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Abstract

Bit-flipping (BF) decoding of low-density parity-check ceslis of low complexity but gives inferior
performance in general. To improve performance and provae BF decoder options for complexity-
performance tradeoffs, we propose new designs for the figpfinction (FF), the flipped bit selection
(FBS) rule and the checksum weight updating schedule. The Ffe adjusts the checksum weights
in every iteration while our FBS rules take more informatiato account. These two modifications
represent efforts to track more closely the evolutions dhhbtheck and variable nodes’ reliabilities.
Two selective update schedules are proposed to offer maferpence and complexity tradeoffs.

The combinations of the new FBS rule and known FFs result wmm BE decoders with improved

performance and a modest complexity increase. On the o#inef, ltombining the new FF and FBS rule

arxiv:1501.02428v4 [cs.IT] 25 Aug 2015

gives a new decoder with performance comparable to thateohtirmalized min-sum algorithm while
if we use a much simpler FBS rule instead, the decoder sufitdes performance loss with reduced
complexity. We also present a simple decision-theoretipgliment to justify the new checksum weight
formula and a time-expanded factor graph model to explagnptoposed selective weight-updating

schedules.

Index Terms

LDPC codes, belief propagation, bit-flipping decoding,d&p bit selection.
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I. INTRODUCTION

Low-density parity-check (LDPC) codes have been shownymasotically give near-capacity
performance when the sum-product algorithm (SPA) is useddooding([1]. Gallager proposed
two alternatives that use only hard-decision Kits [2]. Ehes-called bit-flipping (BF) algorithms
flip one or a group of bits based on the values of the flippingtions (FFs) computed in each
iteration. The FF associated with a variable node (VN)nsliability metric of the corresponding
bit decision and depends on the binary-valued checksumBeoVN’s connected check nodes
(CNs). Although BF algorithms are much simpler than the StR&jr performance is far from
optimal. To reduce the performance gap, many variants ofa@el's BF algorithms have been
proposed. Most of them tried to improve the VN's reliabilihetric (the FF) and/or the method
of selecting the flipped bits, achieving different degrekbiberror rate (BER) and convergence

rate performance enhancements at the cost of higher coityplex

The class of weighted bit-flipping (WBF) algorithms [8]-[@$sign proper weights to the binary
checksums. Each weight can be regarded as a reliabilityigya@trthe corresponding checksum
and is a function of the associated soft received channeesaAnother approach called gradient
descent bit-flipping (GDBF) algorithm was proposed by Waaaget al. [9]. Instead of using
a weighted checksum based FF, the GDBF algorithm derivesHtby computing the gradient
of a nonlinear objective function which is equivalent to tbg-likelihood function of the bit
decisions with checksum constraints. It was shown that tB8algorithm outperforms most
known WBF algorithms when the VN degree is small. Sundaaarej al. modified this
FF by introducing a weighting on syndrome and a zero-mears§ian perturbation term. The
resulting noisy GDBF (NGDBF) algorithm improves the penfi@nce of the GDBF algorithm

which is further enhanced by adding a re-decoding proc¢egjs [1

For the WBF algorithms, the weights are decided by the saftived channel values and

remain unchanged throughout the decoding process. Sircevéights reflect the decoder’s
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belief on the checksums which, in turn, depend on those ofads®ciated VNs' FF and bit
decisions, the associated checksum weights should beagbdatordingly. In[[19], a reliability-
based schedule is used in the initial decoding iteratiorotavdrd only reliable VN and CN’s
messages. Nguyen and Vasicl[20] employed an extra bit {otizely represent the reliabilities of
VN and CN messages and developed a class of two-bit BF algwsialong with algorithm(s)-
selection procedures. In this paper, we present dynamightexdd BF (DWBF) algorithms that
assign dynamic checksum weights which are updated acgprdira nonlinear function of
the associated VNs' FF values. As we shall show, the nonlifigaction has the effects of
guarantining unreliable checksums (which is similar to thethod used in the first decoding
iteration of [19]) while dynamically adjusts the more réli@a checksums’ weights. A simple
decision theoretical interpretation is given to explaie #ffect of the nonlinear action and
justify the threshold selection. We also suggest two sekeateight-updating schedules which
offer additional performance-complexity trade-offs. ma-expanded factor graph model is used
to illustrate the weight-updating schedules.

The single-bit BF algorithms flip only the least reliable thius result in slow convergence
rates. For this reason, many a multiple-flipped-bit setectiule was suggested][9]-[18]. By
simultaneously flipping the selected bits, a BF decoder dfer capid convergence but, some-
times, at the expense of performance loss. A bit selecti@mmay consist of simple threshold
comparisons or include a number of steps involving diffeneetrics. It is usually designed
assuming a specific FF is used and may not be suitable whefeeedif FF or metric is involved.
Moreover, the FF value may not provide sufficient informatior making a tentative bit decision,
we propose a new flipped bit selection (FBS) rule that takesaccount both the FF value and
other information from related CNs.

FF, checksum weight computing, weight-updating schedwdad FBS rule are major con-
stituent parts of a DWBF decoder. Our proposals on these pdfgr a variety of new design

options and tradeoffs. The efficienciesusing the proposed schemes jointly or separately with
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existing designsire evaluated by examining the corresponding numericat eate and conver-

gence behaviors. We show that our single-bit DWBF algoripitovides significant performance
improvement over the existing single-bit GDBF and WBF aifpons. Our FBS rule works

very well with different FFs and outperforms known FBS rule®reover, the selective weight-
updating schedules suffer little performance degradatibite offer significant complexity re-

duction when the CN and VN degrees are small.

Note that since the checksum weights are crucial paramefeasDWBF decoder’s FF and
their updates depend in turn on the FF values computed atréweops iteration, we henceforth
mean both the FF and the associated weight computing formioéaever FF is mentioned.

The rest of this paper is organized as follows. In Seclidormi, define the basic system
parameters and give a brief overview of various BF decodiggrahms, their FFs and FBS
rules. In Sectiof1ll, we introduce a new FF and its checksweight-updating formula. A simple
decision theoretical justification is given. We considergée-bit BF decoders and present two
weight-updating schedules as well as their graphic modeBectiori IVY. The performance of the
our single-bit DWBF algorithm and some known single-bit BBasithms are compared in the
same section. We develop a new multi-bit FBS rule and pretbenérror rate and convergence
behaviors of various multi-bit BF decoder structures basedhe new FBS rule in Sectidn] V.
These decoders’ complexities are analyzed in details fafuating various performance and

complexity tradeoffs. Finally, conclusion remarks arewdran Sectior V.

[I. BACKGROUND AND RELATED WORKS
A. Notations and the Basic Algorithm

We denote by(N, K)(d,,d.) a regular binary LDPC cod€ with VN degreed, and CN
degreed,, i.e., C is the null space of ad/ x N parity check matrixd = [H,,,] which has
d, 1's in each column and, 1's in each row. Letu be a codeword off and assume that

the BPSK modulation is used so that a codeward= (ug,uq, - ,un_1), u; € {0,1}, is
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mapped into a bipolar sequenge= (xg, 1, - ,zn_1) = (1 —2ug, 1 —2uy,- -+ ,1 —2uy_q) for
transmission. The equivalent baseband transmission eham@ binary-input Gaussian-output
channel characterized by additive zero-mean white Gaussise with two-sided power spectral
density of No/2 WI/Hz. Lety = (vo,v1,- -+ ,ynv—1) be the sequence of soft channel values
obtained at the receiver's coherent matched filter outplé Jequence = (2, 21, -, 2ny—_1)s
where z; € {0, 1}, is obtained by taking hard-decision on each componentg.diet u =
(g, uy,- -+ ,un—1) be the tentative decoded binary sequence at the end of a BEidgdteration.
We compute the syndrome (checksum) veator (sg, s1, -, sy—1) by s = @ - H ' (mod 2).
We further denote theth VN by v,, the set of indices of its connecting CNs i (n), and the
set of indices of the VNs checked by theth CN ¢,, by AV/(m). The indices of CNs inM (n)
are determined by the nonzero elements ofsitte column of H whereas those iV (m) are

by the mth row of H.

