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Abstract

In this paper, an underlay cognitive radio network that consists of an arbitrary number of secondary

users (SU) is considered, in which the primary user (PU) employs Type-I Hybrid Automatic Repeat

Request (HARQ). Exploiting the redundancy in PU retransmissions, each SU receiver applies forward

interference cancelation to remove a successfully decodedPU message in the subsequent PU retrans-

missions. The knowledge of the PU message state at the SU receivers and the ACK/NACK message

from the PU receiver are sent back to the transmitters. With this approach and using a Constrained

Markov Decision Process (CMDP) model and Constrained Multi-agent MDP (CMMDP), centralized and

decentralized optimum access policies for SUs are proposedto maximize their average sum throughput

under a PU throughput constraint. In the decentralized case, the channel access decision of each SU is

unknown to the other SU. Numerical results demonstrate the benefits of the proposed policies in terms of

sum throughput of SUs. The results also reveal that the centralized access policy design outperforms the

decentralized design especially when the PU can tolerate a low average long term throughput. Finally,

the difficulties in decentralized access policy design withpartial state information are discussed.

I. INTRODUCTION

The advent of new technologies and services in wireless communication has increased the

demand for spectrum resources so that the traditional fixed frequency allocation will not be

able to meet these bandwidth requirements. However, most ofthe spectrum frequencies assigned
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to licensed users are under-utilized. Thus, cognitive radio is proposed to improve the spectral

efficiency of wireless networks [2]. Cognitive radio enables licensed primary users (PUs) and

unlicensed secondary users (SUs) to coexist and transmit inthe same frequency band [3], [4].

For a literature review on spectrum sharing and cognitive radio, the reader is referred to [5]-[7].

In the underlay cognitive radio approach, the smart SUs are allowed to simultaneously transmit

in the licensed frequency band allotted to the PU. The PU is oblivious to the presence of the

SUs while the SU needs to control the interference it causes at the PU receiver.

HARQ, a link layer mechanism, is a combination of high-rate forward error-correcting coding

(FEC) and ARQ error-control, and is employed in current technologies, including for example

HSDPA and LTE. CRNs with an HARQ scheme implemented by the PU are addressed in [8]-

[15]. [8], [9] and [10] show how to exploit the Type-I HARQ retransmissions implemented by

the PU. [8] considers a cognitive radio network composed of one PU and one SU, and does

not utilize interference cancelation (IC) at the SU receiver. [9] employs Type-I HARQ with an

arbitrary number of retransmissions and applies backward and forward IC after decoding the

PU message at the SU receiver. The network considered in [10]is similar to [8], where the SU

is also allowed to selectively retransmit its own previous corrupted message and apply a chain

decoding protocol to derive the SU access policy. [11] applies Type-II Hybrid ARQ with at

most one retransmission, where the SU receiver tries to decode the PU message in the first time

slot and, if successful, it removes this PU message in the second time slot to improve the SU

throughput. The extension of the work in [11] to IR-HARQ withmultiple rounds is addressed

in [12], where several schemes are proposed. [13] proposes SU transmission schemes when the

SU is able to infrequently probe the channel using the PU Type-II HARQ feedback with Chase

combining (CC-HARQ). Exploiting primary Type-II HARQ in CRN has also been studied in

[14] and [15]. Note that deriving the benefit from PU Type-I HARQ for designing an optimum

access policy has been only addressed for CRNs with one SU in the literature, with the exception

of our work in [1]. We have to notice that increasing the number of SUs and allowing them to

access the channel cause more interference at the PU receiver and therefore decrease the PU

throughput. In fact it is necessary to control the access of the SUs to the channel to constrain

the PU throughput degradation.

In this paper, an optimum access policy forN SUs is designed, which exploits the redundancy

introduced by the Type-I HARQ protocol in transmitting copies of the same PU message and
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interference cancelation at the SU receivers. The aim is to maximize the average long term

sum throughput of SUs under a constraint on the average long term PU throughput degradation.

We assume that the number of transmissions is limited to at most T and all SUs have a new

packet to transmit in each time slot. Two design scenarios are considered: in the first one, SUs

make a channel access decision jointly, whereas in the second scenario, each SU makes an

independent decision and does not know whether or not the other secondary users access the

channel. We call them respectively as centralized and decentralized scenarios. Noting the PU

message knowledge state at each of the SU receivers and also the ARQ retransmission time, the

PU − SU1 − ...− SUN network is modeled using MDP and MMDP models [16], respectively

in centralized and decentralized scenarios. Due to the constraint on the average long term PU

throughput, we then have a constrained MDP (CMDP) and Constrained MMDP (CMMDP).

In the centralized case, the access policy in one state showsthe joint probability of accessing

and/or not accessing the channel by the SUs. Using [17] and [18], it follows that the optimal

policy may be obtained from the solution of a corresponding LP problem. In the decentralized

scenario, there is an access policy for each SU describing the probability of accessing the channel

by that SU. It is noteworthy that we are interested in random access policies instead of only

deterministic access policies. Hence, the optimum policesin the centralized case can not be

directly applied to a decentralized scenario. To propose local optimum access policies for the

CMMDP model, we employ Nash Equilibrium.

The simulation results demonstrate that due to the use of forward IC (FIC), a cognitive radio

network converges to the upper bound faster as the number of SUs increases for large enough

SNR of the channels from the PU transmitter to SU receivers. The results also reveal that our

proposed centralized access policy design significantly outperforms the decentralized one when

the average PU throughput constraint is low.

The paper is organized as follows. Following the system model in Section II, the rates and

the corresponding outage probabilities are computed in Section III. Optimal access policies for

N SUs in centralized and decentralized scenarios are proposed respectively in Sections IV and

V. The numerical results are presented in Section VI and an extension to the paper is discussed

in Section VII. Finally, the paper is concluded in Section VIII.
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Fig. 1. CRN Model with two SUs

II. SYSTEM MODEL

In the system we consider, there exist one primary and N secondary transmitters denoted

by PUtx, SUtx1,...,SUtxN , respectively. These transmitters transmit their messages with constant

power over block fading channels. In each time slot (one block of the channel), the channels are

considered to be constant. The instantaneous signal to noise ratios of the channelsPUtx → PUrx,

PUtx → SUrxn, SUtxn → SUrxm, SUtxn → PUrx, n,m ∈ {1, ..., N} are denoted byγpp, γpsn,

γsnsm andγsnp, respectively. As an example, the system model with the mentioned channel SNRs

for N = 2 is depicted in Fig. 1.

We assume that no Channel State Information (CSI) is available at the transmitters except

the ACK/NACK message and the PU message knowledge state. Thus, transmissions are under

outage, when the selected rates are greater than the currentchannel capacity.

PU is unaware of the presence of the SUs and employs Type-I HARQ with at mostT

transmissions of the same PU message. We assume that the ARQ feedback is received by

the PU transmitter at the end of a time-slot and a retransmission can be performed in the next

time-slot. Retransmission of the PU message is performed ifit is not successfully decoded at the

PU receiver until the PU message is correctly decoded or the maximum number of transmissions

allowed,T , is reached1. Fig. 2 shows the model of the PU Type-I HARQ, whereRP is the PU

transmission rate andCt is the capacity of thePUtx to PUrx channel in ARQ time slott when

1A different type of HARQ, namely Type-II, successively transmits incremental redundancy for the same packet until success

or until the maximum number of transmissions is reached. While HARQ Type-II is out of the scope of the present paper, we

refer the interested reader to [15] for an initial study and some preliminary results.
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Fig. 2. ARQ Type-I HARQ Model forT = 5.

SU transmissions are considered as background noise atPUrx. In each time-slot, each SU, if it

accesses the channel, transmits its own message, otherwiseit stays idle and does not transmit.

