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Analyzing the Impact of Access Point Density

on the Performance of Finite-Area Networks

S. Alireza Banani, Andrew W. Eckford, Raviraj S. Adve

Abstract

Assuming a network of infinite extent, several researchers have analyzed small-cell networks using a

Poisson point process (PPP) location model, leading to simple analytic expressions. The general assumption has

been that these results apply to finite-area networks as well. However, do the results of infinite-area networks

apply to finite-area networks? In this paper, we answer this question by obtaining an accurate approximation

for the achievable signal-to-interference-plus-noise ratio (SINR) and user capacity in the downlink of afinite-

area network witha fixed number ofaccess points (APs). The APs are uniformly distributed within the area

of interest. Our analysis shows that, crucially, the results of infinite-area networks are very different from

those for finite-area networks of low-to-medium AP density.Comprehensive simulations are used to illustrate

the accuracy of our analysis. For practical values of signaltransmit powers and AP densities, the analytic

expressions capture the behavior of the system well. As an added benefit, the formulations developed here

can be used in parametric studies for network design. Here, the analysis is used to obtain the required number

of APs to guarantee a desired target capacity in a finite-areanetwork.

Index Terms

Finite-area networks, downlink, coverage probability, small cells, Moment Matching Approximation,

Poisson point process

I. INTRODUCTION

As the available user capacity in traditional cellular systems has saturated, the wireless industry

is planning on the introduction of small-cell networks, including outdoor access points (APs)
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and/or indoor femtocell APs. With limited location planning possible in such networks, these APs

are placed in an irregular manner; the APs are modeled as having random locations. Importantly,

the available analysis techniques largely focus on the asymptotic case of networks of infinite

extent. Our motivation, on the other hand, is analyzing finite area networks such as networks that

provide coverage inside buildings, or at outdoor hotspots.Given the lack of accurate and tractable

analysis techniques forfinite-areanetworks with a finite number of APs, it has generally been

assumed that the infinite-network results directly apply [1]. However, as our work will show, for

practical values of system parameters, this is not always true. We will analyze this discrepancy

in the context of metrics relevant to a network designer.

A. Literature Survey and Motivation

Traditional network models are either impractically simple (e.g., the Wyner model [2]) or

excessively complex (e.g., general case of random user location with APs on a hexagonal

lattice [3]) to accurately model small-cell networks. A useful mathematical model that accounts

for the randomness in AP locations (and irregularity in the cells) uses spatial point processes,

such as the Poisson point process (PPP), to model the location of APs in the network [4]–[9].

This allows for the use of techniques from stochastic geometry [10]–[12] and large-deviation

theory [5] to characterize the distribution of the signal-to-interference-plus-noise-ratio (SINR)

and/or user capacity in large networks. For example, assuming the networks are of infinite extent,

rate expressions are available, e.g. in [13]–[15], while accounting for path loss, small-scale fading

and log-normal shadowing.

A review of different network models in the literature is helpful in understanding the motivation

for our work. Two models are relevant here: the infinite-network model, as the name suggests,

assumes a network of infinite geographical extent usually with a fixed AP density; on the other

hand, the dense-network model considers a finite area with large AP density. Both have been

widely used in the asymptotic analysis of networks (asymptotic in the number of APs) [1]. The

assumption of an infinitely large network, coupled with AP locations modeled as a PPP, allows

for analytic tractability.

Although such infinite-area analyses provide convenient closed-form expressions, they do

not completely reflect the more realistic case of afinite-area network, especially with a low

AP density orfinite numberof APs. As recent work has shown, treating a finite-area network
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Fig. 1. Comparison of the SIR coverage probability obtainedat the centre of a circular finite-area interference-limited network

with AP densities ofλ = 1 AP/km2 andλ = 30 APs/km2 under Rayleigh fading and no shadowing with PLE ofα = 3.87.

as spread over an infinite area is accurate for cases with veryhigh pathloss exponents (e.g.,

α = 6); for more realistic values such as the range of2 ≤ α ≤ 4, the infinite-area assumption

underestimates network performance significantly [16].

To motivate this paper, Fig. 1 illustrates this issue via simulations. For a circular interference-

limited network of radius1 km, the figure plots the signal-to-interference ratio (SIR)coverage

probability at the network center with AP densities ofλ = 1 AP/km2 andλ = 30 APs/km2 for the

path loss exponent (PLE) ofα = 3.87 under purely Rayleigh fading. Note that in interference-

limited infinite-area networks, coverage probability (CP)is not a function of density, i.e., the

“infinite-area PPP” curve, obtained from the work in [4], is valid for all AP densities. The PPP

curve, for an infinite-area network, exactly matches the curve for the finite-area high-density

network (λ = 30 APs/km2), i.e., a highly dense finite-area network can be closely approximated

as a network of infinite extent. However, as seen from the figure, the finite-area low-density

network outperforms the dense network by 28% in SIR CP for thetarget SIR of 0 dB (or by

3 dB in SIR).

There are only a few works that have investigated the performance of finite-area networks [16]–

[20]. For example, in [16], [17], the authors use a moment generating function (MGF) approach

to characterize the interference under Rayleigh fading. Another set of related works with APs

distributed as a PPP, can be found in [19], [20] where closed-form expressions are obtained for

the instantaneous outage probability for agiven realizationof AP locations. The authors then

use Monte Carlo simulations to obtain the outage probability averaged over network realizations.
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B. Our Contributions

Our goal in this paper is to analyze the performance of a circular1 finite-area network with

a finite number of APs. Our motivating examples are indoor networks [21], [22] and outdoor

hotspots [23], [24] . We wish to provide a network designer the ability to quickly analyze the

impact of various network parameters. Specifically, we develop an expression which closely

approximates the SINR and user capacity at any point in a circular, finite-area, network serviced

by a fixed number of APs. Our work differs from that available in the literature (for finite areas)

in fixing the number of APs, allowing for a random connection distance and accounting for

shadowing and noise. This difference adds complexity to theanalysis, but better represents the

problem at hand. In our model, theN APs within the circle are uniformly distributed2. As in [4],

we analyze downlink transmissions where independent usersare associated with theirnearest

AP, while all other APs act as interferers. We obtain the coverage probability within any point

inside the circle. Unlike previous works on finite-area networks that focus on Rayleigh fading

exclusively, our model accounts for path-loss, small-scale fading and shadowing.

To confirm the accuracy of our analysis, we compare our analytic results with that of Monte-

Carlo simulations. For practical values of transmit signalpowers and AP densities, our approxi-

mations capture the behaviour of the network very well. Our results match the reports presented

earlier [16], in that, in the interference-limited case, the SIR coverage probability performance

of an infinite-area network (equivalently, dense network) underestimates that of a low-density

network. As an added benefit, the expressions developed hereallow us to quantify the gains, in

terms of coverage probability, by adding APs within the circle.

Motivated by the desire to provide network design tools, we then focus on the origin of the

circular area - this location has the worst user capacity. The worst-case user capacity has been

used, e.g. in [3], [27]–[29], for network design in wirelessnetworks with and without cooperation

amongst APs. For the special choice of PLEα = 4, we derive a closed-form expression for the

worst-case user capacity. As a design example, the user capacity at the worst-case point is used

to obtain the number of APs required to guarantee a minimum coverage probability everywhere

1The choice of a circular area is for simplicity that can lead to tractable analysis; given relevant distance probabilitydistribution

functions in the literature, other geometric shapes could be analyzed.

2The uniform distribution is equivalent to a homogenous PPP (of corresponding density)conditioned on havingN APs within

the circle (in this case the conditional PPP is a binomial point process[25], [26]).

September 17, 2018 DRAFT



5

within the area under consideration. This corresponds to designing a finite-area network with a

coverage guarantee.

We note that this paper differs from the works in [16], [17] inthree aspects:

• We allow for a random connection distance from user to its serving AP which better accounts

for the randomness in AP locations and irregularity in the cells.

• In [16], [17] the number of APs falling in the chosen area is random whereas in the proposed

work is fixed.

• While in [16], [17] the authors use the MGF approach to characterize the interference under

Rayleigh fading, here we use the moment matching approximation [30] which allows us to

account for shadowing as well as small-scale fading.

C. Organization and Notation

The rest of the paper is organized as follows: Section II describes the system under con-

sideration. The analysis, the main contribution of this paper, is presented in Section III; while

supporting simulation results are presented in Section IV.Finally, Section V summarizes and

concludes the paper. The notation used is conventional: matrices are represented using bold upper

case and vectors using bold lower case letters;(·)H , and (·)T denote the conjugate transpose,

and transpose, respectively.a ∼ CN (µ, σ2) or ∼ N (µ, σ2) denote complex and real Gaussian

random variables, respectively, with meanµ and varianceσ2 while X ∼ LN (µx, σ
2
x) represents

a log-normal random whereln(X) ∼ N (µx, σ
2
x). Q(x) represents the standardQ-function, the

area under the tail of the standard normal distribution i.e., N (0, 1); f(·) denotes a probability

density function (PDF) whileF (·) denotes the cumulative distribution function (CDF). Finally,

P{· } denotes the probability of an event andE{· } denotes expectation.