A generic BF decoding algorithm can be describedAgorithm [ below which involves
four important parameters; the iteration numbeliy,y, the maximum iteration numbeg;,, the
FF; andB, the index set of the flipped bits, or the flipped bit (FB) setgbort. This algorithm
performs two basic tasks: 1) computiig’s (Step 2) and 2) generating the FB sBt(Step 3).
Most earlier works focused on improving either 1) or 2). An B&metimes referred to apst
function or inversion function[9], is used as a reliability metric on a VN’s tentative démis
Given the FF values and the FBS rule, we select a set of VNs gmithé corresponding tentative
decisions (bits). Choosing the most unreliable bits or itewhose FF values exceed a threshold
are the two most popular rules. For the former rule, usuatlly @ne bit is flipped if the soft-
valued channel information is employed in the FF, resulimglow convergence. By contrast,
the latter rule often gives faster convergence rate butilplgsat the cost of performance loss.

We briefly review the known FFs and FBS rules in the followiragggraphs.
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Algorithm 1 Bit-Flipping Decoding Algorithms
Initialization Set/ =0 andu = z.

Step 1V m € Oy 2 {0,1,..., M — 1}, compute

Sm= Y fdnHyy(mod 2) 1)
neN (m)

If s =0 orl = Ina Stop decoding and outpud; otherwise,l + [ + 1.
Step 2V n €Oy 2{0,1,...,N — 1}, compute the FH,.
Step 3 Use the FFs obtained &ep 2 to update the flipped bit séi.
Step 4 Flip u,, for all n € B and go toStep 1.

B. Flipping Functions of BF Decoding Algorithms

Gallager proposed that a simple sum of binary checksums é@ as the FF_[2]
E,=— Y (1-2s,). 2)
meM(n)
(@) implies that the FF value is inversely proportional te thit decision reliability as it is an
increasing function of the number of nonzero checksums (irgsatisfied check nodes, UCNS).
By taking into account soft-valued channel information asdigning checksum weights, later
modifications of Gallager's FF can be described by the falgwgeneral formula
Ep= =01 ¢(@,yn) = D wan(l = 2s0), (3)
meM(n)
wherea; > 0, ¢(u,,y,) is a reliability metric involving channel value and/or bieasion, and,
to be consistent with {2yy,,,, > 0.

For the WBF algorithm[[4]¢ (.., y,) = 0 and w,,, is

Wmn = min ‘yn’ |7 (4)
n' €N(m)

The modified WBF (MWBF) algorithm[[5] has (i, y,) = |y,| while the improved MWBF

DRAFT August 26, 2015



SUBMITTED PAPER 7

(IMWBF) algorithm [6] uses the same(1.,,, y,,) but replaces the checksum weight by

Wmn = min |yn' | (5)
n'eN(m)\n

for the message passed frap to v, should exclude that originated from. For the reliability

ratio based WBF (RRWBF) algorithmI[7§( ., v,) = 0 and

-1
) Y|

maxp/eN(m

!

where 3 is the normalizing factor to ensure that, ) W, = 1.

n

The GDBF algorithm of Wadayanet al. [9] applies the gradient descent method to minimize

N-1 M-1
n=0 m=0
with respect to(1 — 24,,) and obtains the FF
En = _yn(l - 2ﬁn) - Z (1 - 2Sm)> (8)
meM(n)

which is equivalent to assigning, = 1, ¢(tn, yn) = yn(1 —24,), andw,,, = 1 in (). Recently,
Sundararajaret al]17] introduced the so-called noisy GDBF (NGDBF) algorithased on
B, =—yu(1=2d,) —w > (1=25,)+ g, (9)
meM(n)
whereg,’s in (@) are i.i.d. zero-mean Gaussian random perturbatiitn a signal-to-noise ratio
(SNR) dependent variance amdis a constant syndrome weight.

For the above two FFs[1(8) andl (9)(t, y.) = yn(1 — 24,) is equal to|y,| when the bit
decisionu,, is the same as thg,-based hard decision,,; otherwise, its value is the same as
—|yn|. This is consistent with the intuition that, = z,, implies thata,, is likely to be correct and
since—FE,, is a VN reliability metric, a positive’(4.,, y,,) helps increasing- £,, and preventing
the @,, from being flipped. In contrast)(«,,, v,) is always positive|{,|) in MWBF algorithms,

which means that the MWBF algorithms tend to trastin spite of other evidence.
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C. Flipped Bit Selection Rules

For the algorithms mentioned in the Section 1I-B, only thd)irelated to the VN having the

largest FF valudy, is (are) flipped in each iteration, i.e., the FB set is
B = {n|n = argmax E; }. (10)

As mentioned before3| = 1 and the corresponding convergence is often very slow,ithas
a soft-valued information term.
Flipping several bits in each iteration simultaneously taprove the convergence speed. The

simplest FBS rule for multi-bit BF decoding uses the FB set
B = {n|E, > A}, (11)

where the threshold\ can be a constant or be adaptive. The optimal adaptive thicestas
derived by Gallager |2], assuming that no cycle appearsearctde graph. Since practical finite-
length LDPC codes usually have cycles and the optimal tetdsican only be found through
time-consuming simulations, two ad-hoc methods which mataally adjustA were suggested
in [12] and [13]. In the adaptive threshold BF (ATBF) algbnt [12], the initial A is found
by simulation and subsequent thresholds are a monotopninalh-increasing function of the

decoding iterations. The adaptive MWBF (AMWBF) algorith@8] adjusts the threshold by

A= E*— |EY [1—“";\28)}, (12)

where E* = max,, £, andwy(s) is the Hamming weight of the syndrome vector

Sometimes, a tentative decoded vectomay reappear several times during the decoding
process and form a decoditgop. This may be caused, for example, by the event that an even
number of bits associated with a CN are flipped, leading to rashanged checksum and then
oscillating bit decisions. To eliminate the occurrenceaugds, the AMWBF algorithm includes
the loop detection scheme off [8] in its FBS rule so that if gpld® detected, the most reliable

bit in B is removed. The parallel weighted BF (PWBF) algorithm| [1%§< to reduce the loop
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occurrence probability by having every UCN, (= 1) send a constaritip signal (FS) to its

least reliable linked VN (based on the FF of the IMWBF aldam) and flips the bits in
B = {n|F, > Ars}, (13)

where Ags is a constant optimized by simulations,

Fn = Z dmnSm, (14)
meM(n)
andgq,,, is given by
1, n =arg max E.

