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On Lossy Joint Source-Channel Coding In Energy
Harvesting Communication Systems

Meysam Shahrbaf Motlagh, Masoud Badiei Khuzani, Patrick Mitran

Abstract—We study the problem of lossy joint source-channel
coding in a single-user energy harvesting communication system
with causal energy arrivals and the energy storage unit may have
leakage. In particular, we investigate the achievable distortion
in the transmission of a single source via an energy harvest-
ing transmitter over a point-to-point channel. We consider an
adaptive joint source-channel coding system, where the length of
channel codewords varies based on the available battery charge.
We first establish a lower bound on the achievable distortion.
Then, as necessary conditions for local optimality, we obtain two
coupled equations that determine the mismatch ratio between
channel symbols and source symbols as well as the transmission
power, both as functions of the battery charge. As examples
of continuous and discrete sources, we consider Gaussian and
binary sources respectively. For the Gaussian case, we obtain a
closed-form expression for the mismatch factor in terms of the
LambertW function, and show that an increasing transmission
power policy results in a decreasing mismatch factor policyand
vice versa. Finally, we numerically compare the performance of
the adaptive mismatch factor scheme to the case of a constant
mismatch factor.

Index Terms—Joint Source-Channel Coding, Energy Harvest-
ing, Distortion, Resource Allocation

I. I NTRODUCTION

W IRELESS sensor networks (WSN) provide a tool to
gather and disseminate information and thus play an

important role in unsupervised control systems. In many cases,
sensor devices are deployed in large numbers to cover a large
area. As a result, regular maintenance and battery replacement
for each individual sensor is impractical, if not impossible.
Thus, to develop truly autonomous sensor networks that do
not require regular maintenance, it is essential to supply a
sustainable energy source to each node.

Energy harvesting (EH), i.e., supplying energy by harnessing
ambient energy resources such as solar, wind and thermal
energy, is a promising state-of-the-art solution that can sig-
nificantly improve sensor lifetime. In a typical EH node,
the energy required for various sensor tasks is incrementally
harvested from the environment and stored during the courseof
operation. However, due to the stochastic nature of renewable
energy resources, sensor energy consumption must be managed
adaptively to achieve good performance.
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A. Contributions

In this paper, we focus on the design of data transmission
policies in EH sensor devices. Specifically, we consider a
scenario where a single node continuously senses data from
a source and wishes to transmit this data over a point-to-
point channel. The harvested energy is stored in a battery
that may leak energy at a rate which depends on the available
battery charge. The communication is carried by a joint source-
channel coding (JSCC) scheme, where in each communication
block a source sequence of fixed length is mapped into a
channel codeword whose length depends only on the available
battery charge. In other words, the mismatch factor between
the channel symbols and source symbols is adaptive.

We summarize the major contributions of this paper as
follows:

• We formulate and model continuous-time lossy joint
source-channel coding in an energy harvesting com-
munication system, where the transmission power and
bandwidth mismatch factor, i.e., the length of channel
codewords per source symbol, are dynamically adapted
to the available battery charge.

• We establish a lower bound on the average distortion
and show that in the case of infinite battery capacity and
no leakage it is asymptotically achieved with a constant
transmission power and a constant mismatch factor.

• Using a calculus of variations technique, we find achiev-
able locally optimal transmission power and mismatch
factor policies that minimize the average distortion at the
receiver.

• We develop an interesting structural result on the in-
stantaneous distortion. Namely, as long as the battery
is not depleted, locally optimal transmission power and
mismatch factor policies will adaptively adjust with the
battery charge in such a way that the instantaneous
distortion is maintained to a constant level.

• For a moderate-size battery, we numerically show that our
proposed scheme with an adaptively varying mismatch
factor achieves a smaller average distortion compared to
a scheme with a constant mismatch factor.

• For Gaussian and binary sources, we numerically find lo-
cally optimal power policies and mismatch factor policies,
both as functions of battery charge. With different leakage
rates, i.e., zero leakage rate as well as arbitrary non-zero
leakage rates, we observe that a good transmission power
policy and mismatch factor policy increases and decreases
respectively, as the battery charge increases.

http://arxiv.org/abs/1508.04526v1
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B. Related Work

Among prior works that consider lossy communication with
EH transmitters/receivers are [2]–[8]. In [2], the mean squared
distortion of the estimated source symbols at the receiver is
minimized, where both online and offline EH scenarios are
considered and the mismatch factor is always one. In [3],
the problem of energy allocation for data acquisition and
transmission in WSNs is studied, and the case of a single sensor
as well as the case of multiple sensors are both considered.
A similar problem is studied in [4] for the case of a single
source with finite battery and data buffer. Another interesting
work is [5], where a perturbation-based Lyapunov technique
is used to obtain an online energy management scheme for
source-channel coding of correlated sources. In [6], a Gaussian
source is transmitted over a flat fading channel and the offline
minimization of the total distortion over a finite-time horizon
is considered. Therein, the optimal distortion and transmission
power are found subject to a delay constraint for reconstruction
of the source symbols at the receiver. In [7], the problem of
uncoded transmission over a fading channel is investigated,
and an optimal energy allocation scheme to minimize the total
distortion is established.

Communication systems with EH transmitters/receivers have
also been studied extensively in the context of lossless trans-
mission. For instance, the offline minimization of the trans-
mission completion time for a single source is considered
in [9], where the battery capacity is infinite. This problem
has been also extended to the cases of finite battery [10],
multiple access channels [11], broadcast channels [12]–[14]
and fading channels [15]. Also in [16], the problem of the
trade-off between the average queueing delay of packets and
power consumption of a power grid has been studied using a
2D Markov chain model.

In another line of work, throughput/sum-throughput max-
imization is considered for point-to-point channels [17],in-
terference channels [18] and relay channels [19], [20]. A
more realistic battery model with energy leakage is also
considered in this context [21]–[23]. Specifically in [23],
offline maximization of throughput in a single-user channel
as well as a broadcast channel has been studied under battery
imperfection constraints. In particular, the model assumes that
only a fraction of harvested energy is stored in the battery
due to charging/discharging inefficiency, whereas a completely
different type of battery imperfection, i.e., battery leakage over
time as in [21], is considered in our paper.

Another similar work in the framework of lossless com-
munication is [24], where authors have studied online maxi-
mization of long-term average sum-throughput in a multiple
access channel using the same calculus of variations based
technique. Despite similarity in the approach taken in both
works, the nature of the problems are quite different. In the
current work, we are concerned with lossy source-channel
transmission in EH communication systems. The lossy nature
of the problem opens a whole new set of questions that were
not addressed in [24], e.g., how can the trade-off between
increasing and decreasing transmission power be managed so
that an optimal average distortion is achieved at the receiver?
Does an adaptive source-channel coding scheme significantly

improve the distortion? If so, how exactly should the lengthof
channel codes per source symbols be changed in terms of the
battery state? Our focus here is to minimize long-term average
distortion in a point-to-point channel that exploits an adaptive
joint source-channel coding scheme. Different from [24], we
consider a more general battery model with a non-constant
leakage rate and have numerically investigated the impact
of different battery leakages on the compression-transmission
performance. Moreover, in addition to the transmission power,
the bandwidth mismatch factor between source symbols and
channel codewords is also adapted to the battery charge.

The rest of this paper is organized as follows. In Section II,
we study the communication model as well as the EH model. In
Section III, we present the problem formulation. A lower bound
on the average distortion as well as the achievable scheme of
the communication resources are studied in Section IV. Some
structural results for the case of Gaussian source are established
in Section V. In Section VI, we provide numerical results and
simulations. Finally, Section VII concludes this paper.

II. PRELIMINARIES

A. Communication Model

We consider the lossy source-channel transmission of a sta-
tionary memoryless source with general alphabet (continuous
or discrete) over a point-to-point channel. We first assume
that the communication is carried overK consecutive blocks
of joint source-channel coding (JSCC), where the number of
source symbols in each block is fixed, whereas the length
of the channel codewords varies from one block to another
based on the available charge in the battery. Specifically,
during the ith block, i = 1, ...,K, a sequence ofm inde-
pendent and identically distributed (i.i.d.) realizations of the
sourcesmi = (si[1], si[2], ..., si[m]), are mapped to a channel
codeword of lengthni, i.e., xni

i = (xi[1], xi[2], ..., xi[ni]).
The input xni

i induces a distribution on the channel output
yni

i = (yi[1], yi[2], ..., yi[ni]), according to the lawPY (yni

i ) =
∏ni

k=1 PY |X(yi[k]
∣

∣xi[k])PX (xi[k]), where PY |X (y|x) is the
conditional distribution of the stationary and memorylesschan-
nel. At the receiver, after each observationyni

i , i = 1, ...,K,
an estimatêsmi (yni

i ) = (ŝi[1], ŝi[2], ..., ŝi[m]) of smi is made.
We assume thatτ is the time duration needed for one symbol

to be generated/transmitted. Associated withτ , ∆ts = m× τ
is the time duration to generatem source symbols, and∆tci =
ni × τ is the time duration to transmit a channel codeword of
lengthni during theith block (see Fig. 1).

