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Energy Harvesting Networks with Energy
Cooperation: Procrastinating Policies

Kaya Tutuncuoglu and Aylin Yener

Abstract—This paper considers multiterminal networks with
energy harvesting transmitter nodes that are also capable of wire-
lessly transferring energy to or receiving energy from other nodes
in the network. In particular, the jointly optimal transmit power
and energy transfer policies that maximize sum-throughputfor
the two-way, two-hop, and multiple access channels are identified.
It is shown for nodes with infinite-sized batteries that delaying
energy transfers until energy is needed immediately at the
receiving node is sum-throughput optimal. Focusing on such
procrastinating policies without loss of optimality, the stated joint
optimization problem can be decomposed into energy transfer
and consumed energy allocation problems which are solved in
tandem. This decomposition is shown to hold for the finite-sized
battery case as well, using partially procrastinating policies that
avoid battery overflows. It is observed that for the two-hop
channel, the proposed algorithm has a two fluid water-filling
interpretation, and for the multiple access channel, it reduces
to a single transmitter problem with aggregate energy arrivals.
Numerical results demonstrate the throughput improvementwith
bi-directional energy cooperation over no cooperation anduni-
directional cooperation.

Index Terms—Energy harvesting networks, energy coopera-
tion, procrastinating power policies, two-way channel, two-hop
network, multiple access channel, finite energy storage.

I. I NTRODUCTION

Energy harvesting wireless networks offer the possibility
of perpetual network lifetime, yielding low maintenance costs
and less energy storage requirements at each node [1]–[3].
However, the intermittent availability of harvested energy also
renders realizing the full potential of these benefits chal-
lenging. In particular, it is possible for central nodes of the
network to become energy deprived due to energy harvesting
conditions, impacting the network’s performance. To combat
such energy outages, recent results utilizing wireless energy
transfer [4] offer the possibility of energy cooperation for
wireless ad-hoc networks in addition to signal cooperation
[5]–[7]. In this paper, we consider a generalized setting in
this realm, and study multi-transmitter models where nodes
can receive or transfer energy, in order to gain insights into
network design by jointly optimizing data and energy transfer
policies.

Optimal power allocation in energy harvesting wireless net-
works has recently been studied extensively. In [8], an energy
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harvesting transmitter with infinite energy storage capability is
considered, and the transmission completion time minimizing
power allocation in a single link is found. The short-term
throughput maximization problem is studied in [9], where
the setting of [8] is extended to finite energy storage. A
wireless fading channel with an energy harvesting transmitter
is considered in [10], showing that a directional water-filling
algorithm can be utilized to find the optimal power allocation.
Multiterminal models, and energy harvesting transmittersand
receivers are subsequently studied, see for example [11]–[20]
and references therein. In addition to optimal power policies
found in [8]–[20], alternative power management approaches
such as nodes with inactive states [21] are also considered in
previous work.

Since energy harvesting networks may experience energy
deprivation when sufficient energy is not available to harvest,
they can benefit from the recent advances in wireless energy
transfer. Short range energy transfer is already present in
today’s RFID systems [22]. Energy cooperation is a viable
option in mid-range as well, with wireless energy transfer
efficiency values reaching up to 40% using coupled magnetic
resonance [4]. This provides the possibility of energy coop-
eration, allowing networks to have additional control overthe
energy available at each node, as proposed in [5]. In essence,
energy cooperation introduces a new dimension for network
optimization in energy harvesting networks.

The problem of optimizing energy consumption for data
transmission and energy transfer is introduced in [5], where
a two-hop network with an energy harvesting transmitter and
relay is considered, and the source can transfer energy to the
relay. It is shown that throughput can be improved with respect
to energy harvesting alone [14], even with uni-directional
energy transfer. Two-way and multiple access channels with
uni-directional energy cooperation are also studied by the
same authors in [6], proposing a two-dimensional water-filling
algorithm to find the optimal policy. These studies assume an
infinite battery size for the transmitters. Additionally, adiffer-
ent line of work studies transferring energy and information
jointly, see [23]–[28] and many others.

In this paper, we follow the model of transferring energy
and data separately as in [5]–[7]. We generalize this set up to
energy harvesting nodes all of which are capable of transfer-
ring energy to one another, i.e., in any direction. We consider a
general energy transfer model, which could be realized via var-
ious energy transfer technologies such as magnetic induction,
magnetically coupled resonance, or RF harvesting. Whereas
the recent paradigm of simultaneous wireless information and
power transfer (SWIPT) focuses on harvesting RF signals for
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powering devices, and the associated trade-offs between using
the energy for device operation or information decoding, we
focus on optimally allocating and sharing of energy between
devices over time. As communication models, we consider
those in [5]–[7], i.e., two-way, two-hop, and multiple access
channels, allowing unrestricted energy transfers betweenall
nodes. In addition to generalizing earlier works to unrestricted
energy transfers, we also extend these models to the case
where all nodes have finite battery and establish the optimal
policy when the battery sizes are finite. We will see that
allowing unrestricted energy transfers and limited batteries
both require a careful solution methodology and bring on new
design insights.

Specifically, we optimize transmit powers and energy trans-
fers under the aforementioned general setting. For clarityof
exposition, first, in Sections II, III, and IV, we consider the
two-way channel with infinite-sized batteries at the transmit-
ters. We prove that a subset of feasible policies, composed
of those which postpone energy transfers until immediately
needed, includes an optimal policy. Namedprocrastinating
policies, this subset allows a decomposition of the joint
optimization problem into separate energy transfer allocation
and consumed power allocation problems. We subsequently
show that the separation extends to two-hop (Section V) and
multiple access channels (Section VI). We demonstrate thata
generalized extension of the directional water-filling algorithm
[10] for the two-way channel solves the power allocation
problem, while a single-user policy as in [11], with scaled
aggregate arrivals, suffices for the multiple access channel.
In Section VII, we extend our study to transmitters with
finite-sized batteries, and show thatpartially procrastinating
policies, defined therein, are optimal. Next, we leverage a sim-
plified version of the two-dimensional water-filling algorithm
in [5] to solve the throughput optimization problem with joint
energy transfer and transmit powers. We present numerical
results in Section VIII, demonstrating the advantage of bi-
directional energy cooperation in energy harvesting networks
over no cooperation [8], [14] and uni-directional cooperation
[5]–[7]. Section IX concludes the paper.

II. T HE ENERGY HARVESTING AND ENERGY

COOPERATINGTWO-WAY CHANNEL (EHEC-TWC)

We will first focus on the two-way channel and solve the
problem at hand. We will then extend our solutions to the
two-hop and multiple access models in Sections V and VI,
respectively.

Consider the Gaussian two-way channel (TWC) [29] with
two energy harvesting and energy cooperating (EHEC) nodes,
T1 andT2, as shown in Fig. 1. Denoting the channel inputs by
Xk and the channel power gains byhk, k = 1, 2, the channel
outputs at nodesT1 andT2 after self interference cancellation
are given by

Y1 =
√

h2X2 +N1, (1)

Y2 =
√

h1X1 +N2, (2)

where Nk is Gaussian noise with powerσ2
k at nodeTk,

k = 1, 2. Each node cancels out its own contribution to the

Fig. 1. Two-way channel with energy harvesting transmitters and energy
cooperation.

channel output, i.e.,Tk subtractsXk from Yk, thus reducing
the model to two parallel additive white Gaussian noise
(AWGN) channels with channel power gainsh1 andh2. We
consider a static, i.e., time-invariant channel whereσ2

k and
hk, k = 1, 2, remain constant throughout the transmission
duration.