II. DOWNLINK SYSTEM MODEL

A. Assumptions and Initial Analysis

In this paper we develop an analytical formulation of achievable SINR and user capacity

within a finite-area network for a given AP density. The analysis is based on some simplifying

approximations and assumptions which are summarized here:

• We focus on the downlink of a single-tier finite-area reuse-1network comprisingN APs

located in a circular area W with radiusRW.
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• The APs are uniformly distributed within the circle; this partitions the circular area into

Voronoi cells.

• All APs transmit at a power level ofσ2
s .

• Users are associated with the closest AP, i.e., users withina specific Voronoi cell connect to

the AP within that cell3.

• There are a large number of users uniformly distributed within the network and so each AP is

fully loaded serving an equal number of users at a given time.If K denotes the total number

of users to be served in the network, each AP servesK/N users at any given time overK/N

frequency slots (one frequency slot per user).

• For a givenN , the bandwidth per user served is fixed, i.e., the total bandwidth is divided

into K/N equal frequency slots. The total bandwidth isKW̄ , and each user is allocated a

bandwidth ofW0 = KW̄/(K/N) = NW̄ 4.

Comment: Essentially we are assuming that since there are a large number of users uniformly

distributed within the network, at any given time, there exist at leastK/N users within an

specific Voronoi cell connecting to the AP in that cell. Furthermore, since the average number

of users per AP is inversely proportional to the number of APs(N), we assume that the

bandwidth availableper useris proportional toN .

We note that other reasonable loading models are possible [31], [32]. For example, we could

make the bandwidth per user,W0, independent ofN . Alternatively, one could make the number

of users per AP a random variable and each user allocated a random bandwidth; this is very

hard to analyze. One could also consider a fixed bandwidth peruser with some bandwidth

“wasted” at APs with few associated users. Such a scenario could be analyzed within our

framework using a thinned PPP. Our choice is based on the intuition that, asN increases,

fewer users are served by each AP, and so, more bandwidth should be available per user.

Figure 2 depicts one realization of our network withN = 20 andRW = 2 km. Let h1 denote

the instantaneous channel from a user located at an arbitrary point x to the nearest AP a distance

3The choice of user association based on minimum distance criterion is for simplicity that can lead to tractable analysis; an

improvement in performance can be obtained with the user association based on the strongest received power in a network under

shadowing [13], [31]

4Essentially, the assumption here is that as the number of APsincreases, each AP serves fewer users and the bandwidth per

user is linearly proportional to the number of APs.
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Fig. 2. One realization of the location of APs based on a PPP ina circular region with radiusRW = 2 km andN = 20. In the

figure, r1 andd are the distances of an arbitrary pointx to the closest AP and to the centre of the circular area, respectively.

r1 away. Further, lethj , j = 2, · · · , N denote the corresponding channels between the user and

the remainingN −1 interfering APs. Note that these APs are located outside thecircle centered

at x with radiusr1 (between the circle centered atx with radiusr1 and circle with radiusRW).

Similarly, let rj, j = 2, · · · , N represent the distance5 from the j-th AP to the user at pointx,

and let PL(rj) represent the path loss (in dB) over this distance. The instantaneous channels

hj , j = 1, · · · , N are modeled as

hj = h̄j × 10−(PL(rj)+Lj)/20, (1)

where h̄j ∼ CN (0, 1) represents the normalized complex channel gain, reflectingsmall-scale

Rayleigh fading, from thej-th AP to the user, which is independent from̄hi, i 6= j; and where

Lj ∼ N (0, σL) models the large-scale fading or shadowing, modeled as a lognormal random

variable. The standard deviation (STD)σL is expressed in dB. The path loss, in dB, is given by

PL(rj) = 10α log10 rj, whereα denotes the path loss exponent.

Let σ2
n represent the power of the thermal noise, andIr1 denote the power of the interference

from theN − 1 interfering APs. The instantaneous SINR of the user at a random distancer1

from its nearest AP can be expressed as

SINR r1 =
σ2
s |h1|2

σ2
n + Ir1

=
σ2
s

∣
∣h̄1

∣
∣2 r−α

1 z1

σ2
n +

∑N
j=2 σ

2
s

∣
∣h̄j

∣
∣2 r−α

j zj
, (2)

5We note thatrj , j = 2, · · · , N are un-sorted, independent and identically distributed, distances to theN −1 interfering APs.
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wherezj = 10−Lj/10, j = 1, · · · , N are independent lognormal RVs aszj ∼ LN (µz = 0, σz =

(0.1 ln 10)σL). Thus, the instantaneous achieved SINR depends onr1 (both via PL(r1) andIr1)

as well as the instantaneous realizations ofh̄j , andLj, j = 1, · · · , N . It is known that in an

infinite area withinfinite number of PPP distributed APs, the interference follows an alpha stable

distribution [4], [33]. However, this is not true for afinite-area with a finite number of APs; this

necessitates a new analysis technique. Here we present an accurate analysis.

With a fixed bandwidth ofW0 = NW̄ Hz available to each user, an instantaneous per-user

data rate (in b/s) ofR r1 = W0 log2(1 + SINR r1
) is achievable. The rate coverage probability,

defined as the probability that the user can achieve a target rateR0, is given by

P{R r1 > R0} =P
{
NW̄ log2 (1 + SINR r1

) > R0

}

=P
{
N log2 (1 + SINR r1

) > R0/W̄
}

=P{C r1 > C0} = P
{
SINR r1

> 2C0/N − 1)
}
,

(3)

where we defineC r1 = N log2 (1 + SINR r1
) andC0 = R0/W̄ , as the achievable and required

spectral efficiencies (in b/s/Hz).

B. User Distance Distributions

To characterize the signal component of the SINR, we need to obtain the user distance to

the nearest AP. The first step is to obtain the unconditional distance CDF from pointx to an

arbitrary AP randomly placed in the circular finite-area. Let d ≤ RW denote the distance ofx

to the centre of the circular area. The CDF of the distance between pointx to an arbitrary AP

randomly located in the circular region, independently from otherN − 1 APs, is given by [34],

[35],

FR (r)= P{R ≤ r} =







r2/R 2
W ; 0 ≤ r ≤ RW − d

F̄R(r) ; RW − d ≤ r ≤ RW + d

1 ; RW + d ≤ r

(4)

whereF̄R(r) is given by

F̄R(r)=
1

π
cos−1

(
d2−r2+R 2

W

2dRW

)

+
r2

πR 2
W

cos−1

(
d2+r2−R 2

W

2d r

)

− 1

2πR 2
W

√

((RW + r)2 − d2)(d2 − (r − RW)2).

(5)
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Now that any of theN independent APs has a distance CDF as in (4), the CDF of the

minimum distance - corresponding to the distance from pointx to the closest AP - is given by

FR 1(r1) = 1− [1− FR ( r1)]
N , (6)

wherer 1 is the distance ofx to the nearest AP.

It is worth noting that, unliker1, the distancesrj , j = 2, · · · , N are i.i.d. RVs, but with

distance CDFs that differ fromFR1(r1). For a givenr1, theN −1 interfering APs are located in

the area between circles with radiir1 centred at pointx and circle with radiusRW. Therefore,

the conditional CDF ofrj , given r1, is

FRj | r1(rj) =P{R ≤ rj |R > r1} =
P{R ≤ rj

⋂
R > r1}

P{R > r1}

=







0 ; rj ≤ r1

(FR(rj)− FR(r1))/(1− FR(r1)) ; r1 < rj ≤ RW + d

1 ; RW + d < rj

(7)

whereFR ( · ) is given in (4).

III. SINR AND USER CAPACITY

Using the results in the previous section, we now obtain the user capacity in an interference-

limited network, i.e., we first assume that the thermal noiseis negligible as compared to the

interference and can be hence ignored. While this may be justified in dense small cell net-

works [36], we then generalize the formulation to include thermal noise.

