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On Lossy Joint Source-Channel Coding In Energy
Harvesting Communication Systems

Meysam Shahrbaf Motlagh, Masoud Badiei Khuzani, Patrickrdhi

Abstract—We study the problem of lossy joint source-channel A. Contributions
coding in a single-user energy harvesting communication syem
with causal energy arrivals and the energy storage unit may ave
leakage. In particular, we investigate the achievable distrtion In this paper, we focus on the design of data transmission
in the transmission of a single source via an energy harvest- policies in EH sensor devices. Specifically, we consider a
ing transmitter over a point-to-point channel. We consideran  geanario where a single node continuously senses data from
adaptive joint source-channel coding system, where the Igth of - . . .
channel codewords varies based on the available battery crge. & SOurce and wishes to transmit this data over a point-to-
We first establish a lower bound on the achievable distortion Point channel. The harvested energy is stored in a battery
Then, as necessary conditions for local optimality, we obta two  that may leak energy at a rate which depends on the available
coupled equations that determine the mismatch ratio betwae pattery charge. The communication is carried by a jointseur
channel symbols and source symbols as well as the transmssi ., onne| coding (JSCC) scheme, where in each communication
power, both as functions of the battery charge. As examples . . .
of continuous and discrete sources, we consider Gaussian cain PlOCK @ source sequence of fixed length is mapped into a
binary sources respectively. For the Gaussian case, we obtaa Channel codeword whose length depends only on the available
closed-form expression for the mismatch factor in terms of he battery charge. In other words, the mismatch factor between

LambertW function, and show that an increasing transmission the channel symbols and source symbols is adaptive.
power policy results in a decreasing mismatch factor policyand

vice versa. Finally, we numerically compare the performane of We summarize the major contributions of this paper as
the adaptive mismatch factor scheme to the case of a constantfollows:
mismatch factor.

Index Terms—Joint Source-Channel Coding, Energy Harvest- « We formulate and .mod.el continuous-time |0§Sy joint
ing, Distortion, Resource Allocation source-channel coding in an energy harvesting com-

munication system, where the transmission power and
bandwidth mismatch factor, i.e., the length of channel
codewords per source symbol, are dynamically adapted
to the available battery charge.

We establish a lower bound on the average distortion
and show that in the case of infinite battery capacity and
no leakage it is asymptotically achieved with a constant
transmission power and a constant mismatch factor.
Using a calculus of variations technique, we find achiev-
able locally optimal transmission power and mismatch
factor policies that minimize the average distortion at the
receiver.

« We develop an interesting structural result on the in-
stantaneous distortion. Namely, as long as the battery
is not depleted, locally optimal transmission power and
mismatch factor policies will adaptively adjust with the
battery charge in such a way that the instantaneous
distortion is maintained to a constant level.

For a moderate-size battery, we numerically show that our
proposed scheme with an adaptively varying mismatch

I. INTRODUCTION

IRELESS sensor networks (WSN) provide a tool to

gather and disseminate information and thus play an*®
important role in unsupervised control systems. In manggas
sensor devices are deployed in large numbers to cover a large
area. As a result, regular maintenance and battery repltem
for each individual sensor is impractical, if not impossibl °
Thus, to develop truly autonomous sensor networks that do
not require regular maintenance, it is essential to supply a
sustainable energy source to each node.

Energy harvesting (EH), i.e., supplying energy by harmessi
ambient energy resources such as solar, wind and thermal
energy, is a promising state-of-the-art solution that cin s
nificantly improve sensor lifetime. In a typical EH node,
the energy required for various sensor tasks is incremgntal
harvested from the environment and stored during the cafrse
operation. However, due to the stochastic nature of renlewab °
energy resources, sensor energy consumption must be ntanage

adaptively to achieve good performance.
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factor achieves a smaller average distortion compared to
a scheme with a constant mismatch factor.

For Gaussian and binary sources, we numerically find lo-
cally optimal power policies and mismatch factor policies,
both as functions of battery charge. With different leakage
rates, i.e., zero leakage rate as well as arbitrary non-zero
leakage rates, we observe that a good transmission power
policy and mismatch factor policy increases and decreases
respectively, as the battery charge increases.
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B. Related Work improve the distortion? If so, how exactly should the lengfth
Among prior works that consider lossy communication witG@nnel codes per source symbols be changed in terms of the

EH transmitters/receivers aié [2]1[8]. If [2], the meanaed bgttery ste}te? Ou_r focus here is to minimize Iong—term [era
distortion of the estimated source symbols at the receiwerdistortion in a point-to-point channel that exploits an ptilee

minimized, where both online and offine EH scenarios af@int source-channel coding scheme. Different froml [24 w

considered and the mismatch factor is always one.[In [Pnsider a more general battery model with a non-constant
the problem of energy allocation for data acquisition anl&akgge rate and have numerically |nvest|ga}ted the_ Impact
transmission in WSNs is studied, and the case ofasinglsen@c different battery Ieakages on_the compressmq—trgrmuns

as well as the case of multiple sensors are both consider@giformance. Moreover, in addition to the transmission grow

A similar problem is studied in[[4] for the case of a sing| he bandwidth m|sm_atch factor between source symbols and
source with finite battery and data buffer. Another inténgst channel codewords is also adapted to the battery charge.
work is [5], where a perturbation-based Lyapunov techniqueThe rest of this paper is organized as follows. In Sediibn II,
is used to obtain an online energy management scheme‘f@rs_tUdy the communication model as well as the EH model. In
source-channel coding of correlated sources.in [6], a Sans Sectior 1ll, we present the problem formulation. A lower bdu

source is transmitted over a flat fading channel and the effli" the average distortion as well as the achievable scheme of
minimization of the total distortion over a finite-time hgpn e communication resources are studied in Segfidn IV. Some

is considered. Therein, the optimal distortion and trassioh  Structural results for the case of Gaussian source arelissizth
power are found subject to a delay constraint for recontnic N SectiorlY. In Sectiof W1, we provide numerical results and

of the source symbols at the receiver. [ [7], the problem §fmulations. Finally, Section Mil concludes this paper.
uncoded transmission over a fading channel is investigated
and an optimal energy allocation scheme to minimize thd tota Il. PRELIMINARIES
distortion is established. L

Communication systems with EH transmitters/receiveraeha@" Communication Model
also been studied extensively in the context of losslessira We consider the lossy source-channel transmission of a sta-
mission. For instance, the offline minimization of the trangionary memoryless source with general alphabet (continuo
mission completion time for a single source is considered discrete) over a point-to-point channel. We first assume
in [Q], where the battery capacity is infinite. This problenthat the communication is carried ov&r consecutive blocks
has been also extended to the cases of finite battery [16f,joint source-channel coding (JSCC), where the number of
multiple access channels_|11], broadcast chanrels [1Z]-[source symbols in each block is fixed, whereas the length
and fading channels [15]. Also i _[L6], the problem of thef the channel codewords varies from one block to another
trade-off between the average queueing delay of packets daded on the available charge in the battery. Specifically,
power consumption of a power grid has been studied usinglaring the ‘" block, i = 1,...,K, a sequence ofn inde-

2D Markov chain model. pendent and identically distributed (i.i.d.) realizasoaf the
In another line of work, throughput/sum-throughput maxsources!” = (s;[1], s;[2], ..., s;[m]), are mapped to a channel
imization is considered for point-to-point channels][lifj; codeword of lengthn;, i.e., z;* = (z;[1], z[2], ..., zs[ni]).