This decision is based on the access policy described later.The activity of the SUs affects the

outage performance of the PU, by creating interference at the PU receiver. The objective is to

design access policies for SUs to maximize the average sum throughput of the SUs under a

constraint on the PU average throughput degradation.

We consider centralized and decentralized scenarios. In the centralized scenario, there exists

a central unit which receives the PU message knowledge states of the SUs as well as the

ACK/NACK message from the PU receiver. This unit then computes the secondary access actions

and provides them to the SUs. In the decentralized scenario,there exists no central unit. The

PU message knowledge state at each SU receiver is fed back to all the SU transmitters, but each

SU transmitter makes its own channel access decision independently, based on this information.

Thus, in the decentralized design each SU is not aware of the access decisions of the other SUs

in the same slot.

If SUrxn, n ∈ {1, ..., N}, succeeds in decoding the PU message, it can cancel it from the

received signal in future retransmissions. We refer to thisas FIC [9]. We call the PU message

knowledge state asΦ =
(

φ(1), ..., φ(N)
)

, which belongs to the set of2N possible combinations

of PU message knowledge states of all secondary users, whereφ(n) is the PU message knowledge

state of theSUn receiver. For example, ifΦ = (K,K) for N = 2, thenSUrx1 andSUrx2 both

know the PU message and thus can perform FIC.

In the centralized scenario, there are2N possible channel access combinations for theN SUs,

collected in the setA = {0, 1, ..., 2N − 1}. Each action, denoted bya, can be represented as an
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N-dimensional vectorΨ(a) =
(

ϕ(a, 1), ..., ϕ(a,N)
)

which is equal to the binary expansion of

a, 0 ≤ a ≤ 2N − 1 and therefore,ϕ(a, n) ∈ {0, 1}. Equivalently, we have

Ψ(a) = Dec2BinN (a), (1)

where the functionDec2BinN is theN-dimensional decimal to binary conversion. For access

action a, ϕ(a, n) = 1 means thatSUn is allowed to access the channel. IfΨ(a) = Un, only

SUn accesses the channel, whereUn is defined as follows:

Definition 1: Un is anN-dimensional vector withUn(n) = 1 andUn(m) = 0 for m 6= n.

On the contrary, in the decentralized case, the access action is an ∈ An = {0, 1} for secondary

usern, wherean = 1 means that this user is allowed to transmit.

III. RATES AND OUTAGE PROBABILITIES

First we consider the centralized scenario, where we have a joint access actiona ∈ A =

{0, 1, ..., 2N − 1} and then we address the decentralized scenario with independentN access

actionsan ∈ An = {0, 1}, n ∈ 1, ..., N .

A. Centralized Scenario

The PU transmission rate,RP , is considered fixed. However, based on the PU message

knowledge stateΦ and the access actiona, the rate of each secondary usern can be adapted

and is denoted byRsn,a,Φ, a ∈ A = {1, ..., 2N − 1}. (All rates for access actiona = 0 are zero.)

The outage probability of the channelPUtx → PUrx for SU access actiona is denoted by

ρp,a. Noting that theSUn transmissions∀n ∈ {1, ..., N} are considered as background noise at

PUrx, we have

ρp,a = 1− Pr

(

Rp ≤ C(
γpp

1 +
∑N

n=1 ϕ(a, n)γsnp
)

)

a ∈ A = {0, 1, ..., 2N − 1}, (2)

whereC(x) = log2(1 + x). Obviously,Ct in Fig. 2 is equal toC( γpp

1+
∑N

n=1
ϕ(a,n)γsnp

) if in ARQ

time t, actiona is selected.

The SNR regionΓsn,a,Φ(Rs1,a,Φ, ..., RsN ,a,Φ), n ∈ {1, ..., N}, whereφ(n) = K, is the set of all

N−tuples ofSNRs (γs1sn, ..., γsNsn), for which theSUn message transmitted at rateRsn,a,Φ is

successfully decoded atSUrxn regardless of the decoding of other SUs messages transmitted at

ratesRsm,a,Φ, ∀m 6= n. The SNR regionΓ̇sn,a,Φ(Rp, Rs1,a,Φ, ..., RsN ,a,Φ) is similarly defined for
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φ(n) = U and contains all SNR vectors such that theSUn message transmitted at rateRsn,a,Φ

is successfully decoded atSUrxn irrespective of the decoding of other SUs and PU messages

transmitted at ratesRsm,a,Φ andRp respectively2. Thus, the outage probability of the channel

SUtxn → SUrxn, n ∈ {1, ..., N} denoted byρsn,a,Φ is computed as

ρsn,a,Φ=(φ(1),...,φ(n)=K,...,φ(N)) = Pr ((γs1sn , ..., γsNsn) /∈ Γsn,a,Φ(Rs1,a,Φ, ..., RsN ,a,Φ)) (3)

and

ρsn,a,Φ=(φ(1),...,φ(n)=U,...,φ(N)) = Pr
(

(γpsn, γs1sn, ..., γsNsn) /∈ Γ̇sn,a,Φ(Rp, Rs1,a,Φ, ..., RsN ,a,Φ)
)

.

(4)

As an example of how the SNR regions can be determined, we have:

Γ̇s1,1,Φ(Rp, Rs1,1,Φ)
∆
=

{

(γs1s1, γps1) : Rs1,1,Φ ≤ C(γs1s1),

Rp ≤ C(γps1), Rs1,1,Φ +Rp ≤ C(γs1s1 + γps1)

}

⋃

{

(γs1s1 , γps1) : Rp > C(γps1), Rs1,1,Φ ≤ C(
γs1s1

1 + γps1
)

}

, whereφ(1) = U, (5)

Γs1,3,Φ(Rs1,3,Φ, Rs2,3,Φ)
∆
=

{

(γs1s1 , γs2s1) : Rs1,3,Φ ≤ C(γs1s1),

Rs2,3,Φ ≤ C(γs2s1), Rs1,3,Φ +Rs2,3,Φ ≤ C(γs1s1 + γs2s1)

}

⋃

{

(γs1s1, γs2s1) : Rs2,3,Φ > C(γs2s1), Rs1,3,Φ ≤ C(
γs1s1

1 + γs2s1
)

}

, whereφ(1) = K. (6)

As observed,Γ̇s1,1,Φ(Rp, Rs1,1,Φ) depends onRp andRs1,1,Φ, whenφ(1) = U . This is because

only SU1 is allowed to access the channel whena = 1 and thePU message is unknown at

SUrx1. It is also seen thatΓs1,3,Φ(Rs1,3,Φ, Rs2,3,Φ) depends onRs1,3,Φ andRs2,3,Φ whenφ(1) = K.

The reason is that onlySU1 andSU2 access the channel whena = 3 and thePU message can

be removed at theSU1 receiver. All other SNR regions can be similarly computed (full details

for N = 2 can be found in [19]).

2Note that unlike in traditional systems, where the decodability of a signal depends only on its own rate, in the presence of

Interference Cancelation it also depends on the interferers’ rates (see the examples in (5) and (6)).
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B. Decentralized Scenario

In the decentralized case, each SU does not coordinate its access action with the other SUs,

and therefore there existN independent binary access actionsan ∈ An = {0, 1} ∀n ∈ {1, ..., N}.

The access actiona in the decentralized case is the combination ofN binary decisions (actions)

a1, ..., aN and may be derived as follows:

a = Bin2Dec(aN , aN−1, ..., a1) =
N
∑

n=1

an2
n−1, (7)

where the functionBin2Dec is binary to decimal conversion. Thus, the rates and the outage

probabilities at access actiona and PU message knowledge stateΦ defined in Section III-A can

also be applied in the decentralized scenario.

IV. CENTRALIZED OPTIMAL ACCESSPOLICIES FOR THESUS

The state of thePU − SU1 − ... − SUN system may be modeled by a Markov Process

s = (t,Φ), wheret ∈ {1, 2, ..., T} is the primary ARQ state andΦ, the PU message knowledge

state, belongs to the set of2N possible combinations of PU message knowledge states. The set

of all states is indicated byS, and the number of states is equal to2N ∗ (T − 1) + 1.