A. Interference-limited network:σ2
n = 0

Proposition. The averaged SIR coverage probability (averaged over different realizations of AP

locations) at an arbitrary pointx within the finite-area network is accurately approximated as

CPavg
SIR

(N, d, T, α, σL) = P{SIR > T} ≃
∫ RW+d

0

Q

(
lnT − µSIR

σSIR

)
dFR1(r1)

d r1
d r1. (8)

whereT is a chosen SIR threshold and

µSIR = ln(σ2
s/
√
2) + ln r−α

1 − 2 ln(M1) + 0.5 ln(M2), (9)

σ2
SIR

= ln 2 + σ2
z − 2 ln(M1) + ln(M2), (10)
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with

M1 = (N − 1)σ2
se

σ2
z/2

[

(RW + d)−α +

∫ r−α
1

(RW+d)−α

FR(s
−1/α
j )− FR(r1)

1− FR(r1)
dsj

]

, (11)

M2 =2(N − 1)σ4
se

2σ2
z

[

(RW + d)−2α +

∫ r−2α
1

(RW+d)−2α

FR(s
−1/2α
j )− FR(r1)

1− FR(r1)
dsj

]

+ 4(N − 1)(N − 2)σ4
se

σ2
z

[

(RW + d)−α +

∫ r−α
1

(RW+d)−α

FR(s
−1/α
j )− FR(r1)

1− FR(r1)
dsj

]2

.

(12)

Proof: The achieved SIR at an arbitrary pointx, given r1, is written as

SIR r1 =
σ2
s

∣
∣h̄1

∣
∣2 r−α

1 z1
∑N

j=2 σ
2
s

∣
∣h̄j

∣
∣2 r−α

j zj
=

ω1z1
∑N

j=2 ωj zj
, (13)

where the interference in the denominator is a linear combination of N − 1 lognormal RVs

zj ; j = 2, · · · , N with coefficientsωj ; j = 2, · · · , N , which themselves are independent RVs.

The key to simplifying this expression is to use the fact that, as shown in [30], for many

applications, linear combinations of lognormal random variables can be closely approximated

by a single lognormal random variable. The work in [30] presents several such approximations

based on a generalization of the MMA approach. For example, by matching the first and second

moments, the denominator in (13) can be modeled asSIRDenom∼ LN (µDenom, σDenom), with

µDenom= µIr1
= 2 ln(M1)− 0.5 ln(M2), (14)

σ2
Denom= σ2

Ir1
= −2 ln(M1) + ln(M2), (15)

where

M1 =
N∑

j=2

E{ωj} exp(µzj + σ2
zj
/2), (16)

M2 =

N∑

j=2

E{ω2
j} exp (2µzj + 2σ2

zj
)

+
N∑

j=2

N∑

j′=2 ; j′ 6=j

E{ωj}E{ωj′} exp(µzj + µzj′
+ (σ2

zj
+ σ2

zj′
)/2).

(17)

Let sj = r−α
j . The CDF of sj , given r1, is obtained fromFRj | r1(rj) as FSj | r1(sj| r1) =

1−FRj | r1(s
−1/α
j ). Thus, we haveFSj | r1((RW+d)−α) = 0, andFSj | r1(r

−α
1 ) = 1. Since the average

September 17, 2018 DRAFT
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of a random variableY can be obtained from the CDF ofY asE{Y } = yFY (y) |ba −
∫ b

a
FY (y)dy,

wherea and b are the values at whichFY (a) = 0 andFY (b) = 1, we get

E
{
r−α
j | r1

}
= E {sj | r1} = r−α

1 −
∫ r−α

1

(RW+d)−α

FSj | r1(sj) dsj

= (RW + d)−α +

∫ r−α
1

(RW+d)−α

FR(s
−1/α
j )− FR(r1)

1− FR(r1)
dsj.

(18)

Similarly,

E
{
r−2α
j | r1

}
= (RW + d)−2α +

∫ r−2α
1

(RW+d)−2α

FR(s
−1/2α
j )− FR(r1)

1− FR(r1)
dsj. (19)

Therefore, (16)-(17) can be rewritten as (11)-(12). The integrals in (11)-(12) can be easily

evaluated numerically. It is worth noting that since we do not have an ordering in the interfering

APs, for a givenr1, all the random coefficientsωj, j = 2, · · · , N have equal mean and standard

deviation as implied from (18)-(19). Therefore, since all the components in
∑N

j=2 ωjzj have

equal mean and standard deviation, the MMA approach provides a good approximation for the

summations of lognormals [37], [38] (the accuracy is verified via simulations below).

The numerator in (13), on the other hand, is a scaled lognormal RV (with a random scaling

having exponential distribution), not a linear combination of lognormals; however, for the ana-

lytical tractability, we still use the MMA technique to approximate the numerator as a lognormal

RV given as,SIRNum ∼ LN (µNum, σNum), with

µNum = 2 ln(β1)− 0.5 ln(β2) = ln(σ2
s/
√
2) + ln r−α

1 , (20)

σ2
Num = −2 ln(β1) + ln(β2) = ln 2 + σ2

z . (21)

As we will see, this approximation is remarkably accurate.

With numerator and denominator both modeled as lognormal RVs, the achieved SIR, con-

ditioned on the connection distancer1 between the user and the closest AP to the user, is

also a lognormal random variable,SIR r1 ∼ LN (µSIR, σSIR) with µSIR = µNum − µDenom and

σ2
SIR

= σ2
Num+σ2

Denomgiven in (9) and (10), respectively. Having found an approximate distribution

of the SIR as a lognormal random variable, the conditional SIR coverage probability (conditioned

on the distancer1) is

P{SIR r1 > T} = Q

(
lnT − µSIR

σSIR

)

, (22)

Finally, by averaging over distancer1, we obtain the result.
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Correspondingly, from (3), the average user capacity coverage probability follows as

CPavg
C (N, d, C0, α, σL) =P{C > C0}

=

∫ RW+d

0

Q

(
ln(2C0/N − 1)− µSIR

σSIR

)
dFR1(r1)

d r1
d r1.

(23)

Finally, using the fact that for a positive random variableX, E{X} =
∫

t≥0
P{X > t} d t, we

can use the capacity coverage probability to obtain the ergodic capacity as

C ergodic(N, d, α, σL) =

∫

C0≥0

CPavg
C (N, d, C0, α, σL) dC0. (24)

Although (8)-(24) do not explicitly show the resulting dependence on the AP density,λ, they

can be rewritten as functions ofλ by using the substitutionN = πR2
Wλ. As we will see in the

next section, simulations show that in the asymptotic case of a large number of APs (large AP

density), the values obtained using (8)-(24) converge to those of an infinite network (or dense

network) given in [4], [6].

B. Network with thermal noise:σ2
n 6= 0

When including thermal noise, the instantaneous achievable SINR is given by (2). The noise

term,σ2
n, in the denominator of (2) is deterministic, and therefore it is (trivially) a lognormal RV

with meanµσ2
n
= ln σ2

n and zero variance (σ2
σ2
n
= 0) for the associated Gaussian RV,ln(σ2

n). Now,

the denominator of SINR becomes the addition of two lognormal RVs σ2
n ∼ LN (µσ2

n
, σσ2

n
) and

Ir1 ∼ LN (µIr1
, σIr1

). Consequently, as we apply the MMA technique in order to approximate

the addition of these two lognormal RVs with another lognormal RV, the denominator of SINR

can be modelled as

SINRDenom∼ LN (µσ2
n+Ir1

, σσ2
n+Ir1

) (25)

with µσ2
n+Ir1

= 2 ln(M̄1)− 0.5 ln(M̄2), andσ2
σ2
n+Ir1

= −2 ln(M̄1) + ln(M̄2), where

M̄1 = elnσ2
n + e

µIr1
+σ2

Ir1
/ 2
, (26)

M̄2 = e2 lnσ2
n + e

2µIr1
+2σ2

Ir1 + 2σ2
ne

µIr1
+σ2

Ir1
/2
. (27)

Therefore, as before, since both the numerator and denominator are approximated as lognormal

RVs, the achieved SINR is a lognormal RV for a givenr1. We get,SINR r1 ∼ LN (µSINR, σSINR)

with µSINR = µNum − µDenom andσ2
SINR

= σ2
Num + σ2

Denom. Therefore, the SINR/capacity coverage

probability averaged over different realizations of AP locations is obtained from (8)-(24) by

substitutingµSIR andσSIR with µSINR andσSINR, respectively.
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C. Worst-case Point

In Appendix A we show that, for small values of noise variance, the worst-case SINR and

hence user capacity occurs at the center of the circular areaW, i.e., whend = 0. In this case,

some of the expressions provided in the previous sub-sections can be simplified. Withd = 0,

the CDF of the distance between a user at the center to an arbitrary AP randomly located in the

circular region isFR (r) = r2/R 2
W. Therefore, the CDF and PDF ofr1 become

FR1(r1) = 1−
(

1− r21
R 2

W

)N

, (28)

fR1(r1) =
dFR1(r1)

dr1
=

2Nr1
R 2

W

(

1− r21
R 2

W

)N−1

, 0 ≤ r1 ≤ RW. (29)

Now, for a givenr1, the distribution of theN − 1 interfering APs in the area between circles

centred at the origin with radiir1 andRW, denoted as B, is that of(N − 1) i.i.d. random points

(xj , yj) , j = 2, · · · , N , uniformly distributed in B with common distributionfxj ,yj(xj , yj) =