The communication session is divided into1sec long time
slots1, indexed byi = 1, . . . , N . Throughout the paper, we
denote node indices by the first subscriptsk, j and ℓ, and
time slot indices by the second subscriptsi and n. In time
slot i, nodeTk, k = 1, 2, harvestsEk,i units of energy, which
it stores in its battery of sizeEmax

k . Within this time slot,Tk

transmits with average powerpk,i, which requirespk,i units
of energy due to the unit slot length. In addition to harvesting
energy, the nodes are also capable of transferring energy to
each other. In time sloti, Tk transfersδk,i units of energy
to Tj , j 6= k. This transfer has an end-to-end efficiency of
αk ≤ 1, andTj receivesαkδk,i units of energy as a result.
The end-to-end transfer efficiency includes propagation loss,
as well as other factors that scale linearly with the amount
of energy transferred, e.g., circuit energy consumption atboth
parties. Thepower policyof the network is defined as the
collection of transmit powers and transferred energy values
{pk,i, δk,i} for all k, j and i.

The power policy of the network is constrained by the
energy available to each node in each time slot. In particular,
the energy remaining in the battery of nodeTk depends on the
energy harvested at nodeTk, the transmit power of the node,
and the energy transferred to and received from nodeTj for
j 6= k. We refer to the energy stored in the battery ofTk at
the end of time sloti as the battery stateSk,i, which evolves
as2

Sk,i = min {Emax
k , Sk,i−1 + Ek,i − pk,i − δk,i + αjδj,i} ,

(3)

for k = 1, 2, with Sk,0 = 0. The initial charge of the batteries

1This choice is for simplicity. The results readily extend toslots with
arbitrary length.

2We note that energy harvests and transfers are not instantaneous, but
take place throughout the respective time slot. Since energy consumption
via transmission is also distributed over the time slot, it is possible, and
mathematically convenient, to express energy values as arriving to or departing
from the node at the beginning of the slot.
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are introduced to the model through the energy harvestsE1,1

andE2,1 in the first time slot. To ensure that the energy used
by Tk does not exceed the energy available at the node, we
impose the set ofenergy causality constraints[8], [9]

pk,i + δk,i ≤ Sk,i−1 + Ek,i + αjδj,i, (4)

for k = 1, 2, i = 1, . . . , N , which can equivalently be
expressed asSk,i ≥ 0 for k = 1, 2 and i = 1, . . . , N . These
causality constraints imply that energy cannot be consumed,
neither for transmission nor for transfer, before it is harvested
or received.

For average transmit powersp1,i andp2,i in time sloti, the
sum-capacity of the Gaussian two-way channel in Fig. 1 with
full-duplex nodes is given by [29]

CTWC
S (p1,i, p2,i)=

1

2
log
(

1 +
h1p1,i

σ2

2

)

+
1

2
log
(

1 +
h2p2,i

σ2

1

)

.

(5)

We consider the offline problem (see also [5]–[9], [11], [12],
[14]), where the energy harvestsEk,i throughout the session
are known at the beginning of the communication session.
In addition to being applicable in networks with predictable
energy arrivals, this approach also allows us to benchmark the
performance limits of energy harvesting networks with energy
cooperation.

We consider the EHEC sum-throughput maximization prob-
lem for the TWC over transmit powerspk,i and energy
transfersδk,i, throughout a communication session ofN time
slots, i.e.,

max
{pk,i,δk,i}

N
∑

i=1

CTWC
S (p1,i, p2,i) (6a)

s.t. Sk,i ≥ 0, k = 1, 2, i = 1, . . . , N,
(6b)

pk,i ≥ 0, δk,i ≥ 0, k = 1, 2, i = 1, . . . , N, (6c)

where (6b) are the energy causality constraints, and (6c) are the
non-negativity constraints for transmit power and transferred
energy. We remark that similar problems that consider other
criteria such as fairness can be formulated by updating the
objective of (6) accordingly.

We note that (6) is either solved by all nodes in the network
separately, or solved by one of the nodes and the output
communicated to the others. This requires energy harvests and
channel parameters to be shared between all energy harvesting
transmitters in the system. The relatively small communication
overhead, which is in the order of a few bytes per time slot,
will be omitted in this work for the sake of simplicity.

Lastly, we remark that while linear end-to-end energy
transfer losses are represented by{αk}, we do not explicitly
account for other circuit or processing energy costs for energy
cooperation. These can be incorporated into the optimization
problem by embedding their cost models into (3). Currently,
experimental such models are being developed for specific
transfer technologies, see for example [4] for strongly coupled
magnetic resonance as the energy transfer technology.

III. PROPERTIES OFOPTIMAL POLICIES FOREHEC-TWC
WITH INFINITE BATTERIES

We begin with the infinite battery case,Emax
k = ∞. In

addition to providing insights about the optimal policy, this
case is also a good approximation for systems where battery
capacity is sufficiently large, harvested energy is sufficiently
low, or transmission session is sufficiently brief with respect
to harvesting period. The properties found in this section are
extended to the finite battery case in Section VII. For this case,
the battery state in (3) can be rewritten as

Sk,i =
i
∑

n=1

(Ek,n − pk,n + αjδj,n − δk,n) , (7)

for k, j = 1, 2 andj 6= k.
The problem in (6) involves the joint optimization of

transferred energy and transmit powers of the two nodes over
N time slots, i.e.,4N variables in total. In this section, we
identify properties of optimal policies, the use of which helps
us eliminate the additional complexity introduced by energy
cooperation.

A. Procrastinating Policies

We first show that a subset of power policies, named
procrastinating policies, includes at least one optimal policy.

Definition 1 A power policy{pk,i, δk,i} is a procrastinating
policy if it satisfies

pk,i − αjδj,i ≥ 0, j, k = 1, 2, j 6= k, i = 1, . . . , N. (8)

In each time slot, a procrastinating policy transfers energy
from one node to the other only if all of the transferred energy
is to be consumed for transmission immediately. This can be
interpreted as the energy transferring nodes delaying energy
transfers until the time slot they are immediately needed atthe
receiving end, hence the nameprocrastinatingpolicies. In a
procrastinating policy, energy transfers that are necessary for
the feasibility ofpk,i are postponed until the conditions in (8)
are satisfied. The following lemma establishes the optimality
of procrastinating policies.

Lemma 1 There exists at least one procrastinating policy that
is a solution of (6).

Proof: Let {p∗k,i, δ
∗
k,i} be an optimal policy which is not

procrastinating, i.e., there existsp∗k,n < αjδ
∗
j,n for somen,

j and k, j 6= k. Starting fromi = 1, if p∗k,i < αjδ
∗
j,i, set

η = p∗k,i/(αjδ
∗
j,i), and updateδ∗j,i+1 = δ∗j,i+1 + (1 − η)δ∗j,i

and δ∗j,i = ηδ∗j,i. This postpones excess transferred energy
to the next time slot whenever (8) is violated. Note that
the update in time sloti only affectsSk,i and Sj,i in (6b),
decreasing the former byαjδ

∗
j,i−p∗k,i and increasing the latter

by δ∗j,i − p∗k,i/αj. However, sinceSk,i ≥ 0 in the original
policy and δ∗k,i = 0 from Lemma 2, this change does not
violate (6b). Repeating the updates fori = 2, . . . , N and
k = 1, 2 yields a feasible procrastinating policy. Meanwhile,
sincep∗k,i is unchanged, the objective in (6a) is unchanged, and
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therefore the resulting procrastinating policy is also optimal.

