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Abstract

In a diffusion-based molecular communication network, transmitters and receivers com-

municate by using signalling molecules (or ligands) in a fluid medium. This paper assumes

that the transmitter uses different chemical reactions to generate different emission patterns

of signalling molecules to represent different transmission symbols, and the receiver consists

of receptors. When the signalling molecules arrive at the receiver, they may react with the

receptors to form ligand-receptor complexes. Our goal is to study the demodulation in this

setup assuming that the transmitter and receiver are synchronised. We derive an optimal

demodulator using the continuous history of the number of complexes at the receiver as the

input to the demodulator. We do that by first deriving a communication model which in-

cludes the chemical reactions in the transmitter, diffusion in the transmission medium and

the ligand-receptor process in the receiver. This model, which takes the form of a continuous-

time Markov process, captures the noise in the receiver signal due to the stochastic nature of

chemical reactions and diffusion. We then adopt a maximum a posteriori framework and use

Bayesian filtering to derive the optimal demodulator. We use numerical examples to illustrate

the properties of this optimal demodulator.

Keywords: Molecular communication networks; modulation; demodulation; maximum a posteri-

ori; optimal detection; stochastic models; Bayesian filtering; molecular receivers.
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1 Introduction

Molecular communication is a promising approach to realise communications among nano-scale

devices [1, 2, 3, 4]. There are many possible applications with these networks of nano-devices, for

example, in-body sensor networks for health monitoring and therapy [5, 3]. This paper considers

diffusion-based molecular communication networks.

In a diffusion-based molecular communication network, transmitters and receivers communicate

by using signalling molecules or ligands. The transmitter uses different time-varying functions

of concentration of signalling molecules (or emission patterns) to represent different transmission

symbols. The signalling molecules diffuse freely in the medium. When signalling molecules reach

the receiver, they react with chemical species in the receiver to produce output molecules. The

counts of output molecules over time is the receiver output signal which the receiver uses to decode

the transmitted symbols.

Two components in diffusion-based molecular communication system are modulation and de-

modulation. A number of different modulation schemes have been considered in the literature.

For example, [6, 7] consider Concentration Shift Keying (CSK) where different concentrations of

signalling molecules are used by the transmitter to represent different transmission symbols. Other

modulation techniques that have been proposed include Molecule Shift Keying (MSK) [8, 9], Pulse

Position Modulation (PPM) [10], Amplitude Shift Keying (ASK)[11], Frequency Shift Keying (FSK)

[12], and token communication [13]. This paper assumes that the transmitter uses different chem-

ical reactions to generate the emission patterns of different transmission symbols. The motivation

to use this type of modulation mechanism is that chemical reactions are a natural way to produce

signalling molecules, e.g. the papers [14, 15] study a number of molecular circuits (which are sets

of chemical reactions) that can produce oscillating signals, and the paper [16] discusses a number

of signalling mechanisms in living cells.

We assume the receiver consists of receptors. When the signalling molecules (ligands) reach

the receiver, they can react with the receptors to form ligand-receptor complexes (which are the

output molecules in this paper). We consider the problem of using the continuous-time history of the

number of complexes for demodulation assuming that the transmitter and receiver are synchronised.

The ligand-receptor complex signal is a stochastic process with three sources of noise because the

chemical reactions at the transmitter, the diffusion of signalling molecules and the ligand-receptor

binding process are all stochastic. We derive a continuous-time Markov process (CTMP) which

models the chemical reactions at the transmitter, the diffusion in the medium and the ligand-
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receptor binding process. By using this model and the theory of Bayesian filtering, we derive the

maximum a posteriori (MAP) demodulator using the continuous-time history of the number of

complexes as the input.

This paper makes two key contributions: (1) We propose to use a CTMP to model a molecular

communication network with chemical reactions at the transmitter, a diffusive propagation prop-

agation medium and receptors at the receiver. The CTMP captures all three sources of noise in

the communication network. (2) We derive a closed-form expression for the MAP demodulation

filter using the proposed CTMP. The closed-form expression gives insight into the important ele-

ments needed for optimal demodulation, these are the timings at which the receptor bindings occur,

the number of unbound receptors and the mean concentration of signalling molecules around the

receptors.

The rest of the paper is organised as follows. Section 2 discusses related work. Section 3 presents

the system assumptions, as well as a mathematical model from the transmitter to the ligand-receptor

complex signal based on CTMP. We derive the MAP demodulator in Section 4 and illustrate its

numerical properties in Section 5. Finally, Section 6 concludes the paper.

2 Related work

There is a growing interest to understand molecular communication from the communication engi-

neering point of view. For recent surveys of the field, see [1, 2, 3, 4, 17]. We divide the discussion

under these headings: transmitters, receivers, models and others.

Transmitters. A number of different types of transmission signals have been considered in the

molecular communication literature. The papers [18, 7] assume that the transmitter releases the

signalling molecules in a burst which can be modelled as either an impulse or a pulse with a finite

duration. A recent work in [19] assumes that the transmitter releases the molecules according to a

Poisson process. In this paper, we instead assume that the transmitter uses different sets of chemical

reactions to generate different transmission symbols and we use CTMP to model these transmission

symbols. Since a Poisson process can also be modelled by a CTMP, the transmission process in this

paper is more general than that of [19]. Our CTMP model can also deal with an impulsive input

by using an appropriate initial condition for the CTMP. The use of CTMP as an end-to-end model

— which includes the transmitter, the medium and the receiver — does not appear to have been

used before.
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Receivers. Demodulation methods for diffusion-based molecular communication have been

studied in [20, 21]. Both papers also use the MAP framework with discrete-time samples of the

number of output molecules as the input to the demodulator. Instead, in this paper, we consider

demodulation using continuous-time history of the number of complexes.

The demodulation from ligand-receptor signal has also been considered in [18]. The key differ-

ence is that [18] uses a linear approximation of the ligand-receptor process while we use a non-linear

reaction rate.

The capacity of molecular communications based on ligand-receptor binding has been studied

in [22, 23] assuming discrete samples of the number of complexes are available. A recent work [24]

considers the capacity of such systems in the continuous-time limit. Instead of focusing on the

capacity, our work focuses on demodulation.

Receiver design is an important topic in molecular communication and has been studied in many

papers, some examples are [25, 20, 26, 21, 27]. These papers either use one sample or a number of

discrete samples on the count of a specific molecule to compute the likelihood of observing a certain

input symbols. This paper takes a different approach and uses continuous-time signals.

Another approach of receiver design for molecular communication is to derive molecular circuits

that can be used for decoding. An attempt is made in [12] to design a molecular circuit that can

decode frequency-modulated signals. However, the work does not take diffusion and reaction noise

into consideration. A recent work in [28] analyses end-to-end molecular communication biological

circuits from linear time-invariant system point of view. The work in [29] compares the information

theoretic capacity of a number of different types of linear molecular circuits. This paper differs from

the previous work in that it uses a non-linear ligand-receptor binding model.

The noise property of ligand-receptor for molecular communication has been characterised in

[30]. The case for non-linear ligand-receptor binding does not appear to have an analytical solution

and [30] derives an approximate characterisation using a linear reaction rate assuming that the

number of signalling molecules around the receptor is large. This paper uses a non-linear ligand-

receptor binding model and no approximation is used in solving the filtering problem.

Models. This paper uses the Reaction Diffusion Master Equation (RDME) [31] framework to

model the reactions and diffusion in the molecular communication networks. RDME assumes that

time is continuous while the diffusion medium is discretised into voxels. This results in a CTMP

with finite number of (discrete) states. RDME has been used to model stochastic dynamics of cells

in the biology literature [32]. An attraction of RDME is that it has the Markov property which

means that one can leverage the rich theory behind Markov process.
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The author of this paper has previously used an extension of the RDME model, called the

RDME with exogenous input (RDMEX) model, to study molecular communication networks in

[33, 34, 35, 36]. The RDMEX assumes that the times at which the transmitter emits signalling

molecules are deterministic. This results in a stochastic process which is piecewise Markov or the

Markov property only holds in between two consecutive emissions by the transmitter. In this paper,

we assume the transmitter uses chemical reactions to generate the signalling molecules. Therefore,

the emission timings are not deterministic but are governed by a stochastic process.

In this paper, we assume that the propagation medium is discretised in the voxels. An alternative

modelling paradigm that has been used in a number of molecular communication network papers

[7, 18, 19] is that the transmitter or receiver has a non-zero spatial dimension (commonly modelled

by a sphere) while the propagation medium is assumed to be continuous. (Note that though [19]

does not explicitly state the dimension of the receiver, one can infer from the fact that the receiver

must have a non-zero dimension because it has a non-zero probability of receiving the signalling

molecules.) We believe the technique in this paper can be adapted to this alternative modelling

paradigm and we do not expect this alternative modelling paradigm will change the results in this

paper; we will explain this in Section 4.4.2.

There is a rich literature in the modelling of biological systems discussing the difference between:

(1) The particle approach which has a continuous state space because the state of a particle is its

position; and (2) The mesoscopic approach (the approach in this paper) which discretises the

medium into discrete voxels and consider the number of molecules in the voxels as the state. The

first approach is more accurate but the computation burden can be high [37], while the second

approach is accurate for appropriate discretisation [38, 31]. There are also hybrid approaches too.

