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Analyzing the Impact of Access Point Density

on the Performance of Finite-Area Networks
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Abstract

Assuming a network of infinite extent, several researcherse tanalyzed small-cell networks using a
Poisson point process (PPP) location model, leading tolsiammlytic expressions. The general assumption has
been that these results apply to finite-area networks as ellever, do the results of infinite-area networks
apply to finite-area networks? In this paper, we answer théstion by obtaining an accurate approximation
for the achievable signal-to-interference-plus-nois®rgSINR) and user capacity in the downlink offiaite-
areanetwork witha fixed number oficcess points (APs). The APs are uniformly distributed iwithe area
of interest. Our analysis shows that, crucially, the reasolt infinite-area networks are very different from
those for finite-area networks of low-to-medium AP denstgmprehensive simulations are used to illustrate
the accuracy of our analysis. For practical values of sigraismit powers and AP densities, the analytic
expressions capture the behavior of the system well. As dedabenefit, the formulations developed here
can be used in parametric studies for network design. Heeeamalysis is used to obtain the required number
of APs to guarantee a desired target capacity in a finite-aedaork.

Index Terms

Finite-area networks, downlink, coverage probabilityairoells, Moment Matching Approximation,

Poisson point process

. INTRODUCTION

As the available user capacity in traditional cellular eys$ has saturated, the wireless industry

is planning on the introduction of small-cell networks, luding outdoor access points (APS)
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and/or indoor femtocell APs. With limited location plangipossible in such networks, these APs
are placed in an irregular manner; the APs are modeled asdheamndom locations. Importantly,
the available analysis techniques largely focus on the psyim case of networks of infinite
extent. Our motivation, on the other hand, is analyzingdiaitea networks such as networks that
provide coverage inside buildings, or at outdoor hotspgéigen the lack of accurate and tractable
analysis techniques fdiite-areanetworks with a finite number of APs, it has generally been
assumed that the infinite-network results directly apply However, as our work will show, for
practical values of system parameters, this is not always WWe will analyze this discrepancy

in the context of metrics relevant to a network designer.

A. Literature Survey and Motivation

Traditional network models are either impractically sime.g., the Wyner model [2]) or
excessively complex (e.g., general case of random usetidocaith APs on a hexagonal
lattice [3]) to accurately model small-cell networks. A fideanathematical model that accounts
for the randomness in AP locations (and irregularity in tleds§ uses spatial point processes,
such as the Poisson point process (PPP), to model the IoaatiéPs in the network[ [4]H]9].
This allows for the use of techniques from stochastic gegm@0]-[12] and large-deviation
theory [5] to characterize the distribution of the sigraditerference-plus-noise-ratio (SINR)
and/or user capacity in large networks. For example, assyithe networks are of infinite extent,
rate expressions are available, e.glin [13]+-[15], whiloaating for path loss, small-scale fading
and log-normal shadowing.

A review of different network models in the literature isbiell in understanding the motivation
for our work. Two models are relevant here: the infinite-raebvmodel, as the name suggests,
assumes a network of infinite geographical extent usualtii @wifixed AP density; on the other
hand, the dense-network model considers a finite area witje lAP density. Both have been
widely used in the asymptotic analysis of networks (asyiipin the number of APs) [1]. The
assumption of an infinitely large network, coupled with ARdtons modeled as a PPP, allows
for analytic tractability.

Although such infinite-area analyses provide convenieasem-form expressions, they do
not completely reflect the more realistic case ofirate-area network, especially with a low

AP density orfinite numberof APs. As recent work has shown, treating a finite-area nétwo
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Fig. 1. Comparison of the SIR coverage probability obtaiaethe centre of a circular finite-area interference-lichitetwork
with AP densities of\ = 1 AP/km* and X = 30 APs/knt under Rayleigh fading and no shadowing with PLEcof= 3.87.

as spread over an infinite area is accurate for cases with highy pathloss exponents (e.qg.,
«a = 6); for more realistic values such as the rangeof o < 4, the infinite-area assumption
underestimates network performance significantly [16].