Definition 1. We define the bandwidth mismatch factor be-
tween theith channel codeword block, with duration∆tci ,
and the source symbol block, with duration∆ts, asκ(tci) :=
∆tci/∆ts = ni/m for i = 1, ...,K, wheretci :=

∑i
j=1 ∆tcj

is the channel output time (at the end of theith block)
that we take as the reference time throughout the paper.
Likewise,{p(tci)}

K
i=1 are the average power constraints on

the codewords, i.e.,

1

ni

ni
∑

j=1

∣

∣xi[j]
∣

∣

2
≤ p(tci), i = 1, ...,K. (1)
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∆tc2

1

κ(tc3)
∆tc3

Source symbols:

Channel codewords:

Fig. 1: Consecutive blocks of JSCC, wherem andni, i = 1, ..., K, are the number of source symbols and length of channel codewords in
each block, respectively.

As demonstrated in Fig. 1, the mismatch factorκ(tci) is
fixed throughout each block, nevertheless it can change adap-
tively from one block to another. Similarly, the transmission
power p(tci) can change from block to block. The rate-
distortion function (i.e., lossy source coding rate) in theith

block, for a sourceS is given by

Rs(Di) = inf I(Ŝ;S), i = 1, ...,K, (2)

where the infimum is taken over all conditional distributions
P
Ŝ|S such thatE[d(Ŝ, S)] ≤ Di in theith block, andI(Ŝ;S) is

the mutual information between the estimated symbolsŜ and
the source symbolsS. We assume that for a given sourceS and
distortion measured(ŝ, s) the rate-distortion functionRs(D)
has two thresholdsDmax andRth

s (whereDmax is always finite
whereasRth

s could be finite or infinite), such that:
[S1] Rs(D) is zero forD ≥ Dmax,
[S2] Rs(D) is strictly decreasing, convex and twice con-

tinuously differentiable for0 < D < Dmax, i.e.,
R′

s(D) < 0 and R′′
s (D) > 0, and continuous at

D = Dmax,
[S3] limD↓0 R

′
s(D) = −∞ , andR′

s(D) is finite every-
where else,

[S4] limD↓0 Rs(D) = Rth
s , andRs(D) is right-continuous

at D = 0 if Rth
s is finite.

These conditions abstract the form of a rate-distortion function.
For example, the Gaussian sourceN (0, σ2), with squared-error
distortion measured(ŝ, s) = |s − ŝ|2 has the rate-distortion
function given by [25],

Rs(D) =







1

2
log

σ2

D
0 < D < σ2

0 D ≥ σ2,
(3)

and satisfies [S1]-[S4] withDmax = σ2 andRth
s = ∞. An-

other example is a Bernoulli(p) binary source with Hamming
distortiond(ŝ, s) = 0 for s = ŝ andd(ŝ, s) = 1 otherwise. The
rate-distortion function is then given by [25],

Rs(D) =

{

H(p)−H(D) 0 ≤ D < min{p, 1− p}
0 D ≥ min{p, 1− p},

(4)
whereH(p) is the entropy of the source and

H(D) := −D log2 D − (1−D) log2(1 −D). (5)

For the binary source,Dmax = min{p, 1−p} andRth
s = H(p).

In the ith block, the transmit power is limited top(tci), and
thus the channel coding rateRc(p(tci)) is given by

Rc(p(tci)) = sup I(X ;Y ), i = 1, ...,K, (6)

where the supremum is taken over all channel input distribu-
tionsPX that satisfy the power constraintp(tci) in (1) for the
ith block. This model allows for fast fading, where the block
length is sufficiently large such that the effect of fading can be
averaged. We assume that the channel coding rateRc(p) has
the following properties:

[C1] Rc(p) is strictly positive forp > 0, zero and right-
continuous atp = 0,

[C2] Rc(p) is strictly increasing, concave and twice con-
tinuously differentiable forp > 0, i.e., R′

c(p) > 0
andR′′

c (p) < 0.

Similarly, these conditions abstract the form of a channel
coding rate function, and an example is the Shannon rate

function Rc(p) =
1

2
log2(1 + p/N), which will be assumed

later in the paper.
We assume that the block lengthsm andni, i = 1, ...,K,

are sufficiently large that the rate-distortion function and the
channel coding rate have operational significance. Since the
mismatch factor is fixed throughout each JSCC block, source-
channel separation holds in each block. Therefore, based on
a separate source and channel coding scheme, the relation
between source coding rateRs(Di) and the channel coding
rateRc(p(tci)) is given by

Rs(Di) = κ(tci)Rc(p(tci)), i = 1, ...,K. (7)

One should note that by the condition [S2] and continuity of
Rs(Di) at Di = Dmax, the inverse functionDi(Rs) of the
rate-distortion always exists for0 ≤ κ(tci)Rc(p(tci)) < Rth

s

(though in most cases there is no closed-form), and we can
compute the distortionDi(Rs) in the ith block in terms of
the transmission powerp(tci) and the mismatch factorκ(tci)
using (7), i.e.,Di(Rs) := D(p(tci), κ(tci)). Moreover, ifRth

s

is finite then the distortion isD(p(tci), κ(tci)) = 0 for pairs
p(tci), κ(tci) such thatκ(tci)Rc(p(tci)) ≥ Rth

s .
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From the definition of the mismatch factor and Fig. 1, we
directly obtain

K ×∆ts =

K
∑

i=1

1

κ(tci)
∆tci . (8)

Similarly, the total average distortion per source symbol over
K blocks can be written as

Davg :=
1

K∆ts

K
∑

i=1

D(p(tci), κ(tci))∆ts (9)

=
1

K∆ts

K
∑

i=1

D(p(tci), κ(tci))
1

κ(tci)
∆tci . (10)

B. Continuous-Time Model

As a practical assumption, we suppose that both the source
and channel block times,∆ts and ∆tci respectively, are
small compared to the battery dynamics. Hence, we develop a
continuous-time model in the asymptotic regime based on (8)
and (10), and letK grow so that

Ts := K∆ts

Tc :=

K
∑

i=1

∆tci ,

where the termsTs and Tc have fixed values as∆ts → 0,
∆tci → 0 andK → ∞. Eq. (8) has the form of a Riemann
sum in the limit of∆ts → 0, ∆tci → 0 andK → ∞, and
thus the continuous-time limit takes the following form

Ts =

∫ Tc

0

1

κ(tc)
dtc. (11)

We define

ρ(Tc) :=
Ts

Tc

=
1

Tc

∫ Tc

0

1

κ(tc)
dtc. (12)

In this paper, we are interested in infinite-time horizon com-
munication and long-term average distortion. We thus let the
transmission time become asymptotically large, i.e.,Tc → ∞.
If limTc→∞ ρ(Tc) > 1 or limTc→∞ ρ(Tc) < 1, the backlog
in either the source symbols queue or the transmission of
channel codewords tends to infinity. Thus, for a stable source-
channel communication system we assumelimTc→∞ ρ(Tc) =
limTc→∞ Ts/Tc = 1. Therefore, from (12) for an asymptot-
ically stable joint source-channel communication system we
require that,

lim
Tc→∞

1

Tc

∫ Tc

0

1

κ(tc)
dtc = 1. (13)

Hence, we rewrite the continuous-time limit of (10) as

Davg = lim
Tc→∞

1

Ts

∫ Tc

0

D(p(tc), κ(tc))
1

κ(tc)
dtc

= lim
Tc→∞

1

Tc

∫ Tc

0

D(p(tc), κ(tc))
1

κ(tc)
dtc, (14)

where (14) follows from the fact thatlimTc→∞ Ts/Tc = 1.

