to be distinct,and
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appears better suited for numerical evaluations. This lemma is
used in the proof of Corollary 2.

Lemma 7: Let X ∈ Cn×m, wheren < m, be a random
matrix with i.i.d.CN (0, 1)entries. LetL ∈ Cm×m be a positive-
definite matrix whose largestn eigenvalues satisfyl1 > l2 >
· · · > ln > 1, and whose lowestm − n eigenvalues are equal
to 1. Then

E
[

log det
(

XLX†
)]

=
det(L0)

m−n−1

K(L0 − In,m− n)

n
∑

k=1

det(Rk(L0)) (40)

whereK(·, ·) is given in (6),L0 = diag{l1, l2, . . . , ln}, and
Rk(·) is defined as in Corollary 2.

Proof: We first obtain the joint p.d.f. of the eigenvalues of
S∗ = XL∗X†, whereL∗ ∈ Cm×m is a positive-definite ma-
trix whose largestn eigenvalues coincide with the eigenvalues
of L, and whose remainingm− n eigenvalues are distinct, i.e.,
l∗n+1 > l∗n+2 > · · · > l∗m.We then derive the p.d.f. of the eigen-
values ofS = XLX† by letting {l∗n+1, l

∗
n+2, . . . , l

∗
m} → 1.

Knowledge of this p.d.f. allows us to obtain the moment gen-
erating function oflog det(S) in closed form, from which (40)
follows by evaluating the derivative of this moment generating
function at zero. The p.d.f. ofS∗ is [24, Sec. 2]4

fS∗(S)

=
1

πn(n−1)/2

det
(

F (−(L∗)−1, S)
)

V(S)V(−(L∗)−1) det(L∗)n
, S ∈ C

n×n

(41)

whereF (A,B) is anm×mmatrix that depends on the ordered
eigenvalues{ai}mi=1 and{bi}ni=1 of the Hermitian matricesA ∈
Cm×m andB ∈ Cn×n as follows

[F (A,B)]ij =

{

eaibj , 1 ≤ i ≤ m, 1 ≤ j ≤ n

am−j
i , 1 ≤ i ≤ m, n+ 1 ≤ j ≤ m.

(42)

LetES∗ denote then×n real diagonal matrix having the ordered
eigenvalues ofS∗ on its main diagonal. The p.d.f. ofES∗ is [26,
Thm. 3.2]

fES∗ (E)

=
1

P(n)

det
(

F (−(L∗)−1, E)
)

V(E)

V(−(L∗)−1) det(L∗)n
, E ∈ D

n×n. (43)

Finally, let ES denote then × n real diagonal matrix hav-
ing the ordered eigenvalues ofS = XLX† on its main di-
agonal. We obtain the p.d.f. ofES by computing the limit
{l∗n+1, l

∗
n+2, . . . , l

∗
m} → 1 in (43):

fES
(E) = lim

{l∗
n+1,l

∗

n+2,...,l
∗

m}→1
fES∗ (E) (44)

=
V(E)

P(n) det(L0)n
det(G(L0, E))

P(m− n)K(−L−1
0 + In,m− n)

(45)

=
det(L0)

m−n−1 det(G(L0, E))V(E)

P(n)P(m− n)K(L0 − In,m− n)
, E ∈ D

n×n. (46)

4There seems to be a typo in the expression given in [24, Sec. 2]. The term
πn(n−1)/2 should be in denominator (see [25, Eq. (50) and Eq. (57)]).

Here,L0 ∈ Dn×n is a diagonal matrix, which contains then
largest eigenvaluesl1 > l2 > · · · > ln of L on its diagonal.
Furthermore, them×mmatrixG(L0, E) is defined as follows

[G(L0, E)]ij =






































exp
(

−l−1
i ej

)

, 1 ≤ i ≤ n, 1 ≤ j ≤ n

em−i
j exp(−ej), n+ 1 ≤ i ≤ m, 1 ≤ j ≤ n

(−li)
j−m, 1 ≤ i ≤ n, n+ 1 ≤ j ≤ m

Γ(m− j + 1)

Γ(i− j + 1)
(−1)i−j , n+ 1 ≤ j ≤ i ≤ m

0, n+ 1 ≤ i < j ≤ m

(47)

wheree1 > e2 > · · · > en denote the diagonal entries ofE. To
obtain (45), we used Lemma 6, and (46) follows because for all
A ∈ Cn×n, we have thatV(−A) = V(A) and thatV(A−1) =
V(A)/ det(A)n−1.