The policyµ maps the state of the networks to the probability that the secondary users take

access actiona ∈ {0, 1, ..., 2N −1}. The probability that actiona is selected in states is denoted

by µ(a, s). For example, with probabilityµ(1, s), only SUtx1 transmits and with probability

µ(0, s) = 1−
∑2N−1

i=1 µ(i, s), they are all idle.

If access actiona ∈ {1, , ..., 2N −1} is selected, the expected throughput ofSUn, n ∈ 1, ..., N

in states = (t,Φ) is computed as

Tsn,a,Φ = Rsn,a,Φ(1− ρsn,a,Φ) (8)

Since the model considered here is a stationary Markov chain, the average long term SU sum

throughput can be obtained as

T̄su,c(µ) = Ea,s=(t,Φ)

[

N
∑

n=1

Tsn,a,Φ

]

= Es=(t,Φ)

[2N−1
∑

a=1

N
∑

n=1

µ(a, s)Rsn,a,Φ(1− ρsn,a,Φ)

]

, (9)

where Ea,s denotes the expectation with respect toa ands. The outage probabilitiesρsn,a,Φ are

given in (3) and (4).
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The aim is to maximize the average long term sum throughput ofthe SUs under the long

term average PU throughput constraint, where the average long term PU throughput is given by

T̄pu = Rp

(

1−
∑2N−1

a=0 Es=(t,Φ) [µ(a, s)] ρp,a

)

. Using µ(0, s) = 1 −
∑2N−1

a=1 µ(a, s), the average

long term PU throughput̄Tpu is rewritten as follows:

T̄pu = Rp



1−

2N−1
∑

a=1

Es=(t,Φ) [µ(a, s)] ρp,a



−Rp



ρp,0 −

2N−1
∑

a=1

Es=(t,Φ) [µ(a, s)] ρp,0





= T I
pu − Rp





2N−1
∑

a=1

Es=(t,Φ) [µ(a, s)] (ρp,a − ρp,0)





= T I
pu − Rp

(

Ea,s=(t,Φ) [ρp,a − ρp,0]
)

, (10)

whereT I
pu = Rp(1− ρp,0); andρp,a, a ∈ {0, ..., 2N − 1} are given in (2).

Thus, if we request that̄Tpu ≥ T I
pu(1 − ǫPU), the PU throughput degradation constraint is

computed as follows

T I
pu − T̄pu = RpEa,s=(t,Φ) [ρp,a − ρp,0] ≤ Rp(1− ρp,0)ǫPU .

Now we can formalize the optimization problem as follows:

Problem 1:

maximize
µ(a,s)

T̄su,c(µ) = Ea,s=(t,Φ)

[

N
∑

n=1

Tsn,a,Φ

]

s.t. (11)

Ea,s=(t,Φ) [ρp,a − ρp,0] ≤ (1− ρp,0)ǫPU , ǫω, (12)

whereµ(a, s) is the probability that access actiona is selected in states.

The constraint (12) is referred to as the normalized PU throughput degradation constraint.

To give a solution to Problem 1, we provide the following definition, which identifies the

boundary between low and high access rate regimes.

Definition 2: Let µ́init = {µ1,init, ..., µ2N−1,init} be defined as follows:

µ́init =











Um ∀s ∈ SK = {(t, (K, ..., K)) : t ∈ {1, 2, ..., T}}

0 ∀s /∈ SK,
(13)

where

m = argmax
a∈{1,...,2N−1}

va (14)
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va = Dec2BinN (a).(Ts1,a,(K,...,K), ..., TsN ,a,(K,...,K))min(
ǫω

ρp,a − ρp,0
, 1) (15)

andA.B is the inner product of two vectors A and B; andTsn,a,(K,...,K) is given in (8). Thus,

according to (14), actionm ∈ {1, ..., 2N−1} is selected ifs ∈ SK, otherwise action0 is selected.

Note thatµinit = {µ0,init}
⋃

µ́init is a random access policy, whereµ0,init = 1−
∑2N−1

a=1 µa,init.

For access policyµinit, we compute the normalized PU throughput degradation constraint in

(12) and refer to it asωinit. Hence, replacing (13) in (12) and then computing the expectation

with respect toa ands, ωinit can be obtained as follows:

ωinit = (ρp,m − ρp,0)
T
∑

t=1

π(t, (K, ..., K)), (16)

wherem is given in (14) andπ(t, (K, ..., K)) is the steady-state probability of being in state

s = (t, (K, ..., K)).

In the sequel, we derive an upper bound to the average long term sum throughput of SUs, and

characterize the low SU access rate regimeǫω ≤ ωinit and high SU access rate regimeǫω > ωinit.

A. Upper Bound to the Average Long Term SU Sum Throughput in Centralized Access Policy

Design

An upper bound to the average long term SU sum throughput is achieved when the receivers

are assumed to know the PU message, so that they can always cancel the PU interference. Since

each SU always knows the PU message, as in [9] there exists an optimal access policy which

is independent of the ARQ state, and therefore is the same in each slot. We refer to this policy

as µ = {µ0, µ1, ..., µ2N−1}. Thus, noting that
∑2N−1

a=1 µa ≤ 1 and 0 ≤ µa, Problem 1 may be

rewritten as follows:

Problem 2:

max
µ1,...,µ2N−1

T̄su,c(µ) =
2N−1
∑

a=1

µaDec2BinN (a).(Ts1,a,(K,...,K), ..., TsN ,a,(K,...,K)), s.t. (17)

2N−1
∑

a=1

µa(ρp,a − ρp,0) ≤ ǫω,
2N−1
∑

1

µa ≤ 1, (18)

where0 ≤ µa. Proposition 1 below provides a solution to Problem 2.
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Proposition 1: An access policy to achieve the upper bound is given byµu = {µu
0 , µ

u
1 , ..., µ

u
2N−1} =

{µu
0}
⋃

µ́u, where3

µ́u = min(
ǫω

ρp,m − ρp,0
, 1)Um (19)

and the upper bound to the average long term SU sum throughputis obtained as

T̄ u
su,c = min(

ǫω
ρp,m − ρp,0

, 1)Dec2BinN(m).(Ts1,m,(K,...,K), ..., TsN ,m,(K,...,K)) (20)

wherem is defined in (14) and the other parameters are given in Sections II and III.

Proof: Using Lagrange multipliersλ1 andλ2, the Lagrangian for Problem 2 is

L =
2N−1
∑

a=1

µaDec2BinN (a).(Ts1,a,(K,...,K), ..., TsN ,a,(K,...,K))− λ1

(2N−1
∑

a=1

µa(ρp,a − ρp,0)− ǫω

)

−

λ2(
2N−1
∑

a=1

µa − 1) (21)

and then the Kuhn-Tucker conditions are as follows:

∂L

∂µi

≤ 0, µi ≥ 0, µi

∂L

∂µi

= 0 i ∈ {1, ..., 2N − 1} (22)

2N−1
∑

a=1

µa(ρp,a − ρp,0)− ǫω ≤ 0, λ1 ≥ 0, λ1

(2N−1
∑

a=1

µa(ρp,a − ρp,0)− ǫω

)

= 0 (23)

2N−1
∑

a=1

µa − 1 ≤ 0, λ2 ≥ 0, λ2(
2N−1
∑

a=1

µa − 1) = 0. (24)

To solve the problem, we need to consider different situations for the various inequalities. The

complete proof is given in Appendix A.

Thus, ifm = 1 is the answer to (14), then onlySU1 can access the channel while satisfying the

PU throughput degradation constraint. Thus,v1 is proportional to the ratio of theSU1 throughput

over the relative PU throughput. Relative PU throughput indicates the amount of reduction in

the PU throughput if onlySU1 transmits with respect to that when no SU transmits. The result

for the other selectedm can be interpreted in a similar way.