C. Storage Model

We assume that the energy arrival times and their amounts
are not known at the transmitter a priori. Therefore, the
instantaneous energy of the battery is a stochastic processthat
can be characterized in terms of the energy arrival process
and battery depletion rate. Let{Ei}∞i=1, denote the size of the
energy packets arriving to the battery at time instants{Ti}∞i=1,
whereEi > 0 and T1 < T2 < ... . We assume that energy
packets are i.i.d. with the tail distribution function denoted by
B(z) = P[E > z], and the corresponding arrival times are
a homogeneous Poisson Point Process (PPP). Specifically, the
inter-arrival times are i.i.d. and exponentially distributed with
parameterδ, i.e., ∆Tn := Tn+1 − Tn ∼ Exp(δ). One should
note that the PPP assumption can subsume cases of EH systems
that are modeled as bursty packet arrivals at discrete timessuch
as regenerative shock absorbers that use the piezoelectriceffect
to transform random mechanical shocks into electrical energy.
Due to the unpredictability of their occurrence, a PPP is a good
model to describe the behavior of such EH systems.

The total harvested energy at the transmitter up to the time
t, {A(t) : t ≥ 0} is thus a compound Poisson process given
by

A(t) :=
∑

n∈N

En1{Tn<t}. (15)

We assume that the capacity of the batteryL is finite, that is,
L < ∞. Furthermore, we assume that the battery is imperfect
in the sense that when it is charged, it leaks energy over timeat
a rate which depends only on the current battery chargeZ(t),
and is denoted byℓ(t) at time t. Also, it is clear that there is
no leakage when the battery is depleted.

The instantaneous battery charge at timet, {Z(t) : t ≥ 0}
is therefore a stochastic process described by

Z(t) = z0 +A(t)−

∫ t

0+

(

p (s) + ℓ(s)
)

ds−R(t), (16)

wherez0 = Z(t)|t=0 is the initial battery charge andR(t) is
a non-decreasing, non-negative and continuous-timereflection
process withR(t)|t=0 = 0, that only increases over the set
{t : Z(t) = L} [26]. The reflection process accounts for the
excess energy arrivals that overflow the battery capacity and
ensures that even for large energy packet arrivals the storage
process is bounded by its capacity limit at all times, i.e.,Z(t) ∈
[0, L]. Furthermore,p(t) + ℓ(t) is the instantaneous battery
depletion rate. Since the transmission powerp(t) is adapted
to the battery chargeZ(t), this depends on time only through
Z(t), i.e., p(t) + ℓ(t) = p (Z(t)) + ℓ (Z(t)). Likewise, the
instantaneous mismatch factorκ(t) is modulated by the battery
chargeZ(t), whereκ(t) = κ(Z(t)). More specifically, since
p(t), ℓ(t) and κ(t) all depend ont only through the battery
chargeZ(t), with slight abuse of notation we denote byp(z),
ℓ(z) andκ(z) the explicit dependence of these onz. In the rest
of this paper, we refer top(z) andκ(z) as the power policy and
mismatch factor policy. The storage processZ(t) can then be
viewed as a continuous-time Markov process, where the state
space of the process is the finite interval[0, L]. We impose the
following conditions on the feasible set of power policies and
leakage rates

• ∀z ∈ (0, L], p(z) > 0, andp(z)
∣

∣

z=0
= 0,
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• sup0<z≤L p(z) < ∞,
• sup0<z≤L ℓ(z) < ∞, andℓ(z)

∣

∣

z=0
= 0.

The first condition is to avoid a reserve of energy in the
battery that can never be consumed by transmission and thus
effectively reduces the usable energy stored in the battery. The
second condition reflects the fact that instant depletion ofan
amount of energy∆E > 0 is not allowed. Thus, an optimal
power policyp(z) must satisfy both of these constraints. With
these conditions onp(z) and ℓ(z), Z(t) becomes irreducible
in the sense that there is only one single communicating class
in the state space.

We defineπ̃Tc
(z) as the empirical distribution function of

the storage process with respect to the reference time, i.e.,

π̃Tc
(z) :=

1

Tc

∫ Tc

0

1{Z(tc)≤z}dtc. (17)

By the strong law of large numbers, asTc → ∞, π̃Tc
(z)

converges to the stationary probability measure of the storage
process denoted byπ(z), almost surely for every value ofz.

The following theorem identifies stationary distribution of
the storage processZ(t) [27], where we recall that the inter-
arrival times are i.i.d. and exponentially distributed with pa-
rameterδ, i.e., Tn+1 − Tn ∼ Exp(δ).

Theorem 1. For L < ∞, the storage processZ(t) is positive
recurrent and there exists a unique stationary probability
measureπ(z) = P[Z(t) ≤ z], which may have an atom
π0 := π(z)|z=0 ≥ 0, and is absolutely continuous on(0, L]
such that

π(z) = π0 +

∫ z

0+
f(u)du, (18)

wheref(z) is the absolutely continuous part of the probability
measure. Moreover,

f(z) (p(z) + ℓ(z)) = δπ0B(z)+δ

∫ z

0+
B(z−u)f(u)du. (19)

Remark 1. From (17), π0 is the fraction of time that the battery
remains discharged.

Remark 2. Equation(19) is the equilibrium condition between
the rate of down-crossingf(z)(p(z) + ℓ(z)) and the rate of
up-crossingδπ0B(z) + δ

∫ z

0+
B(z − u)f(u)du at levelz.

We now assume that the packets of energy are exponentially
distributed with parameterλ, i.e., B(z) = exp(−λz). There-
fore, (19) reduces to

f(z) (p(z) + ℓ(z)) = δe−λz

(

π0 +

∫ z

0+
eλuf(u)du

)

. (20)

III. PROBLEM FORMULATION

Since,π(z) is a probability measure we have
∫ L

0

π(dz) = π0 +

∫ L

0+
f(z)dz = 1. (21)

By combining (13) and (18), we also obtain the following
constraint on the mismatch factor

lim
Tc→∞

1

Tc

∫ Tc

0

1

κ(Z(tc))
dtc = Eπ

[

1

κ(z)

]

a.s. (22)

=
π0

κ(0)
+

∫ L

0+

f(z)

κ(z)
dz (23)

= 1, (24)

whereκ(0) := κ(z)|z=0 is the number of channel uses per
source symbol when the battery is exhausted. Similarly, we
apply the ergodicity argument to the distortion function in(14).
We first rewriteDavg from (14) as

Davg = lim
Tc→∞

1

Tc

∫ Tc

0

D
(

p (Z (tc)) , κ (Z (tc))
) 1

κ (Z (tc))
dtc.

(25)
Due to the ergodicity of the storage processZ(tc), we obtain

Davg =

∫ L

0

D (p(z), κ(z))
1

κ(z)
π(dz) a.s. (26)

= π0D
†(p(0), κ(0)) +

∫ L

0+
D† (p(z), κ(z)) f(z)dz

(27)

= Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

, (28)

where

D†

(

p,
1

κ

)

:= D(p, κ)
1

κ
. (29)

We now wish to find an optimal transmission power policyp(z)
and mismatch factor policyκ(z) such that the distortion at the
receiver is minimized. More specifically, we want to minimize
(27) subject to the constraints in (20), (21) and (24), i.e.,

inf
f(z),π0,κ(z),κ(0)

π0D
†(p(0), κ(0)) +

∫ L

0+
D† (p(z), κ(z)) f(z)dz

(30)

s.t.f(z) (p(z) + ℓ(z)) = δe−λz
(

π0 +

∫ L

0+
eλuf(u)du

)

(31)

π0 +

∫ L

0+
f(z)dz = 1 (32)

π0

κ(0)
+

∫ L

0+

f(z)

κ(z)
dz = 1 (33)

f(z) ≥ 0, π0 ≥ 0, κ(z) > 0, κ(0) > 0, (34)

where the strict inequalitiesκ(z) > 0 andκ(0) > 0 are implied
by (33). We note that for a givenf(z), p(z) can be calculated
directly using (31).

We note that in the formulation of the optimization problem
(30), the mismatch factor and the transmission power can
be viewed as two limited resources that must be allocated
efficiently. Specifically, due to (33), the inverse mismatchfactor
has an average of unity. Consequently, using a large mismatch
factor, which is desirable as this reduces the instantaneous
distortion, must be balanced with using a small mismatch factor
to maintain the average constraint. Similarly, the transmitter
cannot consume more energy than what is stored in the battery,
which itself is replenished at a maximum rate ofδ/λ (ignoring
the energy that is lost due to overflow). Thus, periods with a
large transmission power must be accompanied by periods with
a small transmission power.
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IV. M AIN RESULTS

A. Distortion Lower Bound

In this part, we derive a distortion lower bound using
Jensen’s inequality and convexity of the distortion function.