1/S(B) = 1/π(R2
W − r21) expressed in Cartesian coordinates. With the change of variablexj =

rj cos θj and yj = rj sin θj , and then integrating over the resulting uniform distribution in θj ,

0 ≤ θj ≤ 2π, the distance PDF of an individual AP location, for a given value of r1, is given by

fRj |r1(rj) =
2rj

R 2
W − r21

, r1 ≤ rj ≤ RW, j = 2, · · · , N, (30)

and zero elsewhere. Therefore, we have

E
{
r−α
j |r1

}
=

∫ RW

r1

r−α
j fRj |r1(rj) drj =

2(r−α+2
1 −R−α+2

W )

(α− 2)(R 2
W − r21)

, (31)

E
{
r−2α
j |r1

}
=

∫ RW

r1

r−2α
j fRj |r1(rj)drj =

2(r−2α+2
1 −R−2α+2

W )

(2α− 2)(R 2
W − r21)

. (32)

and so Eqs. (16)-(17) simplify to

M1 =
2(N − 1)σ2

se
σ2
z/2

α− 2

(
r−α+2
1 − R−α+2

W

R 2
W − r21

)

, (33)

M2 =
4(N − 1)σ4

se
2σ2

z

2α− 2

(
r−2α+2
1 − R−2α+2

W

R 2
W − r21

)

+
4(N − 1)(N − 2)σ4

se
σ2
z

(α− 2)2

(
r−α+2
1 − R−α+2

W

R 2
W − r21

)2

. (34)

The rest of the expressions remain unchanged.

It is worth noting that, in general, no closed-form expression is available for the integrations

in (8)-(24) as a function ofα. However, a tractable analysis is possible for specific integer
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values ofα. As an example for the popular value ofα = 4 [4], we show in Appendix B that

an accurate analytical approximation for the worst-case ergodic user capacity in an interference-

limited network is obtained as (forN > 2)

C worst
ergodic≈

N

ln 2

(

γ +
1

2N
+ ln

N(N − 2)1/2

(N − 1)3/2
+

1

2
ln

N − 2

N − 1
+

1

2
ln

[

1 +
2eσ

2
z

3(N − 2)

]

+

(
(
1 +

2eσ
2
z

3(N − 2)

)N − 1

)(

ln

[
1 + 1.5e−σ2

z (N − 2)

N − 1

]

− 1

2(N − 1)

)) (35)

whereγ = 0.578 is the Euler-Mascheroni constant [39] andσ2
z = (0.1 ln 10)2σ2

L. Using similar

approximations, closed-form expressions can also be obtained for other integer values ofα ≥ 2.

Further analysis is possible to investigate how quickly theperformance approaches the worst

case asd becomes small compared toRW. We show in Appendix C that, ford ≪ RW, the

change in averaged SIR (expressed in dB) compared to the worst case obtained at the centre

of an interference-limited network withα = 3.87, can be closely approximated by a3rd order

polynomial function ofd.

IV. NUMERICAL RESULTS

In general, the CP results obtained in the previous section depend on various parameters of the

network. In this section, we simulate two typical examples of α = 3, andα = 3.87. Results can

also be given for other values ofα, but the example provided here is sufficient to illustrate the

approach. A circular finite-area downlink with radiusRW = 1 km is considered and the transmit

signal power of each AP corresponds toσ2
s = 20 dBm; we note that the parameter values in the

simulations are just for illustration purposes, and any other values only scale the results.

A. Interference-limited network:σ2
n = 0

In Section III, a series of approximations were used to derive the expressions for the SIR/SINR

coverage probability (or capacity coverage probability).Thus, it is important to validate the

approximations. The 2D plot of the averaged SIR coverage probability, for the target SIR of0 dB,

obtained within the area of the circle is given in Fig. 3. In this example, we setλ = 1 APs/km2,

α = 3.87, and σL = 6 dB. At this low density, the network is interference limitedif the

transmit power is high. Figure 3-(a) presents results obtained from the analysis developed here

while Fig. 3-(b) presents the results from Monte Carlo simulations. The analysis accurately
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(b) Results from simulations

Fig. 3. SIR coverage probability (for the target SIR of0 dB) in a circular finite-area interference-limited networkwith

λ = 1 APs/km2, α = 3.87, andσL = 6 dB.

approximates the exact results obtained from simulations within an average error of 5%. The

difference between 3-(a) and 3-(b) is due to the discretization and number of iterations chosen

for the simulations. Since, by averaging over AP locations,the coverage probability in a circular

area is independent of angle, it is enough to evaluate the results along any radial line. Figure 4

illustrates the approximate averaged SIR coverage probability, for the target SIR of0 dB, along

a radial line of the circle. The results are illustrated for the two examples ofσL = 0 dB (no

shadowing) andσL = 6 dB. The figure plots the results for different values of AP density. The

results from Monte Carlo simulations are also included in the figure (the dotted lines in the

figure).

As is clear from the figure, the analysis of the previous section capture the behavior of the

system quite well. For low-density networks (λ = 1 AP/km2) the analytical results are within 5%

of the simulated results while the error reaches 9.5% for highly dense networks (λ = 30 AP/km2)

under moderate to high values of shadowing standard deviation.

Of importance is the significant differences in the coverageprobability between low-density

networks and the asymptotic case available in the literature (the infinite PPP network curve).

As has been reported earlier [16], in an interference-limited network, the results of an infinite

network underestimates the SIR coverage probability for small to moderate values of AP density.

In particular, in this example in Fig. 4 withσL = 6 dB, the SIR coverage probability at the worst-
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Fig. 4. SIR coverage probability (for the target SIR of0 dB) along the radius of the circular finite-area interference-limited

network with AP densitiesλ = 1 APs/km2, λ = 2 APs/km2 and λ = 30 APs/km2 for: a) α = 3, σL = 0 dB; b) α = 3,

σL = 6 dB; c) α = 3.87, σL = 0 dB; d) α = 3.87, σL = 6 dB.

case point (at the origin) of a circular network withλ = 1 APs/km2 andα = 3.87, outperforms

that of dense network by 34%. The improvement in the SIR coverage probability increases to

63% under the PLE ofα = 3. It is characterizing this difference that has motivated this paper.

It is worth noting that the improvement in SIR in a low-density network depends heavily

on the PLE, shadowing standard deviation and the location under consideration. For example,

for the target SIR of0 dB under no shadowing, an increase of at least 28% in SIR coverage

probability is obtained in an interference-limited network with α = 3.87 and λ = 1 APs/km2

as compared to a dense network withλ = 30 APs/km2 (56% improvement withα = 3). It

is also interesting to note that for users near the edge (large d), even this curve deviates from

the simulation results for the high-density network; this is because infinite-area PPP networks

inherently cannot account for edge effects.
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Fig. 5. The effect of network radius size on the worst SIR coverage probability. The results are shown for a circular interference-

limited network withλ = 1.5 AP/km2 andλ = 30 APs/km2 under two PLEs ofα = 3 andα = 3.87 andσL = 6 dB.

As is seen from Figs. 3 and 4, for a given AP density, the circular finite-area network

experiences a peak in SINR CP at a certain distanced from the center. In addition, for small

values of noise variance, the worst-case SINR and/or user capacity occurs at the center of circular

region W. Please refer to Appendix A for the explanation of these behaviours. In particular, the

worst-case point is of particular interest in parametric studies for network design since it can be

directly related to a coverage constraint. Therefore, in most of the simulations below, we focus

on the worst-case point.

We further justify the accuracy of the presented formulations for different sizes of the finite-

area via Fig. 5. The figure illustrates the worst SIR coverageprobability (for the target SIR of

0 dB) in a low-density and a highly-dense network for the example of σL = 6 dB. Here, the

accuracy of the presented formulations decreases with the size of the finite-area in a low-density

network and the error reaches9.5% of the simulation results in large networks. In addition,

Fig. 5 illustrates two interesting behaviors. First, in a highly-dense interference-limited network,

the SIR performance does not change with the size of the network. This effect reflects the fact

the results of a highly dense network can be closely approximated by the results obtained in an

infinite-area network - a result which was also reported earlier in [1]. Second, the sensitivity of

the network to the AP density decreases with the size of the network to such an extent that a

large network becomes insensitive to the AP density. This effect matches the results previously

obtained in [4] that the SIR performance in an interference-limited infinite-area PPP network

does not depend on the AP density.
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Fig. 6. The effect of noise variance on the SINR coverage probability of a low-density finite-area network with AP density

λ = 1 APs/km2 with PLEs ofα = 3.87 for: a) σL = 0 dB ; b) σL = 6 dB

B. Network with thermal noise:σ2
n 6= 0

The previous results were for an interference-limited network where we ignored thermal noise.