terference channeld”[18] and relay channéls| [19]] [20]. Ahe inputz;® induces a distribution on the channel output
more realistic battery model with energy leakage is alsg”’ = (v:[1],v:[2], ..., y:[ni]), according to the laWPy (y;") =
considered in this contex{_[21]=[23]. Specifically i [23]]T"; Py|x (y:[k]|z:[k])Px (zi[k]), where Py x (y|z) is the
offline maximization of throughput in a single-user channelonditional distribution of the stationary and memorylelsan-
as well as a broadcast channel has been studied under battety At the receiver, after each observatighi, i = 1, ..., K,
imperfection constraints. In particular, the model asssithat an estimates!” (y;'*) = (8;[1], 8;[2], ..., §;[m]) of s/ is made.
only a fraction of harvested energy is stored in the batteryWe assume that is the time duration needed for one symbol
due to charging/discharging inefficiency, whereas a cotalyle to be generated/transmitted. Associated with\t, = m x 7
different type of battery imperfection, i.e., battery leglk over is the time duration to generate source symbols, andt., =
time as in [21], is considered in our paper. n; x 7 is the time duration to transmit a channel codeword of
Another similar work in the framework of lossless comlengthn; during thei*" block (see Fig[1).

munication is [24), where authors have studled_onlme M efinition 1. We define the bandwidth mismatch factor be-
mization of long-term average sum-throughput in a multiple

access channel using the same calculus of variations bast er;] thei" channEI Icglcie\{(vorq r?lng’ with duratloﬁt.ci,
technique. Despite similarity in the approach taken in bo nd the source sym O. ock, with duratiad,, as/;_;(tci) .
works, the nature of the problems are quite different. In thet‘”/AtS = ni/m for i :_1’ - I, wheret,, = Zézl At
current work, we are concerned with lossy source-chanr@| the channel output time (at the end of the block)
transmission in EH communication systems. The lossy natdr_gt we take asKthe reference time throughout th_e Paper.
of the problem opens a whole new set of questions that wi eW'Se’{p(tci)}izl are the average power constraints on
not addressed in_[24], e.g., how can the trade-off betwe codewords, i.e.,

increasing and decreasing transmission power be managed so 1 )

that an optimal average distortion is achieved at the receiv — Z lzild)|” <plte,), i=1,.., K. 1)

Does an adaptive source-channel coding scheme significantl b=t



IEEE TRANSACTIONS ON COMMUNICATIONS 3

1 1 1
At At At
K(te,) “ ’i(t@) “ K(tes) “
Source symbols: m m m
// \\‘ ‘\\\\
/ \ SN
At,, / At,, \ At,, \\
Channel codewords: ny n2 n3

Fig. 1: Consecutive blocks of JSCC, where andn;, i = 1,..., K, are the number of source symbols and length of channel codewn
each block, respectively.

As demonstrated in Fidl 1, the mismatch factdt.,) is For the binary source),,., = min{p,1—p} andR* = H(p).
fixed throughout each block, nevertheless it can change-adapin the'" block, the transmit power is limited to(t.,), and

tively from one block to another. Similarly, the transm@si thus the channel coding raf.(p(t.,)) is given by
power p(t.,) can change from block to block. The rate-

distortion function (i.e., lossy source coding rate) in the R.(p(te,)) =sup [(X;Y), i=1,.. K, (6)
block, for a sources is given by
Ry(D;) = inf I(S;S), i=1...K @) where the supremum is taken over all channel input distribu-

tionsPx that satisfy the power constraiptt.,) in (@) for the
where the infimum is taken over all conditional distribugoni‘" block. This model allows for fast fading, where the block
Pg 5 such thaff[d(S, S)] < D; in theit® block, andI(S; S)is length is sufficiently large such that the effect of fading te
the mutual information between the estimated symisblsnd @veraged. We assume .that the channel coding ffatp) has
the source symbolS. We assume that for a given sougand the following properties:

distortion measurel(s, s) the rate-distortion functiorR(D) [C1] R.(p) is strictly positive forp > 0, zero and right-

has two threshold®),,., and R'" (whereD,,,., is always finite continuous ap = 0,

whereasR'™ could be finite or infinite), such that: [C2] R.(p) is strictly increasing, concave and twice con-
[S1] Rs(D) is zero forD > Dy, tinuously differentiable forp > 0, i.e., R.(p) > 0
[S2] Rs(D) is strictly decreasing, convex and twice con- and R (p) < 0.

tir)uously diﬁerentia}/ble for0 < D < Duax, I8, Similarly, these conditions abstract the form of a channel
Ry(D) < 0 and R{(D) > 0, and continuous at ¢oding rate function, and an example is the Shannon rate

D = Dyay, . 1 . .

[S3] limpo RL(D) = —oo , and R,(D) is finite every- funct|.on Re(p) = §1Og2(1 + p/N), which will be assumed
where else, later in the paper.

[S4] limpyo Rs(D) = R™, andR,(D) is right-continuous ~ We assume that the block lengthsandn;, i = 1,..., K,
atD =0 if Rt is finite. are sufficiently large that the rate-distortion functiordahe

These conditions abstract the form of a rate-distortiorcfion. channel coding rate have operational significance. Sinee th
For example, the Gaussian sourc€0, 02), with squared-error mismatch factor_ls fixed thr_oughout each JSCC block, source-
distortion measurel(s,s) = |s — §|> has the rate-distortion channel separation holds in each bIo_ck. Therefore, based on
function given by [25], a separate source a_md channel coding scheme, the relatlon
between source coding rate,(D;) and the channel coding

? rate R.(p(t.,)) is given by

1 o 9

0 D= 02’ RS(DZ) = F;/(tCi)RC(p(tci))’ =1, K (7)

and satisfies [S1]-[S4] witD,,.x = 02 and R" = co. An- N o
other example is a Bernoulli) binary source with Hamming ©One should note that by thg condition [S_2] and continuity of
distortiond(3, s) = 0 for s = § andd(s, s) = 1 otherwise. The fts(Di) at D; = Dmax, the inverse functionD;(R;) of the
rate-distortion function is then given by [25], rate-distortion always exists far < r(tc,) Re(p(te,)) < RL"
. (though in most cases there is no closed-form), and we can
R.(D) = { H(p) — H(D) 0=<D< min{p, 1 —p} compute the distortiorD;(R,) in the i** block in terms of
0 D 2 min{p,1 - p}, 4 (he transmission powe(t.,) and the mismatch factor(t.,)
“) using [@), i.e..D;(R,) := D(p(t.,), x(t,)). Moreover, if R
is finite then the distortion iD(p(t.,), x(t.;)) = 0 for pairs
H(D):= —Dlog, D — (1 — D)logy(1— D).  (5) plte,),r(te,) such thate(te,)Re(p(te,)) > R,

where H(p) is the entropy of the source and
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From the definition of the mismatch factor and Hig. 1, w€. Storage Model

directly obtain We assume that the energy arrival times and their amounts
K are not known at the transmitter a priori. Therefore, the
K x Aty = Z 1 At.,. (8) instantaneous energy of the battery is a stochastic procass
i—1 rlte;) can be characterized in terms of the energy arrival process

and battery depletion rate. L¢F; }2°,, denote the size of the

Similarly, the total average distortion per source symbharo s o
y J P y energy packets arriving to the battery at time instgffig 52,

K blocks can be written as

whereE; > 0 andT; < Ty < ... . We assume that energy
1 & packets are i.i.d. with the tail distribution function dés by
Davg = KAt ZD(p(tCi)v“(tCi))Ats ©) B(z) = P[E > z], and the corresponding arrival times are
Z? a homogeneous Poisson Point Process (PPP). Specifically, th
1 1 inter-arrival times are i.i.d. and exponentially distri&d with
T KAt ;D(p(t”)’ ﬁ(tci))n(tci)At”' (10) parameten, i.e., AT, := T,,+1 — T,, ~ Exp(d). One should

note that the PPP assumption can subsume cases of EH systems
that are modeled as bursty packet arrivals at discrete sunes
as regenerative shock absorbers that use the piezoelefttat

As a practical assumption, we suppose that both the soutadransform random mechanical shocks into electricalgner
and channel block timesAt; and At., respectively, are Due to the unpredictability of their occurrence, a PPP is@dgo
small compared to the battery dynamics. Hence, we developadel to describe the behavior of such EH systems.
continuous-time model in the asymptotic regime based bn (8)The total harvested energy at the transmitter up to the time