1) Finite Battery Capacity:We first note that for any power
policy p(z), when the battery capacity is finite, the following
upper bound has been computed in [24]:

Eπ [p(Z)] ≤
δ

λ

(

1− e−λL
)

. (35)

One should note that even with a non-zero leakage rate, the
upper bound in (35) still holds, however it is a potentially
looser bound.

We now find a lower bound on the objective function
Eπ[D

†(p(Z), 1/κ(Z))], based on the upper bound in (35) and
the following convexity lemma.

Lemma 1. The functionD†(p, q) defined in (29) is jointly
convex over the pairp and q, whereq := 1/κ.

Proof: See Appendix A.
Based on Lemma 1 as well as Jensen’s inequality, we

establish a distortion lower bound as below

Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

≥ D†

(

Eπ [p(Z)] ,Eπ

[

1

κ(Z)

])

(36)

≥ D†

(

δ

λ

(

1− e−λL
)

, 1

)

(37)

:= DLB,

where (37) follows from (35) and the fact that the function
D†(p, 1/κ) is a non-increasing function ofp, and further
recalling thatEπ [1/κ(Z)] = 1 from (24). The lower bound
in (37) holds for any transmission powerp(z) and mismatch
factorκ(z) that satisfies (33) and (34).

2) Infinite Battery Capacity:When the capacity of the
battery is infinite, i.e.,L → ∞, and therefore the chance of
battery overflow is zero, for any ergodic power policyp(z) the
lower bound in (37) simplifies to

Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

≥ D†

(

δ

λ
, 1

)

. (38)

One should note that if the leakage rate is zero, every ergodic
power policyp(z) is such thatEπ [p(Z)] = δ/λ. This suggests
that in the infinite battery capacity case with no leakage,
separate source and channel coding with a constant mismatch
factor κ(z) = 1 is optimal. More precisely, consider the
following choice of power policy

p⋆(z) =
δ

λ
+ ǫ, z > 0, (39)

with p⋆(0) = 0, and ǫ > 0 is a small positive number that
ensures the storage process is positive recurrent, and choose
κ⋆(z) = 1 for z ≥ 0. Then,

Eπ [p
⋆(Z)] =

(

δ

λ
+ ǫ

)

(1− π0) , (40)

and since we must haveEπ[p
⋆(z)] = δ/λ, then

1− π0 =
δ/λ

δ/λ+ ǫ
. (41)

In particular, we then compute the total average distortionof
this scheme as

Eπ

[

D†

(

p⋆(Z),
1

κ⋆(Z)

)]

=(1−π0)D
†

(

δ

λ
+ ǫ, 1

)

+π0Dmax.

(42)
As ǫ → 0 the atomπ0 tends to zero from (41) and the lower
bound in (38) is thus asymptotically achieved.

B. Achievable Resource Allocation Scheme

The two functionsp(z) and κ(z) are the policies that we
wish to design in this subsection to manage the limited re-
sources of the system in such a way that the average distortion
in (30) is minimized. To this end, we use a calculus of
variations technique which provides necessary conditionsfor a
local and therefore global optimal solution to our optimization
problem.

1) Calculus of Variations:We definef ǫ(z) and1/κǫ(z) as
a perturbed density function and perturbation of the inverse
mismatch factor, respectively, i.e.,

f ǫ(z) := f(z) + ǫh(z), (43)
1

κǫ(z)
:=

1

κ(z)
+ ǫg(z), (44)

whereh(z) andg(z) are continuous and bounded perturbation
functions on(0, L], with h(0+) = h(L) = 0 and g(0+) =
g(L) = 0. For sufficiently smallǫ > 0, the perturbed density
function f ǫ(z) satisfies (32) only if

π0 +

∫ L

0+
f ǫ(z)dz = π0 +

∫ L

0+
f(z)dz + ǫ

∫ L

0+
h(z)dz (45)

= 1, (46)

which due to (21) is true for allǫ > 0 iff
∫ L

0+
h(z)dz = 0. (47)

In addition, from (33) we derive the two following conditions

π0

κ(0)
+

∫ L

0+

f(z)

κǫ(z)
dz = 1, (48)

π0

κ(0)
+

∫ L

0+

f ǫ(z)

κ(z)
dz = 1. (49)

We simplify (48) using (44) as follows

π0

κ(0)
+

∫ L

0+

(

1

κ(z)
+ ǫg(z)

)

f(z)dz

=
π0

κ(0)
+

∫ L

0+

f(z)

κ(z)
dz + ǫ

∫ L

0+
g(z)f(z)dz (50)

= 1. (51)

Similarly, we simplify (49) using (43) as

π0

κ(0)
+

∫ L

0+

f ǫ(z)

κ(z)
dz

=
π0

κ(0)
+

∫ L

0+

f(z)

κ(z)
dz + ǫ

∫ L

0+

h(z)

κ(z)
dz (52)

= 1. (53)
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Eπǫ

[

D†

(

pǫ(Z),
1

κ(Z)

)]

= π0D
†(p(0), κ(0)) +

∫ L

0+

(

D(p(z), κ(z)) + ǫ
∂D(p(z), κ(z))

∂p(z)

dpǫ(z)

dǫ

∣

∣

∣

ǫ=0

)

×

(

f(z) + ǫh(z)

κ(z)

)

dz (63)

= Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

+ ǫ

∫ L

0+

(

D(p(z), κ(z))
h(z)

κ(z)
+

∂D(p(z), κ(z))

∂p(z)

dpǫ(z)

dǫ

∣

∣

∣

ǫ=0

f(z)

κ(z)

)

dz, (64)

Thus, analogous to the constraint in (47), both (50) and (52)
are true for sufficiently smallǫ iff the perturbation functions
also satisfy the following constraints

∫ L

0+
g(z)f(z)dz = 0 (54)

∫ L

0+

h(z)

κ(z)
dz = 0. (55)

For sufficiently smallǫ, two necessary conditions for a local
and therefore a global optimal solution to the optimization
problem in (30)-(34) are

Eπǫ

[

D†

(

pǫ(Z),
1

κ(Z)

)]

≥ Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

, (56)

Eπ

[

D†

(

p(Z),
1

κǫ(Z)

)]

≥ Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

, (57)

whereEπǫ is the expectation with respect to the probability
measure with the perturbed density functionf ǫ(z), (see (43)).

We now expand the l.h.s of (56) as below

Eπǫ

[

D†

(

pǫ(Z),
1

κ(Z)

)]

= π0D
† (p(0), κ(0)) +

∫ L

0+
D†(pǫ(z), κ(z))f ǫ(z)dz. (58)

We then use (31) to computepǫ(z) as follows

pǫ(z)

= δe−λz

(

π0 +
∫ z

0+ eλuf ǫ(u)du
)

f ǫ(z)
− ℓ(z) (59)

= δe−λz

(

π0 +
∫ z

0+
eλuf(u)du+ ǫ

∫ z

0+
eλuh(u)du

)

f(z) + ǫh(z)
− ℓ(z).

(60)

We also compute the derivative ofpǫ(z) with respect toǫ as
follows

dpǫ(z)

dǫ

∣

∣

∣

ǫ=0
= δe−λz

∫ z

0+
eλuh(u)du

f(z)
−

h(z)

f(z)
p(z). (61)

Based on (61), we expandD(pǫ(z), κ(z)) to first order inǫ,
i.e.,

D(pǫ(z), κ(z))

= D(p(z), κ(z)) + ǫ
∂D(p(z), κ(z))

∂p(z)

dpǫ(z)

dǫ

∣

∣

∣

ǫ=0
+O(ǫ2).