We next determine the accuracy of the analysis with respect to the noise variance. Figure 6 shows

the effect of noise variance on the SINR coverage probability obtained at the centre of a low-

density circular network forα = 3.87. As expected, the SINR coverage probability degrades

with an increase in the noise variance. The results from formulations are within 9% for all

values of noise variances. For typical values of noise variance in practice (σ2
n ≤ −100 dBm)

the accuracy of the presented formulation is within 5%. Importantly, in all cases, the analysis

captures the behavior of the system. Therefore, the presented CPavg
SINR

expression is accurate for

practical values ofσ2
n.

The effect of AP density on the SINR CP (for the target SINR of0 dB) is illustrated in Fig. 7

for different values of noise variances. The dotted lines inthe figure correspond to the SINR

CP obtained at the worst-case point and the solid lines are the corresponding results for the

maximum6 of achievable SINR CP within the finite-area. The different trends in SINR CP under

different values of noise variance can be explained as follows.

In general, the increase in AP density (orN) causes the distance PDFfR1(r1) to become

6In general, no closed-form analytical expression is available for the maximum of SINR CP from the presented analytical

formulations, so we use computer simulations to compute themaximum achievable SINR CP along the radius of the circle using

the integral expression in (8).
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Fig. 7. The effect of AP density on the worst and maximum achievable SINR coverage probability (for the target SINR of

0 dB) in a finite-area network for different values of noise variances with PLEs ofα = 3.87 and: a)σL = 0 dB ; b) σL = 6 dB

narrower (as seen in Appendix A, in Fig. 13-(b)). As a result,the average received signal power

increases withλ. The interference power also increases withλ. In a noisy network with moderate

to high values of noise variance, the noise power dominates the interference power. Therefore,

the increase in signal power causes the SINR CP to increases with λ, to the extent that, for large

AP densities the interference power dominates the noise power. As a result, the behavior of the

system under consideration converges to that of an interference-limited network. On the other

hand, in an interference-limited network (very small values of noise variance), the interference

dominates the thermal noise for anyλ. It turns out that, the impact of interference power is more

than that of signal power causing the SINR CP to degrade withλ. Finally, when increasingλ,

the SINR CP converges to that in the infinite network case, which is also interference limited.

The effect of AP density on the SINR performance of the finite-area network can be further

investigated by defining the “transmit SNR” as the ratio of the transmit power to the noise

variance,SNR t = σ2
s/σ

2
n. Figure 8 illustrates the contour plot and the color plot of the SINR

CP (for the target SINR of0 dB) obtained based on different values of transmit SNR and AP

density in a finite-area network withα = 3.87 andσL = 6 dB. As is seen from the contour plot

in Fig. 8-a, there exists a very small range ofSNRt (108.5 dB . SNRt . 109.5 dB), for which

two AP densities would yield the same SINR CP for a chosen value of SNRt . In other words, in

this region, for a chosenSNRt, it is possible to obtain an optimal AP density in terms of received

SINR CP (see the color plot in Fig. 8-b).

The relative behaviour of the highly-dense network as compared to a low-density network is
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Fig. 8. The contour plot and the color plot of the worst SINR CP(for the target SINR of 0 dB) obtained based on different

values of transmit SNR and AP density in a finite-area networkwith α = 3.87 andσL = 6 dB

further investigated in Fig. 9. Fig. 9 illustrates the effect of the transmit SNR on the coverage

probability at the center for the target SINR of0 dB in a network with no shadowing. Again,

the dotted lines represent the simulation results while thesolid lines represent the analytical

expression. As is clear from the figure, the infinite-area assumption (that matches the results in

a dense network) underestimates low-density network performance forSNR t & 108 dB for the

PLE of α = 3.87. With a transmit signal power ofσ2
s = 20 dBm, this corresponds to a noise

variance ofσ2
n ≤ −88 dBm which, clearly, is common in practice. In a network withα = 3,

the transmit SNR threshold decreases toSNR t ≃ 83 dB. Nevertheless, in general, the range of

transmit SNR for which the highly-dense network outperforms or falls behind a low-density

network in SINR performance depends heavily on their relative AP densities andα.

Although the achievable SINR with respect to AP density depends heavily on the value of

transmit SNR (decreases in an interference-limited network or increases in a noisy network with

AP density), the pre-log factorN in the user capacity formula (C r1 = N log2 (1 + SINR r1
))

means that the user capacity increases monotonically with AP density irrespective of the noise

variance. Figure 10 illustrates this effect on the worst (atthe center) and maximum achievable

user capacity coverage probability (for the target capacity of C0 = 5 b/s/Hz)) within a circular

finite-area network. As seen from Fig. 7 and Fig. 10, even a highly dense finite-area network

does not experience a uniform performance all through the region, rather, there is always a peak
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Fig. 10. The effect of AP density on the a) maximum and b) worstachievable user capacity coverage probability (for the

target capacity ofC0 = 5 b/s/Hz) in a finite-area network with PLEs ofα = 3.87.

in the performance typically near the edges. As before, the infinite-area assumption does not

fully capture the behaviour of a finite-area network.

C. Design Example

By using the worst-case user capacity at the centre of the circular network, we are able to

answer the question as to how many APs are needed to guaranteea required target value of

capacity in the network. For example, in the discussion associated with Fig. 10-b, we chose

a capacity coverage probability threshold of 0.6, i.e., we require that a user at any point in
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Fig. 11. The required number of APs versus target value of ergodic capacity for different values ofσL in a finite-area network

with α = 3.87

the network is able to achieve a capacity ofC0 = 5 b/s/Hz with probability 0.6. For such a

requirement to be satisfied in an interference-limited finite-area network withσL = 6 dB, the

network requires a minimum AP density ofλ = 1.59 APs/Km2. In a circular finite-area with

radiusRW = 1 km, this corresponds to a minimum ofN = 5 APs within the network. Under

the same requirement, an interference-limited network with no shadowing requires one less AP

as compared to the network withσL = 6 dB.

The design can be carried out for a target ergodic capacity aswell. Figures 11 illustrates the

relationship between the worst achievable ergodic user capacity and the number of APsN for

different values ofσL with α = 3.87. For a target value of capacity, Fig. 11 suggests a larger

number of APs required for more severe shadowing environments. Moreover, the approximately

linear relationship between the worst average user capacity and the number of APs is clear from

the figures. This effect is expected beforehand from the model under consideration where the

bandwidth allocated to each user grows withN .

Finally, Figure 12 compares the approximate ergodic user capacity results obtained from the

analytical formulation in (35) with those from the integration expression in (24) as well as

the exact results from simulations for the two examples ofσL = 0 dB and σL = 6 dB in

an interference-limited network withα = 4. As is clear, there is a close match between the

approximate and actual results (the approximate results are always within10% of the actual

capacity for anyN). It is worth noting that, Eq. (35) provides an approximation for a lower-

bound on the integral (24). Therefore, the fact that in Fig. 12-(b), (35) outperforms the numerical
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Fig. 12. Comparison between the approximate ergodic user capacity results obtained from the analytical formulation in(35)

with those from the integration expression in (24) as well asthe exact results from simulations in an interference-limited network

with α = 4 for the two examples of: a)σL = 0 dB ; b) σL = 6 dB

integration (24) when compared to the exact results, is purely by accident. For instance, as is

seen from Fig. 12-(a), the above fact does not hold forσL = 0 dB.

V. SUMMARY AND CONCLUSIONS

This paper analyzes the effect of AP density on the performance of afinite-areanetwork with

a finite numberof uniformly distributed APs. Our motivation is two-fold - the available analyses

in the literature are asymptotic and do not apply in the case of low-density networks and/or

near edges of the finite area. As traditional cellular networks make way for newer network

architectures, considering such a finite-area model is important for a better understanding of

network capabilities and limitations. To further our analysis we obtain the achievable SINR

coverage probability and the user capacity coverage probability at any point of the finite-area

network. For practical values of ”transmit SNR”,SNR t ≥ 110 dB, the presented results are within

5% of the actual results obtained from simulations.

The analysis also provides the specific loss in performance due to noise. In an interference-

limited network, the SIR decreases monotonically with the number of APs, however, this is

not the case when thermal noise is accounted for. In a finite-area network with a moderate

noise variance, the SINR increases withN (or AP density) and converges to the SINR of the

interference-limited dense network. It has been reported earlier that an infinite-area network

underestimates the performance of a low-density interference-limited network. Correspondingly,

the formulations allow a network designer to quantify the gain (loss) in performance from low
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values of AP density in an interference-limited network (and a noisy network) as compared to the

highly-dense network. In particular, for the target SIR of0 dB under no shadowing, an increase

of at least 28% in SIR coverage probability is obtained in an interference-limited network with

α = 3.87 andλ = 1APs/km2 as compared to a dense network withλ = 30 APs/km2. The gain

in SIR coverage probability increases to 56% in an environment with α = 3.