Lemma 1 shows that by delaying energy transfers unless
immediately required for transmission, any feasible transmit
power policy {pk,i} can be realized with a procrastinating
policy. Next, we utilize this property to decompose (6) into
two subproblems regarding the energy harvesting and energy
cooperation aspects of the original problem.

B. Decomposition to Energy Transfer and Power Allocation
Problems

We define theconsumed power̄pk,i as the power drawn
from the battery of nodeTk, taking both transmission and
transfers in time sloti into consideration. This term is ex-
pressed as

p̄k,i = pk,i + δk,i − αjδj,i. (9)

Note that by definition, consumed power can be negative.
However, a procrastinating policy, as defined in Definition 1,
satisfiesp̄k,i ≥ 0 for all i = 1, . . . , N andk = 1, 2. We first
present the following lemma.

Lemma 2 There exists an optimal policy which satisfies
δk,iδj,i = 0 for all k, j = 1, 2, j 6= k, i = 1, . . . , N , i.e.,
energy transfer is never in both directions in a given time
slot.

Proof: Let {p∗k,i, δ
∗
k,i} be an optimal policy. Define

δ̃k,i = max{δ∗k,i − δ∗j,i, 0} for all k, j = 1, 2, j 6= k, and
n = 1, . . . , N , which satisfies̃δk,iδ̃j,i = 0. With these energy
transfers,Sk,i in (7) increases for allk and i, and therefore
the procrastinating policy{p∗k,i, δ̃j,i} is feasible. Sincep∗k,i are
unchanged, it also yields the same objective as{p∗k,i, δ

∗
j,i} and

is therefore optimal.
Lemma 2 is a natural consequence of transfer efficien-

cies being less than 100%, and is intuitively pleasing. As
a consequence of the lemma, we can restrict our attention
to policies satisfying the lemma without loss of optimality.
Hence, for procrastinating policies satisfying the lemma,the
non-negativity constraintspk,i ≥ 0 in (6c) are equivalent to
p̄k,i ≥ δk,i, i = 1, . . . , N , k = 1, 2. Restricting the feasible set
of (6) to procrastinating policies satisfying Lemma 2, without
loss of optimality, we rewrite (6) as

max
{p̄k,i,δk,i}

N
∑

i=1

CTWC
S

([

p̄k,i + αkδk,i − δj,i

])

(10a)

s.t.
i
∑

n=1

Ek,n − p̄k,n ≥ 0, k = 1, 2, i = 1, . . . , N,

(10b)

p̄k,i ≥ δk,i, δk,i ≥ 0, k = 1, 2, i = 1, . . . , N.
(10c)

Here, [pk,i] = (p1,i, p2,i) denotes both parameters ofCTWC
S ,

which are found by substitutingk = 1, 2 andj 6= k. Note that
the constraints in (6b), which include both energy transfersδk,i
and transmit powerspk,i, are replaced with (10b)-(10c) where
energy transfers and consumed powers are now decoupled.

Furthermore, theith summation term in the objective (10a)
depends only on the variables for the respective time sloti.
Hence, (10) can be decomposed as

max
{p̄k,i}

N
∑

i=1

R(p̄1,i, p̄2,i) (11a)

s.t.
i
∑

n=1

Ek,n − p̄k,n ≥ 0, k = 1, 2, i = 1, . . . , N, (11b)

p̄k,i ≥ 0, k = 1, 2, i = 1, . . . , N, (11c)

where R(p̄1,i, p̄2,i) is the per-slot sum-ratefor consumed
powersp̄1,i and p̄2,i, defined as

R(p̄1,i, p̄2,i) = max
δ1,i,δ2,i

CTWC
S

([

p̄k,i + αkδk,i − δj,i
])

(12a)

s.t. p̄k,i ≥ δk,i, δk,i ≥ 0, k = 1, 2. (12b)

Note that (12) yields the optimal energy transfersδk,i within
a single time sloti for a fixed pair of consumed powers
(p̄1,i, p̄2,i). Being separated fromδk,i, (11) finds the optimal
allocation of consumed powers̄pk,i, i = 1, . . . , N throughout
the transmission. This decomposition implies that the power
transfer optimization can be performed separately and in a
slot-by-slot basis, i.e., the optimal energy transfersδk,i can be
found using only the consumed powersp̄k,i in the same time
slot.

Lemma 3 R(π1, π2), is jointly concave inπ1 and π2.

Proof: The proof can be found in Appendix A.

As a result of Lemma 3, the consumed power allocation
problem in (11) is a convex program. Furthermore, the con-
straints in (11b) and (11c) are separable among transmitters
k = 1, 2, and hence a block coordinate descent (alternating
maximization) algorithm that alternates between{p̄1,i} and
{p̄2,i} converges to the optimal policy [30]. In particular, at
each iteration, a single transmitter problem with a concave
objective function and linear energy causality constraints is
solved. The iterations evolve, alternating over the optimized
variables, until the policies converge. Namely, we solve

max
{p̄k,i}

N
∑

i=1

R(p̄1,i, p̄2,i) (13a)

s.t.
i
∑

n=1

Ek,n − p̄k,n ≥ 0, i = 1, . . . , N, (13b)

p̄k,i ≥ 0, i = 1, . . . , N, (13c)

for a fixed k at each iteration, alternating betweenk = 1
and k = 2, while {p̄j,i}, j 6= k, is held constant. Note that
(13) differs from its counterpart without energy cooperation [8]
only in the rate functionR(p̄1,i, p̄2,i). However,p̄j,i, j 6= k,
may change in time, and hence the solution to each iteration
step in (13) is not the constant power policy in [8]. Instead,
it can be found using a generalized directional water-filling
algorithm, as we will describe next.
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IV. OPTIMAL POLICY FOR THE EHEC-TWCWITH

INFINITE BATTERIES

The decomposition in (11)-(12) simplifies the analysis of
the problem by separating the power allocation problem from
energy transfer variables{δk,i}, and calculating optimal en-
ergy transfers in a slot-by-slot basis. We first solve the energy
transfer problem within a single slot, i.e., (12), which we then
substitute in (13) to solve (11).

A. Optimal Energy Transfers for the EHEC-TWC

Consider time sloti first. We focus on the two subsets of the
feasible space of (12), namely those satisfyingδ1,i = 0 and
δ2,i = 0, one of which contains an optimal policy as implied
by Lemma 2. We solve (12) for these subsets, and choose the
maximum of the two. For the policies satisfyingδj,i = 0, the
solution to (12) is found as

δ∗k,i = min







p̄k,i,
1

2

[(

σ2
j

hk

+ p̄k,i

)

−
1

αk

(

σ2
k

hj

+ p̄j,i

)

]+






(14)

for k 6= j, where [x]+ denotesmax{0, x}. This yields two
optimal transfer candidates,δ∗1,i and δ∗2,i, each requiring the
other to be zero. Note that the case where both candidates
are positive, i.e.,δ∗1,i > 0 and δ∗2,i > 0, requiresα1α2 > 1,
which is not possible sinceα1, α2 ≤ 1 by definition. Hence,
at least one of the two candidates is always zero, and (14)
immediately gives the solution to (12). The per-slot sum-rate
achieved by the optimal energy transfer policy, corresponding
to R(p̄1,i, p̄2,i) in (11) and (12), is then expressed as

R(p̄1,i, p̄2,i) =


























































CTWC
S (p̄1,i, p̄2,i), δ∗1,i = δ∗2,i = 0,

log
(√

α1h1h2

2σ1σ2

((

σ2

2

h1

+ p̄1,i

)

+ 1

α1

(

σ2

1

h2

+ p̄2,i

)))

,

0 < δ∗1,i < p̄1,i,

log
(√

α2h1h2

2σ1σ2

((

σ2

1

h2

+ p̄2,i

)

+ 1

α2

(

σ2

2

h1

+ p̄1,i

)))

,

0 < δ∗2,i < p̄2,i,
1

2
log
(

1 + h2

σ2

1

(p̄2,i + α1p̄1,i)
)

, 0 < δ∗1,i = p̄1,i,

1

2
log
(

1 + h1

σ2

2

(p̄1,i + α2p̄2,i)
)

, 0 < δ∗2,i = p̄2,i.