(62)

SubstitutingD(pǫ(z), κ(z)) andf ǫ(z) into (58) results in (63)-
(64), where we have neglected the higher order terms ofǫ
(i.e., O(ǫ2)). By substituting (64) into (56), we establish the

following necessary condition for a local and therefore a global
optimal power policyp(z)

∫ L

0+
D(p(z), κ(z))

h(z)

κ(z)
dz −

∫ L

0+

∂D(p(z), κ(z))

∂p(z)

h(z)

κ(z)
p(z)dz

+ δ

[

∫ L

0+

∂D(p(z), κ(z))

∂p(z)

1

κ(z)

(∫ z

0+
e−λ(z−u)h(u)du

)

dz

]

= 0. (65)

By changing the order of the double integral in the third term
of (65) we obtain

∫ L

0+
h(z)

(

δ

∫ L

z

∂D(p(u), κ(u))

∂p(u)

e−λ(u−z)

κ(u)
du+

D(p(z), κ(z))

κ(z)

−
∂D(p(z), κ(z))

∂p(z)

p(z)

κ(z)

)

dz = 0. (66)

Equation (66) holds for all perturbation functionsh(z), that
satisfy (47) and (55). We can thus rewrite (66) as follows

∫ L

0+
h(z)

(

δ

∫ L

z

∂D(p(u), κ(u))

∂p(u)

e−λ(u−z)

κ(u)
du +

D(p(z), κ(z))

κ(z)

−
∂D(p(z), κ(z))

∂p(z)

p(z)

κ(z)
+

C1

κ(z)
+ C2

)

dz = 0, (67)

whereC1 andC2 are two free parameters. Therefore, based on
the fundamental lemma of the calculus of variations we derive
the following necessary condition

δeλzκ(z)

∫ L

z

∂D(p(u), κ(u))

∂p(u)

e−λu

κ(u)
du+D(p(z), κ(z))

−
∂D(p(z), κ(z))

∂p(z)
p(z) + C1 + C2κ(z) = 0, (68)

where z > 0. Eq. (68) is an integro-differential equation
involving p(z) andκ(z). However, by multiplying both sides
of (68) by e−λz and differentiating both sides with respect to
z and further simplifications, we derive a first order non-linear
autonomous ordinary differential equation (ODE) equivalent to
(68).

We now consider the inequality in (57), where the l.h.s can
be written as

Eπ

[

D†

(

p(Z),
1

κǫ(Z)

)]

= π0D
† (p(0), κ(0)) +

∫ L

0+
D†(p(z), κǫ(z))f(z)dz. (69)
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Eπ

[

D†

(

p(Z),
1

κǫ(Z)

)]

= Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

+ ǫ

∫ L

0+

(

D(p(z), κ(z))g(z)f(z)−
∂D(p(z), κ(z))

∂κ(z)
κ(z)g(z)f(z)

)

dz. (73)

We computeκǫ(z) using (44) as follows

κǫ(z) =
1

1

κ(z)
+ ǫg(z)

, (70)

where its derivative with respect toǫ at ǫ = 0 can easily be
obtained as below

dκǫ(z)

dǫ

∣

∣

∣

ǫ=0
= −g(z)κ2(z). (71)

Similar to (62), we write the Taylor series ofD(p(z), κǫ(z))
up to first order term inǫ as below

D(p(z), κǫ(z))

= D(p(z), κ(z)) + ǫ
∂D(p(z), κ(z))

∂κ(z)

dκǫ(z)

dǫ

∣

∣

∣

ǫ=0
+O(ǫ2).

(72)

Therefore, by substituting (44), (71) and (72) into (69), this is
then reduced to (73).

By substituting (73) into (57) and neglecting the higher order
terms ofǫ, we establish the following necessary condition for
a local and therefore a global optimal mismatch factorκ(z),
∫ L

0+
g(z)f(z)

[

D(p(z), κ(z))−
∂D(p(z), κ(z))

∂κ(z)
κ(z)

]

dz = 0.

(74)

Equation (74) holds for all perturbation functionsg(z) that
satisfy (54). Therefore, we rewrite (74) as
∫ L

0+
g(z)f(z)

[

D(p(z), κ(z))−
∂D(p(z), κ(z))

∂κ(z)
κ(z) + β

]

dz= 0,

(75)

whereβ is a constant. Based on the fundamental lemma of the
calculus of variations, we thus derive the following necessary
condition

D(p(z), κ(z))−
∂D(p(z), κ(z))

∂κ(z)
κ(z) + β = 0, z > 0.

(76)

Solutions to the equations in (68) and (76) determine a lo-
cally optimal power policyp(z) as well as a locally optimal
mismatch factor policyκ(z).

2) Instantaneous distortion:In this part, we discuss an
interesting consequence of (76) on the instantaneous distortion
D(p(z), κ(z)), z > 0. Specifically, as formally presented in
Lemma 2, a locally optimal solution has the property that
the power policy and the mismatch factor policy are adjusted
in such a way thatD(p(z), κ(z)) is constant forz > 0.
In other words, if the transmission power is decreased (or
increased) due to a change in the battery charge, a locally
optimal mismatch factor will always dynamically adjust so
that the instantaneous distortion is maintained to a constant

level. As elaborated in section III, one can think of the
transmission powerp(z) and the mismatch factorκ(z) as
limited communication resources that must maintain long-
term averages, and thus the transmitter is trading off one
for the other. More precisely, since the mismatch factor must
satisfy (24) (i.e., the inverse mismatch factor averages toone),
as the availability of one communication resource (say the
transmission power) increases due to a large battery charge,
the transmitter employs a large transmission power and saves
on the other communication resource (i.e., the mismatch factor)
by then using fewer channel uses per source symbol. Likewise,
when the battery charge is low, the transmitter reduces its
transmission power, but employs a large mismatch factor.
Formally, we have the following Lemma.

Lemma 2. The constantβ in (76) must be in the rangeβmin <
β < βmax, where

βmax := lim
D↓0

Rs(D)

R′
s(D)

, (77)

and

βmin := lim
D↑Dmax

Rs(D)

R′
s(D)

−Dmax. (78)

Furthermore, for every such a choice ofβ, (76) results in a
unique constant solution forD(p(z), κ(z)), z > 0.

Proof: See Appendix B.
It is easy to verify that for both Gaussian and binary

sources,limD↓0
Rs(D)

R′
s(D)

= 0 and limD↑Dmax

Rs(D)

R′
s(D)

= 0.

Therefore, for the Gaussian source we have the bound−σ2 <
β < 0. Likewise, for the binary source we have the bound
−min{p, 1− p} < β < 0.

Remark 3. Note that the derivation starting with(69) and
leading to the differential equation for the mismatch factor
in (76) has not used the assumption thatB(z) = exp(−λz).
Thus, the structural result on the instantaneous distortion being
constant forz > 0, Lemma 2 as well as the mismatch factor
and instantaneous distortion in the Gaussian case to be shown
in (91) and (95) are valid for all energy distributionsB(z).

C. A Constant Bandwidth Mismatch Factor

So far, we have studied a general JSCC scheme where the
mismatch factor is adaptively adjusted according to the avail-
able battery charge. However it is also interesting to compare
the results with the simpler scheme where the mismatch factor
is fixed. Thus, we now consider the case where the mismatch
factor is constant and does not adapt to the battery charge. For
a fair comparison with the general case of dynamic mismatch
factor, we retain the constraint (33) which results in a constant
bandwidth mismatch factor of unity, i.e.,κ(z) = 1, ∀z ≥ 0.
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Therefore, there is only one design parameter, the transmission
power p(z), to minimize the total average distortion at the
receiver. We thus have

Rs(D(z)) = Rc (p (z)) , (79)

and thereby the distortion-rate function is computed only
in terms of the transmission powerp(z). The optimization
problem is therefore described as follows

inf
f(z),π0

π0D̃(p(0)) +

∫ L

0+
D̃ (p(z)) f(z)dz (80)

s.t.f(z) (p(z) + ℓ(z)) = δe−λz
(

π0 +

∫ L

0+
eλuf(u)du

)

(81)

π0 +

∫ L

0+
f(z)dz = 1 (82)

f(z) ≥ 0, π0 ≥ 0, (83)

where D̃(p(z)) := D(p(z), 1) is the average distortion with
bandwidth mismatch factor of unity. Moreover, the distortion
lower bound in this case is the same asDLB in (35). As a
necessary condition for a local and thus a global optimal power
policy p(z), we can directly obtain the following equation by
replacingκ(z) = 1 into (68) with the substitutionλ(C1 +
C2) = C,

δ

∫ L

z

D̃′(p(u))e−λ(u−z)du+D̃(p(z))−D̃′(p(z))p(z)+C = 0,

(84)
where D̃′(·) denotes the derivative of̃D(·), andC is a free
parameter. As explained below (68), we can derive a first order
non-linear autonomous ODE equivalent to (84) which is found
to be

λD̃(p(z))+(δ − λp(z)) D̃′(p(z))+p(z)p′(z)D̃′′(p(z))+C = 0,
(85)

whereD̃′′(·) denotes the second derivative ofD̃(·).