B. Continuous-Time Model

and [10), and lef< grow so that t, {A(t) : t > 0} is thus a compound Poisson process given
by
T, := KAt, A(t) = Z E 1z, <1)- (15)
K neN
T, := ZAtc., . L .
— i We assume that the capacity of the battéris finite, that is,

L < oo. Furthermore, we assume that the battery is imperfect
where the termd’s and 7. have fixed values a&t; — 0, inthe sense that when it is charged, it leaks energy overaime
At., — 0 and K — oo. Eq. [8) has the form of a Riemanna rate which depends only on the current battery charge,
sum in the limit of At; — 0, At;; — 0 and K — oo, and and is denoted by(t) at timet. Also, it is clear that there is

thus the continuous-time limit takes the following form no leakage when the battery is depleted.
. The instantaneous battery charge at timg¢Z(¢t) : t > 0}
T, = / mdtc_ (11) is therefore a stochastic process described by
o FRlle ¢
We define 2(0) =+ AW - [ (p(s)+t9)ds ~ Be), (16
0
T. . - .
p(T,) = T _ i/ 1 dt,. (12) wherezy = Z(t_)|t:0 is the |n|fual battery c_harge a_nR(t)_|s
T. TcJo &(te) a non-decreasing, non-negative and continuous-tefiection

In this paper, we are interested in infinite-time horizon eon'0c€ss WithR(t)|;—o = 0, that only increases over the set
munication and long-term average distortion. We thus let th? : Z(t) = L} [26]. The reflection process accounts for the
transmission time become asymptotically large, ife..»> co. EXCESS energy arrivals that overflow the batte_ry capacity an
If limy. o0 p(Te) > 1 OF limy, o0 p(T.) < 1, the backlog €NSUres _that even for I_arge energy p_acket a_rrlvals_ thegetora
in either the source symbols queue or the transmission R§PCESS is bounded by its capacity limit at all times, i1) <
channel codewords tends to infinity. Thus, for a stable seurd); L]. Furthermorep(t) + £(7) is the instantaneous battery
channel communication system we assuiner, . p(T.) = depletion rate. Since the transmission pO\per) is adapted
limr, 0o Ts/T. = 1. Therefore, from[{12) for an asymptot-t© the battery charg&(¢), this depends on time only through

ically stable joint source-channel communication syste v (1), -8, p(t) + £(t) = p(Z(t)) + £(Z(1)). Likewise, the

require that, instantaneous mismatch facteft) is modulated by the ba_ttery
chargeZ(t), wherex(t) = x(Z(t)). More specifically, since
I 1 e Qb — 1 (13) p(t), £(t) and x(t) all depend ory only through the battery

T 500 T, o k() ¢ chargeZ(t), with slight abuse of notation we denote pfz),

¢(z) andk(z) the explicit dependence of these enn the rest
of this paper, we refer tp(z) andx(z) as the power policy and
1 T 1 mismatch factor policy. The storage procgsg) can then be

Hence, we rewrite the continuous-time limit 6f110) as

Davg = TP_IPOO T, /o D(p(te), "(tc)),i( . dt. viewed as a continuous-time Markov process, where the state
1T 1 space of the process is the finite inter{@alL]. We impose the
= lim — D(p(te), k(te)) ——dte, (14) following conditions on the feasible set of power policiesla
Teveo Te Jo ri(te) leakage rates
where [I#) follows from the fact thatmy, .., Ts/T. = 1. e Vz € (0,L], p(z) >0, andp(z)|Z:0 =0,
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L
o SUPg. <1 P(2) < 00, _ Mo ﬁdz (23)
e SUpPg < £(2) < 00, andf(z)‘zzo =0. x(0) o+ K(2)
The first condition is to avoid a reserve of energy in the =1, (24)

battery that can never be consumed by transmission and thus

effectively reduces the usable energy stored in the batféry Where x(0) := r(z)[.=o is the number of channel uses per
second condition reflects the fact that instant depletiomrof SOUrce symbol when the battery is exhausted. Similarly, we

amount of energyAE > 0 is not allowed. Thus, an optimal apply the ergodicity argument to the distortion functior{d).

power policyp(z) must satisfy both of these constraints. WittyVe first rewrite D, from (14) as
these conditions op(z) and ¢(z), Z(t) becomes irreducible 1T 1
in the sense that there is only one single communicatingclap,,, = lim — /0 D(p (Z (te)),k(Z (tc)))

—dt,.
. Te—oo Ty K (Z (te)) ‘
in the state space. (25)

We define7r, (z) as the empirical distribution function of 5 & {5 the ergodicity of the storage procesd.), we obtain
the storage process with respect to the reference time, i.e.

T, L 1
For (2) = Ti/o (2 dte. 17) Doy = /0 D (p(2),k(2)) mw(dz) a.s. (26)
¢ L
By the strong law of large numbers, 8 — oo, 7r,(2) :WoDT(p(O),Ii(O))-l-/ DT (p(2), K(2)) f(2)dz
converges to the stationary probability measure of theager ot 27)
process denoted by(z), almost surely for every value of
The following theorem identifies stationary distributioh o =E, [DT (p(Z), L)} , (28)
the storage process(t) [27], where we recall that the inter- K(Z)
arrival times are i.i.d. and exponentially distributed twipa- |, o e
rameterd, i.e., T,,+1 — T, ~ Exp(0). 1 1
_ - Dt <p, —) :=D(p,K)—. (29)
Theorem 1. For L < oo, the storage procesg(t) is positive K K

recurrent and there exists a unique stationary probabili%v ish to find timal t . .
measuren(z) = P[Z(t) < z]|, which may have an atom ean\.NW'St hc:‘ mt an c|>_p 'ma ranhstrrr\]lstsltr)]n %Qv;/ert_pOMf)th
o == 7(2)|.—0 > 0, and is absolutely continuous cf, L] 212 MiSMalch factor po icy(z) such that the distortion at the

receiver is minimized. More specifically, we want to miniiz

such that z (27) subject to the constraints in {20}, {21) ahdl (24), i.e.,
m(z) =mo+ [ f(u)du, (18)
0+ L
i T T
where f(z) is the absolutely continuous part of the probabiIity(z)7ﬂolﬂigzm(o)”0D (p(0), £(0)) + . D' (p(2), k(2)) f(z)dz
measure. Moreover, (30)
z L

F(2) () +£(2)) = dmoB(2) +6 | Bla—u)f(u)du. (19) st f(2) (p(2) + £(2)) = de ™ (770 +/ e”‘f(u)du) (31)
Remark 1. From (I3), 7o is the fraction of time that the battery o B
remains discharged. o + o fl2)dz =1 (32)
Remark 2. Equation(@9) is the equilibrium condition between _To_ g Mdz -1 (33)
the rate of down-crossing'(z)(p(z) + £(z)) and the rate of 0) =~ Jo+ K(2)
up-crossingdmo B(z) + 6foz+ B(z —u) f(u)du at level z. f(z) >0, m >0, k(z)>0, £(0)>0, (34)

We now assume that the packets of energy are exponentigliyere the strict inequalities(z) > 0 andx(0) > 0 are implied

distributed with parametek, i.e., B(z) = exp(—Az). There- by (33). We note that for a givefi(z), p(z) can be calculated
fore, (19) reduces to directly using [(31L).