To motivate this paper, Fi@l 1 illustrates this issue viawdations. For a circular interference-
limited network of radiusl km, the figure plots the signal-to-interference ratio (Stieyerage
probability at the network center with AP densities\of 1 AP/km? and\ = 30 APs/knt for the
path loss exponent (PLE) ef = 3.87 under purely Rayleigh fading. Note that in interference-
limited infinite-area networks, coverage probability (dB)not a function of density, i.e., the
“infinite-area PPP” curve, obtained from the work in [4], &lid for all AP densities. The PPP
curve, for an infinite-area network, exactly matches thevedor the finite-area high-density
network (\ = 30 APs/knt), i.e., a highly dense finite-area network can be closely@pmated
as a network of infinite extent. However, as seen from the digthre finite-area low-density
network outperforms the dense network by 28% in SIR CP fortéinget SIR of 0 dB (or by
3 dB in SIR).

There are only a few works that have investigated the pedana of finite-area networkis [16]—
[20]. For example, in[[16],.[17], the authors use a momeniegating function (MGF) approach
to characterize the interference under Rayleigh fadingotier set of related works with APs
distributed as a PPP, can be foundlinl[18],] [20] where cldeed-expressions are obtained for
the instantaneous outage probability fogi@en realizationof AP locations. The authors then

use Monte Carlo simulations to obtain the outage probglalteraged over network realizations.
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B. Our Contributions

Our goal in this paper is to analyze the performance of a I&:—iﬂminite-area network with
a finite number of APs. Our motivating examples are indoownsts [21], [22] and outdoor
hotspots([2B],[[24] . We wish to provide a network designer &bility to quickly analyze the
impact of various network parameters. Specifically, we tgven expression which closely
approximates the SINR and user capacity at any point in aleircfinite-area, network serviced
by a fixed number of APs. Our work differs from that availabighe literature (for finite areas)
in fixing the number of APs, allowing for a random connectiastahce and accounting for
shadowing and noise. This difference adds complexity toathedysis, but better represents the
problem at hand. In our model, thé APs within the circle are uniformly distributédAs in [4],
we analyze downlink transmissions where independent wmerassociated with theirearest
AP, while all other APs act as interferers. We obtain the cage probability within any point
inside the circle. Unlike previous works on finite-area mate that focus on Rayleigh fading
exclusively, our model accounts for path-loss, smalled¢atiing and shadowing.

To confirm the accuracy of our analysis, we compare our acalgsults with that of Monte-
Carlo simulations. For practical values of transmit sigmalvers and AP densities, our approxi-
mations capture the behaviour of the network very well. @sults match the reports presented
earlier [16], in that, in the interference-limited caseg tBIR coverage probability performance
of an infinite-area network (equivalently, dense networkjierestimates that of a low-density
network. As an added benefit, the expressions developedalieve us to quantify the gains, in
terms of coverage probability, by adding APs within the leirc

Motivated by the desire to provide network design tools, twentfocus on the origin of the
circular area - this location has the worst user capacitg Wbrst-case user capacity has been
used, e.qg. in[3],[[27]£[29], for network design in wirelesstworks with and without cooperation
amongst APs. For the special choice of PE= 4, we derive a closed-form expression for the
worst-case user capacity. As a design example, the usecitapathe worst-case point is used

to obtain the number of APs required to guarantee a minimwerege probability everywhere

1The choice of a circular area is for simplicity that can leadractable analysis; given relevant distance probahiitsyribution
functions in the literature, other geometric shapes coelcdialyzed.
2The uniform distribution is equivalent to a homogenous P&fR@rresponding densityjonditioned on havingv APs within

the circle (in this case the conditional PPP is a binomial point progsk [26]).
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within the area under consideration. This corresponds sigdeng a finite-area network with a

coverage guarantee.
We note that this paper differs from the works in![16],/[17]three aspects:

« We allow for a random connection distance from user to itgisgrAP which better accounts
for the randomness in AP locations and irregularity in thiésce

« In [16], [17] the number of APs falling in the chosen area isd@m whereas in the proposed
work is fixed.