(15)

B. Optimal Power Allocation for the EHEC-TWC

Substituting (15) in (13), it remains to solve for the optimal
{p̄k,i} by iterating between̄p1,i and p̄2,i. We now show that
the solution to each iteration admits ageneralized directional
water-filling interpretation, and consequently (6) can be solved
using the generalized iterative directional water-fillingalgo-
rithm [11], [12].

As shown in Lemma 3, (13) is a convex program with
affine constraints. We also remark thatR(π1, π2) in (15) is
a continuously differentiable function in bothπ1 and π2.
Hence, the KKT optimality conditions of (13) are necessary

and sufficient for optimality, and are found as

−
dR(p̄1,i, p̄2,i)

dp̄k,i
+

N
∑

n=i

λk,n − τk,i = 0, (16)

λk,iSk,i = 0, τk,ip̄k,i = 0, (17)

for k, j = 1, 2, j 6= k, and i = 1, . . . , N . Here,λk,i ≥ 0 and
τk,i ≥ 0 are the Lagrange multipliers for the constraints in
(13b) and (13c), respectively. For the optimal{p̄k,i} solving
(13), there exists a set of non-negative Lagrangian multipliers
that satisfy the conditions in (16)-(17), and vice versa. We
define

vk,i =

(

dR(p̄1,i, p̄2,i)

dp̄k,i

)−1

. (18)

From (17), we observe that wheneverp̄k,i > 0, we have
τk,i = 0. In this case, from (16), we see that optimal{vk,i}
are constant ini unlessλk,i > 0. Meanwhile, a positiveλk,i

is only possible whenSk,i = 0, i.e., the battery is empty.
Moreover, sinceλk,i are non-negative, optimal{vk,i} are non-
decreasing ini. Due to this behavior, we refer to{vk,i} as
generalized water levels, and utilize the directional water-
filling interpretation in [10] to find the optimal water levels.

In particular, in each iteration forTk, transmit powers and
water levels are initialized by settinḡpk,i = Ek,i for all i =
1, . . . , N . If the water levels satisfyvk,i > vk,i+1 for somei,
this results in water (energy) flow from sloti to slot i + 1,
which is achieved by decreasinḡpk,i and increasinḡpk,i+1 by
the same amount. The flow stops when the two water levels
are equalized, or when̄pk,i = 0. In the latter case, (16) is
satisfied via someτk,i > 0, which is feasible sincēpk,i = 0.
Flow in the reverse direction, e.g., from time sloti+1 to i, is
not allowed since it violates the energy causality constraints
in (6b). The algorithm terminates when water levels do not
permit any water flow.

The generalized directional water-filling algorithm aboveis
then repeated at each iteration. For the iterations onp̄k,i, where
p̄j,i, j 6= k is kept constant, the water levels are given by

vk,i =











































2
(

σ2

j

hk
+ p̄k,i

)

, δ∗k,i = δ∗j,i = 0,
(

σ2

j

hk
+ p̄k,i

)

+ 1

αk

(

σ2

k

hj
+ p̄j,i

)

, 0 < δ∗k < p̄k,
(

σ2

j

hk
+ p̄k,i

)

+ αj

(

σ2

k

hj
+ p̄j,i

)

, 0 < δ∗j < p̄j ,

2
(

p̄k,i +
1

αk

(

σ2

k

hj
+ p̄j,i

))

, 0 < δ∗k = p̄k,

2
(

σ2

j

hk
+ p̄k,i + αj p̄j,i

)

, 0 < δ∗j = p̄j .

(19)

We present an example of the directional water-filling
algorithm for N = 4 time slots of length1 sec andα1 =
α2 = 0.5 in Fig. 2. Energy arrivals to the two nodes are
E1 = [2, 5, 0, 0] mJ andE2 = [0, 4, 0, 7] mJ. The final
(equilibrium) water levels are shown in blue for nodeT1,
and in green for nodeT2, for h1 = h2 = −100 dB, and
σ2
1 = σ2

2 = 10−13 W for a 1 MHz bandwidth. Observe that
in the first time slot,p̄1,1 = 2 mW and p̄2,1 = 0 yields the
optimal energy transfersδ∗1,1 = 1 mJ andδ∗2,1 = 0, i.e., node
T1 transfers1 mJ of energy to nodeT2 as indicated with
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Fig. 2. Optimal water levels found by iterative generalizedwater-filling with
water levels in (19).

the red arrow. The energy transfer candidates for time slots
i = 2, 3 are zero, and no energy is transferred. In the last time
slot, the optimal energy transfer rate is found asδ∗1,4 = 0 and
δ∗2,4 = 2 mJ, i.e., the energy transfer is from nodeT2 to node
T1. With the final water levels in the figure, no further water
flow is feasible for either node.

V. THE EHEC TWO-HOP CHANNEL

We next consider a two-hop channel (THC) with infinite-
sized batteries as a simple example of a multi-hop setting as
done in [5], extended to bi-directional energy transfers. The
channel model is as shown in Fig. 3. For this case, we denote
the transmit power of the source node byp1,i, the relay node
by p2,i, and the source-relay and relay-destination channel
power gains byh1 and h2, respectively. The messages are
delay constrained, and the relay nodeT2 needs to forward all
received messages immediately to the destination. As such,
the relay does not have a data buffer, and departs packets in
the same time slot they are received. The source and the relay
are both capable of energy transfer. The sum-capacity for this
channel with a full-duplex relay is given by

CTHC
S (p1,i, p2,i) = min

{

1

2
log

(

1 +
h1p1,i
σ2
2

)

,

1

2
log

(

1 +
h2p2,i
σ2
1

)

}

. (20)

Note that as in the two-way model,CTHC
S is jointly concave in

p1,i and p2,i since it is the minimum of two jointly concave
functions. Hence, the throughput maximization problem for
this channel also satisfies Lemma 1, and therefore allows the
decomposition in (11)-(12).

Fig. 3. The two-hop channel model with energy harvesting transmitters and
relay, and energy cooperation.

A. Optimal Energy Transfers for the EHEC-THC

Given the capacity expression in (20), the two-hop version
of (12) can be written as

max
δ1,i,δ2,i

min
{

h1

σ2

2

(p̄1,i+α1δ1,i−δ2,i) ,
h2

σ2

1

(p̄2,i+α2δ2,i−δ1,i)
}

(21a)

s.t. p̄k,i ≥ δk,i, δk,i ≥ 0, k = 1, 2. (21b)

The objective is the minimum of two linear functions, and the
two terms of the minimum change in opposite directions with
δ1,i or δ2,i. Hence, the optimal is attained when the two terms
are equal, if feasible. Solving (21) forδ1,i andδ2,i satisfying

h1

σ2
2

(p̄1,i + α1δ1,i − δ2,i) =
h2

σ2
1

(p̄2,i + α2δ2,i − δ1,i) (22)

yields the energy transfers

δ1,i =

[

σ2
1h1p̄1,i − σ2

2h2p̄2,i
α1σ2

2h2 + σ2
1h1

]+

, (23a)

δ2,i =

[

σ2
2h2p̄2,i − σ2

1h1p̄1,i
α2σ2

1h1 + σ2
2h2

]+

, (23b)

where [x]+ denotesmax{0, x}. Since α1, α2 ≥ 0, these
energy transfer values are feasible and therefore optimal.
Observe that due to (23), the difference of received powers,
i.e., h1

σ2

2

p̄1,i−
h2

σ2

1

p̄2,i determines the direction of energy transfer,
and the transferred energy is nonzero unless the two received
powers are equal.