Remark 4. This ODE is identical in form to (102) in [24].
Any solutionp(z) of the ODE in (85) for C < −λD̃( δ

λ
) is

non-decreasing inz, for p(z) > 0. The proof of this is similar
to that of [24, Lemma 1] except for the change in the direction
of the inequality which is due to the fact that the rate function
r(p) in (102) of [24], which is concave, is replaced with the
distortion functionD̃(p) in (85), which is convex.

V. GAUSSIAN SOURCE AND CHANNEL

In this section, we specialize our results for a Gaussian
source using the rate-distortion functionRs(D) given in (3).

We assume that the Shannon rate functionRc(p) =
1

2
log2(1+

p/N) is considered for the channel coding rate. Consequently,
the distortion functionD(p, κ) can be computed as

D(p(z), κ(z)) = σ2

(

1 +
p(z)

N

)−κ(z)

, (86)

or equivalently

D†(p(z), 1/κ(z)) =
σ2

κ(z)

(

1 +
p(z)

N

)−κ(z)

. (87)

Moreover, the lower bound on the average distortion in this
case is

Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

≥ σ2

(

1 +
δ

λ

(

1− e−λL
)

N

)−1

.

(88)
To determine the structure of a locally optimal scheme, we first
replaceD(p(z), κ(z)) in (76) by its closed form expression in
(86) to obtain

σ2

(

1 +
p(z)

N

)−κ(z)(

1 + κ(z) ln(1 +
p(z)

N
)

)

+β = 0, z > 0,

(89)
which can be rewritten as
(

−1− κ(z) ln

(

1 +
p(z)

N

))

exp

(

−1− κ(z) ln

(

1 +
p(z)

N

))

=
β

σ2e
, (90)

for z > 0. Therefore, we have

κ (z;β) = −

Wn

(

β

σ2e

)

+ 1

ln

(

1 +
p(z)

N

) , z > 0, (91)

whereWn(·) denotes theLambertW function [28] that takes
either real or complex values and has an infinite number of
branches, each denoted by an integern. The notationκ (z;β)
emphasizes the dependence ofκ(z) in (91) on the choice of
β. Moreover, (91) shows thatκ(z;β) is a decreasing function
of z, wheneverp(z) is an increasing function ofz and vice
versa.

Remark 5. Based on the properties of theLambertW func-
tion, n = 0 and n = −1 are the only branches that yield a
real value forWn(x), whereW0(x) ≥ −1 for x ≥ −1/e and
W−1(x) < −1 for −1/e < x < 0. In addition, we require

that Wn(
β

σ2e
) < −1 in order to haveκ(z;β) > 0 in (91).

Therefore,n = −1 is the only acceptable branch that results in
real positive values ofκ(z;β). This provides another proof for

the fact that−1/e <
β

σ2e
< 0 or equivalently−σ2 < β < 0

(see Lemma 2).

From (91), for every fixed value ofβ, we have

−
1

2

(

W−1

(

β

σ2e

)

+ 1

)

log2 e

= κ (z;β)×
1

2
log2

(

1 +
p(z)

N

)

, z > 0. (92)

On the other hand, this choice ofβ results in the instantaneous
distortionD(z) := D(p(z), κ(z)) in (7) as follows

1

2
log2

σ2

D(z)
= κ(z;β)×

1

2
log2

(

1 +
p(z)

N

)

, z ≥ 0. (93)

Therefore, equating the l.h.s of (92) and (93) yields

ln
σ2

D(z)
= −

(

W−1

(

β

σ2e

)

+ 1

)

, z > 0. (94)
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Let β⋆ denote the optimal value of the free parameterβ. Thus,
(94) results in the following associated optimal instantaneous
distortionD⋆(z)

D⋆(z) =







σ2 exp

(

W−1

(

β⋆

σ2e

)

+ 1

)

z > 0

σ2 z = 0.
(95)

As elaborated in Section IV-B2 and Appendix B, (95) is the
unique constant solution of (76) forz > 0 in the Gaussian
case. Specifically,p(z) and κ(z) are jointly optimized such
that when using a high (respectively low) transmission power,
the transmitter uses a low (respectively high) mismatch factor
to maintain the optimal instantaneous distortion to a constant
value.

VI. N UMERICAL RESULTS

In this section, we consider numerical solutions to (68) and
(76) to obtain an efficient power policyp(z) and mismatch
factor policyκ(z). In particular, although there is no apparent
closed-form solution to (68) forp(z), for every choice of the
constantsC1, C2 and the initial conditionp(0+), we can apply
numerical ODE solution methods. More precisely, given a fixed
choice ofβ, from (76) we can in principle solve forκ(z) in
terms ofp(z) (although other than the Gaussian case where a
closed-form is found in (91), this must be done numerically).
We then substituteκ(z) thus computed into (68) and obtain an
ODE for p(z) in terms ofC1, C2 and β that can be solved
numerically. Oncep(z) is thus found, one can then directly
obtainκ(z) using (76) again.

We obtain from (20) that

f(z)eλz

π0 +
∫ z

0+ eλuf(u)du
=

δ

p(z) + ℓ(z)
, (96)

where by integrating both sides over(0+, z] and performing
some simplifications, this becomes

π0 +

∫ z

0+
eλuf(u)du = π0 exp

(∫ z

0+

δ

p(u) + ℓ(u)
du

)

. (97)

Taking the derivative of both sides in (97) with respect toz,
we compute the densityf(z), provided thatπ0 is known, as
follows

f(z) = π0
δe−λz

p(z) + ℓ(z)
exp

(∫ z

0+

δ

p(u) + ℓ(u)
du

)

. (98)

By combining (98) and (32), we compute the atomπ0 as below

π0 =

(

1 +

∫ L

0+

δe−λz

p(z) + ℓ(z)
exp

(∫ z

0+

δ

p(u) + ℓ(u)
du

)

dz

)−1

.

(99)
Moreover, the value of the mismatch factorκ(0) := κ(z)|z=0

when the battery is exhausted is obtained from (33) as

κ(0) =
π0

1−
∫ L

0+ f(z)/κ(z;β)dz
. (100)

We now study a single-user EH communication system with
energy arrival ratesδ = λ = 1, and noise powerN = 1. To find
locally optimal policies forp(z) andκ(z), one needs to search
for optimized values of the free constantsβ, C1, andC2. In
the following we separately investigate the cases of Gaussian
and binary sources.

A. A Gaussian Source over a Gaussian Channel

For a standard Gaussian sourceN (0, 1), we have the bound
−1 < β < 0 from Section IV-B2. We now examine two
cases of leakage:(i) zero leakage rateℓ(z) = 0 for an ideal
battery and(ii) increasing leakage rateℓ(z) = 1− e−z for an
imperfect battery. Obviously, our analysis is general enough to
allow us to study different leakage behavioursℓ(z). However as
stated in [21],“batteries leak most right after being charged”,
and examples of rechargeable batteries with leakage (or self-
discharge) rates that increase monotonically with the battery
charge are nickel-cadmium and nickel-hydrogen cells [29].

We also consider the battery capacitiesL = 1, 2, ..., 5. Table
I and Table II show the total average distortionDavg, the
distortion lower boundDLB, and good values of the constants
β, C1, and C2 found by numerical search for both cases.
Furthermore, the initial condition of the ODE forp(z) was
chosen to bep(0+) = 0.001. This choice ofp(0+) is justified
by the fact that a small amount of available energy in the
battery should entail a small transmission power, as otherwise,
the battery will be completely depleted before the next energy
arrival. Numerical simulations have shown that ifp(0+) is
chosen to be sufficiently small, it does not significantly change
the distortion performance. A similar observation was madein
[24].

It is evident from Table I that as the battery capacity
increases, the achieved distortion decreases. In particular, for
L = 5 when the leakage rate is zero this scheme can achieve
a distortion that is at most7% above the lower bound. In
fact, for an ideal battery with infinite capacity as discussed
below (38), the lower bound is asymptotically tight and can
be approximated arbitrarily well with a constant transmission
power policy and a constant mismatch factor policy. Moreover,
for case (ii) with non-zero leakage, the achieved average
distortions are larger compared to that of case(i). Note that
the distortion lower bound in Table II is relatively more loose,
since it does not depend on the leakage rate (see (37)), while
for the case of a non-zero leakage the optimal performance
should depend on the leakage model. Therefore, we do not
expect the lower bound to be asymptotically achievable, as
it is without leakage. As the leakage model has increasing
leakage with increasing battery charge, it is not unreasonable
for the lower bound to become more loose with larger battery
capacities. Nevertheless, the ratio in Table II must saturate to a
finite value asL → ∞. This is becausei) the distortion lower
bound for an infinite battery capacity isD† (δ/λ, 1) which is
strictly positive in this case, andii) the achieved distortion will
converge to some value, and hence, so will the ratio.