An overview of various modelling and simulation approaches can be found in [37].

Others: The results of this paper may also be of interest to biologists who are interested to

understand how living cells can distinguish between different concentration levels [39, 40]. The

result of this paper can be viewed as a generalisation of [39] which studies how cells can distinguish

between two constant levels of ligand concentration.

3 End-to-end communication models

This paper considers diffusion-based molecular communication with one transmitter and one receiver

in a fluid medium. Figure 1 gives an overview of the setup considered in this paper. The transmitter

uses different chemical reactions to generate the emission patterns of different transmission symbols.
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The transmitter acts as the source and emitter of signalling molecules. The signalling molecules

diffuses in the fluid medium. The front-end of the receiver consists of a ligand-receptor binding

process and the back-end consists of the demodulator with the number of complexes as its input.

In this section, we first describe the system assumptions in Section 3.1. We then present, in

Section 3.2, an end-to-end model which includes the transmitter, the transmission medium and the

ligand-receptor binding process in the receiver, see the dashed box in Figure 1. The end-to-end

model is a CTMP which includes chemical reactions in the transmitter, diffusion in the medium

and the ligand-receptor binding process in the receiver.

3.1 Model assumptions

We assume that the medium (or space) is discretised into voxels while time is continuous. This

modelling framework results in a RDME [31, 41, 42], which is a CTMP commonly used to model

systems with both diffusion and reactions. In addition, we assume the communication uses only

one type of signalling molecule (or ligand) denoted by S. We divide the description of our model

into three parts: transmission medium, transmitter and receiver. We begin with the transmission

medium. Table 1 summaries the frequently used notation and chemical symbols.

3.1.1 Transmission medium

We model the transmission medium as a three dimensional (3-D) space and partition the space into

cubic voxels of volume W 3. Figure 2 shows an example of a medium which has a dimension of 4

voxels along both the x and y-directions, and 1 voxel in the z-direction. (Note that Figure 2 should

be viewed as a projection onto the x´ y plane.) In general, we assume the medium to have Nx, Ny

and Nz voxels in the x, y and z directions where Nx, Ny and Nz are positive integers. In Figure 2,

Nx “ Ny “ 4 and Nz “ 1. We also use Nv “ NxNyNz to denote the total number of voxels.

We refer to a voxel by a triple px, y, zq where x, y and z are integers or by a single index

ξ P r1, Nvs. Figure 2 shows the triples for some of the voxels. The single index ξ is calculated from

the triple px, y, zq by using ξpx, y, zq “ x`Nxpy ´ 1q `NxNypz ´ 1q. The single indices for voxels

are shown in the top right-hand corner of the voxels in Figure 2.

Diffusion is modelled by molecules moving from one voxel to a neighbouring voxel. For examples,

in Figure 2, molecules can diffuse from Voxel 1 to Voxels 2 or 5, from Voxel 2 to Voxels 1, 3 and

6, and so on. The diffusion of molecules between neighbouring voxels is indicated by the two-way

arrows in Figure 2.
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Symbol Meaning

W Dimension of one side of a voxel

D Diffusion constant

d Diffusion rate between neighbouring voxels

Nv Total number of voxels

M Total number of receptors

λ̃ Reaction rate constant for the binding reaction

λ λ “ λ̃
W 3

µ Reaction rate constant for the unbinding reaction

s A transmission symbol

bptq Number of complexes at time t

niptq Number of signalling molecules in voxel i at time t

Nptq Equation (4). A vector containing the number of signalling molecules in each voxel, the

counts of intermediate chemical species in the transmitter and the cumulative count of

the number of molecules that have left the system

σsptq The mean number of signalling molecules in the receiver voxel at time t if the trans-

mitter sends symbol s

Uptq The cumulative number of times the receptors have switched from the unbound to

bound state at time t

E An unbound receptor

S A signalling molecule

C A complex

Table 1: Notation and chemical symbols
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We assume that the signalling molecule S is the only diffusible chemical species in our model and

the diffusion coefficient for S is D. This means the signalling molecules diffuse from one voxel to a

neighbouring voxel at a mean rate of d where d “ D
W 2 . In other words, within an infinitesimal time

∆t, the probability that a signalling molecule diffuses to a neighbouring voxel is d ∆t. Note that

the expression for d can be derived from spatially discretising the diffusion equation into regular

cubic voxels of volume W 3, see [41, p.341] or [43, Section 3].

The dashed lines in Figure 2 indicate the boundary of our transmission medium. Many different

boundary conditions are used by engineers and physicists to model what happens when a molecule

reaches the boundary of a medium. Two typical boundary conditions are absorbing and reflecting

boundaries [41]. An absorbing boundary means that a molecule can leave the transmission medium

and once the molecule has left, it will not return to the medium. For example, in Figure 2, we

allow molecules to leave the medium via one surface of Voxel 16 as indicated by the one-way arrow.

Mathematically, this is modelled by a rate of leaving the medium, similar to that of modelling

the diffusion between the voxels. A reflecting boundary means that a molecule cannot leave the

medium, i.e. a molecule hitting a reflecting boundary will stay in the voxel. Our model can capture

these boundary conditions.

It has been shown in [38, 31] that in order for RDME to produce physically meaningful results,

the voxel dimension W cannot be too small and in order for RDME to reduce the discretisation

error, W cannot be too large. In this paper, we assume that W comes from a valid range. The choice

of W is beyond the scope of the paper and the reader can refer to [38, 31] for further discussion.

For simplicity, we assume that the medium is homogeneous with a constant diffusion coefficient

D. It is straightforward to extend the framework to cover inhomogeneous medium [35]. It is also

possible to use non-cubic voxels, see [44, 45].

3.1.2 Transmitter

We assume the transmitter occupies one voxel. However, it is straightforward to generalise to the

case where a transmitter occupies multiple voxels. We limit our consideration to one symbol interval

without inter-symbol interference (ISI) at this moment. We will discuss the multiple symbol interval

case with ISI in Section 4.5.

We assume that the transmitter can send K different symbols s “ 0, 1, .., K ´ 1 where each

symbol s is characterised by an emission pattern usptq. The role of emission pattern in molecular

communication is the same as that of transmitted signal in electromagnetic communication. If a

transmitter uses a deterministic emission pattern usptq to represent symbol s, it means the trans-
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mitter emits usptq signalling molecules into the transmitter voxel at time t. We use an example to

illustrate the meaning of emission pattern. Consider an emission pattern u1ptq for Symbol 1 where

u1ptq “ δt,1.2` δt,5.6`2δt,8.1 where δi,j denotes the Kronecker delta, which means δi,j “ 1 if and only

if i “ j. The emission pattern u1ptq means that, for Symbol 1, the transmitter emits one signalling

molecule at times 1.2 and 5.6, two signalling molecules at time 8.1 and does not emit any molecules

at any other times.

In this paper, we assume that the emission pattern for each symbol is produced by a set of

chemical reactions located in the transmitter voxel. Given K symbols, the transmitter uses K

different reactions to generate these symbols, see Figure 1. As an example, a class of chemical

reactions inside living cells [46] is

RNA
κ
ÝÑ RNA` A (1)

where ribonucleic acid (RNA, which is a molecule commonly found in living cells) produces the

chemical species A. This class of chemical reactions can be modelled by a Poisson process where

molecules of A are produced at a mean rate of κ [47]. Note that the emission patterns produced

by chemical reactions are not deterministic, but stochastic. The mean emission pattern of this

chemical reaction is Eruptqs “ κ.

Following on from the above example, one can realise Amplitude Shift Keying (ASK) in molec-

ular communication by using different chemical reactions that can produce signalling molecules at

different mean rates. For example, if there are four different reactions that can produce signalling

molecules at four different mean rates of κ0, κ1, κ2 and κ3, then one can use these four different

reactions to produce 4 different symbols. Note that it is possible for the four chemical reactions to

produce the same emission pattern (or realisation), though with different probabilities.

A standard result in physical chemistry shows that the dynamics of a set of chemical reactions

can be modelled by a CTMP [48]. Therefore, we will model the transmitter by a CTMP. Note

that, in this paper, we will not specify the sets of chemical reactions used by the transmitter except

for simulation because the MAP demodulator does not explicitly depend on the sets of chemical

reactions that the transmitter uses.

3.1.3 Receiver

We assume the receiver occupies one voxel and we use R to denote the index of the voxel at which

the receiver is located. In Figure 2, we assume the receiver is at Voxel 7 (light grey) and hence

R “ 7 for this example. In addition, we assume that the transmitter and receiver voxels are distinct.
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We assume that the receiver has M non-interacting receptors and we use E as the chemical

name for an unbound receptor. These receptors are fixed in space and do not diffuse, and they

are only found in the receiver voxel. Furthermore, these receptors are assumed to be uniformly

distributed in the receiver voxel.