_ z We note that in the formulation of the optimization problem
o Az Au
F(2) (p(2) + () = de (WO +/0+ ¢ f(u)du>' (20)  @=0), the mismatch factor and the transmission power can

be viewed as two limited resources that must be allocated
1. PROBLEM FORMULATION efficiently. Specifically, due td(33), the inverse mismattor
has an average of unity. Consequently, using a large mismatc
factor, which is desirable as this reduces the instantaneou
L L distortion, must be balanced with using a small mismatctofac

/O m(dz) = mo + o fz)dz = L. (21) {0 maintain the average constraint. Similarly, the tramtemi
cannot consume more energy than what is stored in the hattery
hich itself is replenished at a maximum ratedgf\ (ignoring
. the energy that is lost due to overflow). Thus, periods with a
lim 1 / 1 di. — E. {_} ws. (22) large transmlss_lon_ power must be accompanied by periotis wit
Toooo Te Jo K(Z(te)) K(2) a small transmission power.

Since,n(z) is a probability measure we have

By combining [IB8) and[{18), we also obtain the followin
constraint on the mismatch factor
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V. MAIN RESULTS In particular, we then compute the total average distortibn
A. Distortion Lower Bound this scheme as

In this part, we derive a distortion lower bound using; [DT (p*(Z) 1 )}:(1_%)1)7 <§+6 1)+7r0D .
Jensen’s inequality and convexity of the distortion fuoicti " "k*(Z) A ’ e

1) Finite Battery Capacity:We first note that for any power (42)
policy p(z), when the battery capacity is finite, the followingS € — 0 the atomm, tends to zero from({41) and the lower
upper bound has been computed!inl [24]: bound in [3B) is thus asymptotically achieved.

B, [p(2)] <2 (1— e 35 - :
(2] < 5 (1—e"). (35)  B. Achievable Resource Allocation Scheme

One should note that even with a non-zero leakage rate, thdhe two functionsp(z) and x(z) are the policies that we
upper bound in[(35) still holds, however it is a potentiallyish to design in this subsection to manage the limited re-
looser bound. sources of the system in such a way that the average distortio
We now find a lower bound on the objective functioin (30) is minimized. To this end, we use a calculus of
E.[D'(p(Z),1/k(Z))], based on the upper bound [0}35) anaariations technique which provides necessary conditiona
the following convexity lemma. local and therefore global optimal solution to our optintiza
problem.
1) Calculus of Variations:We definef<(z) and1/x%(z) as
a perturbed density function and perturbation of the irwers

Lemma 1. The functionD(p,q) defined in(@239) is jointly
convex over the paip and ¢, whereq := 1/k.

Proof: See Appendix A. B mismatch factor, respectively, i.e.,
Based on Lemmd&ll as well as Jensen’s inequality, we .
establish a distortion lower bound as below F(z) = [(2) + eh(z), (43)
t 1 t 1 L) (44)
Er {D (p(Z), K(Z)ﬂ >D <Ew [p(2)], Ex [m}) k€(z) © K(2) ’
(36) whereh(z) andg(z) are continuous and bounded perturbation

5 functions on(0, L], with h(0") = A(L) = 0 and g(0*") =

T2 (1= S .
=D ()\ (1—e™") ’1> (37) g(L) = 0. For sufficiently smalle > 0, the perturbed density
— Dig function f¢(z) satisfies[(3R) only if

L L L
where [37) follows from[(35) and the fact that the function . Fe(2)dz = mo + f(z)dz+€/ h(z)dz (45)
D'(p,1/k) is a non-increasing function op, and further 0+ o+ o+

recalling thatE.[1/x(Z)] = 1 from (24). The lower bound =1, (46)
in 32) holds for any transmission powgfz) and mismatch . . .
factor k(=) that satisfies[(33) an@{B4). which due to[(2lL) is true for alt > 0 iff
2) Infinite Battery Capacity: When the capacity of the L
battery is infinite, i.e.L — oo, and therefore the chance of /0+ h(z)dz = 0. (47)

battery overflow is zero, for any ergodic power poligy) the

lower bound in[(37) simplifies to In addition, from [3B) we derive the two following conditi®n

L
1 o o f(2)
f > Dt = . — + dz =1, 48
B |0 (02 )| 201 (1) @) T | L (48)
One should note that if the leakage rate is zero, every ecgodi o t fe(z)dz -1 (49)
power policyp(z) is such thaff. [p(Z)] = §/\. This suggests k(0)  Jor K(2) '

that in the infinite battery capacity case with no leakaggye simplify {@8) using[[@4) as follows
separate source and channel coding with a constant mismatch

_ . . . . L 1
factor k(z) 1 is optimal. More precisely, consider the o / ( +6g(z)> F(2)d=
0

following choice of power policy x(0) + \ k(%)
)= 4e 230 (39) m o (M@, / ' (2)f(2)dz  (50)
=3 €, ) = €
P ) w0) " Jor () or”
with p*(0) = 0, ande > 0 is a small positive number that =1. (51)
ensures the storage process is positive recurrent, ancsehog . o )
k*(z) = 1 for z > 0. Then, Similarly, we simplify [49) using[{43) as
L
) o fe(z)
w9 _ Lo d
Ex [p*(Z)] (/\ + 5) (1—mo), (40) /-@(O)+ o K(2) <
and since we must havé, [p*(z)] = §/A, then _ T /L Mdz 4 6/L h(z)dz (52)
§/A %(0) o+ #(2) o+ £(2)
1—mo (41) =1 (53)

- S/A+e€
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{D*( @)

b / (Pweo . )+ PERIERWE ) (e 6
—-E, [ ( 1 ] 6/ ( p(z),n(z))zzg+aD(1;(;()Z,)f<a(z))dp;z) E_o£8>dz’ 64)

Thus, analogous to the constraint in](47), bdthl (50) (5®)lowing necessary condition for a local and thereforeabgl
are true for sufficiently smalt iff the perturbation functions optimal power policyp(z)

also satisfy the following constraints

L
/ 9(2)f(2)dz = 0
0+

Ph)
/0+ /@(z)dz =0.

(54)

(55)

For sufficiently smalk, two necessary conditions for a local

L h(z) LaD(p(2), k(2)) h(z)
/0+D Z),K(Z))H(Z)dz—/0+ 20(2) K(Z)p(z)dz
P 9D(p(2), K(2)) 1 S AG—u
i /o w(z)  A(2) (/oe : )’““)d“) dz]

(65)

and therefore a global optimal solution to the optimizatiogy changing the order of the double integral in the third term

problem in [30){(3K) are

e [0 (1@ 55) | 2 2 21 (020575)] - 09
YA A

whereE,. is the expectation with respect to the probability
measure with the perturbed density functipt{z), (see [(4B)).

We now expand the .h.s df (b6) as below

SEEES)

L

= m DT (p(0), x(0)) + . DY (p(2), (2)) f(2)dz. (58)
We then use[{31) to compuje(z) as follows
p(2)
= Je (mo + Jor M fe(w)du) {(2) (59)
fe(2)
S (7o + Jor " f (uw)du + € [, eX*h(u)du) — (2
=9 f(z) 4+ €h(z) ().
(60)

We also compute the derivative pf(z) with respect toe as
follows

dpe(z) B e_)\z fOZJr e)‘“h(u)du _ h(Z) 5
e lemo 0 ) TP

Based on[(@1), we expanB(p(z),x(z)) to first order ine,
ie.,

(61)

= D(p(2),k(2)) + € Bp(z’)li(Z)) dp;iz) L:o + O(€?).
(62)
SubstitutingD (p¢(z), x(z2)) and f¢(z) into (88) results in[(63)-

(&4), where we have neglected the higher order terms of

of (68) we obtain

- L OD(p(u), w(w) e D(p(), k(=)
[ h(z)<‘5/z o) ww TR
_9D(),k(2) p(2) .
op(2) n<z>>d . ©0

Equation [[66) holds for all perturbation functionsz), that
satisfy [4T) and[(85). We can thus rewrife](66) as follows

L L aD(p () k(u)) e M=) D(p(2),r(2))
/(J+h(z)<5/z o) R0 "(2)

