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Abstract

Bit-flipping (BF) decoding of low-density parity-check codes is of low complexity but gives inferior

performance in general. To improve performance and providenew BF decoder options for complexity-

performance tradeoffs, we propose new designs for the flipping function (FF), the flipped bit selection

(FBS) rule and the checksum weight updating schedule. The new FF adjusts the checksum weights

in every iteration while our FBS rules take more informationinto account. These two modifications

represent efforts to track more closely the evolutions of both check and variable nodes’ reliabilities.

Two selective update schedules are proposed to offer more performance and complexity tradeoffs.

The combinations of the new FBS rule and known FFs result in new BF decoders with improved

performance and a modest complexity increase. On the other hand, combining the new FF and FBS rule

gives a new decoder with performance comparable to that of the normalized min-sum algorithm while

if we use a much simpler FBS rule instead, the decoder sufferslittle performance loss with reduced

complexity. We also present a simple decision-theoreticalargument to justify the new checksum weight

formula and a time-expanded factor graph model to explain the proposed selective weight-updating

schedules.

Index Terms

LDPC codes, belief propagation, bit-flipping decoding, flipped bit selection.
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I. INTRODUCTION

Low-density parity-check (LDPC) codes have been shown to asymptotically give near-capacity

performance when the sum-product algorithm (SPA) is used for decoding [1]. Gallager proposed

two alternatives that use only hard-decision bits [2]. These so-called bit-flipping (BF) algorithms

flip one or a group of bits based on the values of the flipping functions (FFs) computed in each

iteration. The FF associated with a variable node (VN) is areliability metric of the corresponding

bit decision and depends on the binary-valued checksums of the VN’s connected check nodes

(CNs). Although BF algorithms are much simpler than the SPA,their performance is far from

optimal. To reduce the performance gap, many variants of Gallager’s BF algorithms have been

proposed. Most of them tried to improve the VN’s reliabilitymetric (the FF) and/or the method

of selecting the flipped bits, achieving different degrees of bit error rate (BER) and convergence

rate performance enhancements at the cost of higher complexity.

The class of weighted bit-flipping (WBF) algorithms [3]-[7]assign proper weights to the binary

checksums. Each weight can be regarded as a reliability metric on the corresponding checksum

and is a function of the associated soft received channel values. Another approach called gradient

descent bit-flipping (GDBF) algorithm was proposed by Wadayamaet al. [9]. Instead of using

a weighted checksum based FF, the GDBF algorithm derives itsFF by computing the gradient

of a nonlinear objective function which is equivalent to thelog-likelihood function of the bit

decisions with checksum constraints. It was shown that the GDBF algorithm outperforms most

known WBF algorithms when the VN degree is small. Sundararajan et al. [17] modified this

FF by introducing a weighting on syndrome and a zero-mean Gaussian perturbation term. The

resulting noisy GDBF (NGDBF) algorithm improves the performance of the GDBF algorithm

which is further enhanced by adding a re-decoding process [18].

For the WBF algorithms, the weights are decided by the soft received channel values and

remain unchanged throughout the decoding process. Since the weights reflect the decoder’s
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belief on the checksums which, in turn, depend on those of theassociated VNs’ FF and bit

decisions, the associated checksum weights should be updated accordingly. In [19], a reliability-

based schedule is used in the initial decoding iteration to forward only reliable VN and CN’s

messages. Nguyen and Vasić [20] employed an extra bit to adaptively represent the reliabilities of

VN and CN messages and developed a class of two-bit BF algorithms along with algorithm(s)-

selection procedures. In this paper, we present dynamic weighted BF (DWBF) algorithms that

assign dynamic checksum weights which are updated according to a nonlinear function of

the associated VNs’ FF values. As we shall show, the nonlinear function has the effects of

quarantining unreliable checksums (which is similar to themethod used in the first decoding

iteration of [19]) while dynamically adjusts the more reliable checksums’ weights. A simple

decision theoretical interpretation is given to explain the effect of the nonlinear action and

justify the threshold selection. We also suggest two selective weight-updating schedules which

offer additional performance-complexity trade-offs. A time-expanded factor graph model is used

to illustrate the weight-updating schedules.

The single-bit BF algorithms flip only the least reliable bitthus result in slow convergence

rates. For this reason, many a multiple-flipped-bit selection rule was suggested [9]–[18]. By

simultaneously flipping the selected bits, a BF decoder can offer rapid convergence but, some-

times, at the expense of performance loss. A bit selection rule may consist of simple threshold

comparisons or include a number of steps involving different metrics. It is usually designed

assuming a specific FF is used and may not be suitable when a different FF or metric is involved.

Moreover, the FF value may not provide sufficient information for making a tentative bit decision,

we propose a new flipped bit selection (FBS) rule that takes into account both the FF value and

other information from related CNs.

FF, checksum weight computing, weight-updating schedules, and FBS rule are major con-

stituent parts of a DWBF decoder. Our proposals on these parts offer a variety of new design

options and tradeoffs. The efficiencies ofusing the proposed schemes jointly or separately with
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existing designsare evaluated by examining the corresponding numerical error rate and conver-

gence behaviors. We show that our single-bit DWBF algorithmprovides significant performance

improvement over the existing single-bit GDBF and WBF algorithms. Our FBS rule works

very well with different FFs and outperforms known FBS rules. Moreover, the selective weight-

updating schedules suffer little performance degradationwhile offer significant complexity re-

duction when the CN and VN degrees are small.

Note that since the checksum weights are crucial parametersof a DWBF decoder’s FF and

their updates depend in turn on the FF values computed at the previous iteration, we henceforth

mean both the FF and the associated weight computing formulawhenever FF is mentioned.

The rest of this paper is organized as follows. In Section II,we define the basic system

parameters and give a brief overview of various BF decoding algorithms, their FFs and FBS

rules. In Section III, we introduce a new FF and its checksum weight-updating formula. A simple

decision theoretical justification is given. We consider single-bit BF decoders and present two

weight-updating schedules as well as their graphic models in Section IV. The performance of the

our single-bit DWBF algorithm and some known single-bit BF algorithms are compared in the

same section. We develop a new multi-bit FBS rule and presentthe error rate and convergence

behaviors of various multi-bit BF decoder structures basedon the new FBS rule in Section V.

These decoders’ complexities are analyzed in details for evaluating various performance and

complexity tradeoffs. Finally, conclusion remarks are drawn in Section VI.

II. BACKGROUND AND RELATED WORKS

A. Notations and the Basic Algorithm

We denote by(N,K)(dv, dc) a regular binary LDPC codeC with VN degreedv and CN

degreedc, i.e., C is the null space of anM × N parity check matrixH = [Hmn] which has

dv 1’s in each column anddc 1’s in each row. Letu be a codeword ofC and assume that

the BPSK modulation is used so that a codewordu = (u0, u1, · · · , uN−1), ui ∈ {0, 1}, is
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mapped into a bipolar sequencex = (x0, x1, · · · , xN−1) = (1−2u0, 1−2u1, · · · , 1−2uN−1) for

transmission. The equivalent baseband transmission channel is a binary-input Gaussian-output

channel characterized by additive zero-mean white Gaussian noise with two-sided power spectral

density ofN0/2 W/Hz. Let y = (y0, y1, · · · , yN−1) be the sequence of soft channel values

obtained at the receiver’s coherent matched filter output. The sequencez = (z0, z1, · · · , zN−1),

where zi ∈ {0, 1}, is obtained by taking hard-decision on each components ofy. Let û =

(û0, û1, · · · , ûN−1) be the tentative decoded binary sequence at the end of a BF decoding iteration.