B. Optimal Power Allocation for the EHEC-THC

Substituting the optimal values in (23) into the power
allocation problem in (11) yields

max
{p̄k,i}

N
∑

i=1

log
(

1 + h1h2 min
{

p̄1,i+α2p̄2,i

α2σ
2

1
h1+σ2

2
h2

,
α1p̄1,i+p̄2,i

σ2

1
h1+α1σ

2

2
h2

})

(24a)

s.t.
i
∑

n=1

Ek,n−p̄k,n ≥ 0, p̄k,i≥0, k=1, 2, i=1, . . . , N.

(24b)

Due to the convexity of the problem, the generalized iterative
water-filling algorithm in Section IV-B can also be used for
(24) by solving (24) iteratively in{p̄1,i} and {p̄2,i}. In this
model, the generalized water levels are found for the{p̄k,i}
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iteration, keeping{p̄j,i}, j 6= k constant, as

vk,i=







p̄k,i + αj p̄j,i +
(

σ2

j

hk
+

αjσ
2

k

hj

)

, σ2
khkp̄k,i < σ2

jhj p̄j,i,

p̄k,i +
p̄j,i

αk
+
(

σ2

j

hk
+

σ2

k

αkhj

)

, σ2
khkp̄k,i ≥ σ2

jhj p̄j,i.

(25)
We remark that the water levels are linear in transmit powers,
and therefore the algorithm resembles conventional water-
filling [31]. In the iteration on{p̄k,i}, the consumed powers
{p̄j,i}, j 6= k are kept constant, which introduces a base level
over which water-filling is performed. The first terms in (25)
are consumed powers, the second terms are base levels due to
the other transmitter, and the third terms are constant.

We further remark that water levelsv1,i andv2,i are linearly
related, with ratioα2 or α1 depending on the direction of
energy transfer. As a consequence, unlessα1 = α2 = 1, if
the water levels in two consecutive time slots are equal for
both transmitters, the direction of energy transfer must remain
the same as well. An insight that can be drawn from this
observation is that the direction of energy transfer remains
unchanged in time unless the water levels change for one of
the nodes, which only occurs when the respective node is out
of energy.

Combining these two remarks, we observe that the gen-
eralized directional water-filling algorithm has an intuitive
two-fluid interpretation for the two-hop channel. Namely, we
can solve (24) by considerinḡp1,i and p̄2,i as levels oftwo
immiscible fluids, and scaling these fluids appropriately in
each iteration while performing directional water-fillingbased
on the total water level. The analogy is even more apparent
in the uni-directional energy transfer case, whereα2 = 0.
This givesv2,i = ∞ wheneverσ2

1h1p̄1,i < σ2
2h2p̄2,i, thus

restricting the solution toσ2
1h1p̄1,i ≥ σ2

2h2p̄2,i. With this
restriction, we havev2,i = α1v1,i, and therefore no iteration
is necessary. The optimal consumed powers are found as
the resulting water levels when both fluids are allowed to
flow while satisfying the conditionσ2

1h1p̄1,i ≥ σ2
2h2p̄2,i. An

example to this two-fluid water-filling is depicted in Fig. 4 for
α1 = 0.5, α2 = 0, E1,i = [4, 0, 2, 6] mJ,E2,i = [0, 3, 0, 0] mJ,
and the same channel parameters in Fig. 2. Note that in this
example, water flow for nodeT2 (green) fromi = 2 to i = 3
occurs, even against the level gradient, until the condition
σ2
1h1p̄1,2 ≥ σ2

2h2p̄2,2 is satisfied.

VI. T HE EHEC MULTIPLE ACCESSCHANNEL

In this section, we extend the results in Sections III and IV
to the Gaussian multiple access channel (MAC) with infinite-
sized batteries, shown in Fig. 5. The sum-capacity for this
channel in time sloti is given by

CMAC
S (p1,i, p2,i) =

1

2
log

(

1 +
h1p1,i
σ2
2

+
h2p2,i
σ2
1

)

. (26)

The corresponding sum-throughput maximization problem,
i.e., the MAC version of (6), is

max
{pk,i,δk,i}

N
∑

i=1

CMAC
S (p1,i, p2,i) (27a)

Fig. 4. Directional water-filling (a) initial levels and (b)levels after water
flow, for an example setting withN = 4. The blue, green and orange areas
correspond to source consumptionp̄1, relay consumption̄p2 and the constant
term in (25), respectively.

s.t. Sk,i≥0, pk,i≥0, δk,i≥0, k=1, 2, i=1, . . . , N.
(27b)

Since CMAC
S is also jointly concave inp1,i and p2,i, the

MAC sum-throughput maximization problem also satisfies
Lemma 1, yielding the decomposition in (11)-(12). In the
following subsections, we address the energy transfer and
power allocation subproblems for the MAC.

A. Optimal Energy Transfers for the EHEC-MAC

Substituting the consumed powers in (9) into (27) yields

max
{p̄k,i}

N
∑

i=1

CMAC
S

([

p̄k,i + αkδk,i − δj,i

])

(28a)

s.t.
i
∑

n=1

Ek,n − p̄k,n ≥ 0, k = 1, 2, i = 1, . . . , N,

(28b)

where δ1,i and δ2,i are found as the solution to the energy
transfer problem

max δ1,i

(

α1

h2

σ2
1

−
h1

σ2
2

)

+ δ2,i

(

α2

h1

σ2
2

−
h2

σ2
1

)

(29a)

s.t. 0 ≤ δk,i ≤ p̄k,i, k = 1, 2. (29b)

Note that (29) is a linear program, with the optimal achieved
at a corner of the rectangle defined by (29b). The optimal
policy is to chooseδk,i = p̄k,i if αkσ

2
jhj > σ2

khk, and choose
δk,i = 0 otherwise. Consequently, the allocated power atTk is
entirely transferred toTj if αkσ

2
jhj > σ2

khk, or is entirely used
for transmission ifαkσ

2
jhj ≤ σ2

khk. This also implies that
energy transfers only depend on the channel parameters, and
hence the optimal energy transfer direction remains the same
throughout the transmission. As a result, uni-directionalenergy
transfer is sufficient from one user to the other in the direction
determined by the channels and their transfer efficiency values.
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Fig. 5. K-transmitter multiple access channel with energy harvesting
transmitters and energy cooperation.

B. Optimal Power Allocation for the EHEC-MAC

The analysis in Section VI-A reveals that in the optimal
policy, either no energy transfer occurs, or one node transfers
all of its energy to the other. In the former case, we get an
energy harvesting MAC without energy transfers, the sum-
capacity of which was found in [11]. The problem is solved by
combining harvested energy in a single pool, thus reducing the
problem to the single link power allocation problem in [8]. In
the latter case, letα2σ

2
1h1 > σ2

2h2 without loss of generality.
Then, the optimal energy transfers in Section VI-A yield the
water-levels

v1,i =
σ2
2

h1

+ p̄1,i + α2p̄2,i, v2,i =
σ2
2

h1α2

+
p̄1,i
α2

+ p̄2,i.