3Please note that the “min” operation in (19) and (20) (which was erroneously not included in [1]) is needed to ensure that

µu is a valid probability distribution when ǫw
ρp,i−ρp,0

> 1.
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B. Low SU Access Rates Regime in Centralized Access Policy Design

Now we consider the low SU access rate regimeǫω ≤ ωinit, where ǫω is defined in (12).

Proposition 2 below characterizes the optimum access policy for this access rate regime.

Proposition 2: In the low SU access rate regimeǫω ≤ ωinit, the optimal access policy is given

by

µ∗ = {µ∗
0, µ

∗
1, ..., µ

∗
2N−1} = {µ∗

0}
⋃

µ́∗, (25)

where

µ́∗ =











( ǫω
ωinit

)Um ∀s ∈ SK = {(t, (K, ..., K)) : t ∈ {1, 2, ..., T}}

0 ∀s /∈ SK,
(26)

and

T̄ u
su,c = (

ǫω
ρp,m − ρp,0

)Dec2BinN (m).(Ts1,m,(K,...,K), ..., TsN ,m,(K,...,K)) (27)

wherem is defined in (14) and the other parameters are given in Sections II and III.

Proof: With µinit in (13) (Definition 2), the constraint (12) is equal toωinit as given in

(16). However, for the low SU access rate regime,ǫω is less than or equal toωinit. To meet this

stricter constraint, we can scale the access policyµinit in (13) by ǫω
ωinit

such that (12) is satisfied

with equality. Therefore,µ∗ in (25) satisfies the constraint. Replacingµ∗ in (11) we obtain

T̄su,c(µ) =
ǫω
ωinit

Dec2BinN(m).(Ts1,m,(K,...,K), ..., TsN ,m,(K,...,K))
T
∑

t=1

π(t, (K, ..., K)) (28)

Thus, substitutingωinit given in (16) results in the SU sum throughput as given in (27). Since

the SU sum throughput (27) is equal to the upper bound (20) in the low SU access rate regime

ǫω ≤ ωinit, the proposed access policy (25) is optimal. Note that in thelow SU access rate

regime sinceǫω ≤ ωinit, we have

ǫω
ρp,m − ρp,0

≤ 1, (29)

wherem is defined in (14).

Proposition 2 provides the conditions in which the SUs can access the channel in the low SU

access rate regime. As observed, the SUs are not allowed to transmit if even one of the SU

receivers does not know the PU message.
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C. High SU Access Rates Regime in Centralized Access Policy Design

In Problem 1, we are looking for an optimum policy for the CMDPproblem. Therefore, for

high SU access rate regime, we employ the equivalent LP formulation corresponding to CMDP,

e.g., see [17], [18]. To provide the equivalent LP, we need the transition probability matrix of

the Markov process denoted byP , wherePsś,a is the probability of moving from states to ś

if access actiona is chosen. Note that the only allowable state with ARQ timet = 1 is state

s = (1, (U, ..., U)) and the process always restarts froms = (1, (U, ..., U)) when the maximum

number of PU retransmissions or the successful decoding of the PU messages occurs. To obtain

the transition probability matrixPsś,a, we need to compute the transition probability matrix of

the PU Markov modelQtt́,a as given in (30), which is the probability that the primary ARQ

statet is transferred tót if access actiona is selected.

Qtt́,a =







































1 if t́ = 1, t = T

1− ρp,a if t́ = 1, t 6= T

ρp,a if t́ = t+ 1, t 6= T

0 otherwise.

(30)

Thus,Psś,a = P(t,Φ)(t́,Φ́),a is given by

P(t,Φ)(t́,Φ́),a = Qtt́,aPr(Φ́|Φ, a), (31)

wherePr(Φ́|Φ, a), the probability that the PU message knowledge stateΦ is changed to state

Φ́ given actiona, is obtained as follows:

Pr(Φ́|Φ, a) =

N
∏

n=1

Fn(Φ, a), (32)

where

Fn(Φ, a) =







































ρpsn,a,Φ if φ(n) = U and φ́(n) = U

1− ρpsn,a,Φ if φ(n) = U and φ́(n) = K

1 if φ(n) = K and φ́(n) = K

0 if φ(n) = K and φ́(n) = U

(33)

andρpsn,a,Φ is the probability thatSUrxn is not able to decode the PU message in PU message

knowledge stateΦ if access actiona is selected.
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For any unichain Constrained Markov Decision Process, there exists an equivalent LP formu-

lation, where an MDP is unichain if it contains a single recurrent class plus a (perhaps empty)

set of transient states [20]. Since the transition probability of moving from every state to state

s = (1, {U, ..., U}) is not zero, our CMDP model is unichain. Thus, the following problem

formalizes the equivalent LP for Problem 1 [17]:

Problem 3:

maximize
x

∑

s∈S

∑

a∈A

N
∑

n=1

Tsn,a,Φx(s, a) s.t. (34)

∑

s∈S

∑

a∈A

(ρp,a − ρp,0)x(s, a) ≤ ǫω (35)

∑

a∈A

x(ś, a)−
∑

s∈S

∑

a∈A

Psś,a x(s, a) = 0 ∀ś ∈ S (36)

∑

s∈S

∑

a∈A

x(s, a) = 1 (37)

x(s, a) ≥ 0 ∀s ∈ S, a ∈ A. (38)

Note that since the number of actions and states are respectively equal to2N and2N ∗(T−1)+1,

the computational complexity of the LP approach is the orderof 22N . The relationship between

the optimal solution of Problem 3 and the solution to the considered Problem 1 is obtained as

follows [17]:

µ(a, s) =











x(s,a)∑
á∈A x(s,á)

if
∑

á∈A x(s, á) > 0

arbitrary otherwise.
(39)

All cases of practical interest considered in this paper correspond to a unichain CMDP. For the

equivalent linear problem corresponding to the general case of a multichain CMDP, the reader

is referred to [18].

V. DECENTRALIZED ACCESSPOLICIES FORSUS IN MMDP MODEL

In this section, we assume that there is no central unit to control the access policy of the SU

transmitters. Therefore, each SU has to control its own access policy independently. We also

assume that the PU message knowledge state of each SU receiver is known to all SU transmitters

(e.g., theSUrxm sends back its PU message knowledge state on an error free feedback channel,

which is heard by all SU transmitters). Hence, the states defined in Section IV is known to
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all transmitters. However, since there is no central unit, there is no coordination among the

SUs, andSUm does not know the action selected bySUn, n 6= m. Thus, each secondary user

knows the state of the MDP but not the action selected by the other users. In this case, the

PU − SU1 − ... − SUN system may be modeled by an Multi-agent Markov Decision Process

s = (t,Φ) [16], wheret andΦ are defined in Section IV. The set of all states is indicated by

S. In contrast to the centralized scenario, we haveN policiesµn, n = {1, ..., N}, which map

the state of the networks to the probabilities that each secondary usern takes access action

an ∈ An = {0, 1}. The probability that actionan is selected bySUn in states is denoted by

µn(an, s), wherean = 0 if SUtxn does not transmit, andan = 1 otherwise (SUtxn transmits).

We use the notationµ = (µ1, ..., µN) for the access policy of the system in the decentralized

case. As denoted, the objective is to maximize the average long term sum throughput of the

SUs under the long term average PU throughput constraint as formalized in Problem 4, where

all throughputs are influenced by the actions selected by theN users.