We compute the syndrome (checksum) vectors = (s0, s1, · · · , sM−1) by s = û ·HT (mod 2).

We further denote thenth VN by vn, the set of indices of its connecting CNs byM(n), and the

set of indices of the VNs checked by themth CN cm by N (m). The indices of CNs inM(n)

are determined by the nonzero elements of thenth column ofH whereas those inN (m) are

by themth row of H.

A generic BF decoding algorithm can be described byAlgorithm 1 below which involves

four important parameters:l, the iteration number;lmax, the maximum iteration number;En, the

FF; andB, the index set of the flipped bits, or the flipped bit (FB) set for short. This algorithm

performs two basic tasks: 1) computingEn’s (Step 2) and 2) generating the FB setB (Step 3).

Most earlier works focused on improving either 1) or 2). An FF, sometimes referred to ascost

function or inversion function[9], is used as a reliability metric on a VN’s tentative decision.

Given the FF values and the FBS rule, we select a set of VNs and flip the corresponding tentative

decisions (bits). Choosing the most unreliable bits or the bits whose FF values exceed a threshold

are the two most popular rules. For the former rule, usually only one bit is flipped if the soft-

valued channel information is employed in the FF, resultingin slow convergence. By contrast,

the latter rule often gives faster convergence rate but possibly at the cost of performance loss.

We briefly review the known FFs and FBS rules in the following paragraphs.
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Algorithm 1 Bit-Flipping Decoding Algorithms
Initialization Set l = 0 and û = z.

Step 1 ∀ m ∈ OM , {0, 1, . . . ,M − 1}, compute

sm =
∑

n∈N (m)

ûnHmn(mod 2). (1)

If s = 0 or l = lmax, stop decoding and output̂u; otherwise,l ← l + 1.

Step 2 ∀ n ∈ ON , {0, 1, . . . , N − 1}, compute the FFEn.

Step 3 Use the FFs obtained inStep 2 to update the flipped bit setB.

Step 4 Flip ûn for all n ∈ B and go toStep 1.

B. Flipping Functions of BF Decoding Algorithms

Gallager proposed that a simple sum of binary checksums be used as the FF [2]

En = −
∑

m∈M(n)

(1− 2sm). (2)

(2) implies that the FF value is inversely proportional to the bit decision reliability as it is an

increasing function of the number of nonzero checksums (i.e., unsatisfied check nodes, UCNs).

By taking into account soft-valued channel information andassigning checksum weights, later

modifications of Gallager’s FF can be described by the following general formula

En = −α1 · φ(ûn, yn)−
∑

m∈M(n)

wmn(1− 2sm), (3)

whereα1 > 0, φ(ûn, yn) is a reliability metric involving channel value and/or bit decision, and,

to be consistent with (2),wmn ≥ 0.

For the WBF algorithm [4],φ(ûn, yn) = 0 andwmn is

wmn = min
n
′∈N (m)

|yn′ |, (4)

The modified WBF (MWBF) algorithm [5] hasφ(ûn, yn) = |yn| while the improved MWBF
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(IMWBF) algorithm [6] uses the sameφ(ûn, yn) but replaces the checksum weight by

wmn = min
n
′∈N (m)\n

|yn′ | (5)

for the message passed fromcm to vn should exclude that originated fromvn. For the reliability

ratio based WBF (RRWBF) algorithm [7],φ(ûn, yn) = 0 and

wmn = 1/w
′

mn =

(

β
|yn|

maxn′∈N (m) |yn′|

)−1

, (6)

whereβ is the normalizing factor to ensure that
∑

n∈N (m) w
′

mn = 1.

The GDBF algorithm of Wadayamaet al. [9] applies the gradient descent method to minimize

E(û) = −
N−1
∑

n=0

yn(1− 2ûn)−
M−1
∑

m=0

(1− 2sm) (7)

with respect to(1− 2ûn) and obtains the FF

En = −yn(1− 2ûn)−
∑

m∈M(n)

(1− 2sm), (8)

which is equivalent to assigningα1 = 1, φ(ûn, yn) = yn(1−2ûn), andwmn = 1 in (3). Recently,

Sundararajanet al.[17] introduced the so-called noisy GDBF (NGDBF) algorithmbased on

En = −yn(1− 2ûn)− w
∑

m∈M(n)

(1− 2sm) + qn, (9)

whereqn’s in (9) are i.i.d. zero-mean Gaussian random perturbationwith a signal-to-noise ratio

(SNR) dependent variance andw is a constant syndrome weight.

For the above two FFs, (8) and (9),φ(ûn, yn) = yn(1 − 2ûn) is equal to|yn| when the bit

decisionûn is the same as theyn-based hard decision,zn; otherwise, its value is the same as

−|yn|. This is consistent with the intuition thatûn = zn implies thatûn is likely to be correct and

since−En is a VN reliability metric, a positiveφ(ûn, yn) helps increasing−En and preventing

the ûn from being flipped. In contrast,φ(ûn, yn) is always positive (|yn|) in MWBF algorithms,

which means that the MWBF algorithms tend to trustûn in spite of other evidence.
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C. Flipped Bit Selection Rules

For the algorithms mentioned in the Section II-B, only the bit(s) related to the VN having the

largest FF valueEn is (are) flipped in each iteration, i.e., the FB set is

B = {n|n = argmax
i

Ei}. (10)

As mentioned before,|B| = 1 and the corresponding convergence is often very slow ifEn has

a soft-valued information term.

Flipping several bits in each iteration simultaneously canimprove the convergence speed. The

simplest FBS rule for multi-bit BF decoding uses the FB set

B = {n|En ≥ ∆}, (11)

where the threshold∆ can be a constant or be adaptive. The optimal adaptive threshold was

derived by Gallager [2], assuming that no cycle appears in the code graph. Since practical finite-

length LDPC codes usually have cycles and the optimal thresholds can only be found through

time-consuming simulations, two ad-hoc methods which automatically adjust∆ were suggested

in [12] and [13]. In the adaptive threshold BF (ATBF) algorithm [12], the initial∆ is found

by simulation and subsequent thresholds are a monotonically non-increasing function of the

decoding iterations. The adaptive MWBF (AMWBF) algorithm [13] adjusts the threshold by

∆ = E∗ − |E∗|

[

1−
wH(s)

M

]

, (12)

whereE∗ = maxnEn andwH(s) is the Hamming weight of the syndrome vectors.

Sometimes, a tentative decoded vectorû may reappear several times during the decoding

process and form a decodingloop. This may be caused, for example, by the event that an even

number of bits associated with a CN are flipped, leading to an unchanged checksum and then

oscillating bit decisions. To eliminate the occurrence of loops, the AMWBF algorithm includes

the loop detection scheme of [8] in its FBS rule so that if a loop is detected, the most reliable

bit in B is removed. The parallel weighted BF (PWBF) algorithm [10] tries to reduce the loop
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occurrence probability by having every UCN (sm = 1) send a constantflip signal (FS) to its

least reliable linked VN (based on the FF of the IMWBF algorithm) and flips the bits in

B = {n|Fn ≥ ∆FS}, (13)

where∆FS is a constant optimized by simulations,

Fn =
∑

m∈M(n)

qmnsm, (14)

andqmn is given by

qmn =











1, n = arg max
n
′∈N (m)

En
′

0, otherwise

. (15)

Since the above remedy can only eliminate loops with a certain probability, the improved PWBF

(IPWBF) algorithm employs the loop detection scheme of [8] and when a loop is detected, it

removes the bit(s) receiving the smallestFn from B. This algorithm also adds a bootstrapping

step and a delay-handling procedure to further improve the bit selection accuracy but achieves

limited improvement for the codes with high column degrees such as Euclidean geometry (EG)

LDPC codes.