Fig. 2 shows the transmission power policyp(z), for the
case ofL = 5, for an ideal battery as well as an imperfect
battery with three different leakage rates, i.e., increasingℓ(z) =
1− e−z, decreasingℓ(z) = e−z, and constantℓ(z) = 1.

We observe that in all cases, the designed transmission
power monotonically increases as the battery charge increases.
This is due to the fact that when the remaining charge in the
battery is close to the capacity limit, new energy arrivals are
likely to make the battery overflow. Therefore, the transmitter
consumes a large transmission power in order to avoid losing
energy. Interestingly, for the increasing leakage and the con-
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TABLE I: Distortion lower boundDLB, average distortionDavg, and good values of the constantsC1, C2 andβ of a standard Gaussian
sourceN (0, 1), for different battery capacities with the initial condition p(0+) = 0.001, whenℓ(z) = 0. The ratio ofDavg to DLB quantifies
the gap between the average distortion and the lower bound.

Capacity of the Battery DLB Davg Davg/DLB Constants
L = 1 0.6127 0.6971 1.13 β = −0.9485, C1 = −0.95, C2 = 0.24
L = 2 0.5363 0.6147 1.14 β = −0.9137, C1 = −0.92, C2 = 0.30
L = 3 0.5128 0.5765 1.12 β = −0.8940, C1 = −0.90, C2 = 0.32
L = 4 0.5046 0.5559 1.10 β = −0.8822, C1 = −0.89, C2 = 0.32
L = 5 0.5017 0.5417 1.07 β = −0.8738, C1 = −0.89, C2 = 0.34

TABLE II: Distortion lower boundDLB, average distortionDavg , and good values of the constantsC1, C2 andβ of a standard Gaussian
sourceN (0, 1), for different battery capacities with the initial condition p(0+) = 0.001, whenℓ(z) = 1 − e−z . The ratio ofDavg to DLB

quantifies the gap between the average distortion and the lower bound.

Capacity of the Battery DLB Davg Davg/DLB Constants
L = 1 0.6127 0.7445 1.21 β = −0.9641, C1 = −0.97, C2 = 0.06
L = 2 0.5363 0.6876 1.28 β = −0.9450, C1 = −0.95, C2 = 0.17
L = 3 0.5128 0.6659 1.29 β = −0.9366, C1 = −0.94, C2 = 0.29
L = 4 0.5046 0.6596 1.30 β = −0.9300, C1 = −0.93, C2 = 0.32
L = 5 0.5017 0.6566 1.30 β = −0.9302, C1 = −0.93, C2 = 0.34
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Fig. 2: Power policyp(z) under 4 different scenarios, namely, zero
leakage, increasing and decreasing leakage and constant leakage,
whenp(0+) = 0.001.

stant leakage cases, the allocated transmission power increases
faster compared to the transmission power for an ideal battery
with the same battery charge. This result is intuitive, since
an efficient transmission power policy mitigates the potentially
large energy loss due to leakage by rapidly consuming the
stored energy before it is lost. Figs. 3 and 4 illustrate the
corresponding mismatch factorκ(z) and absolutely continuous
part of the density function of the available charge in the
battery, respectively. It can be seen that as the energy in
the battery decreases, the mismatch factor increases. In other
words, the low transmission power due to reduced charge in
the battery is compensated by using longer channel codewords.
Conversely, when the transmission power is large, codewords
of smaller length are used so that the constraint in (24) is
satisfied. As expected, an increasing transmission power results
in a decreasing density functionf(z). In other words, the
storage process spends a smaller fraction of time at higher
battery charges that have larger transmission power.
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Fig. 3: Bandwidth mismatch factorκ(z) under 4 different scenarios,
namely, zero leakage, increasing and decreasing leakage and constant
leakage, whenp(0+) = 0.001.

The average distortion for the two cases of dynamically
varying bandwidth mismatch factor and constant bandwidth
mismatch factor is illustrated in Fig 5, both as functions of
the battery capacity. It can be observed that for a battery with
capacity in the range2 ≤ L ≤ 12, a communication system
with an adaptive mismatch factor, as proposed in this paper,
performs better compared to that ofκ(z) = 1. Whether this
gap is considered small or not depends on the application.
If it is negligible for some applications, then using a fixed
channel coding scheme would result in a reduced complexity
system with negligible impact on performance. On the other
hand, regardless of whether we are using a dynamic mismatch
factor or a constant mismatch factor, for large values ofL
the average distortion of both coding schemes approach the
lower bound and merge asymptotically. Likewise, for small
battery capacities the average distortion of both coding schemes
approachDmax and merge as well.
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TABLE III: Distortion lower boundDLB, average distortionDavg , and good values of the constantsC1, C2 and β of a Bernoulli(1/2)
source, for different battery capacities with the initial condition p(0+) = 0.001, whenℓ(z) = 0. The ratio ofDavg to DLB quantifies the gap
between the average distortion and the lower bound.

Capacity of the Battery DLB Davg Davg/DLB Constants
L = 1 0.1651 0.2097 1.27 β = −0.3450, C1 = −0.36, C2 = 0.13
L = 2 0.1270 0.1663 1.30 β = −0.3170, C1 = −0.32, C2 = 0.15
L = 3 0.1161 0.1473 1.26 β = −0.3039, C1 = −0.31, C2 = 0.16
L = 4 0.1122 0.1367 1.21 β = −0.2962, C1 = −0.30, C2 = 0.16
L = 5 0.1108 0.1321 1.19 β = −0.2901, C1 = −0.29, C2 = 0.16

TABLE IV: Distortion lower boundDLB, average distortionDavg, and good values of the constantsC1, C2 and β of a Bernoulli(1/2)
source, for different battery capacities with the initial condition p(0+) = 0.001, whenℓ(z) = 1− e−z. The ratio ofDavg to DLB quantifies
the gap between the average distortion and the lower bound.

Capacity of the Battery DLB Davg Davg/DLB Constants
L = 1 0.1651 0.2356 1.42 β = −0.3600, C1 = −0.36, C2 = 0.04
L = 2 0.1270 0.2044 1.60 β = −0.3417, C1 = −0.35, C2 = 0.11
L = 3 0.1161 0.1935 1.66 β = −0.3347, C1 = −0.34, C2 = 0.15
L = 4 0.1122 0.1905 1.69 β = −0.3328, C1 = −0.34, C2 = 0.17
L = 5 0.1108 0.1885 1.70 β = −0.3301, C1 = −0.33, C2 = 0.18
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Fig. 4: Density functionf(z) under 4 different scenarios, namely,
zero leakage, increasing and decreasing leakage and constant leakage,
whenp(0+) = 0.001.

B. A Binary Source over a Gaussian Channel

We now consider a binary source with the Bernoulli(1/2)
distribution for which we haveH(p) = 1, and the bound
−0.5 < β < 0 as explained in subsection IV-B2. Analo-
gous to the Gaussian source, with different battery capacities
L = 1, 2, ..., 5 and for the two cases of(i) zero leakage rate
ℓ(z) = 0 and (ii) increasing leakage rateℓ(z) = 1 − e−z, we
evaluate the achieved average distortionDavg, the distortion
lower boundDLB and good values of the constants found by
numerical search. The results of case(i) and (ii) which are
summarized in Tables III and IV, respectively, have the same
trends as in Tables I and II with increasing the battery capacity.
Moreover, the numerical results further show that forL = 5
the proposed achievable scheme with no leakage can achieve
a distortion which is at most19% above the lower bound.
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Fig. 5: Average distortion for the two cases of adaptive mismatch
factor and constant mismatch factorκ(z) = 1, when the battery
capacity varies in the range0 ≤ L ≤ 30.

VII. C ONCLUSION

We have investigated the problem of joint source-channel
coding in a point-to-point channel with an energy harvesting
transmitter. We used a calculus of variations technique to
characterize an achievable joint source-channel coding scheme
as well as an achievable transmission power policy to minimize
the distortion at the receiver. We also obtained a distortion
lower bound, where we used the convexity of the distortion
function and an upper bound on the average transmission
power.