The receptor E can bind to a signalling molecule S to form a ligand-receptor complex (or complex

for short) C, which is a molecule formed by combining E and S. This is known as ligand-receptor

binding in molecular biology literature [49]. The binding reaction can be written as the chemical

equation:

S` E
λ̃
ÝÑ C (2)

where λ̃ is the reaction rate constant. Since the receptors are only found in the receiver voxel, the

binding reaction occurs in a volume of W 3, which is the volume of a voxel. The rate at which the

complexes C is formed is given by the product of λ
W 3 , the number of signalling molecules in the

receiver voxel and the number of unbound receptors1. We define λ “ λ̃
W 3 and will use λ in the

CTMP. Note that this is equivalent to ligand-receptor binding model used in [30, Section V-B].

A ligand-receptor complex C can dissociate into an unbound receptor E and a signalling molecule

S. This can be represented by the chemical equation

C
µ
ÝÑ E` S (3)

where µ is the reaction rate constant. The rate at which the complexes are dissociating is given by

the product of µ and the number of complexes2.

Since a receptor can either be in an unbound state E or in a complex C, we have the following

conservation relation: the number of unbound receptors plus the number of complexes is equal to

the total number of receptors M .

1 This footnote explains how λ
W 3 comes about. Consider a chemical reaction where reactants S and E react to

form product C. We assume the reactions are taking place within a volume of W 3. Let cS, cE and cC be, respectively,

the concentration of S, E and C in the volume. The law of mass action says that dcC
dt “ λ̃ cE cS. In the case of the

CTMP or RDME in this paper, we want to keep track of the number of molecules in a volume (the voxel) instead.

Let nS, nE and nC be, respectively, the number of S, E and C molecules in the volume. Since concentration and

molecule counts are related by cCW
3 “ nC etc, we will, in a mathematically loose way, write dnC

dt “ λ̃
W 3 nS nE.

Since nC is a discrete quantity, the derivative dnC

dt is not defined but we can interpret it as the production rate of

molecules C. This explains how to convert the law of mass action, which is in terms of concentration, to the rate

law used in RDME which is in terms molecular counts. This conversion is also discussed in [50, 43].
2The law of mass action for the dissociation reaction is dcC

dt “ ´µ cC where cC is the concentration of the

complexes. We can use the same argument in Footnote 1 to show that the dissociation rate of C is µ nC where nC

is the number of complexes. In particular, note that no scaling by volume W 3 of the voxel is required.

10



3.2 General end-to-end model

In order to derive the MAP demodulator, we need an end-to-end model which includes the trans-

mitter, the medium and the ligand-binding process, see Figure 1. Since chemical reactions (which

includes the chemical reactions in the transmitter as well as the ligand-receptor binding process in

the receiver) and diffusion can be modelled by CTMP, it is possible to use a CTMP as an end-to-

end model. In this section we present a general end-to-end model that includes the transmitter,

diffusion and the ligand-receptor process in the receiver. An excellent tutorial introduction to the

modelling of chemical reactions and diffusion by using CTMP can be found in [43]. We have also

included an example in Appendix C.

The aim of the end-to-end model is to determine the properties of the receiver signal from the

transmitter signal. The receiver signal in our case is the number of complexes over time. Since the

transmitter uses K symbols, the transmitter signal is generated by one of the K sets of chemical

reactions. This means that we need K end-to-end models with a model for each of the K symbols or

sets of chemical reactions. The principle behind building these K models is identical so without loss

of generality, we will assume that the model here is for Symbol 0. We begin with a few definitions.

Let niptq (where 1 ď i ď Nv) be the number of signalling molecules S in Voxel i at time t. In

particular, since we have defined R to be the index of the receiver voxel, nRptq is the number of

signalling molecules in the receiver voxel. We assume the transmitter is a set of chemical reactions

which uses H intermediate chemical species Q1, Q2, ... and QH and these intermediate species

remain in the transmitter voxel. Let nQi
ptq be the number of chemical species Qi in the transmitter

voxel at time t. Molecules may also be degraded or leave the system forever if absorbing boundary

condition is used. We use nAptq to denote the cumulative number of molecules that have left the

system. Note that since niptq, nQi
ptq and nAptq are molecular counts, they must belong to the set

of non-negative integers Zě0. We define the vector Nptq P ZNv`H`1
ě0 to be:

Nptq “
”

n1ptq ... nNvptq nQ1ptq ... nQH
ptq nAptq

ıT

(4)

where T denotes matrix transpose.

Let bptq denote the number of complexes or bound receptors at time t and Zr0,Ms denote the set

of integers between 0 and M inclusively. We require that a valid bptq must be an element of Zr0,Ms.

Since there are M receptors, the number of unbound receptor is M ´ bptq.

The state of the end-to-end model is the tuple pNptq, bptqq. We will now specify the transition

probabilities from state pNptq, bptqq to state pNpt`∆tq, bpt`∆tqq. State transitions can be caused by

any one of these events: a chemical reaction in the transmitter, the diffusion of a signalling molecule
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from a voxel to neighbouring voxel, and the binding or unbinding of a receptor in the receiver. We

know from the theory of CTMP that the probability of two events taking place in an infinitesimal

duration of ∆t is of the order of op∆t2q. Intuitively, this means only one event can occur within ∆t.

We can divide the transition probabilities from pNptq, bptqq to pNpt`∆tq, bpt`∆tqq into 2 groups

depending on whether the number of complexes has changed or not in the time interval pt, t`∆tq.

If the number of complexes has changed from time t to t ` ∆t, i.e. bpt ` ∆tq ‰ bptq, this means

either a binding reaction (2) or a unbinding reaction (3) has occurred.

If a binding reaction (2) has occurred, then the number of signalling molecules in the receiver

voxel is decreased by 1 and the number of complexes bptq is increased by 1. This reaction occurs at

a mean rate of λ nRptq pM ´ bptqq. We use 1i to denote the standard basis vector with a ‘1’ at the

i-th position. We can write the state transition probability of the receptor binding reaction (2) as:

PrNpt`∆tq “ Nptq ´ 1R, bpt`∆tq “ bptq ` 1|Nptq, bptqs “ λ nRptq pM ´ bptqq ∆t (5)

Recalling that R is the index of the receiver voxel and nRptq is the R-th element of Nptq in (4),

the expression Npt ` ∆tq “ Nptq ´ 1R is equivalent to nRpt ` ∆tq “ nRptq ´ 1, which means the

number of signalling molecules in the receiver voxel has decreased by 1. Similarly, the expression

bpt`∆tq “ bptq ` 1 says the number of complexes has increased by 1. The right-hand side (RHS)

of (5) is the transition probability and is given by the product of mean reaction rate and ∆t.

Similarly, the transition probability of the unbinding reaction is given by:

PrNpt`∆tq “ Nptq ` 1R, bpt`∆tq “ bptq ´ 1|Nptq, bptqs “ µ bptq ∆t (6)

where RHS of (6) is the transition probability.

We now specify the second group of transition probabilities with bpt ` ∆tq “ bptq. These

transitions are caused by either a reaction in the transmitter or diffusion of signalling molecules

between neighbouring voxels. Let ηi, ηj P ZNv`H`1
ě0 be two valid Nptq vectors; let also β P Zr0,Ms.

For ηi ‰ ηj, we write

PrNpt`∆tq “ ηi, bpt`∆tq “ β|Nptq “ ηj, bptq “ βs “ dij ∆t (7)

where dij is the transition rate from state pηj, βq to state pηi, βq. Since this transition is due to

either a reaction in the transmitter or diffusion, dij is independent of the number of complexes β.

Depending on the type of transition, the value of dij can depend on the reaction constants in the

transmitter, diffusion rate and some states of ηj. For example, if the transition from ηj to ηi is

caused by the diffusion of a signalling molecule from Voxel 1 to Voxel 2, we have ηi “ ηj´11`12 at
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a rate of dηj,1 where ηj,1 is the first element in ηj or equivalently the number of signalling molecules

in Voxel 1 in state ηj; so, for this example, dij “ dηj,1. The main advantage of using Equation (7)

is that it allows us a cleaner abstraction to solve the Bayesian filtering problem when deriving the

MAP demodulator. We also remark that we will not specify the exact expression of dij because

dij’s do not appear explicitly in the demodulator.

Equations (5), (6) and (7) specify all the possible state transitions. The probability of no state

transition is therefore:

PrNpt`∆tq “ ηj, bpt`∆tq “ bptq|Nptq “ ηj, bptqs

“ 1´ djj ∆t´ λ nRptq pM ´ bptqq ∆t´ µ bptq ∆t (8)

where

djj “
ÿ

i‰j

dij (9)

We have now specified all the state transition probabilities for Symbol 0. If a different symbol

is used, the value of H, the dimension of Nptq and the dij parameters can change. However, the

state transition probabilities still can be summarised by Equations of the form (5), (6) and (7). In

any case, the derivation of the MAP demodulator only requires us to work with one symbol at a

time. Hence, we will use Equations (5)-(9) for any transmission symbol.