A hybrid GDBF (HGDBF) algorithm was proposed in [9]. In this algorithm, single- and

multi-bit BF decoding is performed alternatively and anescape processis used for preventing

the decoding process from being trapped in local minima/loops. Two extensions of the HGDBF

algorithm were considered in [14] and [15] which require less complexity at the expense of

inferior performance. A multi-bit GDBF algorithm with a probabilistic FBS rule was also

suggested in [16] for hard-decision decoding. With the FF (9) and FBS rule of [15], the multi-

bit NGDBF (M-NGDBF) algorithm [17] achieves the same BER performance as that of the

HGDBF decoder with much less decoding iterations. However,[18] found that new trapping set

conditions may exist in the M-NGDBF decoder but can be eliminated by re-decoding with a

different perturbation sequence.
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III. CHECKSUM RELIABILITY AND DYNAMIC WEIGHTS

A. BF Decoding and Checksum Weights

In line with the belief propagation (BP) based SPA,En is similar to the total log-likelihood

ratio (LLR) of vn and −wmn(1 − 2sm) in (3) is analogous to the belief sent tovn by cm.

Unlike SPA, however, for (4)–(6), the latter remains unchanged unless an̂un, n ∈ N (m)

has been flipped, which leads to just a sign change of the belief. The general FF format, (3),

includes two major terms that represent the decoder’s confidence on a VN’s tentative decision

based respectively on its channel value (or the correlationof the channel value and tentative

decision) and the reliabilities of the related checksums. Since the channel values remain fixed, the

checksums should be given adjusted weights at least in the later iterations when the reliabilities

of checksums change.

Although the flipping operation changes the reliability metric of ûn and the related checksums,

all the FFs used in known BF decoders use staticwmn thereby can neither reflect the dynamic of

VNs’ message passing nor offer self-adjustment capabilityin accurately updating bit reliability

information. We present dynamic weight generation method in this section.

B. Flipping Function and Decision Reliability

The review on BF algorithms in Section II indicates clearly that the FF value is a proper

explicit or implicit reliability metric of a VN’s decision.As a checksum in turn is a function of

the associated VNs’ decisions, the corresponding checksumweights should be updated according

to the current FF values. A reasonable candidate checksum weight is therefore given by

r(l)mn = min
n
′∈N (m)\n

−E(l)
n′ , (16)

whereE(l)
n is the FF value ofvn in the lth iteration. However, (16) may result in negative weights

which is inconsistent with (2) and (3); both are increasing functions of the nonzero checksum
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number. To have proper positive checksum weights based onEn, we consider the likelihood

ratio

Λ(En) =
f(En|H0)

f(En|H1)
, (17)

whereH0 andH1 denote the hypotheses thatûn = un andûn 6= un, respectively. The conditional

probability density function (pdf),f(En|Hi), is the pdf of thoseEn’s associated with a correct

or incorrect tentative bit decision at a given iteration. Itis to be interpreted as a conditional pdf

averaged over all VNs. The basic decision theory tells us that the optimal decision rule is given

by

Λ(En)
H0

≷
H1

π1(C01 − C11)

π0(C10 − C00)
(18)

where πi = Pr(Hi is true) and Cij is the “cost” for acceptingHi while Hj is true. Unlike

the conventional Bayesian minimizing error probability setting, both the costs and the a priori

probabilities are difficult to assess. For a BF decoder, a tentative decision, except for the initial

iteration, is determined by the previous decision and the flipping decision. On the other hand,

both conditional pdfs in (17) depend on the definition ofEn and the FBS rule. They vary

from one iteration to another. Although the dependence betweenûn andEn is implicit as other

parameters are also intertwined and the conditional pdfs are thus difficult if not impossible to

derive analytically, they can be estimated numerically by simulations. Assuming that the all-

zero codeword is transmitted in every frame, i.e.,ûn = 0 is the correct decision, we depict

in Fig. 1 the evolutions of both simulated conditional pdfs with all related factors considered

and averaged–for the IMWBF algorithm withEn being the updated FF values at, say thelth

iteration, after the tentative decision at the(l− 1)th iterationûn was made. This figure indicates

that En does reflect the correctness of the corresponding tentativedecision in that a smaller

(negative) FF value is more likely to be associated with a correct decision. The probability of

correct inference on̂un based onEn depends on the separation (distance) between two pdfs.

The figure, however, demonstrates that the separation does not improve as the decoding iteration
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Fig. 1: Conditional FF distributions for the IMWBF algorithm in decoding MacKay (816,272)(4,6) LDPC code (816.1A4.845

[21]), SNR (Eb/N0)= 4 dB.

increases. We propose a new FF in the next subsection and showin Section IV that this new

FF is capable of overcoming the shortcoming of the IMWBF algorithm.

C. A New Flipping Function

Althoughπi andCij are difficult to assess but the optimal Bayesian test, (18), can be simplified

to a threshold test based onEn. Given a suitable thresholdη, Fig. 1 indicates that if−En > η,

the decoder is more likely to have made a correct bit decisionûn whose reliability is proportional

to −En; otherwise, the decision is probably incorrect.

The foregoing discussion and the aim to have a weight-updating rule reflecting a more accurate

relation among bit decision, FF, and checksums, as elaborated in more details below, suggest

that we modify (16) as

r(l)mn = Ω

(

min
n
′∈N (m)\n

−E(l)
n′

)

= min
n
′∈N (m)\n

Ω(−E(l)
n′ ), (19)
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where

Ω(x) =











x− η, x ≥ η

0, x < η
. (20)

The clipping operator,Ω(x), besides ensuring only positive weights are used, can be interpreted

as the decision for a CN to send no message to other linked VNs when the associated FF

values fail to exceed the threshold, which bears the flavor of“stop-and-go” algorithms that pass

a CN-to-VN message only if it is deemed reliable. Note that a checksumsm is determined

by dc bit decisions, and ifsm = 0 and there is only one unreliable decisionûn (-En < η)

among VNs inN (m), the checksum is likely to be valid and the decision is in factcorrect.

Hencecm should modifyEn to increaseΛ(En) but not pass the message−r(l)mn′(1 − 2sm) to

other connected (reliable) VNs (n′ ∈ N (m) \ n). In doing so,En has a local (amongN (m))

maximum FF decrease and the probability of reversing the bitdecision is reduced. On the other

hand, if sm = 1, ûn is likely to be only local incorrect decision, the above rulewill result in a

local maximum FF increase and thus a higher probability of being flipped. When more than one

−En, n ∈ N (m) are clipped, no message is sent fromcm as the checksum itself is unreliable.

The temporary suspension of some message propagation induced byΩ(x) also has the desired

effect of containing the damage an incorrect message may have done and preventing the decoder

from being trapped in a local minimum. The above discourse confirms that (20) does fulfill the

goal that the weight updating should have FFs, checksums, and bit decisions join a cohesive

effort in improving the performance of a BF decoder.

The FF defined by (3) using the recursive weight-updating rule (19) tends to make thecheck

reliability part of the FF,−
∑

m∈M(n) rmn(1 − 2sm), starts to grow exponentially after most

of the correctable bits were flipped and the number of UCNs decreases to just a few. It is

conceivable that these reliability estimates should be given different weight with more remote

estimates having less weights. This can be done by having thecheck reliabilities multiplied by

a forgetting factor,0 < α2 < 1, as can be found in many recursive adaptive filters [22]. We
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are unable to determine the optimal clipping thresholdη since a closed-form expressions for

Pr(En|Hi) are practically unobtainable for reasons mentioned before. Some simulation efforts,

however, indicate thatη is close to 0 for several BF decoders, independent of SNR and the

iteration of interest. With the above ideas in mind, we consider a new FF based on (19) and

(20) usingη = 0:

E(l)
n = −yn(1− 2ûn)− α2

∑

m∈M(n)

r(l−1)
mn (1− 2sm), (21)

where 0 < α2 < 1 is a positive damping (forgetting) constant to be optimizedby numerical

experiments.