Problem 4:

maximize
µ1(a1,s),...,µN(aN ,s)

T̄su,d(µ1, ..., µN) = Ea,s=(t,Φ) [Ts1,a,Φ + ...,+TsN ,a,Φ] s.t. (40)

D(µ1, ..., µN) = Ea,s=(t,Φ) [ρp,a − ρp,0] ≤ ǫω, (41)

wherea = Bin2Dec(aN , aN−1, ..., a1), ǫω is defined in Section IV; andµn(an, s) is the proba-

bility that access actionan is selected at transmitterSUn, given system states.

Since the access policy designed in Section IV is a randomized policy [17], in general we can

not find an access policy for each SU from the proposed centralized access policy. For example,

assumeN = 2 and the centralized optimum policyµ = [0.3, 0, 0, 0.7], which cannot be

implemented in a distributed way. This is because that we canfind the two probabilitiesν1 =

µ1(0, s) andν2 = µ2(0, s) by solving the two equationsν1ν2 = 0.3 and (1− ν1)(1− ν2) = 0.7,

but the solution would be incompatible withν1(1 − ν2) = ν2(1 − ν1) = 0. This is actually

a result of the fact that in the centralized solution we pick aprobability distribution over2N

values, which has2N − 1 degrees of freedom, whereas in the decentralized scenario we pickN

binary distributions, with onlyN degrees of freedom, and therefore there always exist centralized

distributions that cannot be obtained by combiningN binary distributions for anyN > 1.

In the sequel, a scheme based on Nash Equilibrium is proposed, which finds the local optimum

policies by converting the CMMDP to a CMDP [21], [22].

September 23, 2018 DRAFT



16

A. Decentralized Access policy Design Using Nash Equilibrium

We employ Nash Equilibrium, in which no user has an interest in unilaterally changing its

policy. In fact, SUn transmitter designs its optimal policy by assuming fixed policies for the

other SUs. This procedure for different SUs continues untilthere is no benefit in employing

more iterations. Assuming fixed policiesµn for SUn, the problem forSUm, m 6= n can be

considered as a CMDP, referred to asCMDPm. The state space of the new model is the same

as the system stateS. In fact, since the system states is known for all users, the state of

CMDPm is s = (t, (φ(1), ..., φ(N))). SUtxm chooses actionam from the setAm = {0, 1},

where for am = 1 and am = 0 the SUm does or does not transmit respectively. Problem 5

below formalizes the new optimization problem forSUm assuming fixed stationary policies for

all SUn, n 6= m.

Problem 5:

maximize
µm(am,s)

Eam,s=(t,Φ)

[

∑

an,∀n 6=m

(Ts1,a,Φ + ... + TsN ,a,Φ)

N
∏

n=1,n 6=m

µn(an, s)

]

s.t. (42)

Eam,s=(t,Φ)

[

∑

an,∀n 6=m

(ρp,a − ρp,0)
N
∏

n=1,n 6=m

µn(an, s)

]

≤ ǫω, (43)

where ǫω is defined in Section IV; andµm(am, s) is the probability that access actionam is

selected in states by theSUm transmitter.

Assume a fixed stationary policyµn for SUn, ∀n ∈ {1, ..., N}, n 6= m. The problem forSUm

is a CMDP characterized by tuple(s, Ṕm, ŕm, d́m), where

Ṕm
sś,am

=
∑

an,∀n 6=m

Psś,a

N
∏

n=1,n 6=m

µn(an, s), (44)

ŕms,am =
∑

an,∀n 6=m

(Ts1,a,Φ + ...+ TsN ,a,Φ)

N
∏

n=1,n 6=m

µn(an, s), (45)

d́ms,am =
∑

an,∀n 6=m

(ρp,a − ρp,0)
N
∏

n=1,n 6=m

µn(an, s). (46)

Ṕm, ŕm andd́m, respectively are the transition matrix probability, the instantaneous reward func-

tion and the instantaneous cost function in the new model andPsś,a is the transition probability

of the system.
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As explained in Section IV-C, there is an equivalent LP formulation for any unichain CMDP,

and the LP formulation corresponding toCMDPm described in Problem 5 is given by

Problem 6:

maximize
xm

∑

s∈S

∑

am∈Am

ŕms,amx
m(s, am) s.t.

∑

s∈S

∑

am∈Am

d́ms,amx
m(s, am) ≤ ǫω

∑

am∈Am

xm(ś, am)−
∑

s∈S

∑

am∈Am

Ṕm
sś,am

xm(s, am) = 0 ∀ś ∈ S

∑

s∈S

∑

am∈Am

xm(s, am) = 1

xm(s, am) ≥ 0 ∀s ∈ S, am ∈ Am. (47)

The relationship between the optimal solution of LP Problem6 and the solution to the considered

Problem 5 is also obtained as follows

µm(am, s) =











xm(s,am)∑
´am∈Am

xm(s,ám)
if
∑

ám∈Am
xm(s, ám) > 0

arbitrary otherwise.
(48)

As denoted,SUm computes the optimum policy as given in (48) by considering fixed policies

for other SUs. By changingm ∈ {1, ..., N}, this procedure iteratively continues until an

equilibrium is achieved. (We prove later in Proposition 4 that an equilibrium point is always

achieved.) Algorithm 1 below describes the local optimal solution to Problem 4 based on Nash

Equilibrium. The obtained access policies are local optimum solutions. We have to restart

Algorithm 1 for several random initiations and see whether the resulting SU sum throughput is

higher. We have the two following propositions related to Nash Equilibrium.

Proposition 3: Optimum access policiesµ∗
n, ∀n ∈ {1, ..., N} solution to Problem 4 are a

fixed point or an equilibrium point.

Proof: If µ∗
n, ∀n ∈ {1, ..., N} are the optimum solutions to problem 4, then

T̄su,d(µ
∗
1, ..., µ

∗
N) ≥ T̄su,d(µ1, ..., µN), (49)

where(µ1, ..., µN) belongs to the set of all feasible solutions (i.e., the set ofpolices that satisfy the

constraint in Problem 4) and̄Tsu,d(µ
∗
1, ..., µ

∗
N) is given in Problem 4. Now suppose that the policy
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Algorithm 1 Local Optimum Policy using Nash Equilibrium
1) Choose initial stochastic policiesµn ∀n ∈ {1, ..., N} and selectm = 1, l = 1 and

µ1 = (µ1, ..., µN).

2) To compute optimum policyµm for SUm, obtain the solution to Problem 5 as given in

(48) for givenµn, ∀n 6= m,

3) Selectl = l + 1, m = m+ 1 andµl = (µ1, ..., µN). If m = N + 1, thenm = 1.

4) If µl = µl−1, then go step 5. Else go step 2.

5) µn, ∀n ∈ {1, ..., N} are the local optimum solution to original DEC-MMDP Problem4.

for SUn ∀n 6= 1 is fixed toµ∗
n. Note thatT̄su,d(µ1) in Problem 5 is equal tōTsu,d(µ1, µ

∗
2, ..., µ

∗
N)

in Problem 4. Thus, noting (49), we have

T̄su,d(µ1) ≤ T̄su,d(µ
∗
1, µ

∗
2, ..., µ

∗
N) (50)

and ifµ1 is equal toµ∗
1, equality occurs. Thus, point(µ∗

1, ..., µ
∗
N) is a fixed point. In other words,

this fixed point is an equilibrium where no user can get any more benefit in SU sum throughput

by more iterations.

Proposition 4: The SU sum throughput obtained by solving Algorithm 1 improves as the iter-

ation indexl increases and furthermore, the iterative procedure based on Algorithm 1 converges

to a fixed point.