3.3 Discussion

Note that the CTMP includes all the three sources of noise in our system, due to chemical reactions

in the transmitter, random diffusive movements in the medium and the ligand-receptor binding

process at the receiver. Some of these noise components have also been characterised in earlier

literature. For example, [52] discusses sampling noise at the transmitter and counting noise at the

receiver. One can study these noises using the derived CTMP and let us take sampling noise as an

example. For the moment, let us isolate the transmitter voxel from the propagation medium, i.e.

we do not allow the signalling molecules to leave or enter the transmitter voxel. In this case, the

number of signalling molecules in the transmitter voxel is due entirely to chemical reactions and

we use nisolatedptq to denote the number of signalling molecules in the isolated transmitter voxel at

time t. Now, let us consider the transmitter voxel again but we allow signalling molecules to diffuse

in and out of the voxel; we use nconnectedptq to denote the number of signalling molecules in the

transmitter voxel in this case. It is natural to consider nconnectedptq as the transmitter signal because

13



this is the number of signalling molecules in the transmitter voxel. However, nconnectedptq can be

different from nisolatedptq because signalling molecules can diffuse in and out of the transmitter voxel,

which is the cause of sampling noise.

Equations (5) to (8) hold for any valid state pNptq, bptqq. If we collect all the transition probability

equations for all valid states, then we can form the infinitesimal generator of the CTMP. For a given

initial probability distribution of the initial state pNp0q, bp0qq, one can in principle solve the first

order ordinary differential equation (ODE) associated with the infinitesimal generator to compute

the probability of the number of complexes bptq, or the property of the receiver signal. However,

in practice, this ODE is of a very high dimension and it is an active area of research to derive

algorithms to solve this ODE efficiently and accurately [53].

4 The MAP demodulator

This section aims to derive the optimal demodulator using the CTMP derived in the previous

section. We assume the input to the demodulator is the continuous-time signal bptq which is the

number of complexes at time t. There are a number of reasons why we choose to work with the

continuous-time signal bptq, rather than its sampled version. First, the signal bptqmay not be strictly

band limited in the frequency domain. Second, our results show that the optimal demodulator needs

to know the time instances at which a receptor is switching from the unbound to bound state. This

timing information, which is essentially an impulse, is unfortunately lost by sampling bptq. Third,

the solution of the proposed decoding problem can be used to benchmark molecular circuit [29] based

decoders. Since molecular circuits use chemical reactions for computation, they are fundamentally

analogue circuits. Fourth, there is an increasing interest in the circuit design community to design

low-power analogue signal processing circuits [54].

An intermediate step to derive the MAP demodulator is to solve a continuous-time filtering

problem. In a filtering problem, one uses all the observations available up till time t to predict

the system state at time t. For our case, the observations are the number of complexes bptq in

the continuous interval r0, ts. (This means the number of observations is infinite because we are

considering the continuous-time signal bptq in a non-zero time interval r0, ts.) We use Bptq “
tbpτq; 0 ď τ ď tu to denote the section of the signal bptq in the time interval r0, ts. (Note that the tu

is not a set notation. Here Bptq is a realisation of the number of complexes in r0, ts of the CTMP.

This notation is used in some non-linear filtering literature, e.g. [55].) We can think of Bptq as the

history of the number of complexes up till time t. The demodulation problem is to use the history
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Bptq to determine which symbol the transmitter has sent.

In Sections 4.1 to 4.3, we consider only one symbol interval and do not consider ISI. We consider

the ISI case in Section 4.5.

4.1 The MAP framework

We adopt a MAP framework for detection. Let Prs|Bptqs denote the posteriori probability that

symbol s has been sent given the history Bptq. If the demodulation decision is to be done at time

t, then the demodulator decides that symbol ŝ has been sent if

ŝ “ arg maxs“0,...,K´1Prs|Bptqs (10)

Instead of working with Prs|Bptqs, we will work with its logarithm. Let

Lsptq “ logpPrs|Bptqsq (11)

The first step is to determine Lspt`∆tq from Lsptq. Given Bptq is the section of bptq in the time

interval r0, ts, one can consider Bpt`∆tq as the concatenation of Bptq and the section of bptq in the

time interval pt, t `∆ts. Over an infinitesimal ∆t, we can consider the signal bptq is a constant in

the time interval pt, t`∆ts; we therefore abuse the notation and use bpt`∆tq to denote the section

of bptq in the time interval pt, t`∆ts. By using Bayes’ rule, it can be shown that

Lspt`∆tq “Lsptq ` logpPrbpt`∆tq|s,Bptqsq ´ logpPrbpt`∆tq|Bptqsq (12)

where Prbpt ` ∆tq|s,Bptqs is the probability that there are bpt ` ∆tq complexes given that the

transmitter has sent the symbol s and the previous history Bptq. The last term on the RHS of

(12), i.e. Prbpt`∆tq|Bptqs, is independent of the transmission symbol so we do not need it for the

purpose of detection. We will focus on determining Prbpt`∆tq|s,Bptqs.

4.2 Computing Prbpt`∆tq|s,Bptqs

The problem of determining the probability Prbpt ` ∆tq|s,Bptqs is essentially a Bayesian filtering

problem. Recall that the complete state of the system is pNptq, bptqq and the receiver can only

observe bptq, therefore the task of the receiver is to use the history Bptq and the system model to do

prediction. Standard method can be used to derive Prbpt`∆tq|s,Bptqs but the derivation is long,
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especially because of the diffusion terms; the derivation can be found in Appendix A. The result is

Prbpt`∆tq|s,Bptqs

“δbpt`∆tq,bptq`1 λpM ´ bptqq ∆t ErnRptq|s,Bptqs ` δbpt`∆tq,bptq´1 µbptq ∆t `

δbpt`∆tq,bptq p1´ λpM ´ bptqqErnRptq|s,Bptqs ∆t´ µbptq ∆tq (13)

Note that only one of the three terms on the RHS of Equation (13) is non-zero depending on whether

the observed bpt`∆tq is one more, one less or equal to that of bptq. The term ErnRptq|s,Bptqs is the

expected number of signalling molecules in the receiver voxel given the history and the symbol s.

The meaning of this term is that the receiver uses the history to predict what the expected number

of signalling molecules in the receiver voxel is. Note that only the chemical kinetic parameters λ and

µ of the receptor appear explicitly in Equation (13). Other parameters, such as the set of chemical

reaction that generate Symbol s and the diffusion coefficient, do not appear explicitly in Equation

(13) but influence the system behaviour via the term ErnRptq|s,Bptqs.

4.3 The demodulation filter

By substituting Equation (13) into Equation (12) and let ∆t go to zero, we show in Appendix B

that

dLsptq

dt
“
dUptq

dt
logpErnRptq|s,Bptqsq ´ λpM ´ bptqqErnRptq|s,Bptqs ` L̃ptq (14)

with Lsp0q initialised to the logarithm of the prior probability that Symbol s is sent. Equation

(14) is the optimal demodulation filter. The term Uptq is the cumulative number of times that

the receptors have turned from the unbound to bound state. The meaning of Uptq is illustrated

in Figure 3 assuming there are two receptors. The top two pictures in Figure 3 show the state

transitions for the two receptors. The third picture shows the function Uptq which is increased by

one every time a receptor switches from the unbound to bound state. The bottom picture shows
dUptq
dt

which is the derivative of Uptq. Note that dUptq
dt

consists of a train of impulses (or Dirac deltas)

where the timings of the impulses are the times at which a receptor binding event occurs. Loosely

speaking, one may also view dUptq
dt

as maxpdbptq
dt
, 0q.

The function L̃ptq, which is the last term on the RHS of (14), contains all the terms that are

independent of Symbol s. Since Lsptq does not appear on the RHS of (14), this means that L̃ptq

adds the same contribution to all Lsptq for all s “ 0, ..., K ´ 1. We can therefore ignore L̃ptq for the

purpose of demodulation.
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The term ErnRptq|s,Bptqs in Equation (14) is the prediction of the mean number of signalling

molecules in the receiver voxel using the history of receptor state. This is a filtering problem which

requires extensive computation. Instead, we assume that the receiver has prior knowledge that

if Symbol s is transmitted, then the mean number of signalling molecules in the receiver voxel is

σsptq “ ErnRptq|ss and the receiver uses σsptq for demodulation. We can view σsptq as internal

models that the demodulator uses. The use of internal models is fairly common in signal processing

and communication, e.g. a matched filter correlates the measured data with an expected response.

After making the modifications described in the last two paragraphs, we are now ready to

describe the demodulator. Using bptq as the input, the demodulator runs the followingK continuous-

time filters in parallel:

dZsptq

dt
“
dUptq

dt
logpσsptqq ´ λpM ´ bptqqσsptq (15)

where Zsp0q is initialised to the logarithm of the prior probability that the transmitter sends Symbol

s. If the demodulator makes the decision at time t, then the demodulator decides that Symbol ŝ

has been transmitted if

ŝ “ arg maxs“0,...,K´1Zsptq (16)

The demodulator structure is illustrated in Figure 4. By comparing Equations (14) and (15), it can

be shown that Ls1ptq´Ls2ptq “ Zs1ptq´Zs2ptq for any two symbols s1 and s2. An interpretation of

the demodulation filter output Zsptq is that exppZsptqq is proportional to the posteriori probability

Prs|Bptqs.
Note that the replacement of ErnRptq|s,Bptqs in Equation (14) by σsptq means that the de-

modulation filter (15) is sub-optimal. If ErnRptq|s,Bptqs and σsptq are close to each other, we

expect the performance degradation to be small. It is an open problem what the difference be-

tween ErnRptq|s,Bptqs and σsptq is. The difficulty in answering this problem is due to the fact that

ligand-receptor binding is a nonlinear process. In Appendix D, we motivate the closeness between

ErnRptq|s,Bptqs and σsptq by studying an analogous problem in linear time-invariant (LTI) systems.