IV. NEW SINGLE-BIT BF DECODING ALGORITHMS

We define a (checksum) weight-updating schedule as a rule that selects a subsetG of OM ,

which represents the set of CN indices, and updates only those r
(l)
mn, m ∈ G. Such a rule

determines the message-passing paths in the decoding process (see Fig. 2 below) hence is

called a schedule. When the updated CN index setG = OM , we call the schedule as the

full weight-updating schedule(FWUS). Alternate schedules withG 6= OM provide trade-offs

between computational complexity and error-rate performance. In this section, we introduce a

class ofsingle-bit dynamic weighted BFdecoding methods based on (19), (21), and different

weight-updating schedules.

A. Single-Bit DWBF Decoding and Weight-Updating Schedules

Combining (19) and (21) with the consideration of the choiceof a weight-updating schedule,

we obtain the class of DWBF algorithms or, for simplicity,Algorithm 2.
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Algorithm 2 DWBF Decoding Algorithm

Initialization Set l = 0, û = z, andG = B = ∅. Initialize r
(l)
mn by (5) for all n ∈ N (m), m ∈

OM . SetE(l)
n = −yn(1− 2ûn) for all n ∈ ON .

Step 1 Computesm for all m ∈ OM . If s = 0 or l = lmax, stop decoding and outputû; otherwise,

l ← l + 1.

Step 2 ∀ n ∈ ON , computeE(l)
n by (21).

Step 3 UpdateB and∀n ∈ B, flip ûn andE(l)
n ← −E

(l)
n .

Step 4 UpdateG. Then, updater(l)mn by (19) ∀ n ∈ N (m), m ∈ G and setr(l)mn ← r
(l−1)
mn

∀ n ∈ N (m), m ∈ OM\G and go toStep 1.

Algorithm 2 describes a general class of DWBF algorithms. For hard-decision decoding,

−yn(1 − 2ûn) in (21) is replaced by−(1 − 2zn)(1 − 2ûn) and r
(l)
mn is initialized as1. The FB

setB in Step 3 is determined by the FBS rule used, it can be (10),Algorithm 3 or 4 presented

in Section V. When (10) is used,Algorithm 2 is a single-bit DWBF algorithm and becomes

a multi-bit DWBF algorithm ifAlgorithm 3 or 4 is used as the FBS rule. In this section, we

consider only the FBS rule (10), which implies that only one bit is flipped (i.e.,|B| = 1) at each

iteration unless it is used for hard-decision decoding. Hence the resulting decoder is referred to

as the single-bit dynamic weighted BF (S-DWBF) decoder.

As most FF values will change because of the recursive natureof (19) and (21) we may need

to perform the FWUS inStep 4. This is one of the prices we have to pay when the dynamic

weights instead of the conventional constant weights are assigned to the checksums. We call

the FWUS-based single-bit decoding algorithm as the S-DWBF-F algorithm for simplicity. To

lessen the computing load of this algorithm, we reduce the size of G by prioritizing the CNs

and update only those with a higher priority.

We first notice that, to ensure that the newest updated information be broadcasted, the weights

of the flipped bits’ linked checksums should have the highestupdating priority. Furthermore,
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(a) Selective weight-updating schedule A.

(b) Selective weight-updating schedule B.

Fig. 2: The TEFGs for two different selective weight-updating schedules.

for those VNs whose FF values change from one side of the clipping thresholdη of (20) to the

other side and undergo areliability inversion, their related checksum weights should be renewed

as well. With these considerations, theselective weight-updating schedule A(SWUS-A) updates

only those checksums (CNs) whose indices lie in

G(l)A , {m|m ∈ M(n), n ∈ B}

∪{m|m ∈M(n), (−E(l)
n − η)(−E(l−1)

n − η) < 0, n = 0, 1, . . . , N − 1}. (22)

The time-expanded factor graph (TEFG) shown in Fig. 2(a) is asimple example illustrating

how SWUS-A behaves, assuming that the only VN which generates G(l)A = {1, 2} is v4. We
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TABLE I: Complexity of weight-updating schedules

SWUS-A SWUS-B FWUS

Number of Visited CNs dv min{dv(dv − 1)(dc − 1) + 2dv ,M} M

Number of Visited VNs min{dv(dc − 1) + 1, N} min{dv(dv − 1)(dc − 1)2 + 2[dv(dc − 1) + 1], N} N

denote this VN by●, the CNsvisited (selected) by the schedule by■, and the VNs which

receive new CN messages by�.

When SWUS-A is used in the S-DWBF algorithm, the resulting algorithm is called the S-

DWBF-A algorithm which at thelth iteration updates the CN index setG with G(l)A .

Since only a few VNs received updated messages from the selected CNs, someEn’s are likely

to remain constant for many iterations (e.g.,v3) or even during the whole decoding process. To

spread the updated messages to more VNs, we expand the updated CN set to include bothG(l)A

and

G(l)B , {m|m ∈M(n), n ∈ U (l)
A } (23)

whereU (l)
A , {n|n ∈ N (m), m ∈ G(l−1)

A } and call this updating schedule as theselective

weight-updating schedule B(SWUS-B). In other words, the updated messages received by the

VNs connected to the CNs inG(l)A will also be forwarded to their connecting CNs in the following

iteration, i.e.,G ← G(l)A ∪G
(l)
B . Fig. 2(b) illustrates the expanded updating range by indicating the

extra visited CNs (those whose indices blong toG(l)B ) with the symbol�. Similarly, when this

weight-updating schedule is used, we call the resulting algorithm as the S-DWBF-B algorithm.

Table I lists the average number of visited CNs (to update checksum weights) and VNs

(to compute FF) per iteration per flipped bit or FF inversion for the different weight updating

schedules. As expected, the SWUS-A/B need much less computational complexity and this

reduction is more impressive whendc and dv are small. Note that for the expanded schedule

SWUS-B, the VNs inU (l)
A may be linked to a common set of CNs andG(l)A ∩G

(l)
B can be nonempty
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if the code graph has short cycles. As a result, the practicalaverage numbers of the visited CNs

and VNs for SWUS-B is much less than those shown in Table I which assumes a cycle-free

code. However, it can be shown that when the code girth is larger than 8 (10), the actual average

visited CN (VN) number is equal to that of a cycle-free code.

B. Performance of S-DWBF Decoding Algorithms

We apply the known single-bit BF algorithms and S-DWBF-A/B/F algorithms to decode two

regular LDPC codes and present their performance in Figs. 3 and 4. The first code, MacKay’s

(816, 272)(4, 6) rate-0.333 LDPC code (816.1A4.845 [21]), is a typical low-rate, low-degree

Gallager code with no special structure. In contrast, the second code, the(1023, 781)(32, 32) rate-

0.763 EG-LDPC code, is a high-rate, high-degree code whose performance has been evaluated

in several WBF-related works [6], [8], [10], and [11]. For convenience, we refer to the above

low- and high-rate codes as Code 1 and 2, respectively. It hasbeen shown by simulations

[3] that BF decoding is very effective in decoding (high-rate, high-degree) EG-LDPC codes.

It would be interesting to examine the BF algorithms in decoding low-rate, low-degree codes.