Proof: Supposeµl
n ∀n ∈ {1, ..., N} are the resulting policies in iterationl of the algorithm

and the resulting SU sum throughput is given byT̄su,d(µ
l
1, ..., µ

l
N). Now we considerµl

n n 6= 1

to be fixed and improveµl
1 to µl+1

1 according to the algorithm. Therefore,µl+1
1 is the optimum

solution to Problem 5 and we have

T̄su,d(µ
l+1
1 ) ≥ T̄su,d(µ

l
1) (51)

or equivalently

T̄su,d(µ
l+1
1 , µl

2, ..., µ
l
N) ≥ T̄su,d(µ

l
1, µ

l
2, ..., µ

l
N). (52)

Since T̄su,d(µ
l
1, ..., µ

l
N) and T̄su,d(µ

l+1
1 , µl

2, ..., µ
l
N) are the SU sum throughput respectively in

iterationsl andl+1, it is observed that the SU sum throughput can not decrease asthe algorithm

proceeds. The same approach could be seen when the policy forSUn, n 6= 1 improves and the
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policies of the other SUs are constant. This shows that the SUsum throughput is an increasing

function with respect tol. Since the performance is bounded by that of the centralizedaccess

policy design, it is proved that the proposed algorithm converges.

Propositions 3 and 4 prove that the optimum solution to the decentralized access policy design

is an equilibrium point and the decentralized access policydesign based on Algorithm 1 converges

to a fixed point.

VI. NUMERICAL RESULTS

For numerical evaluations we consider a CRN withN SUs, N ∈ {1, 2, 3}, and Rayleigh

fading channels. Thus, the SNRγx is an exponentially distributed random variable with mean

γ̄x, wherex ∈ {pp, psn, snsm, snp}, n,m ∈ {1, ..., N}. We consider the following parameters

throughout the paper, unless otherwise mentioned. Following [9], we consider the average SNRs

γ̄pp = 10, γ̄snsn = 5, γ̄psm = 5, γ̄snp = 2, and γ̄snsm = 3, m 6= n. The ARQ deadline isT = 5.

The PU rateRp is selected such that the PU throughput is maximized when allSUs are idle, i.e.,

Rp = argmaxR T I
pu(R). Thus, we setRp = 2.52 andT I

pu = 1.57. The PU throughput constraint

is set to(1− ǫPU)T
I
pu, whereǫPU = 0.2. In the centralized case the ratesR∗

sn,a,Φ
, n ∈ {1, ..., N},

are computed as(R∗
s1,a,Φ

, ..., R∗
sN ,a,Φ) = argmaxRs1,a,Φ

,...,RsN,a,Φ
Ts1,a,Φ + ... + TsN ,a,Φ so as to

maximize the SU sum throughput, whereTsn,a,Φ, n ∈ {1, ..., N} is a function ofRP (only if the

PU message knowledge state is unknown for receiverSUn) and of allRsm,a,Φ, ∀m ∈ {1, ..., N}.

In the decentralized case, the rateRsn,a,Φ is selected so as to maximizeTsn,a,Φ, irrespective of

the other SU transmissions.

We remark that the SU access policies are randomized, in the sense that, for a given system

state, different channel access outcomes are possible withdifferent probabilities. In the centralized

case, the policy is given by the joint distribution of the channel access actions by allN SUs,

whereas in the decentralized case each SU makes its own randomized binary decision about

whether or not to access the channel.

The scheme “Forward Interference Cancelation” discussed here is called “FIC”. The central-

ized and decentralized access policy designs are respectively referred to as “FIC Decentralized”

and “FIC Centralized”. For the centralized policy design, the performance bound described

in Section IV-A is referred to as “PM already Known”. To validate the SU sum throughput

obtained by Problem 3, we use access policies proposed by ”FIC Centralized” in a Monte-Carlo
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simulation, compute the SU sum throughput and PU throughputdegradation and refer to it as

“FIC Centralized-Monte-Carlo”. In addition, we also consider the scenario without using FIC,

referred to as “No FIC” in the centralized access policy design. Note that “FIC: One SU” denotes

the case that only one SU exists in the CRN and its receiver applies FIC.

The SU sum throughput with respect to the PU throughput by varying the value ofǫPU

for N = 1, 2, 3 is depicted in Fig. 3. As can be observed from Fig. 3, “FIC Centralized-

Monte-Carlo” matches the SU sum throughput obtained by the solution to Problem 3. It is

also obvious that as the PU throughputT I
pu(1 − ǫPU) = 1.57(1 − ǫPU) increases, the average

sum throughput of SUs decreases. PU throughputs greater than 1.286 and 1.224 (ǫPU < 0.22

and ǫPU < 0.18) correspond to the low SU access rate regime respectively for centralized and

decentralized scenarios with two SUs. The FIC performance is the same as that of the upper

bound (“PM already Known” scheme) for the low SU access rate regime. As can be observed,

each CRN scenario provides a constant SU sum throughput for aloose enough constraint on

the PU throughput. There is also a performance loss with applying the decentralized approach

with respect to the centralized one in CRN with eitherN = 2 or N = 3 SUs, especially for a

loose PU throughput constraint. Our simulation results show that this loss in the decentralized

scenario is because the assigned rate to each SU does not account for the decision made by

the other SUs, whereas in the centralized case the rates are jointly assigned. In fact, when the

rates assigned to the SUs in the decentralized case are the same as those in the centralized case,

our proposed decentralized design has the same performanceas the centralized design. It can

be seen that the decentralized scenario withN = 3 provides a performance similar toN = 2

even for a loose PU throughput constraint and this is becausethe SUs interfere more with each

other when the rate at each SU is assigned irrespective of theother SUs. Thus, increasing the

number of SUs generates more interference at the SU receivers and requires the SUs to reduce

their access to the channel. The results also reveal that thetrend of the tradeoff curve between

PU and SU sum throughput is the same for all FIC schemes regardless ofN , and the slope of

the tradeoff curves after departing from the “PU always known” curve is the same in all cases

including “No FIC”, where the difference among the various cases is the value on which the

various curves settle in the loose PU throughput constraints. Thus, from the results of Fig. 3, it

can be concluded that, despite the obvious quantitative differences (SU sum throughput is higher

when more SUs are present and the PU throughput constraint isloose), the trends of all curves
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Fig. 3. Average sum throughput of SUs with respect to PU throughput constraint(1−ǫPU )T
I
pu. γ̄psn = 5, γ̄snp = 2, γ̄pp = 10,

γ̄snsn = 5 and γ̄snsm = 3, n,m ∈ {1, ..., N}, n 6= m.

are very similar. For this reason, in the rest of this section, in order to keep the plots more

readable, we will focus on the simpler caseN = 2, with the understanding that forN = 3 we

will have curves with similar behaviors and slightly betterthroughput.

The average sum throughput of SUs as a function ofγ̄s1p is depicted in Fig. 4, wherēγs2p = 2.

As observed4, the SU sum throughput decreases asγ̄s1p increases. This is becauseγ̄s2p = 2 and

hence, the PU throughput degradation constraint is always active for the two SUs. A similar

plot for the casēγs2p = γ̄s1p is depicted in Fig. 5. As observed, for̄γs1p < 0.5, γ̄s1p < 0.25

and γ̄s1p < 0.45 respectively in the CRN with one SU, centralized and decentralized cases, we

have a different result. In fact, because the interference power of SUs has little effect on the

PU receiver, initially the PU throughput degradation constraint is not active and thereforeSUtx1

and SUtx2 may utilize their powers to maximize their own throughput. Note that the action

obtained for the SUs when̄γs1p = 0.25 can not be used for̄γs1p < 0.25. In fact, notice that as

γ̄s1p and γ̄s2p increase, the activity of the SUs causes more interference at the PU receiver and

leads to more ARQ retransmissions. In turn, this will make more IC opportunities available at

the SU receivers, thereby increasing the SU sum throughput.On the other hand, since for PM

already Known and “No FIC” the SUs assume that the PU messagesare already known or they

4Note that the SUs interfere with each other in this paper, whereas the interference between the SUs has been neglected in

[1].
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Fig. 4. Average sum throughput of SUs with respect toγ̄s1p. γ̄ps1 = γ̄ps2 = 5, γ̄s2p = 2, γ̄pp = 10, γ̄s1s1 = γ̄s2s2 = 5,

γ̄s1s2 = γ̄s2s1 = 3 and ǫPU = 0.2.

do not apply IC, respectively, there is no benefit in augmenting the ARQ retransmissions and

therefore the performance is constant for smallγ̄s1p and γ̄s2p, until the constraint becomes active

for γ̄s1p > 0.5, γ̄s1p = γ̄s2p > 0.25 and γ̄s1p = γ̄s2p > 0.45, respectively in the CRN with one

SU, centralized and decentralized cases; therefore, abovethose values, the SU sum throughput

decreases. As expected, in the cognitive radio with two symmetric SUs and centralized scenario,

the PU throughput degradation constraint becomes active sooner than in the cognitive radio with

one SU, when increasing the SNR of the channels from the SU transmitters to the PU receiver.