— +K/()+CQ> dz =0, (67)

du +

whereC; andCs are two free parameters. Therefore, based on
the fundamental lemma of the calculus of variations we @eriv
the following necessary condition

p(u), r(u)) e
()
S S VL A Ci+C =0
29(2) p(z) + C1 + Cak(z) =0,
where z > 0. Eq. [68) is an integro-differential equation
involving p(z) and x(z). However, by multiplying both sides
of (&8) by e~ *# and differentiating both sides with respect to
z and further simplifications, we derive a first order non-dine
autonomous ordinary differential equation (ODE) equikate
©3).
We now consider the inequality i (67), where the l.h.s can
be written as

|2 (o) )|

= moD' (p(0), (0)) +

du+ D(p(2), k(2))

(68)

L

D'(p(2), k(2)) f(2)dz. (69)

(i.e., O(€2)). By substituting [[64) into[{36), we establish the o+
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= |2 (1)

)
L
—5, |0 (02). 5 )| +< [ (P rengters) - PEEE D gy 0)) a9
We computexf(z) using [44) as follows level. As elaborated in sectioplll, one can think of the
1 transmission powep(z) and the mismatch factok(z) as
K(2) = 4 (70) limited communication resources that must maintain long-
—— +eg(z) term averages, and thus the transmitter is trading off one

_ o _ ~(2) _ for the other. More precisely, since the mismatch factortmus
where its derivative with respect toat ¢ = 0 can easily be satisfy [22) (i.e., the inverse mismatch factor averagese),

obtained as below as the availability of one communication resource (say the
drc(z) B 9 7 transmission power) increases due to a large battery charge
g | _ =9k (2). (1) the transmitter employs a large transmission power andssave

on the other communication resource (i.e., the mismatdofpc

by then using fewer channel uses per source symbol. Likewise
when the battery charge is low, the transmitter reduces its
D(p(2),k(2)) transmission power, but employs a large mismatch factor.
OD(p(2), k(2)) drc(2) Formally, we have the following Lemma.

Similar to [62), we write the Taylor series @¥(p(z), x(z))
up to first order term ire as below

=D(p(2),k(z € O(e?
(p(=), () + 9k (2) de le=0 o) Lemma 2. The constang in (Z6) must be in the rang@,.;, <
(72) B < Bmax, Where
Therefore, by substituting (#4),_(71) add{72) iftal(69)s tis Ry(D)
then reduced td(73). Bmax = }:'1)5% Rf(D)’ (77)
By substituting[(7B) intd{37) and neglecting the higheresrd s
terms ofe, we establish the following necessary condition foand
a local and therefore a global optimal mismatch faet6r), Bmin 1= mhzgn gfg; — Diax. (78)
g OD(p(2), K(2)) e .
/ 9(2)f(2) [D(p(z),n(z)) - a—n(z)} dz =0. Furthermore, for every such a choice 6f (Z8) results in a
o* r(z) (74) unigue constant solution fab(p(z), x(z)), z > 0.
Equation [[7%) holds for all perturbation function$z) that I_:’roof: See AppgndlﬂB. . -
satisfy [54). Therefore, we rewritE(74) as It is easy to \I/%esrsty)that for both Gauss%r:(gr)ld binary

L OD(p(=), K(2)) - sourceslimp g R.(D) = 0 andlimptp,,,, RD) 0.
Oﬂ(z)f(z) D(p(2), k(2)) = Ir(z) k(2) +5|dz=0,  Therefore, for the Gaussian source we have the bourntl<
(75) B < 0. Likewise, for the binary source we have the bound

. — i ,1—p} < B <O.
wheref is a constant. Based on the fundamental lemma of themm{ID P} < s
calculus of variations, we thus derive the following neeegs Remark 3. Note that the derivation starting witl§g9) and

condition leading to the differential equation for the mismatch facto
dD(p(z), k(2)) in (76) has not used the assumption thafz) = exp(—\z).
D(p(z), k(2)) — aﬂ—(z)fi(z) +p8=0, z>0. Thus, the structural result on the instantaneous distartieing

(76) constant forz > 0, Lemma 2 as well as the mismatch factor
and instantaneous distortion in the Gaussian case to be show

Solutions to the equations i _(68) arld](76) determine a Ig; @) and (@5) are valid for all energy distributions3(z).
cally optimal power policyp(z) as well as a locally optimal

mismatch factor policy:(z). ] _

2) Instantaneous distortionin this part, we discuss anC- A Constant Bandwidth Mismatch Factor
interesting consequence 6f{76) on the instantaneoustiisto  So far, we have studied a general JSCC scheme where the
D(p(z),k(z)),z > 0. Specifically, as formally presented inmismatch factor is adaptively adjusted according to thél-ava
Lemmal[2, a locally optimal solution has the property thable battery charge. However it is also interesting to campa
the power policy and the mismatch factor policy are adjustélde results with the simpler scheme where the mismatchrfacto
in such a way thatD(p(z),x(z)) is constant forz > 0. is fixed. Thus, we now consider the case where the mismatch
In other words, if the transmission power is decreased (factor is constant and does not adapt to the battery chaoge. F
increased) due to a change in the battery charge, a locallyair comparison with the general case of dynamic mismatch
optimal mismatch factor will always dynamically adjust sdactor, we retain the constrairit (33) which results in a tamis
that the instantaneous distortion is maintained to a cabstdandwidth mismatch factor of unity, i.es(z) = 1, Vz > 0.
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Therefore, there is only one design parameter, the trasgmis Moreover, the lower bound on the average distortion in this
power p(z), to minimize the total average distortion at thease is
receiver. We thus have

1 5 (1—e )\
Ry(D(2)) = Re (p(2)). (79)  FEr {D* (W)v Mﬂ 2ot (1 * x7( N )> |
(88)
'}/o determine the structure of a locally optimal scheme, vet fir
replaceD(p(z), x(z)) in (Z8) by its closed form expression in

and thereby the distortion-rate function is computed on
in terms of the transmission powei(z). The optimization
problem is therefore described as follows

(86) to obtain
inf  mDE(O) + / D (p(=) (2)dz (80) e
F(z),mo 0+ o? <1 + ’%) <1 +#(2) In(1 + Z%)) +8=0, 2>0,
SL() (p(2) +0(2) = 6 (o / pdu) 81) | (89)
: which can be rewritten as

o + o+ f(z)dz =1 (82) (—1—&(2)111 (1—1—]%2))>exp (—1—&(2)111 (1—1—]%'2)))

f(Z) > 07 o > 07 (83) ﬂ
where D(p(z)) := D(p(2),1) is the average distortion with o-e
bandwidth mismatch factor of unity. Moreover, the distamti for z > 0. Therefore, we have
lower bound in this case is the same Bgg in (35). As a
necessary condition for a local and thus a global optimalgyow W, <4) +1
policy p(z), we can directly obtain the following equation by k(2 8) = _0—67 2>0, (91)
replacingm( ) = 1 into (68) with the substitutiom\(C; + In (1 + M)

=C, N

o-Aw=2) -, whereW,, () denotes theLambertW function [28] that takes
5/ D'(p du+D(p(2))~D'(p(2))p(2)+C =0, either real or complex values and has an infinite number of
(84) branches, each denoted by an integeihe notations (z; )
where D’(-) denotes the derivative ab(.), andC is a free emphasizes the dependencergt) in (@) on the choice of
parameter. As explained belolv {68), we can derive a firstrordé Moreover, [QL) shows that(z; 3) is a decreasing function
non-linear autonomous ODE equivalent[to](84) which is fouraf =z, wheneverp(z) is an increasing function of and vice
to be versa.

)\[)(p(z))Jr(g —p(2)) [)’(p(z))er(Z)p’(z)D”(p(z))+(j =0, Remark 5. Based on the properties of thenmbertW func-
(85) tion,n =0 andn = —1 are the only branches that yield a

where D”(-) denotes the second derivative BY.). real value forW, (z), whereWy(x) > —1 for z > —1/e and

. L . _ W_i(z) < —1 for —1/e < = < 0. In addition, we require
Remark 4. This ODE is identical in form to (102) in_[24].