Next, we evaluate the moment generating function of
log det(S):

g(t) = E[exp(t log det(S))] = E
[

det(ES)
t
]

(48)

=

∫

· · ·

∫

Dn×n

det(E)tfES
(E)dE (49)

=
det(L0)

m−n−1 det(H(t, L0))

P(n)P(m− n)K(L0 − In,m− n)
. (50)

Here, them×m matrixH(t, L0) is defined as follows:

[H(t, L0)]ij =






































Γ(t+ n− j + 1)lt+n−j+1
i , 1 ≤ i ≤ n, 1 ≤ j ≤ n

Γ(t+m− i+ n− j + 1), n+ 1 ≤ i ≤ m, 1 ≤ j ≤ n

(−li)
j−m, 1 ≤ i ≤ n, n+ 1 ≤ j ≤ m

Γ(m− j + 1)

Γ(i− j + 1)
(−1)i−j , n+ 1 ≤ j ≤ i ≤ m

0, n+ 1 ≤ i < j ≤ m.

(51)

To obtain (50), we used the integral formula (37) in Lemma 5.
To establish (40), we now proceed as follows. Letg′(t) denote
the first derivative ofg(t). Then

E[log det(Y)] = lim
t→0

g′(t) (52)

=
det(L0)

m−n−1
∑n

k=1 det(Hk(L0))

P(n)P(m− n)K(L0 − In,m− n)
(53)

where them×m matricesHk(L0), k = 1, 2, . . . , n, are given
by

[Hk(L0)]ij =






































[H(0, L0)]ij ,

1 ≤ i ≤ m, 1 ≤ j ≤ m, j 6= k

Γ(n− k + 1)ln−k+1
i (log(li) + ψ(n− k + 1)),

1 ≤ i ≤ n, j = k

Γ(m− i+ n− k + 1)ψ(m− i+ n− k + 1),

n+ 1 ≤ i ≤ m, j = k.

(54)

In (53), we have written the derivative of the determinant ofthe
matrixH(t, L0) as a sum ofn determinants by using that the
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matrixH(t, L0) depends ont only through its firstn columns.
Through algebraic manipulation one can show that

det(Hk(L0)) = P(n)P(m− n) det(Rk(L0)) (55)

whereRk(·) is defined in (27). The equality in (55) relates the
determinant of anm×mmatrix to the determinant of a smaller
n× n matrix. Substituting (55) into (53) we obtain (40).

APPENDIX B
PROOF OFTHEOREM 1

We upper-bound the sum-rate capacityC(ρ) by enlarging the
set over which the supremum in (15) is computed. Specifically,
we drop the assumption that the{Xi}

nu
i=1 are independent, and

we substitute (16) with the “global” power constraint

E
[

Tr{XX†}
]

≤ tcρ. (56)

Let J (ρ) denote this enlarged set. Then

C(ρ) ≤
1

tc
sup
J (ρ)

I(X;Y). (57)

Note that the right-hand side (RHS) of (57) is the capacity ofan
nt×nr MIMO Rayleigh bock-fading channel. Hence, it follows
from [6, Thm. 2] that we can restrict the supremum in (57) to
input distributions for whichX = DQ, whereD is annt × nt

real diagonal matrix andQ is independent ofD, and uniformly
distributed over the Stiefel manifoldS(nt, tc).