The formulation here accounts for different PLEs and network parameters, so they can lend

themselves to parametric studies for network design. As an example of a parametric design, the

worst-case user capacity coverage probability or average user capacity expression can be used

to find the required number of APs (or AP density) to maintain the capacity at all points of the

network above a target value.

APPENDIX A

WORST-CASE POINT

The worst-case SINR, and hence capacity, is said to occur at the center of the circular finite-

area network for small values of noise variance. In this appendix, we justify this claim. For a

given point in W with the associated distancer 1 to its nearest AP, the averaged SINR coverage

probability is obtained as

CPavg
SINR

(N, d, T, α, σL) =

∫ RW+d

0

P{SINR r1 > T}fR 1(r1) d r1

whereP{SINR r1 > T} ≃ Q ((lnT − µSINR)/σSINR) andfR 1(r1) are the conditional SINR cover-

age probability (conditioned onr 1) and the PDF of the distance to the nearest AP, respectively.

Due to the severe nonlinearities inP{SINR r1 > T} andfR 1(r1), the analytical proof for obtaining

the location of the worst-case point is intractable. As an alternative, we resort to an intuitive

explanation and simulation as to illustrate the worst-caseaverage SINR occurs at the centre.

Figure 13 illustrates the minimum distance PDFfR 1(r1) in a circular finite-area network with

RW = 1 km for different values ofd andN . As is seen from Fig. 13-(a), for a givenN , there

is only a slight change infR 1(r1) for d ≤ 0.75RW. Therefore, we first concentrate on the area

with d ≤ 0.75RW. Let Circ(x, R) denote a circle with the radiusR and the origin located at the

point x. For a user located at the origin, denoted aso, the PDF of the distance to the nearest

AP at d = 0, is given in (29) and is depicted in Fig. 13-(b) for differentvalues ofN with

RW = 1 km. In this example,fR1(r1) can be closely approximated by its truncated version for
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Fig. 13. Minimum distance PDFfR 1
(r1) in a circular finite-area network withRW = 1 km for: a) different values ofd with

N = 10; b) different values ofN with d = 0

Fig. 14. Circular finite-area W with radiusRW: the gray area indicates the region that the distance PDF associated with the

user at the origin is effectively non-zero.

0 ≤ r1 ≤ 0.75RW sincefR1(r1) is almost zero for0.75RW ≤ r1 ≤ RW. This is like as if the

largest possible distance to the nearest AP isR̄ = 0.75RW and fR1(r1) is effectively non-zero

only in Circ(o, 0.75RW). The choice of0.75RW is somewhat arbitrary and any reasonable choice

would not change the justification.

Now consider a pointx within Circ(o, 0.25RW) as another user location within W (see Fig. 14).

Let ŕ1 denotes the distance from pointx to the nearest AP. Since theN APs are uniformly

distributed in W, the PDF ofŕ1, i.e.,fR1(ŕ1), in the Circ(x, R̄ = 0.75RW) would be the same as

the truncatedfR1(r1) in Circ(o, 0.75RW). As a result, for anyr1 = ŕ1, both users located at the
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two points ofo andx, receive the same signal power, on average, from their associated nearest

APs. However, the two users do not experience the same interference power forr1 = ŕ1. This

is explained as follows. For the user at the origino, theN − 1 interfering APs are uniformly

distributed between Circ(o, RW) and Circ(o, r1). On the other hand, theN − 1 interfering APs

for the user atx, are uniformly distributed in the area between Circ(o, RW) and Circ(x, ŕ1 = r1),

which is composed of two regions: the area between Circ(x, R̄) and Circ(x, ŕ1 = r1), and the

area between Circ(o, RW) and Circ(x, R̄). The effect of the uniformly distributed interfering APs

in the area between Circ(x, R̄) and Circ(x, ŕ1 = r1) on the user atx, is the same as the one

from uniformly distributed interfering APs in the area between Circ(o, R̄) and Circ(o, r1) on the

user ato. However, since on average, the distances of the remaining interfering APs between

Circ(o, RW) and Circ(x, R̄) corresponding to the user atx, is larger than the distances of the

remaining uniformly distributed interfering APs between Circ(o, RW) and Circ(o, R̄) related to

the user ato, the user atx experiences lower interference power compared to the user at o. Thus,

the user at the origin has the worst-case average SINR in the entire Circ(o, 0.25RW).

For other points between Circ(o, 0.25RW) and Circ(o, 0.75RW), the PDF of distance to the

nearest AP is nearly the same asfR1(r1 | d = 0) (see Fig. 13-(a)). Therefore for a given distance

r1, the user receives the same signal power from its nearest AP as for the user ato, while it

experiences much less interference power since the interfering APs are at a greater distance

away, on average, compared to the ones for the user ato. As a result, it is intuitively clear that

the worst-case SINR and so the worst-case user capacity is achieved at the centre of the circular

area Circ(o, 0.75RW).

On the other hand, for larger values of0.75RW ≤ d ≤ RW, the mean of random variabler1

slightly increases withd. It follows that the average signal power decreases withd, resulting in

the degradation of SINR in this region (this effect can be seen in Figs. 3 - 4.). However, still,

since the user in this region experiences much less interference power in compared to the user at

o, the worst-case SINR appears to be at the centre of Circ(o, RW). Figs. 3 - 4 in the simulation

section further justify this claim for different values of parameters ofN , α, andσL.

We note that in a noise-limited finite-area network, the above claim does not hold anymore.

In this case the SNR remains approximately constant ford ≤ 0.75RW and degrades withd for

d ≥ 0.75RW. It follows that the worst SNR occurs at the edge of the circular finite-area network.
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APPENDIX B

APPROXIMATION FOR THEWORST ERGODIC USER CAPACITY UNDER α = 4

In Section III the coverage probability and ergodic capacity were presented in terms of finite

integrals that required numerical evaluation. In general,no closed form expressions are available;

however, for the special case of the worst-case point (center) and for an integer choice ofα,

some analysis is possible. Here, we present a closed-form approximation to the worst-case user

capacity in an interference-limited network withα = 4 [4]. The worst achievable user capacity

(in b/s/Hz) averaged over different realizations of AP locations is given by

C worst
ergodic=

∫ RW

0

C worst
ergodic|r1fR1(r1)dr1 =

∫ RW

0

E {N log2(1 + SIR r1)|r1} fR1(r1)dr1, (36)

wherefR1(r1) is given in (29) and the ergodic capacity for a givenr1 is the ensemble average

over different realizations of the channels in (1).

For a givenr1, the ergodic capacityC worst
ergodic| r1

= E {N log2(1 + SIR r1)|r1} is upper-bounded

byN log2(1+E{SIR r1 |r1}). On the other hand, since the meanE{SIR r1 |r1} = exp (µSIR + σ2
SIR/2)

is always greater than one, thelog2(1+E{SIR r1 | r1}) itself is lower-bounded bylog2(E{SIR r1| r1}).
In general, there is no guarantee thatN log2(E{SIR r1 | r1}) is lower thanC worst

ergodic| r1
. However,

for small values ofµSIR and σSIR, N log2(E{SIR r1 |r1}) ≤ C worst
ergodic| r1

holds. Therefore, an

approximate lower-bound on theC worst
ergodic| r1

, can be obtained as

C worst
ergodic| r1 ≈ N log2(E{SIR r1| r1}) = N(µSIR + σ2

SIR/2)/ ln 2. (37)

In an interference-limited network withα = 4, µDenom andσ2
Denom from (14)-(15) simplify to

µDenom= ln

[
(N−1)2σ4

se
σ2
z

(

r
−2
1 −R

−2
W

R2
W−r2

1

)2

(
(N−1)(N−2)σ4

s e
σ2
z

(

r−2
1

−R−2
W

R2
W−r21

)2)1/2(
1+ 2

3(N−2)
(1 + r21/R

2
W +R2

W/r21
︸ ︷︷ ︸

≈R2
W/r2

1

)
)1/2

]

≈ ln
[
(N−1)3/2σ2

se
σ2
z/2

(N−2)1/2

]

+ ln
[
r−2
1 −R−2

W
R2

W−r21

]

− 1
2
ln

[

1 +
2eσ

2
zR2

W
3(N−2) r21

]

, (38)

σ2
Denom= ln

[

N−2
N−1

+ 2eσ
2
z

3(N−1)
(1 +

r21
R2

W

+
R2

W

r21
︸ ︷︷ ︸

≈R2
W/r21

)

]

≈ ln

[
(
N−2
N−1

)
(

1 +
2eσ

2
zR2

W
3(N−2)r21

)]

.
(39)

In the first line of (38)-(39), the term(1 + r21/R
2
W + R 2

W/r21) is approximated byR 2
W/r21. This

is justified as follows. As is seen from Fig. 13-(b),fR1(r1) at the worst-case point is small for
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0.75RW ≤ r1 ≤ RW. As a result, for the range of values ofr1 that effectively contribute in the

average capacity (36),R 2
W/r21 ≫ 1 and so the approximation is valid. Following (38)-(39),