We will compare the performance of the optimal and sub-optimal demodulation filters in Section

5.2.

In order to understand Equation (15), we consider the situation where Symbol 1 generates a lot

more signalling molecules than Symbol 0 such that it results in more signalling molecules in the

receiver voxel, or σ1ptq ą σ0ptq for all t. If the transmitter sends Symbol 1, then more signalling

molecules are expected to reach the receiver voxel. The consequence is that there are more receptor

17



binding events and the number of unbound receptors pM ´ bptqq is smaller. Therefore, in Equation

(15), we expect a big positive contribution from the first term on the RHS and a small negative

contribution from the second term. The net effect is a big Z1ptq. On the other hand, if the

transmitter sends Symbol 0, the number of receptor binding events is smaller and pM ´ bptqq is

big. This results in a smaller Z0ptq. Therefore, Z1ptq is likely to be bigger than Z0ptq, which means

correct detection.

4.4 Discussions

4.4.1 Implementation issues

The implementation of the demodulator is an open research problem. The demodulation filter

(15) is an analogue filter and it requires the internal model σiptq. The design of analogue circuits

using chemical reactions for calculations is an active research area, see [56] for a recent overview.

The demodulation filter requires logarithm, multiplication, subtraction, integration and counting

the number of times the receptors have switched from the unbound to bound state. An analogue

molecular circuit for calculating logarithm is presented in [57]. There are also circuits that can

perform multiplication and subtraction [56]. Living cells are known to use integration [58]. It

may be possible to implement the counting using a chemical reaction [39]. It may be possible to

approximate the internal models by using some lower order chemical reactions. This discussion

shows that some components to implement the demodulator exist but the exact implementation

remains an open problem.

In order to bypass the difficulty of computing ErnRptq|s,Bptqs, we have proposed to use internal

models σsptq. An open research problem is to study sub-optimal estimation of ErnRptq|s,Bptqs.
Note that [56] shows that analogue computation is more efficient than digital computation if high

precision is not required. An interesting problem is to study the impact of low precision analogue

calculations on the demodulation performance.

4.4.2 Continuous transmission medium versus voxels

We mention in Section 2 that some papers in molecular communications assume a continuous

medium (rather than discretising the medium into voxels) and a non-zero receiver size. If a con-

tinuous medium is assumed, the state of a signalling molecule in the transmission medium is its

position. Let pp~x, tq be the probability that a molecule is at position ~x at time t. The time evolution

of pp~x, tq can again be modelled by a CTMP, which is continuous in both time and space. The time
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evolution of pp~x, tq is described by the differential Chapman-Kolmogorov Equation (CKE) [41]. It

is possible to derive an alternative CTMP by replacing the diffusion of signalling molecules in Equa-

tion (7) by differential CKE as well as by adding equations to describe how the signalling molecules

enter or leave the receiver voxel. We can then apply Bayesian filtering to this alternative CTMP. We

expect this alternative CTMP will give the same demodulator filter because in our derivation based

on discrete voxels, the MAP demodulator depends only on the number of the signalling molecules in

the receiver voxel and the diffusion parameters do not appear explicitly in the demodulation filter.

Further support of this argument is given in the derivation in Appendix B where we show that the

dij parameters in (7) are cancelled out in deriving the Bayesian filter.

4.5 Inter-symbol interference

It is in principle possible to use the demodulation filters (15) to deal with the case with ISI. We

use Tx to denote one symbol duration and we assume that ISI only lasts for a finite amount of

time. Specifically, consider a symbol sent in rkTx, pk ` 1qTxs, we assume that the effect of this

transmission can be neglected after the time pk ` nqTx. This can be realised by appropriately

choosing the transmitter and receiver parameters, Tx and n.

In order to make the explanation here a bit more concrete, we assume that the transmitter

uses K “ 2 symbols and n “ 3. Over a duration of n “ 3 symbols, the possible sequences

sent by the transmitter are 000, 001, 010, 011, ... , 111. Let σ0,0,0ptq denote the mean number

of signalling molecules at the receiver voxel if the sequence 000 is sent. We can similarly define

σ0,0,1ptq, ..., σ1,1,1ptq. Consider the transmission of three consecutive symbols sk´2, sk´1 and sk. As-

suming that we have an estimation of the first two symbols ŝk´2 and ŝk´1, then the decoding of sk

can be done by using the demodulation filter (15) by replacing σsptq by σŝk´2,ŝk´1,s. For example,

if ŝk´2 “ 1 and ŝk´1 “ 0, then one can decode what sk is by using the demodulator filters σ1,0,1ptq

and σ1,0,1ptq. Although the decision feedback based method can solve the ISI problem, the number

of internal models increases exponentially with the memory length parameter n.

The reason why we need to consider all 2n possible transmission sequences is that the ligand-

receptor binding process has a non-linear reaction rate. A method to reduce the number of internal

models is to design the system so that σ0,0,0ptq etc. can be decomposed into a sum. Let σsptq

(s “ 0, 1) be the mean number of signalling molecules at the receiver voxel if the symbol s is sent

for one symbol duration and in the absence of ISI. If

σs1,s2,s3ptq « σs1pt´ 2Txq ` σs2pt´ Txq ` σs3ptq (17)
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holds for all s1, s2 and s3, then one can again make use of decision feedback to decode the ISI

signal. However, this time, only K internal models are needed. Equation (17) can be made to

hold approximately if the number of receptors is large. This can be explained as follows. First

of all, if ligand-receptor binding is absent, this means there is only free diffusion then Equations

(17) holds because the mean number of signalling molecules obeys the diffusion equation which is

linear. This means that we need to create an environment that “looks like” free diffusion even when

ligand-receptor binding is present. This can be realised if the number of signalling molecules that

are bound to the receptors is small compared to those that are free. A method to achieve this is to

increase the number of receptors. We will demonstrate this with a numerical example in Section 5.

However, it is still an open problem to solve the ISI in the general case.

5 Properties of the demodulator

The aim of this section is to study the properties of the MAP demodulator numerically. We begin

with the methodology.

5.1 Methodology

We assume the diffusion coefficient D of the medium is 1 µm2s´1. The receptor parameters are λ̃

= 0.005 µm3 s´1, λ “ λ̃
W 3 , and µ “ 1 s´1. These values are similar to those used in [50] and [30] 3.

The above parameter values will be used for all the numerical experiments.

For each experiment, the transmitter uses either K “ 2 or K “ 3 symbols. Each symbol is

generated by a different sets of chemical reactions. Different experiments may use different sets of

chemical reactions and will be described later. The number of receptors also varies between the

experiments.

We use the Stochastic Simulation Algorithm (SSA) [59] to obtain realisations of bptq which is

the number of complexes over time. SSA is a standard algorithm in chemistry to simulate diffusion

and reactions; it is essentially an algorithm to simulate a CTMP.

In order to use Equation (15), we require the mean number of signalling molecules σsptq in the

receiver voxel when Symbol s is sent. Unfortunately, it is not possible to analytically compute

3 The paper [30] considers ligand-receptor binding in the chemical master equation setting. In our notation, the

parameter values in [30] are D = 100 µm2s´1, λ̃ = 0.2 µm3 s´1 and µ “ 10 s´1. These parameters are 10–100 times

faster than ours and can be considered as a time-scaling. Note that [30] uses k` and k´ instead of, respectively, λ̃

and µ.
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σsptq from the CTMP because of moment closure problem which arises when the transition rate is

a non-linear function of the state [60]. We therefore resort to simulation to estimate σsptq. Each

time when we need an σsptq, we run SSA simulation 500 times and average the results to obtain

σsptq. Note that these simulations are different from those that we use to generate bptq for the

performance study. In other words, the simulations for estimating σsptq and for performance study

are completely independent.

Once bptq and σsptq are obtained, we use numerical integration to calculate Zsptq using Equation

(15). We assume that all symbols appear with equal probability, so we initialise Zsp0q “ 0 for all s.

5.2 Optimal filter (14) versus sub-optimal filter (15)

The optimal demodulation filter (14) requires the term ErnRptq|s,Bptqs which can be obtained by

solving a Bayesian filtering problem. Since filtering problems are computationally expensive to

solve, we propose the sub-optimal demodulation filter (15) which uses σsptq “ ErnRptq|ss as an

internal model. The aim of this section is to compare the performance of these two demodulation

filters.

In this comparison, we consider a medium of 1µm ˆ 1
3
µm ˆ 1

3
µm. We assume a voxel size of

(1
3
µm)3 (i.e. W “ 1

3
µm), creating an array of 3ˆ1ˆ1 voxels. The voxel co-ordinates of transmitter

and receiver are, respectively, (1,1,1) and (3,1,1). A reflecting boundary condition is assumed.

The reason why we have chosen to use such a small number of voxels is because of the dimen-

sionality of the filtering problem. For example, if each voxel can have a maximum of 100 signalling

molecules at a time, then there are 106 possible Nptq vectors and the filtering problem has to

estimate the probability PrNptq|s,Bptqs for each possible Nptq vector. Although there are approx-

imation techniques to solve the Bayesian filtering problem, that would introduce inaccuracies. The

use of small number of voxels will allow us to compute PrnRptq|s,Bptqs precisely.