(30)

Note that v1,i = α2v2,i. In this case, we can equivalently
consider the policy of nodeT1 only, and transfer all energy
harvested by nodeT2 immediately to nodeT1. We establish
this by scaling{E2,i} with the end-to-end efficiency of the
transfer,α2, and adding them to the harvests of the trans-
mitting node, {E1,i}. The resulting problem consists of a
single energy harvesting link, which can be solved as in [8].
Therefore, in both cases, the power allocation problem reduces
to that of a single link. In order to generalize the solution to
all cases, we define

α∗
k = max

(

1,
αkσ

2
jhj

σ2
khk

)

, (31)

and find the optimal power allocation policy as the solution
to the single user problem with equivalent energy harvests

Ēi = α∗
1E1,i + α∗

2E2,i. (32)

The solution is a piecewise constant, non-decreasing sum-
power policy, in which the sum-power only changes when all
batteries are depleted. A depiction of the optimal sum-power
policy is presented in Fig. 6 forN = 4 time slots, where
the staircase represents the cumulative harvested energy and
the piecewise linear curve represents the cumulative consumed
energy.

Remark 1 Optimality of procrastinating policies also extends
to channels with more than two transmitters, such as theK-
user MAC, as shown in [32]. In this case, Lemma 2 extends
to not transferring and receiving energy simultaneously, re-

Fig. 6. Optimal sum-power policy for an energy cooperating MAC for a
deadline ofN = 4 time slots.

gardless of the direction [32, Lemma 1]. The procrastination
condition extends to the sum of energy transfers arriving to
a node [32, Eqn 12]. This allows the iterative directional
water-filling algorithms above to be used for such models,
by iterating over all transmitters. Due to space restrictions,
we refer the reader to [32] for details.

VII. O PTIMAL POLICIES FORNODES WITH FINITE-SIZED

BATTERIES

We now extend our model, formulation, and solution to
nodes with finite-sized batteries. In Lemma 1, it is shown
that an optimal procrastinating policy exists if the batteries
are infinite-sized. This is justified by always being able to
postpone energy transfers which are not consumed within the
same time slot, i.e., which do not satisfy (8). In the case
of finite-sized batteries, this argument is no longer sufficient,
since postponing energy transfers fromTk to Tj may yield a
battery overflow atTk that the original energy transfer policy
would have avoided. In this section, we provide a class of
policies that procrastinate to the point they can avoid such
overflows, and show that they are optimal policies for the
EHEC two-way channel with finite-sized batteries.

Consider the finite battery two-way channel model in Sec-
tion II, i.e., Emax

k < ∞ in (3). We first reiterate that the
optimal policy should not cause any battery overflows. This is
an extension of [9, Lemma 2], which states that a power policy
that yields a battery overflow is suboptimal. In particular,
energy overflow in time sloti can be avoided by consuming
more energy in time sloti − 1. This strictly increases the
sum-throughput in time sloti − 1, and does not affect the
battery stateSk,j for j = i, . . . , N . Therefore, without loss
of optimality, we restrict our attention to policies that do
not cause energy overflows. We use (7), while imposing the
constraintSk,i ≤ Emax

k in (6). The equivalent sum-throughput
maximization problem for a TWC with finite-sized batteries
is

max
{pk,i,δk,i}

N
∑

i=1

CTWC
S (p1,i, p2,i) (33a)

s.t. Emax
k ≥ Sk,i ≥ 0, k = 1, 2, i = 1, . . . , N, (33b)

pk,i ≥ 0, δk,i ≥ 0, k = 1, 2, i = 1, . . . , N, (33c)

whereSk,i is given by (7).
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A. Partially Procrastinating Policies

We next modify the set of procrastinating policies to pre-
vent energy overflows. We begin by splittingδk,i into two
components,γk,i ≥ 0 andǫk,i ≥ 0, as

δk,i = γk,i + ǫk,i. (34)

These components represent the portion of the transferred
energy that is consumed immediately, and the excess portion
that is stored for future use, respectively. Clearly, power
policies defined as{pk,i, γk,i, ǫk,i} include all feasible power
policies for (6). Based on these variables, we definepartially
procrastinating policies, which are an extension of procrasti-
nating policies in Section III-A, as follows:

Definition 2 A power policy{pk,i, γk,i, ǫk,i} is a partially
procrastinating policy if it satisfies

pk,i − αjγj,i ≥ 0, (35)

γ1,iγ2,i = 0, (36)

ǫk,i (E
max
k − Sk,i) = 0, (37)

for k, j = 1, 2, j 6= k, and i = 1, . . . , N .

In a partially procrastinatingpolicy, the condition for pro-
crastination, i.e., (8), is restricted to the immediately consumed
componentγk,i, as seen in (35). Meanwhile, the excess
componentǫk,i can only be nonzero if the battery ofTk is
full, i.e., Sk,i = Emax

k , as dictated by (37). This component
allows transferring the excess energy that would otherwisebe
lost due to battery overflows. We next show that there exists
at least one optimal policy that is partially procrastinating.

Lemma 4 There exists a partially procrastinating policy
{pk,i, γk,i, ǫk,i} such that the transferred energy values{δk,i}
calculated from (34) and the transmit powers{pk,i} solve (33).

Proof: The proof can be found in Appendix B.

B. Finding the Optimal Power Policy

We update the definition of consumed powers in (9) as

p̄k,i = pk,i + γk,i − αjγj,i (38)

for k, j = 1, 2, j 6= k, and i = 1, . . . , N . Substituting in (7),
this yields the battery state

Sk,i =

i
∑

n=1

(Ek,n + αjǫj,n − ǫk,n − p̄k,n) . (39)

We next rewrite (33) in terms of̄pk,i, γk,i, andǫk,i as

max
{p̄k,i,γk,i,ǫk,i}

N
∑

i=1

CTWC
S ([p̄k,i − γk,i + αjγj,i])

(40a)

s.t. Emax
k ≥ Sk,i ≥ 0, k = 1, 2, i = 1, . . . , N,

(40b)

p̄k,i ≥ γk,i ≥ 0, γ1,iγ2,i = 0, k = 1, 2, i = 1, . . . , N,
(40c)

p̄k,i ≥ 0, ǫk,i ≥ 0, k = 1, 2, i = 1, . . . , N. (40d)

In (40), we have selectively imposed the partial procrastination
conditions (35) and (36) without loss of optimality due to
Lemma 4. Note that (40a) and (40c) are independent ofǫk,i,
while (40b) and (40d) are independent ofγk,i. Moreover, the
ith summation term in (40a) depends onp̄k,i, γk,i, and ǫk,i
only, allowing us to decompose (40) as

max
{p̄k,i,ǫk,i}

N
∑

i=1

R(p̄1,i, p̄2,i) (41a)

s.t. Emax
k ≥ Sk,i ≥ 0, k = 1, 2, i = 1, . . . , N, (41b)

p̄k,i ≥ 0, ǫk,i ≥ 0, k = 1, 2, i = 1, . . . , N, (41c)

whereR(p̄1,i, p̄2,i) is the per-slot sum-rate, given by

R(p̄1,i, p̄2,i) = max
γ1,i,γ2,i

CTWC
S ([p̄k,i − γk,i + αjγj,i]) (42a)

s.t. p̄k,i ≥ γk,i ≥ 0, k = 1, 2, (42b)

γ1,iγ2,i = 0. (42c)

We remark that (41) and (42) are the finite-sized battery exten-
sions of the power allocation and energy transfer problems in
(11) and (12), respectively. As in Section IV-A, the solution to
(42) is given by (14)-(15). It remains to solve (41) and identify
the optimal{p̄k,i} and{ǫk,i}. Observing that (41) is a convex
program, we write the KKT optimality conditions