Next, we upper-bound the RHS of (57) using the duality
bound [15, Eq. (186)]. This requires the specification of an
auxiliary p.d.f.rY(·) on Y, which we choose as follows. Let
us denote the singular value decomposition (SVD) ofY as

Y = UΣV. (58)

Here,Ubelongs to the setU(nr)and has real and positive entries
on the main diagonal,5

Σ is annr × nr diagonal matrix that
contains the ordered singular values ofY on its main diagonal,
andV belongs to the Stiefel manifoldS(nr, tc). Furthermore,
we choose the auxiliary p.d.f. so that the matrices on the RHS
of (58) are mutually independent, which leads to

rY(Y ) = fU(U)fΣ(Σ)fV(V )J(Σ) (59)

wherefU(·), fΣ(·) andfV(·) are the p.d.f. ofU, Σ, andV,
respectively and

J(Σ) =
1

V(Σ2)2 det(Σ)2(tc−nr)+1
(60)

is the Jacobian of the SVD [7, App. A]. Moreover, we assume
thatU andV are uniformly distributed (with respect to the Haar
measure) over their respective domains, which implies that

fUY
(U) =

P(nr)

π
nr(nr−1)

2

(61)

fVY
(V ) =

P(tc)

P(tc − nr)2nrπnrtc−
nr(nr−1)

2

. (62)

The p.d.f. ofΣ is chosen as in [8, Sec. V]. Specifically, we
take the firstl singular values ofY to be distributed as the

5This second requirement ensures that the SVD in (58) is a one-to-one map.

singular values of the noiseless channel outputSX, with X

USTM distributed. We take the remainingnr− l singular values
of Y to be independent of the firstl singular values and to
be distributed as the singular values of an(nr − l) × (tc − l)
matrix with i.i.d.CN (0, 1) entries. LetΣ1 be anl × l diagonal
matrix containing the firstl singular values ofY and letΣ2 be
an(nr − l)× (nr − l) matrix containing the remaining singular
values. Then we have

fΣ(Σ1,Σ2) =
fΣ1(Σ1)fΣ2(Σ2)

κ(ρ)
. (63)

Here,

fΣ1(Σ1) =
2lP(p− l)

P(l)P(p)βpl
exp

(

−
1

β
Tr{Σ2

1}

)

· det(Σ1)
2(p−l)+1V(Σ2

1)
2, Σ1 ∈ D

l×l (64)

whereβ = tcρ/nt and

fΣ2(Σ2) =
2nr−lP(tc − nr)

P(nr − l)P(tc − l)
e−Tr{Σ2

2} det(Σ2)
2(tc−nr)+1

·V(Σ2
2)

2, Σ2 ∈ D
nr−l×nr−l. (65)

Furthermore,κ(ρ) is a normalization constant that ensures that
the singular values are ordered.Specifically,κ(ρ) is the probabil-
ity that the smallest singular value inΣ1 is larger than the largest
singular values inΣ2. UsingrY(·) in the duality bound [15, Eq.
(186)] we obtain

C(ρ) ≤
1

tc
sup
J (ρ)

{−E[log(rY(Y))]− h(Y|X)}. (66)

Note that the expectation in (66) is not with respect torY(·) but
with respect to the probability distribution onY induced by the
input distribution onX through the channel (10). Fixλ > 0.
We can further upper-bound the RHS of (66) by using (56) as
follows:

C(ρ) ≤
1

tc
inf
λ>0

sup
J (ρ)

{

− E[log(rY(Y))]− h(Y|X)

+ λ
(

tcρ− E
[

Tr{XX†}
])}

. (67)

Substituting (61), (64), (65), (62), and (60) into (67) and us-
ing [6, Thm. 2] we can rewrite the upper bound (67) as

C(ρ) ≤
1

tc
inf
λ>0

sup
J (ρ)

{

− nrtc + nrnt log(β) + log(κ(ρ))

+ log

(

P(nr − l)P(tc − l)P(nt)

P(tc)P(p− l)

)

− nr E
[

log det
(

Int +D2
)]

+ λ
(

tcρ− E
[

Tr{D2}
])

+
1

β
E
[

Tr{Σ2
1}
]

+ E
[

Tr{Σ2
2}
]

+ (l + tc − p− nr)E
[

log det
(

Σ
2
1

)]

+ E

[

log

(

V(Σ2)2

V(Σ2
1)

2V(Σ2
2)

2

)]}

. (68)

We proceed now by upper-bounding some of the terms on the
RHS of (68). First we boundE

[

Tr{Σ2
1}
]

:

E
[

Tr{Σ2
1}
]

≤ E
[

Tr{YY†}
]

= nrtc + nr E
[

Tr{D2}
]

. (69)
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Let σ2
1 > σ2

2 > · · · > σ2
nt

denote the eigenvalues ofYY†. To
boundE

[

Tr{Σ2
2}
]

, we use the argument given in [7, p. 377],
which yields

E
[

Tr{Σ2
2}
]

= E

[

nr
∑

i=l+1

σ2
i

]

≤ (nr − l)(tc − l). (70)

We also have that

E

[

log

(

V(Σ2)2

V(Σ2
1)

2V(Σ2
2)

2

)]

= E





l
∑

i=1

nr
∑

j=l+1

2 log
(

σ2
i − σ2

j

)





≤ 2(nr − l)E
[

log det
(

Σ
2
1

)]

. (71)

Finally, to bound the termE
[

log det
(

Σ
2
1

)]

, we start by not-
ing that, givenX = X = DQ, the rows of the random
matrix Y are i.i.d. complex Gaussian random vectors with
zero mean and covariance matrixItc +X†X. This means that,
given X = X = DQ, the matrixY†Y has the same dis-
tribution asG(Int + D2)G† + HH† whereG ∈ Cnr×nt

and H ∈ Cnr×(tc−nt) are independent matrices with i.i.d.
CN (0, 1) entries. Letλ1, λ2, . . . , λl denote thel eigenvalues of
G(Int +D2)G† (note that this matrix has rankl). Furthermore,
letµ1 denote the largest eigenvalue ofHH†, and letµ = E[µ1].
We have

E
[

log det
(

Σ
2
1

)]

= E

[

l
∑

i=1

log
(

σ2
i

)

]

(72)

= ED,Q

[

EY|D,Q

[

l
∑

i=1

log
(

σ2
i

)

∣

∣

∣

∣

∣

D,Q

]]

(73)

≤ ED

[

EG,H

[

l
∑

i=1

log(λi + µ1)

∣

∣

∣

∣

∣

D

]]

(74)

≤ ED

[

EG

[

l
∑

i=1

log(λi + µ)

∣

∣

∣

∣

∣

D

]]

(75)

= E
[

log det
(

G(Int +D2)G† + µInr

)]

− (nr − l) log(µ). (76)

Here, (74) follows from Weyl’s theorem [27, Thm. 4.3.1] and
in (75) we used Jensen’s inequality. Substituting (69), (70), (76)
into (68) we obtain

C(ρ) ≤ u(ρ) +
1

tc
inf
λ≥0

sup
J (ρ)

E[g(D, λ)] (77)

≤ u(ρ) +
1

tc
inf
λ≥0

sup
D∈Dnt×nt

g(D,λ) (78)

whereu(·) andg(·, ·) are given in (18) and (19), respectively,
and where the last step follows by upper-bounding the supre-
mum over the probability distribution onD with the supremum
over the set of deterministic diagonal matrices D.

APPENDIX C
PROOF OFCOROLLARY 2

Whennt = nr = n, the upper bound (68) becomes

C(ρ) ≤
1

tc
inf
λ>0

sup
J (ρ)

{

n2 log(β) + log

(

P(n)P(tc − n)

P(tc)

)

− ntc + (tc − n)E
[

log det
(

YY†
)]

− nE
[

log det
(

In +D2
)]

+
1

β
E
[

Tr{YY†}
]

+ λ
(

tcρ− E
[

Tr{D2}
])

}

. (79)

Differently from the general case treated in Appendix B, in
the square case some of the terms on the RHS of (79) can be
computed in closed form. Specifically,

E
[

Tr{YY†}
]

= ntc + nE
[

Tr{D2}
]

. (80)

To evaluateE
[

log det
(

YY†
)]

we use that, givenX = X =
DQ, the rows ofY are i.i.d. complex Gaussian random vectors
with zero mean and covariance matrixItc +X†X. This means
that givenX = X = DQ, the matrixYY† has the same
probability distribution asZ(Itc +X†X)Z†, whereZ ∈ Cn×tc

has i.i.d.CN (0, 1) entries. Hence, we conclude that

E
[

log det
(

YY†
)]