For this experiment, we use K “ 2 symbols and two values of M (the number of receptors): 5

and 10. Both Symbols 0 and 1 use Reaction (1) such that Symbols 0 and 1 causes, respectively,

10 and 50 signalling molecules to be generated per second on average by the transmitter. The

simulation time is about 1.8 seconds.

We first show that ErnRptq|s,Bptqs and σsptq are rather similar. Figure 5 shows σsptq and a

trajectory of ErnRptq|s,Bptqs (obtained from one realisation of bptq) are pretty similar. This result

is obtained from using M “ 10 and Symbol 1. The results for other choices of M , transmission

symbols or other realisations of bptq are similar.
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Figure 6 shows the mean symbol error rates (SERs), for both optimal and sub-optimal demod-

ulation filters, if the detection is done at time t = 1, 1.05, 1.1, ..., 1.8. The SERs is obtained from

400 realisations of bptq. The difference in SERs between the optimal and sub-optimal filter is less

than 1%. We have also checked that the two demodulators make the same decoding decision on

average 99.3% of the time.

In the rest of this section, we will use the sub-optimal demodulation filter (15) because of its

lower computational complexity.

5.3 Properties of the demodulator output

We consider a medium of 2µm ˆ 2µm ˆ 1 µm. We assume a voxel size of (1
3
µm)3 (i.e. W “ 1

3
µm),

creating an array of 6ˆ 6ˆ 3 voxels. The transmitter and receiver are located at (0.5,0.8,0.5) and

(1.5,0.8,0.5) (in µm) in the medium. The voxel co-ordinates are (2,3,2) and (5,3,2) respectively. We

assume an absorbing boundary for the medium and the signalling molecules escape from a boundary

voxel surface at a rate of d
50

. This configuration will be used for the rest of this section.

For this experiment, we use K “ 2 symbols and M “ 50 receptors. Both Symbols 0 and 1 use

Reaction (1) such that Symbols 0 and 1 causes, respectively, 40 and 80 signalling molecules to be

generated per second on average by the transmitter. The simulation time is about 3 seconds.

Figure 7 shows the demodulation filter outputs Z0ptq and Z1ptq if the transmitter sends a Symbol

0. It can be seen that Z0ptq ą Z1ptq most of the time after t “ 1.2, which means the detection is

likely to be correct after this time. The sawtooth like appearance of Z0ptq and Z1ptq is due to the

fact that every time when a receptor is bound, there is a jump in the filter output according to

Equation (15). Figure 8 shows the filter outputs Z0ptq and Z1ptq if the transmitter sends a Symbol

1; the behaviour is similar.

Figure 9 shows the mean filter outputs Z0ptq and Z1ptq if the transmitter sends a Symbol 0. The

mean is computed over 200 realisations of bptq. It can be seen that the mean filter output of Z0ptq

is greater than that of Z1ptq. Similarly, if Symbol 1 is sent, then we expect of the mean of Z1ptq to

be bigger. The figure is not shown for brevity.

Figure 10 shows the mean SERs for Symbols 0 and 1 if the detection is done at time t. The SER

for Symbol 1 is high initially but as more information is processed over time, the SER drops to a

low value. This experiment shows that it is possible to use the analogue demodulation filter (15)

to compute a quantity that allows us to distinguish between two emission patterns at the receiver.
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5.4 Impact of number of receptors

We continue with the setting of 5.3 but we vary the number of receptors between 1 and 20. We

assume the demodulator makes the decision at t “ 2.5 and calculate the mean SER for both symbols

at t “ 2.5. Figure 11 plots the SERs versus the number of receptors. It can be seen that the SER

drops with increasing number of receptors.

We have used K “ 2 symbols so far. We retain the current Symbols 0 and 1, and add a Symbol

2 which is also of the form of Reaction (1) but its mean rate of production of signalling molecules

is 3 times that of Symbol 0. The number of receptors M used are: 1, 10, 20, ..., 150. We compute

the average SER at t “ 2.5 assuming each symbol is transmitted with equal probability. We plot

the logarithm of the average SER against logpMq in Figure 12. It can be seen that the SER drops

with increasing number of receptors M . The plot in Figure 12 suggests that, when the number of

receptors M is large, the relationship between logarithm of SER and logpMq is linear. We perform

a least-squares fit for M between 50 and 150. The fitted straight line is shown in Figure 12 and it

has a slope of ´1.13. A possible explanation is that, because the receptors are non-interacting, each

receptor provides an independent observation. The empirical evidence suggests that the average

SER scales according to 1
M

asymptotically provided that the voxel volume can contain that many

receptors.

5.5 Distinguishability of different chemical reactions

Equation (15) suggests that if the transmitter uses two sets of reactions which have almost the same

mean number of signalling molecules in the receiver voxel, then it may be difficult to distinguish

between these two symbols. In this study, Symbol 0 is generated by Reaction (1) with a rate of κ

while Symbol 1 is generated by:

rRNAsON ÐÑ rRNAsOFF (18)

rRNAsON

2κ
ÝÑ rRNAsON ` S (19)

where we assume that RNA can be in an ON or OFF state, and signalling molecules S are only

produced when the RNA is in the ON-state. We assume that the there is an equal probability for the

RNA to be in the two states and the reaction rate constant for the production of signalling molecule

S from rRNAsON is 2κ. This means that the mean rate of production of signalling molecules S by

Symbols 0 and 1 are the same. This gives rise to very similar σ0ptq and σ1ptq. Figure 13 shows the

demodulation filter outputs Z0ptq and Z1ptq for one simulation. It can be seen that the two outputs
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are almost indistinguishable. Consequently, the SER is pretty high. This shows that symbols

generated by reactions which have similar mean number of signalling molecules at the receiver

voxel can be hard to distinguish.

5.6 Inter-symbol interference

The aim of this experiment is to study the performance of the demodulator in the presence of ISI.

We use the decision feedback method described in Section 4.5 together with the approximation

decomposition in (17). We vary the number of receptors from 25 to 150. We use two different

memory lengths ` of 4 and 5. If the memory length is `, we express the mean number of output

molecules at the current symbol interval as a sum of ` terms, i.e. a generalisation of (17) to ` terms.

We carry out the simulation for a duration of 20 symbol lengths and compute the average SER over

20 symbols. Figure 14 shows the average SER versus the number of receptors. It can be seen that

an increasing number of receptors can also be used to deal with ISI.

6 Conclusions and future work

This paper studies a diffusion-based molecular communication network that uses different sets of

chemical reactions to represent different transmission symbols. We focus on the demodulation

problem. We assume the receiver uses a ligand-receptor binding process and uses the continuous

history of the number of ligand-receptor complexes over time as the input signal to the demodulator.

We derive the maximum a posteriori demodulator by solving a Bayesian filtering problem.

A Proof of Equation (13)

Let s denote the transmitted symbol, our aim is to determine Prbpt `∆tq|s,Bptqs in terms of the

quantity at time t. Recalling that pNptq, bptqq is the state of the CTMP and since only Bptq is

observed, the problem of predicting bpt ` ∆tq from Bptq is a Bayesian filtering or hidden Markov
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model problem. The first step is to condition on the state of the system, as follows:

Prbpt`∆tq|s,Bptqs (20)

“
ÿ

i

PrNpt`∆tq “ ηi, bpt`∆tq|s,Bptqs (21)

“
ÿ

i

ÿ

j

PrNpt`∆tq “ ηi, bpt`∆tq|s,Nptq “ ηj,BptqsPrNptq “ ηj|s,Bptqs (22)

“
ÿ

i

ÿ

j

PrNpt`∆tq “ ηi, bpt`∆tq|s,Nptq “ ηj, bptqsPrNptq “ ηj|s,Bptqs (23)

where we have used the Markov property PrNpt`∆tq “ ηi, bpt`∆tq|s,Nptq “ ηj,Bptqs “ PrNpt`

∆tq “ ηi, bpt`∆tq|s,Nptq “ ηj, bptqs to arrive at Equation (23).

We now focus on the term PrNpt`∆tq “ ηi, bpt`∆tq|s,Nptq “ ηj, bptqs in Equation (23). This

term is the state transition probability. Using the CTMP in Section 3, we have

PrNpt`∆tq “ ηi, bpt`∆tq|s,Nptq “ ηj, bptqs (24)

“δbpt`∆tq,bptq`1P1 ` δbpt`∆tq,bptq´1P2 ` δbpt`∆tq,bptqP3

where

P1 “ δηi,ηj´1R
ληj,RpM ´ bptqq ∆t (25)

P2 “ δηi,ηj`1R
µbptq ∆t (26)

P3 “ ηiÑj (27)

where ηj,R is the R-th element of ηj, i.e. there are ηj,R signalling molecules in the receiver voxel,

and

ηiÑj “

$

&

%

dij ∆t if i ‰ j

1´ pληj,RpM ´ bptqq ´ µbptq ´ djjq ∆t if i “ j
(28)

where

djj “
ÿ

i‰j

dij (29)

By substituting Equation (25) into Equation (23), we have

Prbpt`∆tq|s,Bptqs “ δbpt`∆tq,bptq`1Q1 ` δbpt`∆tq,bptq´1Q2 ` δbpt`∆tq,bptqQ3 (30)

where

Q` “
ÿ

i

ÿ

j

P`PrNptq “ ηj|s,Bptqs (31)
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We will now determine Q1, Q2 and Q3.