µSIR ≈ 2 lnRW − 2 ln r1 + ln
(N − 2)1/2

(N − 1)3/2
− ln

√
2− σ2

z/2 +
1

2
ln

[

1 +
2eσ

2
zR2

W

3(N − 2)r21

]

, (40)

σ2
SIR ≈ σ2

z + ln 2 + ln
N − 2

N − 1
+ ln

[

1 +
2eσ

2
zR2

W

3(N − 2)r21

]

, (41)

which gives the conditional ergodic capacityC worst
ergodic| r1

as

C worst
ergodic| r1 =

N

ln 2

(

2 lnRW−2 ln r1+ln
(N − 2)1/2

(N − 1)3/2
+
1

2
ln

N − 2

N − 1
+ln

[

1+
2eσ

2
zR2

W

3(N − 2)r21

])

. (42)

Now the worst ergodic user capacity in (36) is given as

C worst
ergodic=

∫ RW

0

C worst
ergodic|r1fR1(r1)dr1 =

N

ln 2

(

2 lnRW + ln
(N − 2)1/2

(N − 1)3/2
+

1

2
ln

N − 2

N − 1

)

+ N
ln 2

(∫ RW

0

−2 ln r1fR1(r1)dr1
︸ ︷︷ ︸

(∗)

+

∫ RW

0

ln

[

1 +
2eσ

2
zR2

W

3(N − 2)r21

]

fR1(r1)dr1
︸ ︷︷ ︸

(∗∗)

)

(43)

All that remains is to solve the integrals in(∗) and (∗∗). Using the binomial equivalence for

(1 + x)n =
∑n

k=0

(
n
k

)
xk, the distance PDFfR 1(r1) in (29) can be rewritten as

fR 1(r1) =
2Nr1
R2

W

N−1∑

k=0

(−1)k
(
N − 1

k

)
r2k1
R 2k

W

; 0 ≤ r1 ≤ RW. (44)

Now, the integration in(∗) follows as

∫ RW

0
−2 ln r1fR 1(r1)dr1 = − 4N

R 2
W

N−1∑

k=0

[
(−1)k

R 2k
W

(
N−1
k

) ∫ RW

0
r2k+1
1 ln r1dr1

]

= −4N lnRW

N−1∑

k=0

(−1)k
(
N−1
k

)
1

2k+2
+ 4N

N−1∑

k=0

(−1)k
(
N−1
k

)
1

(2k+2)2

= −2N lnRW

N−1∑

k=0

(−1)k

N

(
N−1
k+1

)
+N

N−1∑

k=0

(−1)k

N

(
N−1
k+1

)
1

k+1

= 2 lnRW

[
N∑

k′=0

(−1)k
′(N

k′

)
− 1

]

+
N∑

k′=1

(−1)k
′−1

(
N
k′

) ∫ 1

0
uk′−1du

= 2 lnRW

[
(1− x)N |x=1 − 1

]
+
∫ 1

0

[
N∑

k′=1

(−1)k
′−1

(
N
k′

)
uk′−1

]

du

= −2 lnRW +
∫ 1

0
1
u

[
1− (1− u)N

]
du

= −2 lnRW +
∫ 1

0
1−xN

1−x
dx = −2 lnRW +HN

(45)

In the last line,
∫ 1

0
(1−xN )/(1−x)dx is an integral representation of theN-th harmonic number,

HN =
∑N

k=1 1/k, given by Euler. The corresponding expansion ofHN is given as [39]
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HN ≈ lnN + γ +
1

2N
−

∞∑

k=1

ξ2k
2kN2k

, (46)

whereγ ≈ 0.578 is the Euler-Mascheroni constant andξk; k = 1, · · · are the Bernoulli numbers.

ApproximatingHN with the first three terms in (46), the integration in (45) is given as
∫ RW

0

−2 ln r1fR 1(r1)dr1 ≈ −2 lnRW + lnN + γ +
1

2N
. (47)

For the integration denoted as(∗∗), let b = 2eσ
2
zR2

W/(3(N − 2)). The integration follows as
∫ RW

0

ln
[
1 +

b

r21

]
fR 1(r1)dr1 =

∫ RW

0

−2 ln r1fR 1(r1)dr1 +
∫ RW

0

ln(r21 + b)fR 1(r1)dr1

≈ −2 lnRW + lnN + γ + 1
2N

+

∫ RW

0

ln(r21 + b)fr1(r1)dr1
︸ ︷︷ ︸

(∗∗∗)

. (48)

Using integration by parts and lettingu = ln[ r21+b ] anddv = r2k+1
1 dr1, the integration(∗∗∗)

can be rewritten as

(∗ ∗ ∗) =
∫ RW

0

ln[ r21 + b ]
2Nr1
R2

W

N−1∑

k=0

(−1)k
(
N − 1

k

)
r2k1
R 2k

W

dr1

= 2N
R 2

W

N−1∑

k=0

(−1)k

R 2k
W

(
N−1
k

) ∫ RW

0
ln[ r21 + b ]
︸ ︷︷ ︸

u

r2k+1
1 dr1
︸ ︷︷ ︸

dv

= 2N
N−1∑

k=0

(−1)k

R 2k+2
W

(
N−1
k

)
(
ln[R 2

W + b ]R 2k+2
W

2k + 2
︸ ︷︷ ︸

uv

−
∫ RW

0

2r2k+3
1

(2k + 2)(r21 + b)
dr1

︸ ︷︷ ︸

v du

)

= ln[R 2
W + b ]

︸ ︷︷ ︸

2 lnRW+ln[ 1+b̄ ]

−N
N−1∑

k=0

(−1)k

R 2k+2
W (k+1)

(
N−1
k

)
[

(−1)k+1bk+1 ln[ r21 + b ]
︸ ︷︷ ︸

(49−a)

+
r2k+2
1

k + 1
︸ ︷︷ ︸

(49−b)

+
r2k+2
1

2(k + 1)
ln(1 + b̄)

︸ ︷︷ ︸

(49−c)

+

k∑

k′=1

(−1)k+k′−1 r
2k′

1 bk+1−k′

k′

︸ ︷︷ ︸

(49−d)

]RW

0

, (49)

with b̄ = b/R2
W. The results associated with the terms(49− a)-(49− d) are obtained as

(49− a) → −N ln[1 + 3
2
e−σ2

z(N − 2)]
N−1∑

k=0

(−1)2k+1

R2k+2
W (k+1)

(
N−1
k

)
bk+1

= ln[1 + 3
2
e−σ2

z (N − 2)]
N−1∑

k=0

(
N
k+1

)
b̄k+1

= ln[1 + 3
2
e−σ2

z (N − 2)]

[
N∑

k=0

(
N
k

)
b̄k − 1

]

= ln[1 + 3
2
e−σ2

z (N − 2)]
(
(1 + b̄)N − 1

)

= ln[1 + 3
2
e−σ2

z (N − 2)]
(

(1 + 2eσ
2
z

3(N−2)
)N − 1

)

, (50)
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(49− b) → −N

N−1∑

k=0

(−1)k

R2k+2
W

(
N − 1

k

)
R2k+2

W

(k + 1)2
= −(lnN + γ +

1

2N
), (51)

(49− c) → −N
N−1∑

k=0

(−1)k

R2k+2
W

(
N − 1

k

)
R2k+2

W

2(k + 1)
ln[1 + b̄] = −1

2
ln[1 + b̄], (52)

(49− d) → −N
N−1∑

k=0

(−1)k

R2k+2
W (k+1)

(
N−1
k

) k∑

k′=1

(−1)k+k′−1R2k
W bk+1−k′

k′

≈ −
(
ln[N − 1] + 1

2(N−1)

)(
(2
3
eσ

2
z ) + 1

2!
(2
3
eσ

2
z )2 + 1

3!
(2
3
eσ

2
z )3 + · · ·+ 1

(N−1) !
(2
3
eσ

2
z )N−1

)

≈
σ2
z≤ ln(3/2)

−
(
ln[N − 1] + 1

2(N−1)

)(
e(2e

σ2
z/3) − 1

)

, (53)

The last line in (53) is obtained from the Taylor series approximation of ex ≈ ∑N−1
n=0 xn/n!

for x ≤ 1. For further simplification, for large values ofN , we approximatee(2e
σ2
z /3) by (1 +

2eσ
2
z/(3(N − 2)))N = (1 + b̄)N using the identity lim

x→∞
(1 + 1/x)x = e. As a result, (53) can

be approximated as−
(
ln[N − 1] + 1/(2(N − 1))

) (
(1 + b̄)N − 1

)
. Now, the equations in (53)

and (50) have a common term via
(
(1 + b̄)N − 1

)
which can be factored out. Finally, after some

manipulations, the integration denoted as(∗∗) in (48) is obtained as
∫ RW

0

ln
[
1 +

b

r21

]
fR 1(r1) dr1 =

1

2
ln[1 + b̄ ]

+
(
(1 + b̄)N − 1

)
(

ln

[
1 + 1.5e−σ2

z (N − 2)

N − 1

]

− 1

2(N − 1)

), (54)

which along with (47), gives the worst ergodic user capacityexpression in (35).