= EX

[

EZ

[

log det
(

Z(Itc +X†X)Z†
)]]

(81)

= E

[

det
(

In +D2
)

tc−n−1

K(D2, tc − n)

n
∑

k=1

det
(

Rk(In +D2)
)

]

. (82)

Here, the last step follows from Lemma 7 in Appendix A. Sub-
stituting (80) and (82) into (79) we obtain

C(ρ) ≤ u∗(ρ) +
1

tc
inf
λ≥0

sup
J (ρ)

E[g∗(D, λ)] (83)

whereu∗(·) andg∗(·, ·) are given in (21) and (22) respectively.
We conclude the proof by noting that

E[g∗(D, λ)] ≤ sup
D∈Dn×n

g∗(D,λ) (84)

which yields (20).

APPENDIX D
PROOF OFTHEOREM 3

We lower-boundC(ρ) by evaluating the mutual information
on the RHS of (15) for the MAC-USTM distribution (28), which
yields

C(ρ) ≥ I(X;Y). (85)

LetX = UDQ denote the singular value decomposition ofX,
whereU belongs to the unitary groupU(nt), the diagonal matrix
D ∈ D

nt×nt contains the ordered singular values ofX on its
main diagonal, andQ belongs to the Stiefel manifoldS(nt, tc).
We next decompose the mutual information as

I(X;Y) = h(Y)− h(Y|X) (86)

and evaluate the two terms on the RHS of (86) separately. Since
Y is conditionally Gaussian givenX, the second term in (86)
can be simplified as

h(Y|X) = nr E
[

log det
(

Int +D2
)]

+ nrtc log(πe). (87)
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We next evaluateh(Y). SinceXV ∼ X for every deterministic
unitary matrixV ∈ U(tc), we conclude thatQ is uniformly
distributed overS(nt, tc) and independent ofD. We also have
that

Y = SX+W (88)

= SUDQ+W (89)

∼ SDQ+W. (90)

Here, (89) follows from the singular value decomposition of
X, and (90) holds becauseS is isotropically distributed, and,
hence,SU ∼ S, which also implies thatSU is independent of
D. The fact thatQ is uniformly distributed overS(nt, tc) and
independent ofD allows us to invoke [11, Prop. 6] and obtain
a closed form expression for the conditional p.d.f.fY|D of Y
givenD. Substituting this closed form expression into

h(Y) = −E[log(fY(Y))] (91)

= −E
[

log
(

ED

[

fY|D(Y|D)
])]

(92)

and then substituting (92) and (87) into (86), we obtain (29).

APPENDIX E
PROOF OFCOROLLARY 4

We derive in closed form the p.d.f. of the eigenvalues of the
2× 2 matrixXX†, where the two rowsX1 ∈ C1×tc andX2 ∈
C1×tc of the2× tc dimensional matrixX are given by

Xi =

√

tcρ

2
Vi, i = 1, 2 (93)

with V1 ∈ C1×tc and V2 ∈ C1×tc i.i.d. and uniformly
distributed onS(1, tc) (with respect to the Haar measure). To
compute the eigenvalues ofXX†, we express it as follows

XX† =
tcρ

2

[

V1

V2

]

[

V
†
1 V

†
2

]

(94)

=
tcρ

2

[

1 V1V
†
2

V2V
†
1 1

]

. (95)

Let α denote the absolute value of the scalarV1V
†
2. It follows

from (95) that the eigenvalues ofXX† aretcρ(1±α)/2.Hence,
in order to determine the p.d.f. of the eigenvalues ofXX†, it is
sufficient to obtain the p.d.f. ofα. Since

det
(

XX†
)

=

(

tcρ

2

)2

(1− α2) (96)

Bartlett’s decomposition (see [18, Prop. 2.1]) implies that α2 ∼
Beta(1, tc − 1). After some mathematical manipulations, we
obtain that

fα(x) = (tc − 1)2x(1− x2)tc−2, 0 ≤ x ≤ 1. (97)

Using (97) in (29) together with the expression for the eigenval-
ues ofXX†, we obtain (31).
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