0, otherwise
Since the above remedy can only eliminate loops with a ecepeobability, the improved PWBF
(IPWBF) algorithm employs the loop detection schemelof [8fl avhen a loop is detected, it
removes the bit(s) receiving the smalldst from B. This algorithm also adds a bootstrapping
step and a delay-handling procedure to further improve thedbection accuracy but achieves
limited improvement for the codes with high column degraesshsas Euclidean geometry (EG)
LDPC codes.

A hybrid GDBF (HGDBF) algorithm was proposed inl [9]. In thiggarithm, single- and
multi-bit BF decoding is performed alternatively and escape process used for preventing
the decoding process from being trapped in local minima4odwo extensions of the HGDBF
algorithm were considered in_[14] and [15] which requiresle®mplexity at the expense of
inferior performance. A multi-bit GDBF algorithm with a pyabilistic FBS rule was also
suggested in [16] for hard-decision decoding. With the [BFafed FBS rule of([15], the multi-
bit NGDBF (M-NGDBF) algorithm [[17] achieves the same BER fpenance as that of the
HGDBF decoder with much less decoding iterations. HowdfI&], found that new trapping set
conditions may exist in the M-NGDBF decoder but can be elated by re-decoding with a

different perturbation sequence.
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IIl. CHECKSUM RELIABILITY AND DYNAMIC WEIGHTS

A. BF Decoding and Checksum Weights

In line with the belief propagation (BP) based SHA, is similar to the total log-likelihood
ratio (LLR) of v, and —w,,,(1 — 2s,,) in (@) is analogous to the belief sent tq by c,,.
Unlike SPA, however, for[{4)E(6), the latter remains und®th unless ani,,, n € N(m)
has been flipped, which leads to just a sign change of thefb&lhe general FF format[{3),
includes two major terms that represent the decoder’'s caméel on a VN’s tentative decision
based respectively on its channel value (or the correladiothe channel value and tentative
decision) and the reliabilities of the related checksunreéthe channel values remain fixed, the
checksums should be given adjusted weights at least in theitarations when the reliabilities
of checksums change.

Although the flipping operation changes the reliability rieetf «,, and the related checksums,
all the FFs used in known BF decoders use statig; thereby can neither reflect the dynamic of
VNs’ message passing nor offer self-adjustment capabilitgccurately updating bit reliability

information. We present dynamic weight generation methothis section.

B. Flipping Function and Decision Reliability

The review on BF algorithms in Sectidn Il indicates cleafattthe FF value is a proper
explicit or implicit reliability metric of a VN’s decisionAs a checksum in turn is a function of
the associated VNS’ decisions, the corresponding checkgeights should be updated according
to the current FF values. A reasonable candidate checksughtne therefore given by

) = min -EY, (16)

n’ EN(m)\n

whereEY is the FF value of,, in thelth iteration. However[(16) may result in negative weights

which is inconsistent with[{2) andl(3); both are increasingctions of the nonzero checksum
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number. To have proper positive checksum weights based,grwe consider the likelihood

ratio

AE,) = m, a7)

whereH, and H, denote the hypotheses that = u,, andu,, # u,,, respectively. The conditional
probability density function (pdf)f(E,|H;), is the pdf of thoser,,’s associated with a correct
or incorrect tentative bit decision at a given iterationislto be interpreted as a conditional pdf
averaged over all VNs. The basic decision theory tells usttieoptimal decision rule is given

by

@ m1(Cor — C11)
< A4 o~
H, 7T0(010 - C'00)

wherer; = P.(H; is trug) and C;; is the “cost” for acceptingd; while H; is true. Unlike

A(Ey) (18)

the conventional Bayesian minimizing error probabilitytieg, both the costs and the a priori
probabilities are difficult to assess. For a BF decoder, tatee decision, except for the initial
iteration, is determined by the previous decision and thppifig decision. On the other hand,
both conditional pdfs in[(17) depend on the definition I6f and the FBS rule. They vary
from one iteration to another. Although the dependence é&tvi,, and E,, is implicit as other
parameters are also intertwined and the conditional pdfsttars difficult if not impossible to
derive analytically, they can be estimated numerically byutations. Assuming that the all-
zero codeword is transmitted in every frame, i®,, = 0 is the correct decision, we depict
in Fig. [ the evolutions of both simulated conditional pdfghnall related factors considered
and averaged—for the IMWBF algorithm with, being the updated FF values at, say ttie
iteration, after the tentative decision at tfie- 1)th iterationa,, was made. This figure indicates
that F,, does reflect the correctness of the corresponding tentdéeesion in that a smaller
(negative) FF value is more likely to be associated with aemrdecision. The probability of
correct inference omi,, based onF,, depends on the separation (distance) between two pdfs.

The figure, however, demonstrates that the separation aaesiprove as the decoding iteration
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Fig. 1: Conditional FF distributions for the IMWBF algonithin decoding MacKay (816,272)(4,6) LDPC code (816.1A4.845

[21]), SNR (E»/No)= 4 dB.

increases. We propose a new FF in the next subsection and ish®ection[ 1V that this new

FF is capable of overcoming the shortcoming of the IMWBF &thm.

C. A New Flipping Function

Although; andC;; are difficult to assess but the optimal Bayesian test, (£8) be simplified
to a threshold test based d@f),. Given a suitable thresholg Fig.[d indicates that if- £, > 7,
the decoder is more likely to have made a correct bit decigjomwhose reliability is proportional
to —F,; otherwise, the decision is probably incorrect.

The foregoing discussion and the aim to have a weight-upglatile reflecting a more accurate
relation among bit decision, FF, and checksums, as elaabiat more details below, suggest
that we modify [(16) as

rd) = < min —E,Ef)) = min  Q(—EY), (19)
n eN(m)\n n €N (m)\n
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where
Qz) = : (20)
0, r<n

The clipping operatorf2(x), besides ensuring only positive weights are used, can bepieted
as the decision for a CN to send no message to other linked ViNenwhe associated FF
values fail to exceed the threshold, which bears the flavdstop-and-go” algorithms that pass
a CN-to-VN message only if it is deemed reliable. Note thathacksums,, is determined
by d. bit decisions, and ifs,, = 0 and there is only one unreliable decisiop (-E, < 7)
among VNs inN(m), the checksum is likely to be valid and the decision is in femtrect.
Hencec,, should modify £, to increaseA(E,) but not pass the message’%,(l — 2s,,) tO
other connected (reliable) VNs/(€ N (m) \ n). In doing so,E,, has a local (amongV(m))
maximum FF decrease and the probability of reversing thddwtsion is reduced. On the other
hand, ifs,, = 1, u, is likely to be only local incorrect decision, the above rulél result in a
local maximum FF increase and thus a higher probability aid@#ipped. When more than one
—E,, n € N(m) are clipped, no message is sent fropas the checksum itself is unreliable.
The temporary suspension of some message propagatiorehdiys2(z) also has the desired
effect of containing the damage an incorrect message may dm@mve and preventing the decoder
from being trapped in a local minimum. The above discours#iaus that [[20) does fulfill the
goal that the weight updating should have FFs, checksuntsbéandecisions join a cohesive
effort in improving the performance of a BF decoder.