APPENDIX C

THE CHANGE IN PERFORMANCE FORd ≪ RW

In this Appendix we investigate how quickly the performanceapproaches the worst case asd

becomes small compared toRW, i.e., d ≪ RW. In this case, an accurate approximation for the

distance CDFFR(r) is given as

FR | d(r)≃







r2/R 2
W ; 0 ≤ r ≤ RW − d

F̄R(RW) ≃ 1− 2d
πRW

; RW − d ≤ r ≤ RW + d

1 ; RW + d ≤ r

(55)

whereF̄R( · ) is given in (5). The sub-script|d in (55) means that the expression is evaluated at

d. Now consider the distance CDF at the centre of network denoted asFR | 0(r). Let d̄ denote a
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small value compared toRW, i.e., d̄ ≪ RW . For a givend̄, FR | 0(r) can be approximated as

FR | 0(r)≃







r2/R 2
W ; 0 ≤ r ≤ RW − d̄

1− d̄
RW

; RW − d̄ ≤ r ≤ RW

1 ; RW ≤ r

(56)

It follows that for any d̄ = d ≪ RW, we getFR | d(r) ≃ FR | 0(r) , 0 ≤ r ≤ RW, and so

fR 1 | d(r 1) ≃ fR 1 | 0(r 1) , 0 ≤ r 1 ≤ RW.

On the other hand, using the Taylor series expansion aroundd = 0, the two terms(RW+d)−α

and (RW + d)−2α can be closely approximated as

(RW + d)−α ≃ R−α
W − αdR−α−1

W +
α(α + 1)

2
d 2R−α−2

W , (57)

(RW + d)−2α ≃ R−2α
W − 2αdR−2α−1

W + α(2α + 1)d 2R−2α−2
W . (58)

From (57) - (58) and the approximation thatFR | d(r) ≃ FR | 0(r) , 0 ≤ r ≤ RW, the parameters

M 1 andM 2 (given in (11) - (12)) can be rewritten as

M 1| d ≃ M 1| 0 +∆M 1| d, (59)

M 2| d ≃ M 2| 0 +∆M 2| d, (60)

whereM 1| 0 and M 2| 0 are the values ofM 1 and M 2 evaluated atd = 0, respectively. Also,

∆M 1| d and∆M 2| d are the correction terms given as

∆M 1| d = (N − 1)σ2
se

σ2
z/2

[

− αdR−α−1
W + α(α+1)

2
d 2R−α−2

W +

∫ R−α
W

(RW+d)−α

G | d(s
−1/α
j ) dsj

]

, (61)

and

∆M 2| d=2(N − 1)σ4
se

2σ2
z

[

−2αdR−2α−1
W +α(2α+ 1)d 2R−2α−2

W +

∫ R−2α
W

(RW+d)−2α

G | d(s
−1/2α
j ) dsj

]

+ 4(N − 1)(N − 2)σ4
se

σ2
z

[

− αdR−α−1
W +

α(α + 1)

2
d 2R−α−2

W +

∫ R−α
W

(RW+d)−α

G | d(s
−1/α
j ) dsj

]2

+ 8(N − 1)(N − 2)σ4
se

σ2
z

[

R−α
W +

∫ r−α
1

R−α
W

G | d(s
−1/α
j ) dsj

]

×
[

− αdR−α−1
W +

α(α + 1)

2
d 2R−α−2

W +

∫ R−α
W

(RW+d)−α

G | d(s
−1/α
j ) dsj

]

,

(62)

whereG | d( · ) = (FR | d( · )− FR | d(r1))/(1− FR | d(r1)).
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Substituting (59) - (60) in (14) - (15),

µDenom| d ≃ 2[ln(M 1| 0 +∆M 1| d)]− 0.5[ln(M 2| 0 +∆M 2| d)]

= 2 ln(M 1| 0)− 0.5 ln(M 2| 0)
︸ ︷︷ ︸

µDenom| 0

+2 ln(1 + ∆M 1| d/M 1| 0)− 0.5 ln(1 + ∆M 2| d/M 2| 0)
︸ ︷︷ ︸

∆µDenom| d

, (63)

σ2
Denom| d ≃ −2 ln(M 1| 0) + ln(M 2| 0)

︸ ︷︷ ︸

σ2
Denom| 0

−2 ln(1 + ∆M 1| d/M 1| 0) + ln(1 + ∆M 2| d/M 2| 0)
︸ ︷︷ ︸

∆σ2
Denom| d

. (64)

SinceµNum and σ2
Num in (20) - (21) do not depend ond, for a givenr 1, we getSIR r1| d ∼

LN (µSIR | d, σSIR | d) with

µSIR | d = µNum − µDenom| d ≃ µSIR | 0 −∆µDenom| d, (65)

σ2
SIR | d = σ2

Num + σ2
Denom| d ≃ σ2

SIR | 0 +∆σ2
Denom| d. (66)

As it is shown above, ford ≪ RW, we can accurately approximate each of the parameters

µ SIR | d andσ2
SIR | d by the corresponding value obtained at the centre of the finite-area network

(with d = 0) plus a correction term. However, due to the nonlinear structure of the conditional

SIR coverage probability given asP{SIR r1| d > T} = Q
(
(lnT − µSIR | d)/σSIR | d

)
, it is not

possible to haveP{SIR r1| d > T} ≃ P{SIR r1| 0 > T} + ∆P{SIR r1| d > T}. As an alternative,

for the formulation tractability, we consider the mean of SIR (expressed in dB) averaged over

different realizations of nearest AP locations, as the performance metric. It follows that

SIR
avg
| d (dB) =

∫ RW+d

0

10 log10(E{SIR r1 | d})fR 1 | d
(r1) d r1

=
10

ln 10

∫ RW+d

0

(µSIR | d + σ2
SIR | d/2)fR 1 | d

(r1) d r1.

(67)

SincefR 1 | d(r 1) ≃ fR 1 | 0(r 1) , 0 ≤ r 1 ≤ RW and fR 1 | 0(r 1) ≃ 0 , r 1 ≥ 0.75RW (see Fig. 13 in

Appendix A), Eq. (67) simplifies to

SIR
avg
| d (dB) ≃ 10

ln 10

∫ RW

0

(µSIR | 0 + σ2
SIR | 0/2)fR 1 | 0

(r1) d r1
︸ ︷︷ ︸

SIR
avg
| 0

(dB)

+
10

ln 10

∫ RW+d

0

(−∆µDenom| d +∆σ2
Denom| d/2)fR 1 | d

(r1) d r1
︸ ︷︷ ︸

∆SIR
avg
| d

(dB)

.

(68)

whereSIR avg
| 0 (dB) is the worst-case performance obtained at the centre of the finite-area network

and∆SIR
avg
| d (dB) is the associated correction term given as a function ofd. Fig. 15 illustrates

September 17, 2018 DRAFT



33

0 20 40 60 80 100
0

0.05

0.1

0.15

Distance to the origin: d (m)

∆ 
S

IR
 a

vg
 |d

 (
dB

)
 

 

formulations
curve fitting λ = 10 APs/km2

λ = 2 APs/km2

λ = 1 AP/km2

Fig. 15. Performance correction term∆SIR
avg
| d (dB) versusd for different values ofλ in an interference-limited network with

α = 3.87, σL = 6 dB, andRW = 1 km.

∆SIR
avg
| d (dB) (evaluated numerically) versusd for different values ofλ in an interference-limited

network withα = 3.87, σL = 6 dB, andRW = 1 km. In general, a smaller change in performance

is observed for higher values ofλ, to the extent that, in a dense interference-limited network

there is only a very slight change in performance compared tothe result obtained at the centre.

Further, in order to quantify the change in performance, we may use a polynomial fit as a

function of d to provide a simple closed-form expression for∆SIR
avg
| d (dB) as

∆SIR
avg
| d (dB) ≃

n∑

i=0

a id
n−i, (69)

wherea i, i = 1, · · · , n are the coefficients found by curve fitting the numerical values obtained

from formulations. The resultant curve-fitting approximations are also included in Fig. 15 (the

dotted lines) using a3rd order polynomial. The associated coefficients are given in Table I.

As is clear, for the example under consideration, a3rd order polynomial is adequate to describe

∆SIR
avg
| d (dB), though, if required, an even more accurate fit is possible with a higher polynomial

degree.
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