The performance of the normalized min-sum (NMS) algorithm [23] is also given for reference

purpose.

Fig. 3 shows the BER performance of Code 1 withlmax = 150. For the S-DWBF-A, S-

DWBF-B, and S-DWBF-F decoders, the numerically-optimizedα2 values are 0.68, 0.44, and

0.35 whereas for the IMWBF decoder, we foundα1 = 0.2. Our extensive simulation concluded

that the optimal reliability thresholdη in (20) is close to0, whenceη = 0 is used for all DWBF

algorithms. At BER=10−5, we observe that the S-DWBF-B and S-DWBF-F algorithms have 2.5

dB and 2.6 dB gains against the RRWBF algorithm; the simple S-DWBF-A algorithm achieves a

much smaller 0.7 dB gain as it limit its weight update to a verylimited range. The performance

of Code 2 withlmax = 50 is shown in Fig. 4. Unlike Code 1, Code 2 has a much higherdv, and

the check reliability part of the GDBF algorithm’s FF,−
∑

m∈M(n)(1−2sm), thus dominates the
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Fig. 3: BER performance of several single-bit BF (S-BF) decoders as a function of SNR (Eb/N0) for Code 1.
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Fig. 4: BER performance of several S-BF decoder as a functionof SNR for Code 2.

FF value after a few iterations and its performance is similar to that of Gallager’s BF algorithm,

especially when SNR is high. To improve its performance we insert a damping factorα3 so that

(8) becomes

En = −yn(1− 2ûn)− α3

∑

m∈M(n)

(1− 2sm). (24)
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TABLE II: Average number of visited CNs in S-DWBF algorithms

Code 1 (M = 544); SNR = 4 dB

Iteration S-DWBF-A S-DWBF-B

10 15.7 137.2

30 10.1 88.7

50 8.3 76.4

Code 2 (M = 1023); SNR = 3.4 dB

Iteration S-DWBF-A S-DWBF-B

5 105.3 1023

10 56.3 1023

20 38.6 1023

This modification multiplies the second summation of (8) byα3, which is analogous to the

Lagrange multiplier in (the checksum) constrained optimization and whenα3 = 1, (24) degen-

erates to (8). The optimalα3 for (24) is close to1/17 for Code 2. Referring to (3), the IMWBF

algorithm usesα1 = 1.8 and the S-DWBF-A (B) decoder usesα2 = 0.33 (0.12) in (21). Due

to the high VN/CN degrees of Code 2, almost all CNs are updatedby S-DWBF-B algorithm

after two or three iterations, yielding performance similar to that of the S-DWBF-F decoder. The

same figure shows that the S-DWBF-A decoder provides about 0.25 dB performance gain with

respect to the IMWBF decoder at BER= 10−5 and the S-DWBF-B algorithm offers additional

0.1 dB gain.

Table II presents the average number of CNs visited (in the associated ETFGs) by different

schedules for Code 1 and Code 2 at selected iterations. Although the S-DWBF-F algorithm has

the best BER performance among the single-bit algorithms, it requires higher computational

complexity. By contrast, the S-DWBF-A/B algorithms provide trade-offs between complexity

and performance. Furthermore, for both selective weight-updating schedules, the number of
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Fig. 5: Conditional FF distributions for the S-DWBF-F algorithm in decoding Code 1, SNR = 4 dB.

visited CNs decreases when one proceeds with more iterations as the numbers of flipped bits

and reliability-inverted VNs decreases. We plot the FF value distributions for the S-DWBF-F

algorithm in Fig. 5. In contrast to Fig. 1, where the separation between the two conditional pdfs

exhibits little variation, our DWBF algorithm is able to pull f(En|H0) away from f(En|H1)

as the decoding process evolves. Since the reliability of a decoder’s decisions based onEn

depends on the separation (distance) between the two pdfs, the improved separation is certainly

welcome. As mentioned before, we useη = 0 in (20) for all S-DWBF algorithms. Although the

optimal clipping threshold is unknown. Fig. 5 does convinceus that0 is a valid and convenient

choice and the FF with the proposed dynamic checksum weighting does give a much better VN

reliability reference.

V. NEW FLIPPED-BIT SELECTION METHODS AND MULTI -BIT BF DECODING ALGORITHMS

Multi-bit BF decoding algorithms were developed to accelerate the convergence performance.

Most of these algorithms use the simple threshold comparison FBS rule (11) discussed in

Section II [9], [12], [13], [15]–[18]. Even if the threshold∆ has been optimized by numerical
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experiments, we find that it is necessary to add the optionB = {n|n = argmaxi Ei} in case

B = ∅ whose occurrence probability during a decoding process is nonzero. In fact, simulation

results indicate that, depending on SNR and the decoding/schedule algorithms used it can be

higher than 0.2 for Code 1. When this option is included in FB decision, the resulting FBS rule

is calledAlgorithm 3 or the M1-FBS rule.

Algorithm 3 Flipped Bit Selection Rule 1 (M1-FBS)
Step 1 FindB = {n|En ≥ ∆}. If B 6= ∅, stop; otherwise, proceed toStep 2.

Step 2 FindB = {n|n = argmaxi Ei}

Recall that the PWBF algorithm uses the FF of the IMWBF algorithm as the VN reliability

metric with the FB set (13) determined by the FS countFn of (14). That is, a CN sends a flip

signal to its most unreliable linked VN only and the VNs whichreceive sufficient number of

reliability warnings (flip signals) shall be flipped. It turns out that, with this extra filtering of

VN-to-CN messages (En’s) and selective CN-to-VN flip signal passing, the PWBF algorithm

is able to outperform the IMWBF decoder in both convergence rate and error rate [10]. This

performance gain motivates us to ponder if a more elaboratedflipping decision strategy that uses

more information can bring about further performance improvement for the BF decoders using

either the proposed FF (21) or other FFs discussed in SectionII.

A. Flipping Intensity

Let Un ,
∑

m∈M(n) sm, µm , maxn∈N (m) Un, λm , argmaxn∈N (m)En, andM′(n) =

{m|m ∈M(n), λm = n}. With these notations, we define theflipping intensity(FI) of (received

by) vn as

F̃n =
∑

m∈M′(n)

θ0smδ(Uλm
− µm) + θ1sm[1− δ(Uλm

− µm)], (25)
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whereθ0 > θ1 ≥ 0 andδ(x) is the Kronecker delta function. For simplicity, bothθ0 andθ1 are

confined to be integers so that FI is integer-valued. The above definition implicitly implies that

F̃n = 0 if M′(n) = ∅ and only UCNs have a say in deciding FI. It also implies that a VN has a

nonzero FI only if it has the largest FF value amongN (m) and if it is connected to the largest

number of UCNs among its peers inN (m), the associated FI should be even higher (θ0 > θ1).

In both cases, a UCNcm will send a non-negative message to the VN with the highest FFvalue

in the setN (m). However, ifcm is a passed CN (PCN) (sm = 0) anddc is small, it often implies

that the tentative decisions of its linked VNs are all correct. Hence if the flipped bits are to be

selected by checking whether the associated FI is greater than a threshold,vλm
should have a

smaller probability of being chosen. This can be done by having the PCN send a drag message

θ2(sm − 1). But if there is doubt thatcm is connected to even incorrect bit decisions, the PCN

has better not sending such a message. We decide that this is likely to be the case ifUλm
6= µm

for this inequality means that at least one VN inN (m) has more connected UCNs thanvλm
.