The FF defined by {3) using the recursive weight-updating {@B) tends to make theheck
reliability part of the FF,—ZmeM(n) rmn(1 — 2s,,), Starts to grow exponentially after most
of the correctable bits were flipped and the number of UCNsedses to just a few. It is
conceivable that these reliability estimates should bergidifferent weight with more remote
estimates having less weights. This can be done by havinghéek reliabilities multiplied by

a forgetting factor0 < a, < 1, as can be found in many recursive adaptive filters [22]. We
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are unable to determine the optimal clipping threshpldince a closed-form expressions for
Pr(E,|H;) are practically unobtainable for reasons mentioned befdoene simulation efforts,
however, indicate that is close to O for several BF decoders, independent of SNR laad t

iteration of interest. With the above ideas in mind, we cdesia new FF based oh {19) and

(20) usingn = 0:

B = —pa(1 = 2im) =0z 30 riiV(1= 2sm), 1)
meM(n)

where( < ay < 1 is a positive damping (forgetting) constant to be optimibgdnumerical

experiments.

IV. NEW SINGLE-BIT BF DECODING ALGORITHMS

We define a (checksum) weight-updating schedule as a ruteséhects a subsei of O,
which represents the set of CN indices, and updates onlyethfé?g,m € G. Such a rule
determines the message-passing paths in the decodingspréeee Fig[12 below) hence is
called a schedule. When the updated CN index&et O,,;, we call the schedule as the
full weight-updating schedul@&WUS). Alternate schedules witf # O,, provide trade-offs
between computational complexity and error-rate perforcea In this section, we introduce a
class ofsingle-bit dynamic weighted BBecoding methods based dn](19),1(21), and different

weight-updating schedules.

A. Single-Bit DWBF Decoding and Weight-Updating Schedules

Combining [I9) and{21) with the consideration of the chata weight-updating schedule,

we obtain the class of DWBF algorithms or, for simplici§igorithm [2.
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Algorithm 2 DWBF Decoding Algorithm
Initialization Setl = 0, & = z, andG = B = 0. Initialize r}, by (B) for alln € N'(m), m €

Ou. SetEY = —y, (1 —24,) for all n € Oy .

Step 1 Computes,, for all m € Oy,. If s =0 orl = Ihay, Stop decoding and output otherwise,
[+ 1+1.

Step 2V n € Oy, computeE!” by (&I).

Step 3 UpdateB andvn € B, flip u, and EY « —EY.

Step 4 UpdateG. Then, updateﬂffl)n by @9)V n € N(m),m € G and setrll), « r Y
V' neN(m), me Oy\G and go toStep 1.

Algorithm 2 describes a general class of DWBF algorithms: RFard-decision decoding,
—yn(1 = 24,) in @21) is replaced by-(1 — 2z,)(1 — 24,,) and r{, is initialized asl. The FB
setB in Step 3 is determined by the FBS rule used, it can[bd (20yorithm 3 or 4 presented
in Section[Y. When[(10) is usedlgorithm 2 is a single-bit DWBF algorithm and becomes
a multi-bit DWBF algorithm ifAlgorithm 3 or 4 is used as the FBS rule. In this section, we
consider only the FBS rulé (1LO), which implies that only ointesflipped (i.e.,

B| = 1) at each
iteration unless it is used for hard-decision decoding.ddetihe resulting decoder is referred to
as the single-bit dynamic weighted BF (S-DWBF) decoder.

As most FF values will change because of the recursive nafuf&) and [21l) we may need
to perform the FWUS irStep 4. This is one of the prices we have to pay when the dynamic
weights instead of the conventional constant weights asegasd to the checksums. We call
the FWUS-based single-bit decoding algorithm as the S-DWB#gorithm for simplicity. To
lessen the computing load of this algorithm, we reduce the ef G by prioritizing the CNs
and update only those with a higher priority.

We first notice that, to ensure that the newest updated irgfhom be broadcasted, the weights

of the flipped bits’ linked checksums should have the highgstating priority. Furthermore,
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> L
Ith Iteration (/+1)th Iteration (/+2)th Iteration

(a) Selective weight-updating schedule A.

Vo Vo Vo Vo
© ©

Ith Iteration (/+1)th Iteration (/+2)th Iteration

(b) Selective weight-updating schedule B.

Fig. 2: The TEFGs for two different selective weight-updgtischedules.

for those VNs whose FF values change from one side of theiotipfhreshold; of (20) to the
other side and undergoraliability inversion their related checksum weights should be renewed
as well. With these considerations, thelective weight-updating scheduld 3WUS-A) updates

only those checksums (CNs) whose indices lie in
V2 fmm e M(n),n € B}
U{m|m € M(n),(=EY —n) (=B —n) <0,n=0,1,...,N —1}. (22)

The time-expanded factor graph (TEFG) shown in Fig.]2(a) ssngple example illustrating

how SWUS-A behaves, assuming that the only VN which germt@,fé = {1,2} is vy. We
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TABLE |: Complexity of weight-updating schedules

SWUS-A SWUS-B FWUS

Number of Visited CNs dy min{d,(dv — 1)(de — 1) + 2dy, M} M

Number of Visited VNs| min{d,(d. — 1) + 1, N} | min{d,(d, — 1)(dc — 1)® + 2[dy,(d. — 1) + 1], N} N

denote this VN bye , the CNsvisited (selected) by the schedule my, and the VNs which
receive new CN messages by

When SWUS-A is used in the S-DWBF algorithm, the resultingoathm is called the S-
DWBF-A algorithm which at thdth iteration updates the CN index ggtwith g,&”.

Since only a few VNs received updated messages from thetsel€iNs, somé~,’s are likely
to remain constant for many iterations (e, or even during the whole decoding process. To
spread the updated messages to more VNs, we expand the dizfdtset to include botl@,&l)
and

gél) 2 {mlm € M(n), n € uf\”} (23)

whereu,ﬁl) 2 {njn € N(m), m € g}\l_l)} and call this updating schedule as tbelective
weight-updating schedule BBWUS-B). In other words, the updated messages receivetieby t
VNs connected to the CNs '@,&l) will also be forwarded to their connecting CNs in the follogi
iteration, i.e.,G « gﬁ() ugé”. Fig.[2(D) illustrates the expanded updating range by atiig the
extra visited CNs (those whose indices blonw@) with the symbol@. Similarly, when this
weight-updating schedule is used, we call the resultingrélgn as the S-DWBF-B algorithm.
Table[] lists the average number of visited CNs (to updateck$iem weights) and VNs
(to compute FF) per iteration per flipped bit or FF inversion the different weight updating
schedules. As expected, the SWUS-A/B need much less cotigmaiacomplexity and this
reduction is more impressive wheh and d, are small. Note that for the expanded schedule

SWUS-B, the VNs iru}\” may be linked to a common set of CNs a@lﬁ mgg” can be nonempty
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if the code graph has short cycles. As a result, the pracialage numbers of the visited CNs
and VNs for SWUS-B is much less than those shown in Table | vlasissumes a cycle-free
code. However, it can be shown that when the code girth igtalgan 8 (10), the actual average

visited CN (VN) number is equal to that of a cycle-free code.

B. Performance of S-DWBF Decoding Algorithms

We apply the known single-bit BF algorithms and S-DWBF-A7ZElgorithms to decode two
regular LDPC codes and present their performance in Elgsid®4a The first code, MacKay'’s
(816,272)(4,6) rate-0.333 LDPC code (816.1A4.845 [21]), is a typical later low-degree
Gallager code with no special structure. In contrast, ticerse code, th¢1023, 781)(32, 32) rate-
0.763 EG-LDPC code, is a high-rate, high-degree code whedermance has been evaluated
in several WBF-related work$1[6],[8]._[10], and [11]. Forrm@nience, we refer to the above
low- and high-rate codes as Code 1 and 2, respectively. Itbeas shown by simulations
[3] that BF decoding is very effective in decoding (highesahigh-degree) EG-LDPC codes.
It would be interesting to examine the BF algorithms in désgdow-rate, low-degree codes.
The performance of the normalized min-sum (NMS) algoritf@8][is also given for reference
purpose.