A similar observation can be made whenγ̄ps1 = γ̄ps2 = 2 as depicted in Fig. 6. Our results,

not shown here, confirm the same observation forN = 3 when compared withN = 2. It is

noteworthy that becausēγps1 = γ̄ps2 = 2 are neither strong enough to be successfully decoded,

nor so weak as to be considered as small noise at the SU receivers, the SU sum throughput

provided by the centralized case suffers a higher performance loss with respect to the upper

bound compared with that in Fig. 5. This observation is clearly seen also in the next two figures,

as discussed later.

Figs. 7 and 8 show the average SU sum throughput with respect to γ̄ps1 for γ̄ps2 = 5 and

γ̄ps2 = γ̄ps1, respectively. Note thatR∗
s1,a,Φ=(U,θ) andR∗

s2,a,Φ=(θ,U) respectively depend on̄γps1 and

γ̄ps2. As expected,̄γps1 does not have any influence on the “PM already Known” scheme. This

is because in this scheme the PU message is previously known and can always be canceled by

the SU receiver in future retransmissions. It is observed that for large enough values of̄γps1, the
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γ̄s1s2 = γ̄s2s1 = 3 and ǫPU = 0.2.
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Fig. 6. Average sum throughput of SUs with respect toγ̄s1p = γ̄s2p. γ̄ps1 = γ̄ps2 = 2, γ̄pp = 10, γ̄s1s1 = γ̄s2s2 = 5,

γ̄s1s2 = γ̄s2s1 = 3 and ǫPU = 0.2.

upper bound is achievable by the FIC scheme in the centralized scenario. In fact, the SU receiver

can successfully decode the PU message, remove the interference and decode its corresponding

message. Note that the upper bound is computed in the centralized scenario. The sum throughput

is minimized atγ̄ps1 = 2 in the CRN with one SU, centralized and decentralized cases,where

the PU message is neither strong enough to be successfully decoded, nor weak to be considered

as negligible. It is also evident that the FIC scheme in Fig. 7converges to the upper bound faster

than in Fig. 8. The reason is thatγ̄sp1 and γ̄sp2 increase simultaneously in Fig. 8, whereas the
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Fig. 7. Average sum throughput of SUs with respect toγ̄ps1 . γ̄ps2 = 5, γ̄s1p = γ̄s2p = 2, γ̄pp = 10, γ̄s1s1 = γ̄s2s2 = 5,

γ̄s1s2 = γ̄s2s1 = 3 and ǫPU = 0.2.
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Fig. 8. Average sum throughput of SUs with respect toγ̄ps1 = γ̄ps2 . γ̄s1p = γ̄s2p = 2, γ̄pp = 10, γ̄s1s1 = γ̄s2s2 = 5,

γ̄s1s2 = γ̄s2s1 = 3 and ǫPU = 0.2.

value of γ̄sp2 is considered to be equal to zero in Fig. 7, resulting in no interference to the PU

receiver. It is also observed from Fig. 8 that a cognitive radio with two symmetric SUs converges

to the upper bound faster than the network with one SU for large enough SNR of the channels

from the PU transmitter to SU receivers. This is because of the use of the FIC scheme at the

SU receivers. A similar behavior has been observed in a CRN with N = 3.
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VII. EXTENSION TO DECENTRALIZED ACCESSPOLICY DESIGN WITH PARTIALLY STATE

INFORMATION

In this section, we discuss a possible model for the decentralized scenario when the PU

message knowledge state is known partially for the SUs in addition to the action being selected

by the SU independently of the other SUs. In Section V, the PU message knowledge state

of each SU was assumed to be also known to the other SUs, which makes the whole state

of the system known to all SUs. Now we assume that each user canonly observe its own

PU message knowledge state. When there is an uncertainty about the state of the system, the

problem is called “Distributed Partial State Information MDP” (DEC-PSI-MDP) which is a type

of “Partially Observable MDP” (DEC-POMDP). For a literature review on the decentralized

control of DEC-POMDP, the reader is referred to [23]. In thismodel, the shared objective

function is used (here the SU Sum throughput) and the action is selected based on the partial

state observation at each SU. Because each secondary user isunaware of the belief states of the

other users, it is impossible for each user to properly estimate the state of the system. Thus, a

DEC-POMDP can not be formulated as an MDP by introducing beliefs. It can be shown that

DEC-POMDP is nondeterministic exponential (NEXP) complete even for two users [24] and,

hence, only approximate solutions can be applied [22]. Consideration of this type of system is

left as future work.

VIII. C ONCLUSION

In this paper, an optimal access policy for an arbitrary number of cognitive secondary users

was proposed, under a constraint on the interference from the secondary users to the primary

receiver. Leveraging the inherent redundancy of the ARQ retransmissions implemented by the

PU, each SU receiver can cancel a successfully decoded PU message in the following ARQ

retransmissions, thereby improving its own throughput. Both centralized and decentralized sce-

narios were considered. In the first scenario, there is a centralized unit which controls the access

to the channel of all SUs, to maximize the average sum throughput of the SUs under the average

PU throughput degradation constraint. In the decentralized scenario, there exists no central unit

and therefore each SU makes an access decision independently of the other SUs, while the state

of the system is still assumed to be known to all secondary users. In the centralized case, an

upper bound was formulated and a close form solution was provided. Our studies confirm that
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the centralized and decentralized scenarios may be modeledas CMDP and MMDP and therefore

solved by linear programming. At the end, extension of the problem to CRN with partial state

information was discussed.

APPENDIX A

PROOF OFPROPOSITION1

Define:

di = Dec2BinN(i).(Ts1,i,(K,...,K), ..., TsN ,i,(K,...,K)) i ∈ {1, ..., 2N − 1}, (53)

whereTsn,i,(K,...,K), n ∈ {1, ..., N} is given in (8). A list of all situations is given here in detail

for N = 2, and can be extended to an arbitraryN .

1) λ1 = 0 andλ2 = 0. From (22), it is necessary to have

di = 0 i ∈ {1, 2, 3} (54)

Hence, this case is not acceptable.

2) µi = 0, i ∈ {1, 2, 3}. This case gives an SU sum throughput equal to zero and hence does

not provide the optimum solution.

3) λ1 > 0, λ2 = 0, µi > 0, µj = 0, µk = 0, (i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. It is

observed from condition (22) that∂L
∂µi

= 0, ∂L
∂µj

≤ 0 and ∂L
∂µk

≤ 0. This occurs if

dj
ρp,j − ρp,0

≤
di

ρp,i − ρp,0
(55)

dk
ρp,k − ρp,0

≤
di

ρp,i − ρp,0
(56)

Noting (23) and (24), we haveµi(ρp,i − ρp,0) = ǫω andµi ≤ 1; or equivalently

µi =
ǫω

ρp,i − ρp,0
≤ 1. (57)

Thus, the resulting maximum SU sum throughput is equal toǫω
ρp,i−ρp,0

di.