Any solutionp(z) of the ODE in@8) for C' < —AD(3) is that Wn(%) < —1 in order to haver(z;3) > 0 in @)
non-decreasing ir, for p(z) > 0. The proof of this is similar Thereforep = —1is the only acceptable branch that results in
to that of [24, Lemma 1] except for the change in the directioi§al positive values 0'% ). This provides another proof for
of the |nequal|ty which is due to the fact that the rate fuocti the fact that— 1/6 < = < 0 or equ|va|ent|y o2 < ﬂ <0
r(p) in (102) of [24], which is concave, is replaced with the{see Lemm@l2).

distortion functionD(p) in (8), which is convex.
From [91), for every fixed value of, we have

V. GAUSSIAN SOURCE AND CHANNEL 1 B
In this section, we specialize our results for a Gaussian 2 < - < ) )10g26

source using the rate-distortion functidty (D) given in [3). (2 8) x llogz <1 n M) s, (92)

We assume that the Shannon rate funcibfp) = 3 log, (14 2 N

p/N) is considered for the channel coding rate. Consequenityn the other hand, this choice gfresults in the instantaneous

the distortion functionD(p, x) can be computed as distortion D(z) := D(p(z), x(z)) in (@) as follows
—r(z) 2
_ o2 (142 D ogs 0 — () x - r(2)
D(p(z),k(z)) =0 (1 + N ) ; (86) 5 log, D) k(z; B) x 5 log, (1 + N ) >0. (93)
or equivalently Therefore, equating the I.h.s ¢f{92) and](93) yields

DY (p(2),1/k(2)) = :—2 (1 + %)K@ . (87) m% =_ (W1 (%) + 1> . 2>0.  (94)
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Let 8* denote the optimal value of the free paramegtefhus, A. A Gaussian Source over a Gaussian Channel

(@4) results in the following associated optimal instaetzus For a standard Gaussian sousgé0, 1), we have the bound

distortion D*(2) -1 < B < 0 from Section[IV-B2. We now examine two
5 B cases of leakagdz) zero leakage raté(z) = 0 for an ideal
D*(z) = o xp <W1 (026) + 1> z>0 (95) battery and(iz) increasing leakage rat§z) = 1 — e~ * for an
o? z=0. imperfect battery. Obviously, our analysis is general gffoto

As elaborated in SectidiIV-B2 and AppendiX B_{(95) is thgllow us to study different leakage behaviodfs). However as
unique constant solution of{76) for > 0 in the Gaussian stated in[[21],‘batteries leak most right after being charged”

case. Specificallyp(z) and x(z) are jointly optimized such and examples of rechargeable batteries with leakage (br sel

i i i ‘s ischarge) rates that increase monotonically with theebatt
that when using a high (respectively low) transmission powéj'sc ' \ :
the transmitter uses a low (respectively high) mismatckofac Charge are nickel-cadmium and nickel-hydrogen célls [29].

to maintain the optimal instantaneous distortion to a st Ve also consider the battery capacities- 1,2, ..., 5. Table
value. [l and Table[dl show the total average distortidn,,,, the

distortion lower bound) iz, and good values of the constants
VI. NUMERICAL RESULTS B, Cp, and C found by numerical search for both cases.

In this section, we consider numerical solutions[id (68) arfourthermore, thf initial condit.ion Of, the ODE qu(z) was
(76) to obtain an efficient power policy(z) and mismatch chosen to be(0™) = 0.001. This choice of_p(O ) is JUSt'f'?d
factor policy«(z). In particular, although there is no apparerfy the fact that a small amount of available energy in the
closed-form solution to[(88) fop(z), for every choice of the battery should entail a small transmission power, as ofiserw
constants”;, C» and the initial conditionp(0*), we can apply the battery will be completely depleted before the next gper

. . . . NN
numerical ODE solution methods. More precisely, given adixérval. Numenca} .S|mulat|0ns _have shown_ thgtpi(O ) is
choice of 3, from (78) we can in principle solve for(z) in chosen to be sufficiently small, it does not significantlyrae
terms ofp(z) (although other than the Gaussian case wherd
closed-form is found in[(91), this must be done numericallyj==" . )
We then substitute(z) thus computed intd(88) and obtain an !t iS evident from Tablelll that as the battery capacity
ODE for p(z) in terms ofC;, C» and 3 that can be solved increases, the achieved distortion decreases. In patjdiolr

numerically. Oncep(z) is thus found, one can then directly” = 5 When the leakage rate is zero this scheme can achieve
obtain (=) using [76) again. a distortion that is at mosi% above the lower bound. In

distortion performance. A similar observation was miade

We obtain from [[2D) that fact, for an ideal battery with infinite capacity as discusse
A below [38), the lower bound is asymptotically tight and can
f(z)e = J (96) be approximated arbitrarily well with a constant transioiss
o + fdi eM flu)du  p(z) +£(z)’ power policy and a constant mismatch factor policy. Morepve
where by integrating both sides ovért, z] and performing fqr case (#4) with non-zero leakage, the achieved average
some simplifications, this becomes distortions are larger compared to that of céte Note that

. . the distortion lower bound in Tablél Il is relatively more &
o +/ e’\“f(u)du = 7o exp (/ #du) . (97) since it does not depend on the leakage rate (Sée (37)), while
o+ o+ p(u) + £(u) for the case of a non-zero leakage the optimal performance
Taking the derivative of both sides ih{97) with respect:to should depend on the leakage model. Therefore, we do not
we compute the density(z), provided thatr, is known, as expect the lower bound to be asymptotically achievable, as

follows it is without leakage. As the leakage model has increasing
e~ * z 5 leakage with increasing battery charge, it is not unredsiena
f(z) = WOM exp </0+ p(u) + g(u)d“) (98)  for the lower bound to become more loose with larger battery

capacities. Nevertheless, the ratio in Tdble Il must s&tuma
finite value asL — oo. This is because) the distortion lower

L se—>z z 5 ~! bound for an infinite battery capacity B (§/\, 1) which is
mo= |1+ ex ——du
0 o+ p(u) + £(u)

By combining [98) and(32), we compute the atepas below

. m ‘D dz ) . strictly positive in this case, and) the achieved distortion will
99) converge to some value, and hence, so will the ratio.

Moreover, the value of the mismatch factof0) := (z)|._o Fig. [@ shows the transmission power poligyz), for the

when the battery is exhausted is obtained from (33) as case ofL. = 5, for an ideal battery as well as an imperfect
battery with three different leakage rates, i.e., incregéiz) =

= T : (100) 1 - e~ %, decreasind(z) = e~ *, and constant(z) = 1.
1= [o1 f(2)/K(2; B)dz We observe that in all cases, the designed transmission
We now study a single-user EH communication system wigfower monotonically increases as the battery charge isesea

energy arrival rateé = A = 1, and noise poweN = 1. To find This is due to the fact that when the remaining charge in the

locally optimal policies fop(z) andx(z), one needs to searchbattery is close to the capacity limit, new energy arrivals a

for optimized values of the free constartts C;, andCs. In likely to make the battery overflow. Therefore, the transenit

the following we separately investigate the cases of Gansstonsumes a large transmission power in order to avoid losing

and binary sources. energy. Interestingly, for the increasing leakage and the c

0

k(0)
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TABLE I: Distortion lower boundDrg, average distortiorD,., and good values of the constaris, C> and 3 of a standard Gaussian
sourceN (0, 1), for different battery capacities with the initial conditip(0") = 0.001, when/(z) = 0. The ratio of D, to D5 quantifies
the gap between the average distortion and the lower bound.