Fig. [3 shows the BER performance of Code 1 withy, = 150. For the S-DWBF-A, S-
DWBF-B, and S-DWBF-F decoders, the numerically-optimizedvalues are 0.68, 0.44, and
0.35 whereas for the IMWBF decoder, we foungd= 0.2. Our extensive simulation concluded
that the optimal reliability thresholg in (20) is close td), whencen = 0 is used for all DWBF
algorithms. At BER%0~°, we observe that the S-DWBF-B and S-DWBF-F algorithms hage 2
dB and 2.6 dB gains against the RRWBF algorithm; the simp/BF-A algorithm achieves a
much smaller 0.7 dB gain as it limit its weight update to a @njited range. The performance
of Code 2 withl,,., = 50 is shown in Fig[#. Unlike Code 1, Code 2 has a much higheand

the check reliability part of the GDBF algorithm’s FF,ZmeM(n)(l —2s,,), thus dominates the
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Fig. 4: BER performance of several S-BF decoder as a funcfd®NR for Code 2.

FF value after a few iterations and its performance is sintdahat of Gallager’'s BF algorithm,

especially when SNR is high. To improve its performance veeiha damping factafi; so that

(@) becomes

August 26, 2015
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TABLE IlI: Average number of visited CNs in S-DWBF algorithms

Code 1 (/ = 544); SNR = 4 dB

Iteration | S-DWBF-A | S-DWBF-B

10 15.7 137.2
30 10.1 88.7
50 8.3 76.4

Code 2 (/ = 1023); SNR = 3.4 dB

Iteration | S-DWBF-A | S-DWBF-B

5 105.3 1023
10 56.3 1023
20 38.6 1023

This modification multiplies the second summation [df (8) day, which is analogous to the
Lagrange multiplier in (the checksum) constrained optatian and whenv; = 1, (24) degen-
erates to[(8). The optimal; for (24) is close tol /17 for Code 2. Referring td{3), the IMWBF
algorithm usesy; = 1.8 and the S-DWBF-A (B) decoder uses = 0.33 (0.12) in [21). Due
to the high VN/CN degrees of Code 2, almost all CNs are updaye®&-DWBF-B algorithm
after two or three iterations, yielding performance simitathat of the S-DWBF-F decoder. The
same figure shows that the S-DWBF-A decoder provides ab@stdB performance gain with
respect to the IMWBF decoder at BER10~° and the S-DWBF-B algorithm offers additional
0.1 dB gain.

Table[dl presents the average number of CNs visited (in tseaated ETFGs) by different
schedules for Code 1 and Code 2 at selected iterations. Ugththe S-DWBF-F algorithm has
the best BER performance among the single-bit algorithinsgquires higher computational
complexity. By contrast, the S-DWBF-A/B algorithms prosidrade-offs between complexity

and performance. Furthermore, for both selective weiglglating schedules, the number of
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Fig. 5: Conditional FF distributions for the S-DWBF-F algbm in decoding Code 1, SNR = 4 dB.

visited CNs decreases when one proceeds with more itesatisrthe numbers of flipped bits
and reliability-inverted VNs decreases. We plot the FF @aliistributions for the S-DWBF-F
algorithm in Fig[5. In contrast to Fig. 1, where the separatietween the two conditional pdfs
exhibits little variation, our DWBF algorithm is able to puf(E,|H,) away from f(E,|H,)
as the decoding process evolves. Since the reliability oeeoder’'s decisions based df),
depends on the separation (distance) between the two péfanproved separation is certainly
welcome. As mentioned before, we uge- 0 in (20) for all S-DWBF algorithms. Although the
optimal clipping threshold is unknown. Figl. 5 does convinsethat0 is a valid and convenient
choice and the FF with the proposed dynamic checksum wegldtbes give a much better VN

reliability reference.

V. NEW FLIPPED-BIT SELECTION METHODS AND MULTI-BIT BF DECODING ALGORITHMS

Multi-bit BF decoding algorithms were developed to accatierthe convergence performance.
Most of these algorithms use the simple threshold compariSBS rule [(Il1) discussed in

Section[D [9], [12], [13], [15]-[18]. Even if the threshold has been optimized by numerical
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experiments, we find that it is necessary to add the opHoa {n|n = argmax; E;} in case
B = () whose occurrence probability during a decoding proces®izero. In fact, simulation
results indicate that, depending on SNR and the decodimgdsde algorithms used it can be
higher than 0.2 for Code 1. When this option is included in FE8ision, the resulting FBS rule

is calledAlgorithm [3 or the M1-FBS rule.

Algorithm 3 Flipped Bit Selection Rule 1 (M1-FBS)
Step 1 Find B = {n|E,, > A}. If B # (), stop; otherwise, proceed &iep 2.

Step 2 Find B = {n|n = argmax; E;}

Recall that the PWBF algorithm uses the FF of the IMWBF alhoni as the VN reliability
metric with the FB set[(13) determined by the FS cofiptof (I4). That is, a CN sends a flip
signal to its most unreliable linked VN only and the VNs whigteive sufficient number of
reliability warnings (flip signals) shall be flipped. It twrout that, with this extra filtering of
VN-to-CN messagesH,’s) and selective CN-to-VN flip signal passing, the PWBF ailipon
is able to outperform the IMWBF decoder in both convergerate end error rate [10]. This
performance gain motivates us to ponder if a more elabofapging decision strategy that uses
more information can bring about further performance inproent for the BF decoders using

either the proposed FIE_(21) or other FFs discussed in Sdiition

A. Flipping Intensity

Let U, £ ZmeM(n) Sy i = maX,en(m) Un, Am £ arg MaXpep(m) Bn, and M'(n) =
{m|m € M(n), \,, = n}. With these notations, we define thgping intensity(FI) of (received
by) v, as

F, = ) 005mb(Un, — i) + O15m[1 = 5(Un,, — ptm)], (25)
meM’(n)
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wheref, > 6, > 0 andd(x) is the Kronecker delta function. For simplicity, bo#lh and ¢, are
confined to be integers so that Fl is integer-valued. The alo@finition implicitly implies that
E, =0if M'(n) = 0 and only UCNs have a say in deciding FI. It also implies that\ahas a
nonzero FI only if it has the largest FF value amokigm) and if it is connected to the largest
number of UCNs among its peers i(m), the associated FI should be even highgr 6,).

In both cases, a UCN,, will send a non-negative message to the VN with the highesidtie

in the set\V(m). However, ifc,, is a passed CN (PCN},(, = 0) andd. is small, it often implies
that the tentative decisions of its linked VNs are all carrétence if the flipped bits are to be
selected by checking whether the associated Fl is greader dnthresholdy,  should have a
smaller probability of being chosen. This can be done byrtatihe PCN send a drag message
05(s,, — 1). But if there is doubt that,, is connected to even incorrect bit decisions, the PCN
has better not sending such a message. We decide that thislystb be the case it/),, # i

for this inequality means that at least one VN.AA(m) has more connected UCNSs thag, .
With UCNs and PCNs contributing opposite signals, we mo@f) for alln, 0 <n < N as

Fn = Z [92<Sm - 1) + GOSm]é(U)\m - Mm) + elsm[l - 5<U>\m - Nm)]? (26)
meM’(n)

wheref, < 6, is a nonnegative integer. On the other hand, whgms large, it is less likely
that s, = 0 automatically implies correct decisions on all its linkeitskand we thus stick to
(23), having no PCN to contribute to Fl. Although the thrddbd,’s can be any nonnegative
real numbers, to simplify implementation, we Igts be nonnegative integers such that the FlI

is integer-valued.