« While in [16], [17] the authors use the MGF approach to charée the interference under
Rayleigh fading, here we use the moment matching approiomd80] which allows us to

account for shadowing as well as small-scale fading.

C. Organization and Notation

The rest of the paper is organized as follows: Secfion Il dess the system under con-
sideration. The analysis, the main contribution of thisgras presented in Sectignllll; while
supporting simulation results are presented in SedfidnAxally, SectionV summarizes and
concludes the paper. The notation used is conventionaficeatare represented using bold upper
case and vectors using bold lower case letténé: , and(-)” denote the conjugate transpose,
and transpose, respectively.~ CN (i, 0?) or ~ N(u,c?) denote complex and real Gaussian
random variables, respectively, with mearand variancer? while X ~ LN (., 02) represents
a log-normal random wherl(X) ~ N (i, 02). Q(x) represents the standa@function, the
area under the tail of the standard normal distribution A&(0,1); f(-) denotes a probability
density function (PDF) whilg”(-) denotes the cumulative distribution function (CDF). Fipal

P{-} denotes the probability of an event aRd- } denotes expectation.

II. DOWNLINK SYSTEM MODEL
A. Assumptions and Initial Analysis
In this paper we develop an analytical formulation of achle SINR and user capacity

within a finite-area network for a given AP density. The asayis based on some simplifying

approximations and assumptions which are summarized here:

« We focus on the downlink of a single-tier finite-area reuseetwork comprisingNV APs

located in a circular area W with radiug,.
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« The APs are uniformly distributed within the circle; thisrigons the circular area into

Voronoi cells.

All APs transmit at a power level of?.

Users are associated with the closest AP, i.e., users watlsipecific Voronoi cell connect to

the AP within that ceH.

« There are a large number of users uniformly distributed iwithe network and so each AP is
fully loaded serving an equal number of users at a given tim& denotes the total number
of users to be served in the network, each AP sef/gd users at any given time ovéf/N
frequency slots (one frequency slot per user).

« For a givenN, the bandwidth per user served is fixed, i.e., the total baittiws divided

into K/N equal frequency slots. The total bandwidth/AdV, and each user is allocated a

bandwidth of W, = KW /(K/N) = NW

CommentEssentially we are assuming that since there are a largée&wuoh users uniformly

distributed within the network, at any given time, thereséxt leastK'/N users within an

specific Voronoi cell connecting to the AP in that cell. Fertimore, since the average number
of users per AP is inversely proportional to the number of AR3, we assume that the
bandwidth availablger useris proportional toN.

We note that other reasonable loading models are possillle[B2]. For example, we could

make the bandwidth per usé¥},, independent ofV. Alternatively, one could make the number

of users per AP a random variable and each user allocateddarmabhandwidth; this is very
hard to analyze. One could also consider a fixed bandwidthuper with some bandwidth

“wasted” at APs with few associated users. Such a scenaritd dze analyzed within our

framework using a thinned PPP. Our choice is based on théiamtthat, as/N increases,

fewer users are served by each AP, and so, more bandwidtidsbewavailable per user.

Figure[2 depicts one realization of our network with= 20 and Ry, = 2 km. Let h; denote

the instantaneous channel from a user located at an aybjtoémt x to the nearest AP a distance

3The choice of user association based on minimum distanteriori is for simplicity that can lead to tractable analysia
improvement in performance can be obtained with the usecagsn based on the strongest received power in a netwudtkru
shadowing [[13],[[31]

“Essentially, the assumption here is that as the number ofiddPsases, each AP serves fewer users and the bandwidth per

user is linearly proportional to the number of APs.
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Fig. 2. One realization of the location of APs based on a PRPdincular region with radiu®2w = 2 km and N = 20. In the
figure, 71 andd are the distances of an arbitrary pointo the closest AP and to the centre of the circular area, ctisphy.