−
dR(p̄1,i, p̄2,i)

dp̄k,i
+

N
∑

n=i

(λk,n − βk,n)− τk,i = 0, (43)

N
∑

n=i

(λk,n − βk,n)− αk

N
∑

n=i

(λj,n − βj,n)− µk,i = 0, (44)

λk,iSk,i = 0, βk,i(Sk,i − Emax
k ) = 0, (45)

τk,ip̄k,i = 0, µk,iǫk,i = 0, (46)

for k, j = 1, 2, j 6= k, and i = 1, . . . , N . Here,λk,i ≥ 0 and
βk,i ≥ 0 are the Lagrange multipliers for the constraints in
(41b), andτk,i ≥ 0 andµk,i ≥ 0 are the Lagrange multipliers
for the constraints in (41c). For the water levels in (18), (43)
yields

vk,i =

(

N
∑

n=i

(λk,n − βk,n)− τk,i

)−1

. (47)

For pk,i > 0, the optimal water levelsvk,i may increase
only when the battery is empty,Sk,i = 0, and decrease
only when the battery is full,Sk,i = Emax

k . Omitting (44),
this is the finite-sized battery extension of (16)-(17), andcan
be solved by the iterative generalized directional water-filling
algorithm where the water flow between time slots is limited to
Emax

k [12]. Note that energy cooperation overǫk,i introduces
the possibility of energy (and hence water) flow between
the two nodes in addition to between two time slots. This
flow dimension was first considered in thetwo dimensional
directional water filling algorithm(2D-DWF) in [7, Alg. 1] for
nodes with infinite batteries. Here, we extend it to the finite-
sized battery case, and simplify the algorithm significantly by
observing the structure of optimal energy transfers{ǫk,i}.

Lemma 5 If the generalized directional water-filling algo-
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Fig. 7. Two dimensional directional water-filling with restricted transfers,
with (a) initial water levels, (b) water levels after flow within each node, and
(c) water levels after flow between the two nodes. The flow fromTk to Tj

is not allowed unless the battery ofTk is full, as seen ati = 2 in (b).

rithm with finite-sized batteries yields̄pj,i > 0 for somei,
then ǫk,i = 0 is optimal, i.e., energy transfer fromTk to Tj

with the purpose of storage is not necessary in the optimal
policy.

Proof: Since {p̄k,i} is the output of the generalized
directional water-filling algorithm, there existsλk,i, βk,i, and
τk,i that satisfy (43), (45), and (46). Given̄pj,i > 0, the second
sum term in (44) is equal tov−1

j,i , while the first sum term in
(44) is greater than or equal tov−1

k,i due toτk,i ≥ 0. By (19),
water levels always satisfyvk,i ≥ αjvj,i ≥ αkαjvk,i, and
hence (44) can be satisfied for someµk,i > 0 by choosing
ǫk,i = 0.

The Lemma implies that it is sufficient to have a nonzero
ǫk,i only when p̄j,i = 0. We combine this insight with the
condition in (37), which implies that it is sufficient to have
a nonzeroǫk,i only when the battery ofTk is full, and
propose the2D-DWF algorithmwith restricted transfers. In
this implementation, we modify the 2D-DWF algorithm by
allowing water flow fromTk to Tj only if the battery ofTk is
full and p̄j,i = 0. We allow water flow until (44) is satisfied for
µk,i = 0. In accordance with the battery capacity constraint,
we also limit the water flow among neighboring time slots to
Emax

k .
The 2D-DWF algorithm with restricted transfers is demon-

strated in Fig. 7. Initially, the entire harvested energyEk,i is
allocated to transmission, i.e.,pk,i = Ek,i, and water levels
are obtained from (19). This state is depicted in Fig. 7a. Next,
directional water flow is allowed for each user individuallyand
in time only, i.e., flow in the vertical direction is not allowed.
The taps marked with right facing arrows limit water flow
to a maximum ofEmax

k between time slots. The resulting
water levels are shown in Fig. 7b. Finally, vertical water flow
is allowed only in the time slots ending with a full battery,
e.g., ati = 2 from T1 to T2, by turning on the taps marked
with vertical arrows. Water flow fromT1 to T2 continues until
(44) is satisfied, yielding the optimal water levels in Fig. 7c.
Recall that water flow fromTk to Tj , which representsǫk,i, is
only one component of transferred energy. Energy transferδk,i
may be taking place ati = 1, 3 via the immediately consumed
componentγk,i, which are found using (14).

Remark 2 The proof of Lemma 4 is independent of the
objective function of (33). Hence, the optimality of partially
procrastinating policies, shown in Lemma 4, immediately ex-
tends to the two-hop and multiple access models in Sections V
and VI. As a result, the 2D-DWF algorithm with restricted
transfers can be used for these models as well, provided that
the water levels are updated as in (25) for the THC and (30)
for the MAC.

VIII. N UMERICAL RESULTS

In our simulations of the three channel models, we consider
a transmission period ofN = 100 time slots, a noise
spectral density ofN0 = 10−19 W/Hz and a bandwidth of
W = 1 MHz for both nodes. Battery capacities areEmax

1 =
Emax

2 = 10 mJ. Unless otherwise stated, the energy arrivals
are generated uniformly and independently in[0, 10] mJ, the
channel power gains areh1 = h2 = −100 dB, and the energy
transfer efficiency values areα1 = α2 = 0.5. These are
typical system parameters similar to those in previous work
[7]–[9], [12], [33], [34]. For the purpose of comparison with
conventional power allocation policies, we also evaluate the
performance of aconstant power policy. Nodes employing
the constant power policy attempt transmission with a transmit
power equal to their average energy harvesting rate, i.e.,pk,i =
min{Sk,i,E[Ek,i]}, whenever they are not in an energy outage.
To verify that the difference in performance is not solely due to
energy cooperation, we additionally allow energy cooperation
between nodes employing the constant power policy for their
consumed powers, i.e.,̄pk,i = min{Sk,i,E[Ek,i]}, while
allowing the optimal instantaneous energy transfers givenby
(14), (23) and below (29).

A. EHEC Two-way Channel

For the two-way channel, the average sum-throughput val-
ues are plotted in Fig. 8 for the optimal policy with two-
way energy cooperation, optimal policy without energy coop-
eration, and the two constant power policies. The plots are
obtained by varying the peak harvest rate ofT1, referred to
as Eh, in [0, 10] mJ, whileE1,i is distributed uniformly on
[0, Eh]. It can be observed that energy cooperation yields a
significant increase in performance, particularly sinceT1 is
energy deprived compared toT2. In other evaluations not
shown here, a similar insight is observed to hold when one
node has a notably worse channel. Constant power policies, on
the other hand, perform consistently worse than the respective
optimal policies found via generalized directional water-filling.

In most cases, one node is clearly at a disadvantage in terms
of energy, and the direction of optimal energy transfer is usu-
ally fixed, i.e., uni-directional energy transfer usually suffices
to achieve the maximum throughput with energy cooperation.
However, cases where bi-directional transfer outperformsuni-
directional transfer in either direction are frequently observed.
These include cases where the energy budgets and channel
parameters of the nodes are comparable, where the energy-
deprived node changes within the transmission duration, and
where the battery capacity is reached at both nodes at different
points in time. An example is shown in Fig. 9 for the same
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Fig. 9. Sum-throughput for the two-way channel with one-wayenergy
transfer, and without excess energy transfersǫk,i.

channel parameters in Fig. 8 but with an energy arrival
scenario whereT1 is energy deprived for one half of the
transmission, andT2 is energy deprived for the other. Note that
for low or high harvest rates for nodeT1, the uni-directional
energy transfer performs better in different directions, and both
directions are essential to achieve the optimal throughput.