For a moderate-size battery capacity, we numerically showed
that the achievable distortion with a dynamically varying
bandwidth mismatch factor is smaller than that of a constant
mismatch factor when the battery has no leakage. Moreover,
we observed that as the battery capacity tends to infinity the
achievable distortion for both coding schemes approached the
lower bound. Furthermore, with a constant mismatch factor
κ(z) = 1, we found a constant transmission power policy that
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can arbitrarily approach this lower bound for an infinite battery
capacity.

As examples of continuous and discrete alphabet sources, we
considered both Gaussian and binary sources to validate our
analytical findings. In both cases, we showed numerically that a
good transmission power policy increases as the battery charge
increases. In contrast, a good mismatch factor policy, which
measures the ratio of the length of channel codewords per
source symbol, is a decreasing function of the battery charge.
We further examined these policies under different possibilities
for battery leakage rate, i.e., zero leakage rate as well as non-
zero arbitrary leakage rate.

One possible future extension is to consider a scenario where
lossy source-channel communication is carried out over a time-
varying channel with slow fading. In particular, the transmis-
sion power and mismatch factor in this case need to be adapted
to both the battery charge and the channel state. However,
similar to [30], we expect a system of coupled ODEs with one
ODE per channel state, which can be challenging to solve, even
numerically. Other future work includes considering otherand
more general energy arrival models.

APPENDIX A

To prove the convexity of the distortion functionD†(p, q)
over the domainp ≥ 0, q > 0 whereq := 1/κ, we consider two
cases: (a) Rth

s = ∞, (b) Rth
s < ∞. As already discussed, an

example of the former is a Gaussian source and an example of
the latter is a binary source. We first prove the joint convexity
with respect top andq for case (a). To do so, we compute the
Hessian matrix ofD†(p, q) for p > 0, q > 0, denoted byHD,
and show that it is positive definite. The Hessian is given by

HD =









∂2D†

∂p2
∂2D†

∂p ∂q
∂2D†

∂q ∂p

∂2D†

∂q2









,

where by a simple calculation we obtain

∂2D†

∂p2
=

R′′
c (p)

R′
s (D(p, κ))

+ (R′
c(p))

2
κ×

−R′′
s (D(p, κ))

(R′
s(D(p, κ)))

3

(a)
> 0,

where (a) follows from the conditions [S2] and [C2] on
Rs(D) andRc(p), respectively. Moreover, the strict inequality
is justified by the fact that sinceRth

s = ∞, the distortionD
is strictly positive and thereforeR′

s(D) is finite due to [S3].
Similarly, we can show that the determinant ofHD is strictly
positive, i.e.,

det(HD) = (Rc(p))
2
κ3R′′

c (p)

×
1

R′
s(D(p, κ))

×
−R′′

s (D(p, κ))

R′
s(D(p, κ))

(b)
> 0,

where(b) again follows from conditions [S2], [S3] and [C2].
Since,HD11

> 0 and det(HD) > 0, by Sylvester’s criterion
the matrix HD is positive definite, and it thus follows that
D†(p, q) is jointly convex over the pairp andq.

To prove the joint convexity with respect top and q for
case (b) whereRth

s < ∞, we recall thatD†(p, q) = 0 for

Rc(p) ≥ qRth
s . Although the functionD†(p, q) is continuous

everywhere, and in particular at the points whereκRc(p) =
Rth

s , the second derivative at these points may not necessarily
exist and a more complicated analysis is required. Therefore, as
illustrated in Fig. 6 we separate the regionp > 0 andq > 0 into
two parts: the open shaded region,Rc(p) < qRth

s , over which
the convexity argument reduces to the case (a) and the closed
unshaded region,Rc(p) ≥ qRth

s , over whichD†(p, q) = 0. It
is not hard to see that the unshaded region given byRc(p) ≥
qRth

s (or equivalentlyq ≤ Rc(p)/R
th
s ) is convex. This is due

to the fact thatRc(p) is a concave function and thus the region
it traces is convex. Now, consider two arbitrary pointsα1 =
(p1, q1) andα2 = (p2, q2) such thatα1, α2 ∈ {(p, q) : p >
0, q > 0}. For λ ∈ [0, 1], we define the functiong(λ) as
follows

g(λ) := D† (λα1 + (1 − λ)α2)

= D†(λp1 + (1− λ)p2, λq1 + (1 − λ)q2).

If g(λ) is convex for all choices ofα1 andα2, so isD†(p, q).
With respect to the closed line segment connecting these two
points, i.e.,L = {λα1 + (1− λ)α2 : λ ∈ [0, 1]}, the following
different cases may happen:

• If α1 and α2 are both in the unshaded region, the line
segmentL only passes through the unshaded region as
the region is convex and thusg(λ) = 0, which is convex.

• If α1 andα2 are in two different regions (sayα1 is in
the unshaded region andα2 is in the shaded region), there
existsλ1 ∈ (0, 1] as shown in Fig. 7a such thatL lies in
the shaded region forλ < λ1 and it enters the unshaded
region for λ ≥ λ1. Furthermore, once the line segment
enters the convex unshaded region, it does not exit. Here,
g(λ) is continuous forλ ∈ [0, 1], non-negative and strictly
convex forλ ∈ [0, λ1), while g(λ) = 0 for λ ∈ [λ1, 1].
Thus,g(λ) is convex.

• If α1 andα2 are both in the shaded region, then eitherL
only passes through the shaded region where the convexity
of g(λ) reduces to the case(a), or due to the convexity
of the unshaded region it enters the unshaded region for
one and only one contiguous closed interval[λ2, λ3] ⊂
(0, 1) and again returns to the shaded region forλ > λ3.
The functiong(λ) in the latter case is again continuous
for λ ∈ [0, 1], non-negative and strictly convex forλ ∈
[0, λ2) ∪ (λ3, 1], while g(λ) = 0 for λ ∈ [λ2, λ3]. Thus,
g(λ) is convex and this case is illustrated in Fig. 7b.

• Similar to the second case, whenα1 is in the shaded
region andα2 is in the unshaded region, we have Fig.
7c, whereg(λ) is convex.

Consequently, even for sources for which zero distortion can
be achieved (e.g., the binary source), the functionD†(p, q) is
jointly convex over the pairp andq.

APPENDIX B

We first rewrite (7) forz > 0 as

Rs(D(p(z), κ(z))) = κ(z)Rc(p(z)), (101)
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where by taking the first derivative of both sides with respect
to κ(z) at a fixedz > 0 we obtain

∂D(p(z), κ(z))

∂κ(z)
R′

s (D (p(z), κ(z))) = Rc(p(z)), (102)

or equivalently

∂D(p(z), κ(z))

∂κ(z)
=

Rc(p(z))

R′
s (D (p(z), κ(z)))

. (103)

To simplify the notation, we fixz > 0, and simply writeD in
place ofD(p(z), κ(z)). Thus, with the substitution (103), (76)
reduces to

D −
Rs(D)

R′
s (D)

+ β = 0, (104)

where for the second term we also used the substitution (101).
Therefore,D must be a root of (104). Solving (104) forβ, we
then obtain

β =
Rs(D)

R′
s (D)

−D. (105)

We next show that the r.h.s of (105) is strictly decreasing with
respect toD. To do so, we take the first derivative of the r.h.s
in (105) with respect toD, and show that it is always negative
in the open interval0 < D < Dmax, i.e.,

d

dD

[

Rs(D)

R′
s (D)

−D

]

=
−R′′

s (D)Rs(D)

(R′
s(D))2

(c)
< 0, (106)

where (c) follows from the assumption ofR′′
s (D) > 0 and

further recalling thatRs(D) > 0 andR′
s(D) is finite, for 0 <

D < Dmax. Therefore, for every fixedβ, there is at most one
real rootD that solves (105), and it does not depend onz. This
is also true for the optimized value ofβ⋆, and therefore the
associated instantaneous distortionD⋆(p(z), κ(z)) is constant
for z > 0. Furthermore, for there to be at least one real root,
β in (105) must be in the rangeβmin < β < βmax, where

βmax := sup
0<D<Dmax

[

Rs(D)

R′
s(D)

−D

]

(107)

= lim
D↓0

Rs(D)

R′
s(D)

, (108)

and

βmin := inf
0<D<Dmax

[

Rs(D)

R′
s(D)

−D

]

(109)

= lim
D↑Dmax

Rs(D)

R′
s(D)

−Dmax. (110)
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