For Q1, we have

Q1 “
ÿ

i

ÿ

j

δηi,ηj´1R
ληj,RpM ´ bptqq ∆t PrNptq “ ηj|s,Bptqs

“ λpM ´ bptqq ∆t
ÿ

i

ÿ

j

δηi,ηj´1R
ηj,RPrNptq “ ηj|s,Bptqs

“ λpM ´ bptqq ∆t
ÿ

j s.t. ηj,Rě1

ηj,RPrNptq “ ηj|s,Bptqs (32)

“ λpM ´ bptqq ∆t
ÿ

j

ηj,RPrNptq “ ηj|s,Bptqs (33)

“ λpM ´ bptqq ∆t ErnRptq|s,Bptqs (34)

Note that in Equation (32), the sum is over all states ηi with at least one signalling molecule in

the receiver voxel, i.e. ηj,R ě 1. Since the summand in Equation (32) is zero if ηj,R “ 0, we get the

same result if we are to sum over all possible states, that is why Equation (33) holds.

For Q2, we have

Q2 “
ÿ

i

ÿ

j

δηi,ηj`1R
µbptq ∆t PrNptq “ ηj|s,Bptqs

“ µbptq ∆t
ÿ

i

ÿ

j

δηi,ηj`1R
PrNptq “ ηj|s,Bptqs (35)

“ µbptq ∆t
ÿ

j

PrNptq “ ηj|s,Bptqs (36)

“ µbptq ∆t (37)

Note that Equation (36) follows from Equation (35) because for every ηj, there is a unique ηi

such that ηi “ ηj ` 1R holds.
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For Q3, we have

Q3 “
ÿ

i

ÿ

j

ηiÑjPrNptq “ ηj|s,Bptqs

“
ÿ

i

ÿ

j‰i

pdij ∆tqPrNptq “ ηj|s,Bptqs`

ÿ

j

p1´ ληj,RpM ´ bptqq ∆t´ µbptq ∆t´ djj ∆tqPrNptq “ ηj|s,Bptqs

“
ÿ

j

p1´ ληj,RpM ´ bptqq ∆t´ µbptq ∆tqPrNptq “ ηj|s,Bptqs`

p
ÿ

i

ÿ

j‰i

dijPrNptq “ ηj|s,Bptqs ´
ÿ

j

djjPrNptq “ ηj|s,Bptqsq ∆t

“p1´ λpM ´ bptqqErnRptq|s,Bptqs ∆t´ µbptq ∆tq`

p
ÿ

i

ÿ

j‰i

dijPrNptq “ ηj|s,Bptqs ´
ÿ

j

ÿ

i‰j

dijPrNptq “ ηj|s,Bptqsq
looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon

“0

∆t

“p1´ λpM ´ bptqqErnRptq|s,Bptqs ∆t´ µbptq ∆tq (38)

Having obtained Q1, Q2 and Q3, we arrive at:

Prbpt`∆tq|s,Bptqs “δbpt`∆tq,bptq`1λpM ´ bptqq ∆t ErnRptq|s,Bptqs`

δbpt`∆tq,bptq´1µbptq ∆t `

δbpt`∆tq,bptqp1´ λpM ´ bptqqErnRptq|s,Bptqs ∆t´ µbptq ∆tq (39)

Note that Equation (39) is the same as Equation (13) in the main text.

B Proof of Equation (14)

From Equation (12), we have:

dLsptq

dt
“ lim

∆tÑ0

logpPrbpt`∆tq|s,Bptqsq
∆t

´ lim
∆tÑ0

logpPrbpt`∆tq|Bptqsq
∆t

(40)

Note that the second term on the RHS is independent of transmission symbol s, we will focus on

the first term.

Note that Prbpt ` ∆tq|s,Bptqs, which is given in Equation (39), is a sum three terms with

multipliers δbpt`∆tq,bptq`1, δbpt`∆tq,bptq´1 and δbpt`∆tq,bptq. Since these multipliers are mutually exclusive,
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we have:

log pPrbpt`∆tq|s,Bptqsq “δbpt`∆tq,bptq`1 log pλpM ´ bptqq ∆t ErnRptq|s,Bptqsq`

δbpt`∆tq,bptq´1 log pµbptq ∆tq`

δbpt`∆tq,bptq log pp1´ λpM ´ bptqqErnRptq|1,Bptqs ∆t´ µbptq ∆tqq (41)

«δbpt`∆tq,bptq`1 log pErnRptq|s,Bptqsq´

δbpt`∆tq,bptqλpM ´ bptqqErnRptq|s,Bptqs ∆t`

P̃ ptq (42)

where we have used the approximation logp1`α ∆tq « α ∆t in the last term of Equation (41) and

have collected all terms that do not depend on s in P̃ ptq.

By substituting Equation (42) into Equation (40), and taking limit ∆tÑ 0, we have

dLsptq

dt
“ lim

∆tÑ0

δbpt`∆tq,bptq`1

∆t
log pErnRptq|s,Bptqsq´

δbpt`∆tq,bptqλpM ´ bptqq pErnRptq|s,Bptqssq ` L̃ptq (43)

“
dUptq

dt
log pErnRptq|s,Bptqsq ´ λpM ´ bptqq pErnRptq|s,Bptqsq ` L̃ptq (44)

where all terms that are independent of s have been collected in L̃ptq. Note that L̃ptq contains some

terms that diverges but this is not an issue because for demodulation it is their relative difference

Ls1ptq ´ Ls2ptq (for any two symbols s1 and s2) that matters.

Note also that we have used the following reasonings to arrive at Equation (44) from Equation

(43):

1. The term lim∆tÑ0
δbpt`∆tq,bptq`1

∆t
is an impulse whenever a receptor changes from the unbound

to the bound state. This is precisely dUptq
dt

.

2. The term δbpt`∆tq,bptq is only zero when the number of bound receptors changes and the number

of such changes is finite. In other words, δbpt`∆tq,bptq “ 1 with probability one. This allows us

to drop δbpt`∆tq,bptq.

Finally, note that Equation (44) is the same as Equation (14).

C An example end-to-end model

For this example, we assume the transmission medium consists of 3 voxels as illustrated in Figure ??.

The transmitter and receiver are assumed to be located in, respectively, Voxels 1 and 3. We assume

reflecting boundary condition which means the signalling molecules cannot leave the medium.
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This Appendix presents an example end-to-end model. For this end-to-end model, the trans-

mitter is assumed to send Symbol 0 which means it uses the set of chemical reactions corresponding

to this symbol. We therefore view a transmitter as a set of chemical reactions located within the

transmitter voxel. It is still an open problem what chemical reactions are good for communication

performance. The example being used here is not meant to promote the use of a particular set of

chemical reactions but our purpose is to show how a set of chemical reactions can be modelled by

a CTMP.

For this example, we assume that the production of the signalling molecules S requires two

intermediate chemical species F and G, which are produced by RNA1 and RNA2. There are four

reactions and they are assumed to take place within the transmitter voxel only. The four chemical

reactions are:

RNA1
k1
ÝÑ RNA1 ` F (45)

RNA2
k2
ÝÑ RNA2 `G (46)

F
k3
ÝÑ S (47)

S`G
k4
ÝÑ φ (48)

Reaction (45) says that the molecules of F are produced at a mean rate of k1. Similarly, according

to Reaction (46), G is produced at a mean rate of k2. Reaction (47) says that F is converted to S at

a mean rate equals to k3 times the number of F molecules in the transmitter voxel. Reaction (48)

says that S and G can react to produce a molecule φ that we are not interested to keep track of in

the mathematical model. If an S (or a G) molecule takes part in Reaction (48), we can consider

this S (G) molecule has left the system permanently after the reaction. The rate of Reaction (48)

is k4 times the number of G molecules and the number of signalling molecules S in the transmitter

voxel.

We assume that the chemical species RNA1, RNA2, F and G are found in the transmitter voxel

only, and they cannot leave the transmitter voxel. This means that we do not need to consider the

diffusion of these chemical species. The only diffusible chemical species in the entire system is the

signalling molecule S. We also assume that there is only one of each RNA1 and RNA2 and their

counts remain constant.

In order to define the state of the system, we make the following definitions: niptq is the number

of signalling molecules in Voxel i at time t, nF ptq and nGptq are respectively the number of F and G

molecules at time t, nAptq is the cumulative number of molecules that have left the system at time

t and bptq is the number of complexes (or bound receptors) at time t. Since a receptor can either
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be unbound or in a complex, the number of unbound receptors at time t is M ´ bptq; therefore,

the mathematical model only has to keep track of either the number of unbound receptors or the

number of complexes, and we have chosen to keep track of the latter. The state of the system

is completely specified by these seven molecular counts: n1ptq, n2ptq, n3ptq, nF ptq, nGptq, nAptq and

bptq. All the molecular counts should be non-negative integers (i.e. belonging to the set Zě0) and

a further restriction is that 0 ď bptq ďM or we write bptq P Zr0,Ms.