Fig. 9 also shows theno excess energy transferspolicy,
where the excess energy transfersǫk,i are forced to be zero
while instantaneously consumed energy transfers,γk,i are
chosen freely. The departure of this policy from the full
cooperation case indicates that the excess energy transfers
are necessary to find the optimal policy, whereas their impact
on throughput is not as significant as the impact of instanta-
neously consumed energy transfers. This departure can be seen
more clearly in Fig. 10, in whichEh = 10 mJ is fixed, and the
transfer efficiencyα1 is varied in[0, 1

2
]. We also remark that

below a certain energy transfer efficiency, energy cooperation
in the direction fromT1 to T2 is not necessary to achieve
the optimal throughput. However, as energy transfer becomes
more efficient, i.e., forα1 > 0.1, the optimal throughput
increases for both the uni-directional and bi-directionalenergy
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Fig. 10. Sum-throughput versus transfer efficiencyα1 for the two-way
channel.
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Fig. 11. Sum-throughput versus peak harvested energyE1,i for the two-
hop channel with and without energy transfer, compared withthe heuristic
constant power policy.

cooperation cases.

B. EHEC Two-hop Channel

We next provide numerical results for the two-hop channel,
by varying the peak harvest rate ofT1 in [0, 10] mJ, in Fig. 11.
We observe that in this setup,T1 being energy deprived
significantly hinders the performance in the absence of energy
cooperation, since bothT1 and T2 need to have sufficient
energy to transmit in order to have non-zero end-to-end
throughput. Hence, in this case, energy cooperation is observed
to be very useful for lowEh. Meanwhile, the performance of
constant power policies are significantly worse.

C. EHEC Multiple Access Channel

Finally, we present numerical results for the two-user mul-
tiple access channel, once again varying the peak harvest rate
of T1 in [0, 10] mJ. The channel gains for users 1 and 2 are
h1 = −100 dB andh2 = −110 dB, respectively. Performance
of the optimal policies with and without energy transfer, and
constant power policies, are shown in Fig. 12. It can be seen
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Fig. 12. Sum-throughput versus peak harvested energyE1,i for the multiple
access channel with and without energy transfer, compared with the heuristic
constant power policy.

that whenT1, which has a better channel to the receiver that
that ofT2, is energy deprived, energy cooperation fromT2 to
T1 significantly increases the throughput.

IX. CONCLUSIONS

In this work, we have identified the jointly optimal transmit
power and energy cooperation policies of energy harvesting
channels for maximizing sum-throughput. This is done by
identifying a class of policies that contain an optimal policy
and that enable the decomposition of the problem into energy
transfer allocation and consumed power allocation problems
that can be solved in tandem.

For the two-way channel, the two-hop channel, and the
multiple access channel, we have found optimal procrasti-
nating policies using variations of directional water-filling.
Although the algorithms yielding the optimal policies havethe
water-filling analogy in common, these models display notable
differences that also affect the resulting optimal policies. In
particular, in the two-way channel, the two users’ communica-
tion rates are unaffected by one another, and thus water-filling
is performed separately and iteratively for each transmitter. On
the other hand, in the two-hop channel, the resulting water-
filling algorithm admits a two-fluid interpretation. Finally, in
the multiple access channel, the sum-rate is governed by the
sum-power, and the problem reduces to a single transmitter
counterpart with aggregate arrivals based on the efficiencyof
energy transfers. Overall, we have demonstrated how (par-
tially) procrastinating policies simplify the joint optimization
problem, both in the infinite and finite battery cases. Simu-
lations have demonstrated that energy cooperation provides
a notable increase in sum-throughput, particularly when one
node is at a disadvantage in terms of channel power gains or
harvesting rate, and the end-to-end throughput depends on both
nodes being able to transmit. We have also noted that energy
transfer in one direction is not always sufficient, and that bi-
directional cooperation is needed to achieve the maximum
sum-throughput.

Optimality of procrastinating policies has recently proved
to be a useful tool that extends to more involved channel
models such as the diamond channel [35]. It would therefore
be interesting to extend these results to various other channels.
Other future directions include considering offline policies
for imperfect channel state information or imperfect energy
harvest information, online policies inspired by the offline
solutions presented in this work, extensions to models with
channel fading where channel state information dynamics and
availability at various parties can change the underlying rate
regions, data buffers, delay constraints, storage inefficiencies,
and processing energy cost. Lastly, we note that while we
considered a deterministic approach with energy accumulation,
transfer, and usage, a queueing treatment of the same remains
an interesting future direction.

APPENDIX A
PROOF OFLEMMA 3

Lemma 3 follows from the constraints (12b) being linear,
and the functionCTWC

S in (12a) being jointly concave in its
arguments. Specifically, let the solution to (12) for[πk] and
[π̃k] find [δk] and [δ̃k], respectively. For consumed powers
[aπk + (1 − a)π̃k] with 0 ≤ a ≤ 1, the energy transfers
[aδk + (1− a)δ̃k] are feasible, and yield

R([aπk + (1− a)π̃k]) ≥ aR([πk]) + (1− a)R([π̃k]), (48)

due to the joint concavity ofCTWC
S (p1, p2) in p1 andp2.

APPENDIX B
PROOF OFLEMMA 4

Let {p∗k,i, δ
∗
k,i}, k = 1, 2, i = 1, . . . , N , be a solution

to (33). We will construct a partially procrastinating policy
{p∗k,i, γ

∗
k,i, ǫ

∗
k,i} that is feasible. Letδk,1 = δ∗k,1, k = 1, 2.

Starting fromi = 1, we calculate

γk,i = min

{

δk,i,
p∗j,i
αk

}

, (49)

δk,i+1 = δ∗k,i+1 + δ∗k,i − γk,i, (50)

for k, j = 1, 2, j 6= k, and i = 1, . . . , N . Note that{γk,i} in
(49) satisfy (35) by definition. Next, fori = 1, . . . , N , let

γ∗
k,i = max{0, γk,i − γj,i}, k, j = 1, 2, j 6= k. (51)

This yields{γ∗
k,i} that satisfy both (35) and (36). Letǫ∗k,i = 0

for k, j = 1, 2, j 6= k, andi = 1, . . . , N . Starting fromi = 1,
we recalculateδk,i from (34) using{γ∗

k,i, ǫ
∗
k,i}, and calculate

Sk,i using the recalculatedδk,i, i.e.,

Sk,i = Sk,i−1 + Ek,i − pk,i − δk,i + αjδj,i (52)

for k, j = 1, 2 and j 6= k, while updating the optimal stored
componentǫ∗k,i as

ǫ∗k,i = max{0, Sk,i − Emax
k }. (53)

Note that this immediately satisfies (37) for allk, j = 1, 2 and
i = 1, . . . , N .

The process outlined above postpones energy transfers that
are not immediately needed via (49)-(50), eliminates cases
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of simultaneous bi-directional energy transfer via (51), and
transfers excess energy that is overflowing via (53). The
resulting policy,{p∗k,i, γ

∗
k,i, ǫ

∗
k,i}, is a partially procrastinating

policy. Given that the original policy{p∗k,i, δ
∗
k,i} is feasible,

{p∗k,i, γ
∗
k,i, ǫ

∗
k,i} is also feasible by construction. This policy is

also optimal since the objective of (33) depends only on the
transmit powers{pk,i}, and the transmit powers{p∗k,i} are
equal in both policies.
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