With UCNs and PCNs contributing opposite signals, we modify(25) for all n, 0 ≤ n < N as

F̃n =
∑

m∈M′(n)

[θ2(sm − 1) + θ0sm]δ(Uλm
− µm) + θ1sm[1− δ(Uλm

− µm)], (26)

whereθ2 ≤ θ0 is a nonnegative integer. On the other hand, whendc is large, it is less likely

that sm = 0 automatically implies correct decisions on all its linked bits and we thus stick to

(25), having no PCN to contribute to FI. Although the thresholds θi’s can be any nonnegative

real numbers, to simplify implementation, we letθi’s be nonnegative integers such that the FI

is integer-valued.

B. Flipped-Bit Selection Rule

A simple FI-based FBS rule is to flip the bits in the FB setB = {n|F̃n ≥ ∆FI}. But the

optimal threshold∆FI is not easy to determine especially for a code with low VN degree.

A smaller threshold may cause incorrect flipping decisions while a large threshold tends to
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slow down the convergence or even cause decoding failure as no VN meets the the flipping

requirement. To overcome this dilemma, we select a relativehigh FI threshold and use the

FB setB = {n|F̃n ≥ ∆FI} if it is nonempty. Otherwise,B = {n|Un = maxi∈T Ui} where

T , {n|F̃n = maxj F̃j}. We summarize below the new FBS rule asAlgorithm 4 which, for

convenience of reference, is called the M2-FBS rule.

Algorithm 4 Flipped Bit Selection Rule 2 (M2-FBS)

Step 1 For n = 0, 1, . . . , N − 1, computeF̃n by (25) or (26).

Step 2 FindB = {n|F̃n ≥ ∆FI}. If B 6= ∅, stop; otherwise, proceed toStep 3.

Step 3 UpdateT and findB = {n|Un = max
i∈T

Ui}.

Note this FBS rule is independent of the FF and can be used in conjunction with different

FFs no matter whether the checksum weights are constant or not.

Loop-detection/breaking procedures can be included in ourFBS algorithm if necessary. The

loop detection scheme used [8] is an appropriate choice. When a loop is detected, we generate

a disturbance on the tentative decoded sequence by switching to the FB set

B = {n|Un = max
i

Ui}. (27)

C. Numerical Results

Different combinations of the FBS rule, the FF, and the weight-updating schedule, used lead

to different decoding algorithms. The error-rate performance and decoding speed of various

decoders are presented in this subsection.

1) Abbreviations:For convenience of reference, we adopt a systematic labeling scheme similar

to that used in Section IV-B to describe a decoding method. Wedenote a decoder by groups

of capital letters separated by hyphens, specifying respectively the FBS rule, the FF and the

weight-updating schedule used with the 3-field form,FBS rule-FF-weight updating schedule.
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TABLE III: Simulation parameter settings

Algorithm Code 1 Code 2

HGDBF α3 = 1 α3 = 1/17

AMWBF α1 = 0.2 α1 = 1.8

IPWBF α1 = 0.2,∆FS = 1 α1 = 1.8,∆FS = 10

M2-IMWBF α1 = 0.2,∆FI = 5 α1 = 3.2,∆FI = 16

M2-GDBF α3 = 1,∆FI = 1 α3 = 1/17,∆FI = 10

M1-DWBF-A α2 = 0.7,∆ = 0 α2 = 0.33,∆ = 0

M1-DWBF-B α2 = 0.35,∆ = 0 α2 = 0.3,∆ = 0

M2-DWBF-A α2 = 0.58,∆FI = 1 α2 = 0.33,∆FI = 4

M2-DWBF-B α2 = 0.35,∆FI = 1 α2 = 0.3,∆FI = 1

That is, the first filed is used to indicate if single (S) or multiple (M) bits are to be flipped

in an iteration and, for the latter case, if the simple FF based (M1) or the more complicated

FI-based (M2) FBS rule is adopted. The second field contains the abbreviation of the known or

proposed algorithm such as IMWBF, GDBF or DWBF whose FF is used. The third field tells

whether a selective (A or B) or the full (F) weight-updating schedule is used. Since only the

DWBF algorithms need to update checksum weights, the third field is omitted for non-DWBF

based decoders. Hence, M1-DWBF-A represents the decoder that uses the M1-FBS rule, the

DWBF FF, and SWUS-A, and M2-IMWBF(-GDBF) denotes the decoder that uses the M2-FBS

rule and the IMWBF (GDBF) algorithm’s FF. For known constantweight algorithms without

FBS modification and SWUS, we keep conventional abbreviations like AMWBF, IPWBF, and

HGDBF only.

2) Parameter values used:For the decoders based on M2-FBS rule, we use the FI weights

θ0 = 3, θ1 = 2, andθ2 = 1. Other major parameter values for different multi-bit BF algorithms

are listed in Table III. The remaining parameters needed forthe IPWBF algorithm follow those
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Fig. 6: BER performance of various multi-bit BF (M-BF) decoding algorithms as a function of SNR for Code 1.

suggested in [11], and those associated with the escaping process in the HGDBF algorithm are

also optimized. For simplicity, the FF clipping thresholdη in (20) and the threshold∆ used in

(11) in M1-DWBF-A/B algorithms are set to zero.

Note that the parameters associated with a decoder are correlated, i.e., if the optimal value of

a parameter is dependent on other parameters’ values used, although the correlation may not be

very high. Hence, we try to jointly optimize these parameters to minimize the converged error

rate. Furthermore, simulation results indicate that the optimal parameter values are insensitive

to SNR.

3) BER and FER performance:Fig. 6 shows the BER performance of different multi-bit BF

algorithms for Code 1 whenlmax = 50. The effectiveness of the M2-FBS rule can also be verified

by comparing the requiredEb/N0 for BER = 10−5: the M2-IMWBF decoder outperforms the

IPWBF decoder by approximately 1.7 dB and the M2-GDBF algorithm has a 0.4 dB gain over

the HGDBF algorithm. The DWBF algorithms yields better BER performance even with the

simple M1 rule and, when the M2 rule is used, its performance becomes closer (0.4 dB) to that

provided by the NMS algorithm. The convergence behaviors ofthese algorithms are shown in
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Fig. 7: Frame error rate (FER) convergence performance of various M-BF decoding algorithms using conventional or M2-FBS

rule; Code 1, SNR = 5 dB.
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Fig. 8: FER convergence performance of multi-bit DWBF (M-DWBF) decoding algorithms; Code 1, SNR = 3.25 dB.

Figs. 7 and 8. The results show that the M2 rule gives better BER performance and, for both

the DWBF and M2-GDBF algorithms, the convergence rate is improved as well.

Note that in Figs. 6-8, loop-detecting/breaking schemes are activated for all but the M2-

DWBF-B algorithm. In general, loops are much less likely to occur in a DWBF decoder than
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Fig. 9: BER performance of various M-BF decoding algorithmsas a function of SNR for Code 2.

in a static CN weight decoder. When the FWUS or SWUS-B is used to decode Code 2, our

simulations detect no loop for both codes whence there is no need for a loop breaker. This

is because the time-varying checksum weights of the DWBF algorithm and wider message

magnitude propagation ranges of the FWUS or SWUS-B schedulehave made the BF decision

related variables,En, Un, µm, andF̃n, to have much larger dynamic ranges; see also Figs. 1 and

5.