We define the vector Nptq as

Nptq “
”

n1ptq n2ptq n3ptq nF ptq nGptq nAptq
ıT

(49)

where the superscript T is used to denote matrix transpose.

Based on the definition of Nptq, the state of the system is the tuple pNptq, bptqq and a valid state

must be an element of the set S “ Z6
ě0 ˆ Zr0,Ms. The state of the system changes when a reaction

or diffusion event occurs. Our modelling assumptions mean that reactions can only take place in

the transmitter or the receiver voxels. The reactions in the transmitter voxel are (45)´(48). The

reactions taking place in the receiver voxel are (2) and (3). The only diffusible chemical species in

this system is the signalling molecule S. Within an infinitesimal time ∆t, at most one diffusion or

reaction event can occur. Therefore, the dynamics of the system can be specified by the transition

probability from state pNptq, bptqq to pNpt ` ∆tq, bpt ` ∆tqq. We will now specify these transition

probabilities and we begin with the transmitter.

Four possible reaction events (45)–(48) can take place in the transmitter voxel. An occurrence

of Reaction (45) increases the number of F molecules in the transmitter voxel by 1 and this occurs

at a mean rate of k1. By defining 1i to be the standard basis vector with a ‘1’ at the i-th position,

we can write the state transition probability due to Reaction (45) as:

PrNpt`∆tq “ Nptq ` 14, bpt`∆tq “ bptq|Nptq, bptqs “ k1 ∆t (50)

Note that we have used 14 because nF ptq is increased by 1 if Reaction (45) occurs and nF ptq is the

fourth element of Nptq in the definition of Nptq in (49). The right-hand side (RHS) of Equation (50)

is the transition probability that Reaction (45) occurs in pt, t`∆tq, which is given by the reaction

rate k1 times ∆t.

We can write the transition probabilities due to Reactions (46)´(48) as:

PrNpt`∆tq “ Nptq ` 15, bpt`∆tq “ bptq|Nptq, bptqs “ k2 ∆t (51)

PrNpt`∆tq “ Nptq ´ 14 ` 11, bpt`∆tq “ bptq|Nptq, bptqs “ k3 nF ptq ∆t (52)

PrNpt`∆tq “ Nptq ´ 15 ´ 11 ` 216, bpt`∆tq “ bptq|Nptq, bptqs “ k4 nGptq n1ptq∆t (53)
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The rationale behind Equation (51) is similar to that of (50). Equation (52) models Reaction (47).

If Reaction (47) occurs, an F molecule is converted to an S molecule, so the number of F molecules

nF ptq (which is the fourth element of Nptq) is decreased by 1 and the number of signalling molecule

in the transmitter voxel n1ptq (which is the first element of Nptq) is increased by 1; this change in

the number of molecules as a result of Reaction (47) can be written as Npt`∆tq “ Nptq ´ 14 ` 11

in (52). Equation (53) models Reaction (48). When Reaction (48) occurs, a G and an S molecule

in the transmitter are consumed, hence ´15 ´ 11 in (53). We are not interested to keep track of

the molecules as a result of this reaction, we consider these two molecules have left the system

permanently and add ‘2’ to nAptq which is at the sixth position of Nptq. The letter ‘A’ here comes

from ’absorbing’ because once a molecule is added to nAptq, it will not leave. Note that the RHSs

of (50)–(53) show the transition probabilities and they are of the form of the transition rate times

∆t.

The state of the system can also be changed by signalling molecules diffusing from one voxel

to another. For this example, there are four possible diffusion events, which take place when a

signalling molecule diffuses from a voxel to its neighbouring voxel. The four diffusion events are:

from Voxel 1 to Voxel 2, from Voxel 2 to Voxel 1, from Voxel 2 to Voxel 3, and from Voxel 3 to

Voxel 2. The transition probabilities of these four events are:

PrNpt`∆tq “ Nptq ´ 11 ` 12, bpt`∆tq “ bptq|Nptq, bptqs “ d n1ptq ∆t (54)

PrNpt`∆tq “ Nptq ` 11 ´ 12, bpt`∆tq “ bptq|Nptq, bptqs “ d n2ptq ∆t (55)

PrNpt`∆tq “ Nptq ´ 12 ` 13, bpt`∆tq “ bptq|Nptq, bptqs “ d n2ptq ∆t (56)

PrNpt`∆tq “ Nptq ` 12 ´ 13, bpt`∆tq “ bptq|Nptq, bptqs “ d n3ptq ∆t (57)

Equation (54) is the probability that a signalling molecules diffuses from Voxel 1 to Voxel 2. The

occurrence of this event means the number of signalling molecules in Voxel 1 (“ n1ptq, which is the

first element of Nptq) is decreased by 1 while the number of signalling molecules in Voxel 2 (“ n2ptq,

which is the second element of Nptq) is increased by 1. The probability of this occurring is d ∆t.

The explanation for the other three transition probabilities are similar.

The last category of state transitions occurs when a receptor is bound or unbound according to

chemical reactions (2) and (3). The state transition probabilities are:

PrNpt`∆tq “ Nptq ´ 13, bpt`∆tq “ bptq ` 1|Nptq, bptqs “ λ n3ptq pM ´ bptqq ∆t (58)

PrNpt`∆tq “ Nptq ` 13, bpt`∆tq “ bptq ´ 1|Nptq, bptqs “ µ bptq ∆t (59)

Equation (58) is the transition probability for receptor binding or the formation of new complex.
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This event occurs when a signalling molecule in the receiver voxel reacts with a unbound receptor

to form a complex. As a result of this reaction, the number of signalling molecules in the receiver

voxel (which is Voxel 3 in this example) is decreased by 1 and the number of complexes bptq is

increased by 1. The rate of this event is proportional to the product of the number of signalling

molecules in the receiver voxel n3ptq and the number of unbound receptors pM´bptqq. Equation (59)

is the transition probability for a receptor to unbind. The unbinding reaction causes the number of

signalling molecules in the receiver voxel n3ptq to increase by 1 while the number of complexes bptq

to decrease by 1. The rate of this reaction is proportional to number of complexes bptq.

Equations (50) to (59) give the transition probabilities of the possible events that can occur

when the state of the system is pNptq, bptqq. It is possible that no transitions occurs in the time

interval pt, t ` ∆tq, the probability of this occurring is given by the complementary to that of an

event occurring, that is, one minus the sum of the RHSs of Equations (50) to (59). This completes

the model.

D Difference between ErnRptq|s,Bptqs and σsptq

In Section 4, we propose to replace ErnRptq|s,Bptqs by σsptq “ ErnRptq|ss. The difference between

these two quantities is hard to compute because ligand-receptor binding is a non-linear process. In

this Appendix, we will provide some justification of this replacement by considering the filtering

problem of LTI systems. Consider the following continuous-time LTI system in state space form

[61]:

dxptq

dt
“Axptq `Busptq ` wptq (60)

yptq “Cxptq `Dusptq ` vptq (61)

where (1) xptq, usptq and yptq are, respectively, the state, input and output vectors; (2) wptq is

the state noise vector and vptq is the measurement noise vector, where both vectors are zero-mean

Gaussian white noise; and (3) pA,B,C,Dq is a state space quadruple. We assume the dimensions of

the vectors and matrices are compatible. The subscript s in usptq plays the same role as the Symbol

s in the main text. We can use different s to choose different input usptq. We can determine the

mean state vector Erxptqs by taking expectation on both sides of Equation (60) to obtain:

dErxptqs

dt
“AErxptqs `Busptq (62)

Note that Erxptqs plays the same role as σsptq “ ErnRptq|ss.
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The filtering problem for a LTI system is to estimate the state vector xptq from the continuous

history of the output yptq. A method to realise filtering is to use an observer [61]:

dx̂ptq

dt
“Ax̂ptq `Busptq `Kpŷptq ´ yptqq (63)

ŷptq “Cx̂ptq `Dusptq (64)

where K is the observer gain matrix. The vector x̂ptq is the estimated state vector from the

past history of the output yptq. The expectation of x̂ptq, i.e. Erx̂ptqs, plays the same role as

ErnRptq|s,Bptqs.
We are interested to study the difference eptq “ Erx̂ptqs ´ Erxptqs. By using Equations (60),

(61), (63) and (64), it can be shown that eptq obeys the differential equation

deptq

dt
“pA`KCqeptq (65)

This means that if the matrix A ` KC is asymptotically stable, then the difference eptq tends to

zero for sufficiently large t. This result suggests that the difference between ErnRptq|s,Bptqs and

σsptq can be small if the filtering error is stable.
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Figure 8: The output of the modulators Z0ptq (thin line) and Z1ptq (thick line) for Symbol 1.
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Figure 9: The mean output of the modulators Z0ptq (thin line) and Z1ptq (thick line) for Symbol 0.
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Figure 10: The SER for Symbols 0 and 1.
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Figure 12: The SER for Symbols 0, 1 and 2 for varying number of receptors.
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Figure 13: The output of the modulators Z0ptq (thin line) and Z1ptq (thick line) for Symbol 0. The

mean number of signalling molecules at the receiver voxel for both symbols is similar.
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