B. Flipped-Bit Selection Rule

A simple Fl-based FBS rule is to flip the bits in the FB &t= {n\Fn > Afg}. But the
optimal thresholdAf, is not easy to determine especially for a code with low VN degr

A smaller threshold may cause incorrect flipping decisiorsleva large threshold tends to
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slow down the convergence or even cause decoding failureoagN\nmeets the the flipping
requirement. To overcome this dilemma, we select a relatigh F| threshold and use the
FB setB = {n|Fn > Ag} if it is nonempty. Otherwise3B = {n|U,, = max;c7 U;} where
T £ {n|F, = max; F;}. We summarize below the new FBS rule Akgorithm @ which, for

convenience of reference, is called the M2-FBS rule.

Algorithm 4 Flipped Bit Selection Rule 2 (M2-FBS)
Step 1 Forn=0,1,...,N — 1, computeF,, by (28) or [26).

Step 2 Find B = {n|F, > Ag}. If B # 0, stop; otherwise, proceed iep 3.
Step 3 Update7 and findB = {n|U,, = max Ui}

Note this FBS rule is independent of the FF and can be usednjurction with different
FFs no matter whether the checksum weights are constanttor no

Loop-detection/breaking procedures can be included inF@8 algorithm if necessary. The
loop detection scheme used [8] is an appropriate choice.nvdhieop is detected, we generate

a disturbance on the tentative decoded sequence by swvgtthithe FB set

B = {n|U, = max U,}. (27)

C. Numerical Results

Different combinations of the FBS rule, the FF, and the weigtdating schedule, used lead
to different decoding algorithms. The error-rate perfanoe and decoding speed of various
decoders are presented in this subsection.

1) Abbreviations:For convenience of reference, we adopt a systematic lapstineme similar
to that used in Section IVAB to describe a decoding method.défete a decoder by groups
of capital letters separated by hyphens, specifying reés@de the FBS rule, the FF and the

weight-updating schedule used with the 3-field foffBS rule-FF-weight updating schedule
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TABLE llI: Simulation parameter settings

Algorithm Code 1 Code 2
HGDBF asz =1 as =1/17
AMWBF ap = 0.2 a; = 1.8
IPWBF a1 =02,Ars=1 | o1 =18 Ars= 10
M2-IMWBF a1 =0.2,Af =5 a1 =32, Ap =16
M2-GDBF as=1,Ap =1 as = 1/17, Ap = 10
M1-DWBF-A as =0.7,A=0 as =0.33,A=0
M1-DWBF-B | az =0.35,A =0 as=0.3,A=0
M2-DWBF-A | az =0.58, Ap =1 | a2 =0.33, Ap =4
M2-DWBF-B | a2 =0.35, Af =1 as =0.3,Ap =1

25

That is, the first filed is used to indicate if single (S) or npi& (M) bits are to be flipped
in an iteration and, for the latter case, if the simple FF ba@dél) or the more complicated
Fl-based (M2) FBS rule is adopted. The second field conthi@sbbreviation of the known or
proposed algorithm such as IMWBF, GDBF or DWBF whose FF iddu3ée third field tells
whether a selective (A or B) or the full (F) weight-updatinghedule is used. Since only the
DWBF algorithms need to update checksum weights, the theld fs omitted for non-DWBF
based decoders. Hence, M1-DWBF-A represents the decodeusles the M1-FBS rule, the
DWBF FF, and SWUS-A, and M2-IMWBF(-GDBF) denotes the decdtat uses the M2-FBS
rule and the IMWBF (GDBF) algorithm’s FF. For known constaveight algorithms without
FBS modification and SWUS, we keep conventional abbrewatike AMWBF, IPWBF, and
HGDBF only.

2) Parameter values used:or the decoders based on M2-FBS rule, we use the FI weights
0y = 3, 6, =2, andfy = 1. Other major parameter values for different multi-bit Bga@ithms

are listed in Tablé1ll. The remaining parameters neededhiferPWBF algorithm follow those
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Fig. 6: BER performance of various multi-bit BF (M-BF) dedaogl algorithms as a function of SNR for Code 1.

suggested in_[11], and those associated with the escapoug$s in the HGDBF algorithm are
also optimized. For simplicity, the FF clipping threshaeldn (20) and the threshold used in
(@) in M1-DWBF-A/B algorithms are set to zero.

Note that the parameters associated with a decoder ardatedegi.e., if the optimal value of
a parameter is dependent on other parameters’ values udexygh the correlation may not be
very high. Hence, we try to jointly optimize these parameter minimize the converged error
rate. Furthermore, simulation results indicate that thi#entgd parameter values are insensitive
to SNR.

3) BER and FER performanceig.[6 shows the BER performance of different multi-bit BF
algorithms for Code 1 wheh,.x = 50. The effectiveness of the M2-FBS rule can also be verified
by comparing the required,/N, for BER = 10~°: the M2-IMWBF decoder outperforms the
IPWBF decoder by approximately 1.7 dB and the M2-GDBF atpanihas a 0.4 dB gain over
the HGDBF algorithm. The DWBF algorithms yields better BEBrfprmance even with the
simple M1 rule and, when the M2 rule is used, its performareeines closer (0.4 dB) to that

provided by the NMS algorithm. The convergence behaviorthe$e algorithms are shown in
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Fig. 8: FER convergence performance of multi-bit DWBF (M-B%W) decoding algorithms; Code 1, SNR = 3.25 dB.

Figs.[7 and B. The results show that the M2 rule gives bettéR BErformance and, for both
the DWBF and M2-GDBF algorithms, the convergence rate isravigd as well.
Note that in Figs[1648, loop-detecting/breaking schemes aativated for all but the M2-

DWBF-B algorithm. In general, loops are much less likely twuar in a DWBF decoder than
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Fig. 9: BER performance of various M-BF decoding algorithassa function of SNR for Code 2.

in a static CN weight decoder. When the FWUS or SWUS-B is usedetode Code 2, our
simulations detect no loop for both codes whence there iseaea rfior a loop breaker. This

is because the time-varying checksum weights of the DWBIerdlgn and wider message
magnitude propagation ranges of the FWUS or SWUS-B schdthite made the BF decision
related variablesE,, U,, iu.,, and F,, to have much larger dynamic ranges; see also Elgs. 1 and
5.