The BER (with lmax = 20) and frame error rate (FER) convergence performance of various

multi-bit BF decoders for Code 2 are respectively presentedin Figs. 9 and 10. By comparing the

two sets of BER curves, M2-GDBF versus HGDBF and M2-IMWBF versus AMWBF, we verify

the effectiveness of the new FBS (M2) rule. Although the M2-IMWBF algorithm yields the same

converged BER as that of the IPWBF decoder for this code, it gives better FER performance

in the first few iterations. We further notice that the M2-DWBF-A (B) decoder is superior to

the M1-DWBF-A (B) decoder in both BER performance and decoding speed. The former yields

performance very close to that of the NMS algorithm while thelatter suffers only about 0.1 dB

performance degradation against the NMS decoder at BER=10−5. Figs. 9 and 10 also show that
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Fig. 10: FER convergence performance of several M-BF decoding algorithms; Code 2, SNR = 3.4 dB.

the performance gap between the M1/M2-DWBF-A and M1/M2-DWBF-B decoders is smaller

than that for Code 1. This is due to the high VN/CN degrees of Code 2: the high VN degree

increases the probability that a CN is visited by the SWUS-A while the high CN degree helps

spreading the updated weights to more VNs.

We want to remark that a) only the AMWBF and HGDBF decoders need a loop-breaker in

decoding Code 2 since for the other decoders, loops are rarely detected and b) although the

M1-FBS rule is simpler, our simulations indicate that the M2-FBS rule can significantly reduce

the probability of decoding loops when it is used in conjunction with the DWBF, GDBF, or

IMWBF algorithms. This is particular useful when using conventional FFs to decode low-degree

codes.

D. Complexity Analysis

Besides the syndrome computing, which is the same for all algorithms, the computational

complexity of a BF decoding algorithm consists mainly of three parts: i) FF update, ii) flipped

bits selection, and iii) weight/message update. Once new CNmessages,−wmn(1− 2sm) in (3)
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TABLE IV: Average UCN and visited CN numbers

Code 1 (M = 544); SNR = 3.25 dB

Iteration (l)
IPWBF M2-IMWBF M2-GDBF M1-DWBF-A M1-DWBF-B M2-DWBF-A M2-DWBF-B

M
(l)
1 M P

(l)
S3 M M

(l)
WU P

(l)
S2 M

(l)
WU P

(l)
S2 M M

(l)
WU N

(l)
FB M M

(l)
WU N

(l)
FB

5 91.7

544

0.36

544

115.2 3.6× 10−5 386.7 3.5× 10−6

544

135.2 34.1

544

506.6 17.2

10 78.3 0.52 110.6 0.0035 162.8 0.0014 80.1 19.1 414.2 8.8

15 71.0 0.67 107.7 0.0092 132.1 0.0019 69.0 16.5 338.1 6.3

20 68.6 0.65 96.5 0.0099 131.3 0.0012 66.9 15.8 328.7 5.9

Code 2 (M = 1023); SNR = 3.4 dB

Iteration (l)
IPWBF M2-IMWBF M2-GDBF M1-DWBF-A M1-DWBF-B M2-DWBF-A M2-DWBF-B

M
(l)
1 M

(l)
1 M

(l)
1 M

(l)
WU M

(l)
WU M

(l)
1 M

(l)
WU,0 N

(l)
FB M

(l)
1 M

(l)
WU,0 N

(l)
FB

3 172.1 217.2 326.2 267.3 1023 281.6 382.4 18.3 332.4 690.6 24.6

5 198.3 287.7 351.9 374.9 1023 318.5 386.9 26.1 322.7 700.3 27.0

10 329.4 360.2 407.2 588.7 1023 425.8 415.4 46.4 436.5 586.5 50.7

15 353.6 378.4 414.6 644.5 1023 438.1 421.0 48.2 445.0 577.0 59.5

TABLE V: Computational complexity for various decoding algorithms (C1: Code 1, C2: Code 2)

Operation HGDBF IPWBF M2-GDBF/IMWBF M1-DWBF-A/B M2-DWBF-A/B NMS

Integer Additions 0 M
(l)
1

C1: M
0

C1: M
0

C2: M (l)
1 C2: M (l)

1

Real Number Additions 0 0 0 0 0 Ndv

Integer Comparisons 0 N

C1 (M2-IMWBF): M(dc − 1) +N

0 0
+ P

(l)
S3 N C1: M(dc − 1) +N

C1 (M2-GDBF):M(dc − 1) +N C2: M (l)
1 (dc − 1) +N

C2: M (l)
1 (dc − 1) +N

Real Number Comparisons N M
(l)
1 (dc − 1)

C1: M (l)
WU(2dc − 3) C1: M(dc − 1) +M

(l)
WU(dc − 2)

M(2dc − 3)
C1: M(dc − 1) +P

(l)
S2 (N − 1) +N

(l)
FB dv

C2: M (l)
1 (dc − 1) C2: M (l)

WU(2dc − 3) C2: (M (l)
1 +M

(l)
WU,0)(2dc − 3)

+N
(l)
FB dv

or −rmn(1− 2sm) in (21), are available, the FF update is just adding all returned CN messages

and−α1|yn| or−yn(1−2ûn). There is little difference among the BF decoders in FF computing.

The only exception is that used by GDBF algorithms, both (8) and (24) require integer additions

only. iii) is needed for DWBF algorithms but not other BF algorithms which require only a sign
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TABLE VI: Averaged overall complexity (×103) per frame for achieving FER=10−3 (Real: real comparison or addition; Int:

integer comparison or addition)

Code 1

SNR
M1-DWBF-A M1-DWBF-B M2-DWBF-A M2-DWBF-B NMSA

lmax Real lmax Real lmax Real Int. lmax Real Int. lmax Real

3.5 dB 132 19.1 101 46.4 109 41.7 51.1 47 64.1 54.4 12 44.2

3.625 dB 89 15.3 76 41.7 66 36.2 49.6 35 57.9 49.5 10 41.6

3.75 dB 71 12.5 64 38.1 42 32.1 45.5 28 52.8 45.4 9 39.2

Code 2

SNR
M1-DWBF-A M1-DWBF-B M2-DWBF-A M2-DWBF-B NMSA

lmax Real lmax Real lmax Real Int. lmax Real Int. lmax Real

3.4 dB 49 83.5 46 172.5 35 176.4 66.7 34 269.1 80.3 22 255.9

3.6 dB 11 59.6 8 135.2 8 130.7 50.4 7 210.7 62.3 6 218.2

3.7 dB 7 53.3 6 123.0 6 115.4 44.9 6 189.3 55.7 5 206.8

change. Therefore, in the next three subsections, we consider ii) first, followed by the discussion

of iii), the extra complexity requirement for DWBF algorithms, and finally compare the combined

computational complexity of ii) and iii). The additional complexity such as that associated with

a loop-breaking scheme, is addressed at the end of this section as well. Since most algorithms,

except those using the M2-FBS rule, which need additional integer operations and memory for

storing the FIs and UCN numbers, require approximately the same storage space, we discuss

only the computational complexity.

1) FBS complexity:The HGDBF decoder needs onlyN real comparisons in (11) in selecting

the flipped bits. For the IPWBF decoder,dc − 1 real comparisons are required to find the

most unreliable connected VN per UCN and a total ofM
(l)
1 integer additions andN integer

comparisons are needed to compute the FS and decide the FB set(13), whereM (l)
1 is the
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average UCN number in thelth iteration.

For the M1-FBS rule, the complexity ofStep 1 is ignored since we use∆ = 0 and a threshold

comparison needs a sign-bit check only. The average complexity of Step 2 is P
(l)
S2 (N − 1) real

comparisons, whereP (l)
S2 is the probability thatStep 2 is activated in thelth iteration. For the

M2-FBS rule (Algorithm 4), Step 1 needsdc−1 real anddc−1 integer comparisons per CN in

finding λm and checking ifvλm
has the most connected UCNs. Each CN has to send an integer-

valued message,θ0, θ1, or−θ2, to one of its connected VNs, implying an integer addition in(26)

or (25). Since the former involves both UCNs and PCNs while the latter involves only UCNs,

all M CNs have to perform all the above operations when decoding Code 1 in contrast toM (l)
1

CNs for Code 2. Moreover,N integer comparisons are required inStep 2 for deciding the FB

set. The average complexity ofStep 3 is approximately equal toP (l)
S3N integer comparisons,

whereP (l)
S3 is the probability thatStep 3 is activated at thelth iteration.