Capacity of the Battery Dip Davg Davg /D1 Constants
L=1 0.6127  0.6971 1.13 B =—0.9485,C1 = —0.95,C2 = 0.24
L=2 0.5363  0.6147 1.14 B =—-0.9137,C1 = —0.92,C> = 0.30
L=3 0.5128  0.5765 1.12 [ = —0.8940,C7 = —0.90,C> = 0.32
L=14 0.5046  0.5559 1.10 B =—0.8822,C1 = —0.89,C> = 0.32
L=5 0.5017  0.5417 1.07 8 =—0.8738,C1 = —0.89,C> = 0.34

TABLE II: Distortion lower boundDyg, average distortiorD..,, and good values of the constarits, C> and 8 of a standard Gaussian
sourceN (0, 1), for different battery capacities with the initial conditi p(0") = 0.001, when¢(z) = 1 — e~ *. The ratio of D,.s t0 Dip
quantifies the gap between the average distortion and ther lbaund.

Capacity of the Battery Dip Davg Davg/D1B Constants
L=1 0.6127  0.7445 1.21 B =—0.9641,C7 = —0.97,C> = 0.06
L= 0.5363  0.6876 1.28 B = —0.9450,C1 = —0.95,C2 = 0.17
L=3 0.5128  0.6659 1.29 B = —0.9366,C7 = —0.94,C> = 0.29
L=14 0.5046  0.6596 1.30 £ = —0.9300,C7 = —0.93,C2 = 0.32
L=5 0.5017  0.6566 1.30 B8 =—-0.9302,C7 = —0.93,C2 = 0.34

T T 10 ; r
—3— Increasing Leakage —3— Increasing Leakage
=—f8— Decreasing Leakage =—f8— Decreasing Leakage
, || —@— Constant Leakage —&€— Constant Leakage
10 Zero Leakage ., Zero Leakage
1] X 10 ]
~~ x
N =
B g
210 &
s £
= ©
S £
2 g
N
£ 107" £
c 5
< =
= g
©
-2 ]
10 " f 4
10”5 ; ; ; ;
1 2 3 4 5

Battery charge z Battery charge z

Fig. 2: Power policyp(z) under 4 different scenarios, namely, zerd=ig. 3: Bandwidth mismatch factox(z) under 4 different scenarios,
leakage, increasing and decreasing leakage and constdgke namely, zero leakage, increasing and decreasing leakalgeoastant
whenp(0") = 0.001. leakage, whem(0") = 0.001.

stant leakage cases, the allocated transmission poweRises

faster compared to the transmission power for an ideal fyatte The average distortion for the two cases of dynamically
with the same battery charge. This result is intuitive, sinezarying bandwidth mismatch factor and constant bandwidth
an efficient transmission power policy mitigates the potdiyt mismatch factor is illustrated in Figl 5, both as functions of
large energy loss due to leakage by rapidly consuming ttiee battery capacity. It can be observed that for a battetly wi
stored energy before it is lost. Figsl 3 and 4 illustrate thempacity in the rangé < L < 12, a communication system
corresponding mismatch facte(z) and absolutely continuouswith an adaptive mismatch factor, as proposed in this paper,
part of the density function of the available charge in theerforms better compared to that efz) = 1. Whether this
battery, respectively. It can be seen that as the energygap is considered small or not depends on the application.
the battery decreases, the mismatch factor increaseshér off it is negligible for some applications, then using a fixed
words, the low transmission power due to reduced chargedhannel coding scheme would result in a reduced complexity
the battery is compensated by using longer channel codewosy/stem with negligible impact on performance. On the other
Conversely, when the transmission power is large, codesvottand, regardless of whether we are using a dynamic mismatch
of smaller length are used so that the constraintid (24) fisctor or a constant mismatch factor, for large valuesLof
satisfied. As expected, an increasing transmission powatltse the average distortion of both coding schemes approach the
in a decreasing density functiofi(z). In other words, the lower bound and merge asymptotically. Likewise, for small
storage process spends a smaller fraction of time at highwattery capacities the average distortion of both codihgses
battery charges that have larger transmission power. approachD,,,, and merge as well.
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TABLE lll: Distortion lower boundDy s, average distortiomD..., and good values of the constartfs, C> and 3 of a Bernoull(1/2)
source, for different battery capacities with the initiahdition p(0™) = 0.001, when/(z) = 0. The ratio of D,,, to D1 quantifies the gap
between the average distortion and the lower bound.

Capacity of the Battery Dip Davg Davg /D1 Constants
L=1 0.1651  0.2097 1.27 B = —0.3450,C7 = —0.36,C> = 0.13
L=2 0.1270  0.1663 1.30 8 =—-0.3170,C71 = —0.32,C> = 0.15
L=3 0.1161  0.1473 1.26 B8 =—0.3039,C7 = —0.31,C2 = 0.16
L=14 0.1122  0.1367 1.21 [ = —0.2962,C7 = —0.30,C2 = 0.16
L=5 0.1108 0.1321 1.19 [ =—0.2901,C7 = —0.29,C> = 0.16

TABLE |V: Distortion lower boundDyg, average distortioD.,s, and good values of the constarts, C> and 3 of a Bernoull(1/2)
source, for different battery capacities with the initiahdition p(0") = 0.001, when£(z) = 1 — e~ *. The ratio of D,y to Dip quantifies
the gap between the average distortion and the lower bound.

Capacity of the Battery Dip Davg Davg/D1B Constants
L= 0.1651  0.2356 1.42 £ = —0.3600,C7 = —0.36,C2 = 0.04
L= 0.1270  0.2044 1.60 B = —0.3417,C1 = —0.35,C2 = 0.11
L=3 0.1161  0.1935 1.66 B =—0.3347,C1 = —0.34,C2 = 0.15
L=4 0.1122  0.1905 1.69 B =—-0.3328,C1 = —0.34,C2 = 0.17
L=5 0.1108  0.1885 1.70 B = —0.3301,C1 = —0.33,C2 = 0.18
10° ¢ : : 1 ‘ ‘ ‘
—¥— Increasing Leakage = = = Dynamic mismatch factor
, N —B— Decreasing Leakage [~~~ e e Constant mismatch factor k(z)=1
= 10 —&— Constant Leakage 3 0.9 1 Lower bound 4
E‘ Zero Leakage "
£ 10' 1 \
2 c 0.8rt ]
5 g |t
g s ]
@ .
g E 07y g
£ o W
> 0.6 < 1
= W,
E s
§ = :"~'~'-'-_‘=v.. o —
< 0.5 S
1074 1 1 1 1 04 1 1 1 1 1
0 1 2 3 4 5 0 5 10 15 20 25 30
Battery charge z Battery capacity L

Fig. 4: Density functionf(z) under 4 different scenarios, namely,Fig. 5: Average distortion for the two cases of adaptive mismatch
zero leakage, increasing and decreasing leakage and eblestkage, factor and constant mismatch factefz) = 1, when the battery
whenp(0") = 0.001. capacity varies in the range< L < 30.