The BER (with/max = 20) and frame error rate (FER) convergence performance obwsari
multi-bit BF decoders for Code 2 are respectively preseintdtdgs.[9 and 100. By comparing the
two sets of BER curves, M2-GDBF versus HGDBF and M2-IMWBFsusr AMWBF, we verify
the effectiveness of the new FBS (M2) rule. Although the NWRAIBF algorithm yields the same
converged BER as that of the IPWBF decoder for this code,vieggbetter FER performance
in the first few iterations. We further notice that the M2-DWHA (B) decoder is superior to
the M1-DWBF-A (B) decoder in both BER performance and decgdipeed. The former yields
performance very close to that of the NMS algorithm while idiéer suffers only about 0.1 dB

performance degradation against the NMS decoder at BER=Figs.[9 and_10 also show that
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Fig. 10: FER convergence performance of several M-BF degpédigorithms; Code 2, SNR = 3.4 dB.

the performance gap between the M1/M2-DWBF-A and M1/M2-D’MB decoders is smaller
than that for Code 1. This is due to the high VN/CN degrees adeCa: the high VN degree
increases the probability that a CN is visited by the SWUSH#ilevthe high CN degree helps
spreading the updated weights to more VNs.

We want to remark that a) only the AMWBF and HGDBF decoderdreeéoop-breaker in
decoding Code 2 since for the other decoders, loops areyrdetected and b) although the
M1-FBS rule is simpler, our simulations indicate that the-WRS rule can significantly reduce
the probability of decoding loops when it is used in conjiorctwith the DWBF, GDBF, or

IMWBF algorithms. This is particular useful when using centional FFs to decode low-degree

codes.

D. Complexity Analysis

Besides the syndrome computing, which is the same for atirdkgns, the computational
complexity of a BF decoding algorithm consists mainly ofednparts: i) FF update, ii) flipped

bits selection, and iii) weight/message update. Once newn@Nsages; w,,,(1 — 2s,,) in (3)
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TABLE IV: Average UCN and visited CN numbers
Code 1 (M = 544); SNR = 3.25 dB
_ IPWBF | M2-IMWBF | M2-GDBF M1-DWBF-A M1-DWBF-B M2-DWBF-A M2-DWBF-B
teration 0 MO | M| PY M ML, PY ML, Py M| M8 I NY T om | MY | N
5 91.7 0.36 115.2 | 3.6 x 107° | 386.7 | 3.5 x 107° 1352 | 34.1 506.6 | 17.2
10 78.3 0.52 110.6 |  0.0035 162.8| 0.0014 80.1 | 19.1 4142 | 88
544 544 544 544
15 71.0 0.67 107.7 | 0.0092 132.1| 0.0019 69.0 | 16.5 3381 | 6.3
20 68.6 0.65 96.5 | 0.0099 131.3| 0.0012 66.9 | 15.8 3287 | 59
Code 2 (M = 1023); SNR = 3.4 dB
. IPWBF | M2-IMWBF | M2-GDBF M1-DWBF-A M1-DWBF-B M2-DWBF-A M2-DWBF-B
teration 0 M M MY ML) M) MO | Mo | N M| M, | NS
3 172.1 217.2 326.2 267.3 1023 281.6| 382.4 | 18.3 | 332.4 | 690.6 | 24.6
5 198.3 287.7 351.9 374.9 1023 3185 | 386.9 | 26.1 | 322.7| 700.3 | 27.0
10 329.4 360.2 407.2 588.7 1023 425.8| 415.4 | 46.4 | 436.5| 586.5 | 50.7
15 353.6 378.4 414.6 644.5 1023 438.1| 421.0 | 48.2 | 445.0| 577.0 | 59.5
TABLE V: Computational complexity for various decoding atghms (C1: Code 1, C2: Code 2)
Operation HGDBF IPWBF M2-GDBF/IMWBF M1-DWBF-A/B M2-DWBF-A/B NMS
Integer Additions 0 Ml(l) e 0 e 0
c2: M c2: m{
Real Number Additions 0 0 0 0 0 Nd,
C1 (M2-IMWBF): M (d. — 1) + N
+ PN CLM(d.—1)+ N
Integer Comparisons 0 N 0 0
C1 (M2-GDBF): M(d. — 1) + N c2: MY (d. — 1)+ N
c2: MP(d. —1)+ N
CL M (2d. —3) | CL: M(de — 1) + MY (d. — 2)
_ l CL: M(d. —1) +PY(N 1) +NYd,
Real Nurber Compatisons N | My{(d: = 1) c2: MO (d. — 1) c2: M (2d. —3) | €2 (M + M), o) (2d. - 3) M=)
+N{gd,

or —r,.,(1—2s,,) in 1), are available, the FF update is just adding all retdrCN messages

and—aq |y,| or —y,(1—2u,). There is little difference among the BF decoders in FF caimpu

The only exception is that used by GDBF algorithms, bbth (&) &4) require integer additions

only. iii) is needed for DWBF algorithms but not other BF aligfons which require only a sign
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TABLE VI: Averaged overall complexity ¥ 10%) per frame for achieving FER®~2 (Real: real comparison or addition; Int:

integer comparison or addition)

Code 1

M1-DWBF-A | M1-DWBF-B M2-DWBF-A M2-DWBF-B NMSA
SNR

Imax Real | Imax Real | lmax | Real | Int. | Imax | Real | Int. | Imax | Real

35dB | 132 | 19.1 | 101 | 46.4 | 109 | 41.7 | 51.1| 47 | 64.1 | 544 | 12 | 442

3.625dB| 89 15.3 76 41.7 66 | 36.2 | 496| 35 | 579 | 495 | 10 | 416

3.75dB | 71 12.5 64 38.1 42 | 321 | 455| 28 | 52.8 | 454 | 9 39.2

Code 2

M1-DWBF-A | M1-DWBF-B M2-DWBF-A M2-DWBF-B NMSA
SNR

Imax Real | Imax Real | lmax | Real | Int. | Imax | Real | Int. | Imax | Real

3.4 dB 49 83.5 46 | 1725 | 35 | 176.4| 66.7| 34 | 269.1| 80.3| 22 | 255.9

3.6 dB 11 59.6 8 135.2 8 | 130.7| 504 | 7 | 210.7| 623| 6 | 218.2

3.7 dB 7 53.3 6 123.0 6 | 1154 | 449 | 6 189.3| 55.7| 5 | 206.8

change. Therefore, in the next three subsections, we amigidirst, followed by the discussion
of iii), the extra complexity requirement for DWBF algonitis, and finally compare the combined
computational complexity of ii) and iii). The additional roplexity such as that associated with
a loop-breaking scheme, is addressed at the end of thi®seagiwell. Since most algorithms,
except those using the M2-FBS rule, which need additiorteger operations and memory for
storing the Fls and UCN numbers, require approximately Hraesstorage space, we discuss

only the computational complexity.

1) FBS complexityThe HGDBF decoder needs only real comparisons i (11) in selecting
the flipped bits. For the IPWBF decodef, — 1 real comparisons are required to find the
most unreliable connected VN per UCN and a total]\zﬁfl) integer additions andV integer

comparisons are needed to compute the FS and decide the F(B:33etwhereM1(” is the
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average UCN number in thigh iteration.

For the M1-FBS rule, the complexity &ep 1 is ignored since we us& = 0 and a threshold
comparison needs a sign-bit check only. The average coitplaixStep 2 is PS(ZZ)(N — 1) real
comparisons, Wher@S(lz) is the probability thatStep 2 is activated in théth iteration. For the
M2-FBS rule Algorithm [4)), Step 1 needsi. — 1 real andd. — 1 integer comparisons per CN in
finding \,, and checking ifv, has the most connected UCNs. Each CN has to send an integer-
valued messagé,, 0, or —0,, to one of its connected VNs, implying an integer additioif26)
or (28). Since the former involves both UCNs and PCNs whike Itfiter involves only UCNS,
all M CNs have to perform all the above operations when decodirde @aoin contrast t(Ml(l)
CNs for Code 2. Moreovely integer comparisons are required3tep 2 for deciding the FB
set. The average complexity &ep 3 is approximately equal toPS(QN integer comparisons,
wherePs(Q is the probability thaStep 3 is activated at théth iteration.