2) Weight update complexity:Updating the weights associated with CNcm in the M1-DWBF-

A/B decoders require2dc−3 real comparisons for finding the indices associated with thesmallest

and second smallest−En’s, n ∈ N (m). For M2-DWBF-A/B decoders, however, most ofλm’s

have been found in the FBS step, hence only the second smallest ones remain to be found for

computing new weights. A more detailed analysis is given in the next two paragraphs.

We first consider a low CN degree code such as Code 1. After CNs computeλm’s and

VNs compute their FIs via (26), the flipped bits are decided and flipped. The M2-DWBF-A/B

algorithms then invert the associated FF values (Step 3 of Algorithm 2) and update the CN

weights (Step 4 of Algorithm 2). As only a small portion of the visited CNs are connected to

the flipped bits, most visited CNs require onlydc − 2 real comparisons for finding the second

smallest−En. For a visited CN that links to flipped bits, we only need to compare the connected

flipped bits’ En’s with the original smallest−En to find a new minimum−En since only the

flipped bits’En’s are changed between the bit flipping and weight updating. As a result, for a

visited CN linking tot flipped bits, only additionalt real comparisons are required for updating
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the smallest−En before finding the second smallest−En. If we denote byM (l)
WU andN

(l)
FB the

average numbers of visited CNs and flipped bits at thelth iteration, respectively, we need, on

the average, at mostM (l)
WU(dc−2)+N

(l)
FBdv real comparisons for updating weights, whereN

(l)
FBdv

accounts for the sum of all additional (t) comparisons.

Decoding a high CN degree code requires2dc−3 real comparisons for updating the weight of

a visited PCN anddc−2+t for an UCN, as the FI formula (25) involves only UCNs. Denote the

average numbers of visited PCNs and UCNs at thelth iteration byM (l)
WU,0 andM (l)

WU,1. We observe

from simulations that almost all UCNs are visited (i.e.,M
(l)
WU,1 = M

(l)
1 ). Hence, M2-DWBF-A/B

decoders require an average ofM
(l)
WU,0(2dc−3) and at mostM (l)

1 (dc−2)+N
(l)
FBdv real comparisons

per iteration for computing new CN weights of visited PCNs and UCNs, respectively. For both

cases we ignore the complexity of the threshold comparison in (19) sinceη = 0.

3) Complexity Summary:Table IV presents the simulated average numbers ofM
(l)
1 , M (l)

WU,

M
(l)
WU,0, N

(l)
FB, P (l)

S2 , andP (l)
S3 at selected iterations for the IPWBF, M2-IMWBF/GDBF, M1-DWBF-

A/B, and M2-DWBF-A/B algorithms. Since the simulation results indicate that when decoding

Code 2 with the M1-DWBF-A/B decoders,Step 2 of the M1-FBS rule isneveractivated, we

list theP
(l)
S2 values for Code 1 only. Similarly,Step 3 of the M2-FBS rule is neededonly if the

M2-IMWBF algorithm is used to decode Code 1, we thus specify the P
(l)
S3 values for this case

only.

Considering both the FBS rules and weight updating, we summarize the computational com-

plexity which includes real/integer additions and comparisons per iteration for various BF and

the NMS algorithms in Table V. As computing the total LLRs in the NMS algorithm requires

the same efforts as that of computing FF values in BF decoders, only the efforts needed for

computing the CN-to-VN and VN-to-CN messages are listed in the table.

Table VI presents the simulated average complexity of various DWBF and the NMS algorithms

for decoding a frame with a target FER of10−3 at different SNRs. As an integer (or real)

comparison requires about the same computational complexity as that of an integer (or real)
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addition (hardware implementation of comparison can even be simpler than addition). Both are

thus counted equally. We show in this table the average integer and real operations and the

maximum iteration number (lmax) needed.

Tables IV-VI and Figs. 6–10 provide useful information for studying tradeoffs between perfor-

mance, complexity, and convergence rate when combining different FBS rules, FFs and weight-

updating schedules. In particular, Table VI shows that whendecoding Code 1, both M1-DWBF-

A and M1-DWBF-B algorithms need less computational complexity to achieve FER=10−3 than

that needed by the NMS algorithm in higher SNR (say,> 3.625 dB) region. The M2-DWBF-A

algorithm also needs less real operations in comparison with the NMS algorithm. For decoding

Code 2, the M1-DWBF-A, M1-DWBF-B, and M2-DWBF-A algorithmsneed less total (real +

integer) operations to achieve the FER requirement while the required iteration numbers are also

comparable to that needed for the NMS algorithm in higher SNRregion. Furthermore, based on

Tables IV, V, and Fig. 6, we conclude that the M2-IMWBF and M2-GDBF algorithms require

far less complexity than that of the IPWBF algorithm in decoding Code 1.

Among the the decoding algorithms compared in Table V, the IPWBF algorithm uses a simpler

FBS operation but it has to perform a delay-handling processin every iteration plus an initial

bootstrapping step. These two extra operations need off-line computing effort in searching for the

corresponding optimal parameter values. They also requireadditional storage and computational

complexity. Although the HGDBF algorithm does not have to sort the FF values, three real

thresholds, one for the multi-bit flipping mode and two for the escape (loop-breaking) process

are required in its FBS rule, resulting extra off-line search and random variable generations. Other

off-line efforts include the searches forα1 (M2-IMWBF), α2 (M1- and M2-DWBF-A/B), and

∆FI (∈ [−dvθ2, dvθ0]). As mentioned before, they must be jointly optimized. For the M2-GDBF

algorithm, only the optimal∆FI has to be found.

Our loop-breaking scheme (27) is simpler than those used by other decoding algorithm and

more effective than the methods used by the IPWBF and AMWBF algorithms which remove
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the bit(s) having maximumFn or En from B; whenB = ∅, the decoding process will be forced

to terminate after the removal. Instead of reducing|B|, the escape process (27) and that used

by the HGDBF algorithm perturb the tentative decoded sequence to break a loop. The latter,

however, has to generate Gaussian random variables.

VI. CONCLUSION

We divide a typical BF LDPC code decoding algorithm into three major components, namely

1) VN decision reliability (FF) computing and the associated CN reliability (checksum weight)

update formula; 2) the FBS rule; and 3) the checksum weight-updating schedule. These three

components determine the performance and complexity of a BFdecoder. We develop novel

FF and FBS rules to improve the BF decoding performance. On the other hand, the checksum

weight update operation is a complexity concern for the DWBFdecoders, we propose selective

weight-updating schedules to reduce the implementation complexity with little performance loss.

Different combinations of FF, checksum weight-updating method and schedule, FBS rule,

result in different decoder structures. We simulate the error rate and convergence performance

of various decoders, and the resulting numerical behaviorsconfirm the effectiveness of our new

design proposals. We show that the combinations of the new multi-bit FBS rules with known

BF algorithms achieve significant performance gain especially for a high-rate code. Detailed

complexity analysis on various decoder structures is provided for complexity and performance

tradeoff studies. We find that, compared with the NMS algorithm, the combination of the new

FBS rules with our DWBF algorithms require less complexity in achieving a target FER if SNR

is sufficiently high. We also find that the convergence rates are comparable when decoding a

high-rate code.
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