VII. CONCLUSION

B. A Binary Source over a Gaussian Channel We have investigated the problem of joint source-channel
coding in a point-to-point channel with an energy harvestin
transmitter. We used a calculus of variations technique to

We now consider a binary source with the Berndu}i2) characterize an achievable joint source-channel codingrse
distribution for which we haveH (p) = 1, and the bound as well as an achievable transmission power policy to mirgmi

—0.5 < B < 0 as explained in subsectidn_TV-B2. Analo-the distortion at the receiver. We also obtained a distortio

gous to the Gaussian source, with different battery capacitlower bound, where we used the convexity of the distortion

L =1,2,...,5 and for the two cases df) zero leakage rate function and an upper bound on the average transmission

{(z) = 0 and (i1) increasing leakage ratéz) =1 — e *, we poOwer.

evaluate the achieved average distortibg,,, the distortion For a moderate-size battery capacity, we numerically sdowe

lower boundDy5 and good values of the constants found bthat the achievable distortion with a dynamically varying

numerical search. The results of cgg¢ and (i) which are bandwidth mismatch factor is smaller than that of a constant
summarized in Tablds]ll and ]V, respectively, have the sameismatch factor when the battery has no leakage. Moreover,
trends as in Tabld$ | and Il with increasing the battery citypac we observed that as the battery capacity tends to infinity the

Moreover, the numerical results further show that fore= 5 achievable distortion for both coding schemes approadhed t

the proposed achievable scheme with no leakage can achieveer bound. Furthermore, with a constant mismatch factor

a distortion which is at most9% above the lower bound.  k(z) = 1, we found a constant transmission power policy that
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can arbitrarily approach this lower bound for an infiniteteat  R.(p) > ¢R%. Although the functionD(p, ¢) is continuous
capacity. everywhere, and in particular at the points whete.(p) =

As examples of continuous and discrete alphabet sources, Ri¢, the second derivative at these points may not necessarily
considered both Gaussian and binary sources to validate exist and a more complicated analysis is required. Thezefs
analytical findings. In both cases, we showed numericallyh illustrated in Fig[® we separate the regjor- 0 andg > 0 into
good transmission power policy increases as the battemngehatwo parts: the open shaded regidd,(p) < ¢R'", over which
increases. In contrast, a good mismatch factor policy, whithe convexity argument reduces to the cageapd the closed
measures the ratio of the length of channel codewords pershaded regionR.(p) > ¢R:", over whichDf(p,q) = 0. It
source symbol, is a decreasing function of the battery &args not hard to see that the unshaded region giverkRblp) >
We further examined these policies under different politslsi ¢ R'" (or equivalentlyg < R.(p)/R'") is convex. This is due
for battery leakage rate, i.e., zero leakage rate as welbas nto the fact thatR.(p) is a concave function and thus the region
zero arbitrary leakage rate. it traces is convex. Now, consider two arbitrary points =

One possible future extension is to consider a scenarioavhép,, ¢1) and as = (p2, ¢2) such thatay, as € {(p,q) : p >
lossy source-channel communication is carried out ovene-ti 0,¢ > 0}. For A € [0,1], we define the functiory(\) as
varying channel with slow fading. In particular, the transm follows
sion power and mismatch factor in this case need to be adapted
to both the battery charge and the channel state. However, g¢(}\) :=
similar to [30], we expect a system of coupled ODEs with one _
ODE per channel state, which can be challenging to solvey eve
numerically. Other future work includes considering otaed  |f 4()\) is convex for all choices of; andas, so isD(p, ¢).
more general energy arrival models. With respect to the closed line segment connecting these two

points, i.e..L = { a1 + (1 — Nag : A € [0, 1]}, the following

D (Aaq + (1 — Naz)
DY (Ap1 4+ (1 = N)p2, Aqu + (1 — Ng2).

APPENDIXA

To prove the convexity of the distortion functiaB®(p, q)
over the domaip > 0, ¢ > 0 whereq := 1/x, we consider two
cases: §) R = oo, (b) R'" < co. As already discussed, an

example of the former is a Gaussian source and an example of

the latter is a binary source. We first prove the joint conyexi
with respect tgp andq for case §). To do so, we compute the
Hessian matrix ofD*(p, q) for p > 0,¢ > 0, denoted byH p,

and show that it is positive definite. The Hessian is given by

0’Dt 92Dt
op?  Opd
Ho=| gipt pt |-
dq0p  0¢®
where by a simple calculation we obtain
9*D' R{(p) 2 —R{(D(p,k))
= = + (R, K X 5 d
7~ e ) R D)

9o,
where (a) follows from the conditions [S2] and [C2] on
Rs(D) and R.(p), respectively. Moreover, the strict inequality
is justified by the fact that sinc&'" = o, the distortionD
is strictly positive and therefor&’ (D) is finite due to [S3].
Similarly, we can show that the determinanti@f, is strictly
positive, i.e.,

det(Hp) = (Re(p))* <*RY(p)
—R" b
L ZROeM)®
R(D(p,x))  R(D(p.r))

where(b) again follows from conditions [S2], [S3] and [C2].
Since,Hp,, > 0 anddet(Hp) > 0, by Sylvester’s criterion
the matrix Hp is positive definite, and it thus follows that
D' (p,q) is jointly convex over the paip andgq.

To prove the joint convexity with respect to and ¢ for
case b) where R" < oo, we recall thatD'(p,q) = 0 for

different cases may happen:

o If a; and ay are both in the unshaded region, the line
segmentL only passes through the unshaded region as
the region is convex and thug\) = 0, which is convex.

If ; and as are in two different regions (say; is in

the unshaded region ang is in the shaded region), there

exists\; € (0, 1] as shown in FiglJ7a such thatlies in

the shaded region fok < A; and it enters the unshaded

region for A\ > \;. Furthermore, once the line segment

enters the convex unshaded region, it does not exit. Here,

g(X) is continuous for\ € [0, 1], non-negative and strictly

convex for\ € [0, A1), while g(A\) = 0 for X\ € [\, 1].

Thus, g()\) is convex.

o If @y andas are both in the shaded region, then eitider
only passes through the shaded region where the convexity
of g(\) reduces to the case), or due to the convexity
of the unshaded region it enters the unshaded region for
one and only one contiguous closed inter{s&l, As] C
(0,1) and again returns to the shaded regionXas As.

The functiong(\) in the latter case is again continuous
for A € [0, 1], non-negative and strictly convex for €
[0, A2) U (A3, 1], while g(A) = 0 for A € [\, As]. Thus,
g(X) is convex and this case is illustrated in Hig. 7b.

« Similar to the second case, when is in the shaded
region andas is in the unshaded region, we have Fig.
[7c, whereg()\) is convex.

Consequently, even for sources for which zero distortiom ca
be achieved (e.g., the binary source), the functidiip, q) is
jointly convex over the paip andgq.

APPENDIXB

We first rewrite [[V) forz > 0 as

Rs(D(p(2), (2))) = K(2)Re(p(2)), (101)
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Fig. 6: The shaded region shows the arga where R.(p)/R:".

g 1 g 1 g 1
(@) (b) (©)
>\ > | >\
0 A 1 0 Ao As 1 0 N 1
Fig. 7: Special cases of the functigf()).
where by taking the first derivative of both sides with re¢peand
to x(z) at a fixedz > 0 we obtain RAD
OD(p(2), k(2)) ., Punin = inf [ ng D; - D} (109)
T(Z)RS (D (p(2),k(2))) = Re(p(2)),  (102) mex Lo
= lim R(D) _ D (110)
or equivalently DtDmax RL(D) e
D)) Re(x) goq
Ok(z) R, (D (p(2), k(2))) REFERENCES

To simplify the notation, we fix > 0, and simply writeD in !
place of D(p(z), k(z)). Thus, with the substitutiod (D3], ([76) g

reduces to
R«(D)

~ RL(D)
where for the second term we also used the substitutiod (101)

Therefore,D must be a root of {104). Solving (104) for we @l
then obtain

+8=0, (104)

(2]

5 Ry(D)
" R.(D) [4]

We next show that the r.h.s df (105) is strictly decreasinpwi [s)

respect toD. To do so, we take the first derivative of the r.h.s

in (I03) with respect td), and show that it is always negative
in the open intervall < D < Dy, i.€.,

4 [R(D) ] _ —RUD)R.(D) ©
7 7@ ) =

where (c) follows from the assumption oR”(D) > 0 and
further recalling that?,(D) > 0 and R, (D) is finite, for 0 <
D < Dyax. Therefore, for every fixed, there is at most one
real rootD that solves[{105), and it does not depend:oifhis
is also true for the optimized value ¢f*, and therefore the [l
associated instantaneous distortibn(p(z), x(z)) is constant

for z > 0. Furthermore, for there to be at least one real rodt]
B in (I08) must be in the rang,i, < 8 < Bmax, Where

(105)

(6]

(7]

(106)

(8]

Rs(D) [11]
max -— - D 107
o= o |0 aon
. R.D) [12]
= I mo) (108)
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