2) Weight update complexitydpdating the weights associated with €J\ in the M1-DWBF-
A/B decoders required.— 3 real comparisons for finding the indices associated wittsthallest
and second smallestE,’s, n € N (m). For M2-DWBF-A/B decoders, however, most df,’s
have been found in the FBS step, hence only the second stmatties remain to be found for
computing new weights. A more detailed analysis is giverhim next two paragraphs.

We first consider a low CN degree code such as Code 1. After GNgpate \,,’s and
VNs compute their Fls vid (26), the flipped bits are decided #ipped. The M2-DWBF-A/B
algorithms then invert the associated FF valused 3 of Algorithm [2) and update the CN
weights Step 4 of Algorithm [2). As only a small portion of the visited CNs are connected to
the flipped bits, most visited CNs require only — 2 real comparisons for finding the second
smallest—E£,,. For a visited CN that links to flipped bits, we only need to pame the connected
flipped bits’ E,,’s with the original smallest-£,, to find a new minimum-F,, since only the
flipped bits’ E,,’s are changed between the bit flipping and weight updatirgyaAesult, for a

visited CN linking tot flipped bits, only additionat real comparisons are required for updating
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the smallest-E,, before finding the second smallest,,. If we denote byM\S\l,)U and Né@ the
average numbers of visited CNs and flipped bits at/theteration, respectively, we need, on
the average, at moﬂﬂ\f\l,b(dc—Q) +N,§de real comparisons for updating weights, Whéfégdv
accounts for the sum of all additional) comparisons.

Decoding a high CN degree code requizds— 3 real comparisons for updating the weight of
a visited PCN and.— 2+t for an UCN, as the FI formulé_(25) involves only UCNs. Dendte t
average numbers of visited PCNs and UCNs atthéteration byM\%{J,O andM\Sf,)Uyl. We observe
from simulations that almost all UCNs are visited (iM\S\l,)U,l = Ml(”). Hence, M2-DWBF-A/B
decoders require an average]\d\lf\l/)ulo@dc—?)) and at mole(l) (dc—2)+NélB)dU real comparisons
per iteration for computing new CN weights of visited PCNsl &1CNs, respectively. For both
cases we ignore the complexity of the threshold comparisdd9) sincen = 0.

3) Complexity SummaryTable[IM presents the simulated average numberM{ﬁ, M\%)U
M0 Nia, PS), andPL) at selected iterations for the IPWBF, M2-IMWBF/GDBF, M1-[B&-
A/B, and M2-DWBF-A/B algorithms. Since the simulation résundicate that when decoding
Code 2 with the M1-DWBF-A/B decoder§tep 2 of the M1-FBS rule isneveractivated, we
list the Pég values for Code 1 only. Similarhstep 3 of the M2-FBS rule is needeahly if the
M2-IMWBF algorithm is used to decode Code 1, we thus sped:ityﬁélg) values for this case
only.

Considering both the FBS rules and weight updating, we suimamge computational com-
plexity which includes real/integer additions and comgams per iteration for various BF and
the NMS algorithms in TablE1V. As computing the total LLRs hetNMS algorithm requires
the same efforts as that of computing FF values in BF decpdely the efforts needed for
computing the CN-to-VN and VN-to-CN messages are listechanttble.

Table[V] presents the simulated average complexity of varDWBF and the NMS algorithms
for decoding a frame with a target FER ®6—3 at different SNRs. As an integer (or real)

comparison requires about the same computational contylegi that of an integer (or real)
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addition (hardware implementation of comparison can ewesitmpler than addition). Both are
thus counted equally. We show in this table the average éntegd real operations and the
maximum iteration numbeli {.x) needed.

Tables IV-VI and Figsl =10 provide useful information foudying tradeoffs between perfor-
mance, complexity, and convergence rate when combinirigrdiit FBS rules, FFs and weight-
updating schedules. In particular, Tablg VI shows that wikecoding Code 1, both M1-DWBF-
A and M1-DWBF-B algorithms need less computational comipjeto achieve FER+)~3 than
that needed by the NMS algorithm in higher SNR (say3.625 dB) region. The M2-DWBF-A
algorithm also needs less real operations in comparisdm tvé NMS algorithm. For decoding
Code 2, the M1-DWBF-A, M1-DWBF-B, and M2-DWBF-A algorithnmeed less total (real +
integer) operations to achieve the FER requirement whéedquired iteration numbers are also
comparable to that needed for the NMS algorithm in higher $&tfion. Furthermore, based on
Tabled1V,[V, and Figl. 6, we conclude that the M2-IMWBF and KPBF algorithms require
far less complexity than that of the IPWBF algorithm in deogdCode 1.

Among the the decoding algorithms compared in Table V, tNgBF algorithm uses a simpler
FBS operation but it has to perform a delay-handling progessvery iteration plus an initial
bootstrapping step. These two extra operations neednafdomputing effort in searching for the
corresponding optimal parameter values. They also requiditional storage and computational
complexity. Although the HGDBF algorithm does not have teot sbe FF values, three real
thresholds, one for the multi-bit flipping mode and two foe thscape (loop-breaking) process
are required in its FBS rule, resulting extra off-line séaaod random variable generations. Other
off-line efforts include the searches fay (M2-IMWBF), o, (M1- and M2-DWBF-A/B), and
Af (€ [—dybs,d,00]). As mentioned before, they must be jointly optimized. Fer M2-GDBF
algorithm, only the optimal\r, has to be found.

Our loop-breaking schemé_(27) is simpler than those usedtlgr @ecoding algorithm and

more effective than the methods used by the IPWBF and AMWRBjerahms which remove
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the bit(s) having maximun#;, or E, from B; whenB = (), the decoding process will be forced
to terminate after the removal. Instead of reducjB the escape proceds [27) and that used
by the HGDBF algorithm perturb the tentative decoded secgi¢a break a loop. The latter,

however, has to generate Gaussian random variables.

VI. CONCLUSION

We divide a typical BF LDPC code decoding algorithm into ghreajor components, namely
1) VN decision reliability (FF) computing and the assoaiaN reliability (checksum weight)
update formula; 2) the FBS rule; and 3) the checksum weiglting schedule. These three
components determine the performance and complexity of ad&®eder. We develop novel
FF and FBS rules to improve the BF decoding performance. @rother hand, the checksum
weight update operation is a complexity concern for the DWIEoders, we propose selective
weight-updating schedules to reduce the implementatiomptexity with little performance loss.

Different combinations of FF, checksum weight-updatingtmod and schedule, FBS rule,
result in different decoder structures. We simulate thererate and convergence performance
of various decoders, and the resulting numerical behawonéirm the effectiveness of our new
design proposals. We show that the combinations of the nelti-biuFBS rules with known
BF algorithms achieve significant performance gain espigdiar a high-rate code. Detailed
complexity analysis on various decoder structures is piexvifor complexity and performance
tradeoff studies. We find that, compared with the NMS alfonit the combination of the new
FBS rules with our DWBF algorithms require less complexityachieving a target FER if SNR
is sufficiently high. We also find that the convergence rarescemparable when decoding a

high-rate code.
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