4) λ1 = 0, λ2 > 0, µi > 0, µj = 0, µk = 0, (i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. It is

observed from condition (22) that∂L
∂µi

= 0, ∂L
∂µj

≤ 0 and ∂L
∂µk

≤ 0. This occurs if

dk ≤ di (58)

dj ≤ di. (59)
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Noting (23) and (24), we haveµi(ρp,i − ρp,0) ≤ ǫω andµi = 1; or equivalently

µi = 1 ≤
ǫω

ρp,i − ρp,0
. (60)

Thus, the resulting maximum SU sum throughput is equal todi.

5) λ1 > 0, λ2 > 0, µi > 0, µj = 0, µk = 0, (i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. It is

observed from condition (22) that∂L
∂µi

= 0, ∂L
∂µj

≤ 0 and ∂L
∂µk

≤ 0. This occurs if

dk ≥ di if ρp,k − ρp,0 ≥ ρp,i − ρp,0 (61)

dk < di if ρp,k − ρp,0 < ρp,i − ρp,0 (62)

dj ≥ di if ρp,j − ρp,0 ≥ ρp,i − ρp,0 (63)

dj < di if ρp,j − ρp,0 < ρp,i − ρp,0. (64)

Noting (23) and (24), we have

µi = 1 =
ǫω

ρp,i − ρp,0
. (65)

Thus, the resulting maximum SU sum throughput is equal todi.

6) λ1 > 0, λ2 = 0, µ1 > 0, µ2 > 0, µ3 > 0. It is observed from condition (22) that∂L
∂µ1

=

∂L
∂µ2

= ∂L
∂µ3

= 0. This occurs if

d1
ρp,1 − ρp,0

=
d2

ρp,2 − ρp,0
=

d3
ρp,3 − ρp,0

. (66)

Noting (23) and (24),µ1(ρp,1 − ρp,0)+µ2(ρp,2 − ρp,0)+µ3(ρp,3 − ρp,0) = ǫω andµ1+µ2+

µ3 ≤ 1. These two conditions impose that

ǫω ≤ ρp,3 − ρp,0. (67)

Thus, the resulting maximum SU sum throughput is equal toǫωd1
ρp,1−ρp,0

.

7) λ1 = 0, λ2 > 0, µ1 > 0, µ2 > 0, µ3 > 0. It is observed from condition (22) that∂L
∂µ1

=

∂L
∂µ2

= ∂L
∂µ3

= 0. This occurs if

d1 = d2 = d3. (68)

Noting (23) and (24),µ1(ρp,1 − ρp,0)+µ2(ρp,2 − ρp,0)+µ3(ρp,3 − ρp,0) ≤ ǫω andµ1+µ2+

µ3 = 1. The conditions impose that

min (ρp,1 − ρp,0, ρp,2 − ρp,0) ≤ ǫω. (69)
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Thus, the resulting maximum SU sum throughput is equal tod1.

8) λ1 > 0, λ2 > 0, µ1 > 0, µ2 > 0, µ3 > 0. It is observed from condition (22) that∂L
∂µ1

=

∂L
∂µ2

= ∂L
∂µ3

= 0. This occurs if

di ≤ d3 i ∈ {1, 2} (70)

d1 ≥ d2 if ρp,1 − ρp,0 ≥ ρp,2 − ρp,0 (71)

d1 < d2 if ρp,1 − ρp,0 < ρp,2 − ρp,0 (72)

d3
ρp,3 − ρp,0

< min{
d1

ρp,1 − ρp,0
,

d2
ρp,2 − ρp,0

} (73)

d1
ρp,1 − ρp,0

≥
d2

ρp,2 − ρp,0
if ρp,1 − ρp,0 ≤ ρp,2 − ρp,0 (74)

d1
ρp,1 − ρp,0

<
d2

ρp,2 − ρp,0
if ρp,1 − ρp,0 > ρp,2 − ρp,0 (75)

Noting (23) and (24),µ1(ρp,1 − ρp,0)+µ2(ρp,2 − ρp,0)+µ3(ρp,3 − ρp,0) = ǫω andµ1+µ2+

µ3 = 1. The conditions impose that

min (ρp,1 − ρp,0, ρp,2 − ρp,0) ≤ ǫω ≤ max (ρp,1 − ρp,0, ρp,2 − ρp,0) (76)

ǫω ≤ ρp,3 − ρp,0. (77)

Thus, the resulting maximum SU sum throughput is equal or lower thanǫω max ( d1
ρp,1−ρp,0

, d2
ρp,2−ρp,0

)

and the equality is achieved when d1
ρp,1−ρp,0

= d2
ρp,2−ρp,0

.

9) λ1 > 0, λ2 = 0, µi = 0, µj > 0, µk > 0, (i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. It is

observed from condition (22) that∂L
∂µi

≤ 0, ∂L
∂µj

= 0 and ∂L
∂µk

= 0. This occurs if

di
ρp,i − ρp,0

≤
dj

ρp,j − ρp,0
=

dk
ρp,k − ρp,0

. (78)

Noting (23) and (24),µj(ρp,j − ρp,0)+µk(ρp,k − ρp,0) = ǫω andµj+µk ≤ 1. The conditions

impose that

ǫω ≤ max (ρp,j − ρp,0, ρp,k − ρp,0). (79)

and the resulting maximum SU sum throughput is equal toǫωdj
ρp,j−ρp,0

.

10) λ1 = 0, λ2 > 0, µi = 0, µj > 0, µk > 0, (i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. It is

observed from condition (22) that∂L
∂µi

≤ 0, ∂L
∂µj

= 0 and ∂L
∂µk

= 0. This occurs if

di ≤ dj = dk. (80)
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Noting (23) and (24),µj(ρp,j − ρp,0)+µk(ρp,k − ρp,0) ≤ ǫω andµj+µk = 1. The conditions

impose that

min (ρp,j − ρp,0, ρp,k − ρp,0) ≤ ǫω. (81)

The resulting maximum SU sum throughput is equal todj .

11) λ1 > 0, λ2 > 0, µi = 0, µj > 0, µk > 0, (i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. It is

observed from condition (22) that∂L
∂µi

≤ 0, ∂L
∂µj

= 0 and ∂L
∂µk

= 0. This occurs if

dj ≥ dk if ρp,j − ρp,0 ≥ ρp,k − ρp,0 (82)

dj < dk if ρp,j − ρp,0 < ρp,k − ρp,0 (83)

dj
ρp,j − ρp,0

≥
dk

ρp,k − ρp,0
if ρp,j − ρp,0 ≤ ρp,k − ρp,0 (84)

dj
ρp,j − ρp,0

<
dk

ρp,k − ρp,0
if ρp,j − ρp,0 > ρp,k − ρp,0 (85)

di ≥ dj if ρp,i − ρp,0 ≥ ρp,j − ρp,0 (86)

di < dj if ρp,i − ρp,0 < ρp,j − ρp,0 (87)

di ≥ dk if ρp,i − ρp,0 ≥ ρp,k − ρp,0 (88)

di < dk if ρp,i − ρp,0 < ρp,k − ρp,0 (89)

Noting (23) and (24),µj(ρp,j − ρp,0)+µk(ρp,k − ρp,0) = ǫω andµj+µk = 1. The conditions

impose that

min (ρp,j − ρp,0, ρp,k − ρp,0) ≤ ǫω ≤ max (ρp,j − ρp,0, ρp,k − ρp,0). (90)

The resulting maximum SU sum throughput is equal or lower than ǫω max (
dj

ρp,j−ρp,0
, dk
ρp,k−ρp,0

)

and the equality is achieved when dj
ρp,j−ρp,0

= dk
ρp,k−ρp,0

.

Noting items 1 to 11, it is observed that items3, 4, 6, 7, 9, 10 provide optimum solutions and

hence, the optimum access policy and SU Sum throughput can besummarized in (19) and (20)

respectively. Thus, the proof is complete.
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