r, away. Further, lek;,j =2,--- | N denote the corresponding channels between the user and
the remainingV — 1 interfering APs. Note that these APs are located outsideiticke centered

at x with radiusr; (between the circle centered»atwith radiusr; and circle with radiusRy).
Similarly, letr;,j = 2,--- | N represent the distar&érom thej-th AP to the user at point,

and let PL(r;) represent the path loss (in dB) over this distance. The ritest@ous channels

h;,j=1,---,N are modeled as

h, — B]— % 10—(PL(TJ)+Lj)/20’ 0

J

whereh; ~ CN(0,1) represents the normalized complex channel gain, reflectingll-scale
Rayleigh fading, from th¢-th AP to the user, which is independent frdmi # j; and where
L; ~ N(0,0r) models the large-scale fading or shadowing, modeled as reotogal random
variable. The standard deviation (STB) is expressed in dB. The path loss, in dB, is given by
PL(r;) = 10 alog,, rj, wherea denotes the path loss exponent.

Let o2 represent the power of the thermal noise, dnddenote the power of the interference
from the N — 1 interfering APs. The instantaneous SINR of the user at aamndistancer,
from its nearest AP can be expressed as
o |h|* 03}51‘27’1_0‘,21

2 o N 12 _
Un+Irl U%“‘Zj:QUg}hj} ’f’jaZj

, (2)

SINR,, =

*We note that;, j = 2,--- , N are un-sorted, independent and identically distributéstadces to theV — 1 interfering APs.
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wherez; = 107L/1° j = 1,... N are independent lognormal RVs as~ LN (u, = 0,0, =
(0.1In10)oy). Thus, the instantaneous achieved SINR depends @both via PL(r,) and I,,)
as well as the instantaneous realizationshgfand L, = 1,---, N. It is known that in an
infinite area withinfinite number of PPP distributed APs, the interference followslphaastable
distribution [4], [33]. However, this is not true forfaite-area with a finite number of APthis
necessitates a new analysis technique. Here we presentarai@canalysis.

With a fixed bandwidth ofil, = N Hz available to each user, an instantaneous per-user
data rate (in b/s) of?,, = Wylog,(1 4+ SINR,,) is achievable. The rate coverage probability,
defined as the probability that the user can achieve a taateiy, is given by

P{R,, > Ry} =P {NWlog, (1 + SINR,,) > Ry}
=P {Nlog, (1 + SINR,,) > Ro/W} 3)
=P{C,, > Cy} = P{SINR,, > 2°/N — 1)},

where we define”,, = N log, (1 + SINR,,) andCy = Ry/W, as the achievable and required
spectral efficiencies (in b/s/Hz).

B. User Distance Distributions

To characterize the signal component of the SINR, we needbtairothe user distance to
the nearest AP. The first step is to obtain the unconditiorsthdce CDF from poink to an
arbitrary AP randomly placed in the circular finite-areat e< Ry denote the distance of
to the centre of the circular area. The CDF of the distancerdst pointx to an arbitrary AP

randomly located in the circular region, independentlyrfrother N — 1 APs, is given by[[34],
[35],

r? /Ry 0<r<Rw-—d
Fp(r)=P{R<r}={ Fp(r) ; Rw—d<r<Rw+d 4)
1 ; Ry+d<r

where F(r) is given by
_ 1 d2—T2+R2 72 d2—|—7’2—R2
F —— -1 W -1 W
r(7) T < 2d Rw ) * TR o8 < 2dr
1
2T R

(5)

V((Bw +7)? = d?)(d — (r — Rw)?).
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Now that any of theN independent APs has a distance CDF as[in (4), the CDF of the

minimum distance - corresponding to the distance from pwitd the closest AP - is given by
Fpy(r)=1—[1—Fr(r)", (6)

wherer; is the distance ok to the nearest AP.

It is worth noting that, unliker,, the distances;,j = 2,---, N are i.i.d. RVs, but with
distance CDFs that differ fromi’s, (r1). For a givenr;, the N — 1 interfering APs are located in
the area between circles with radii centred at poink and circle with radiusRy,. Therefore,
the conditional CDF of;, givenry, is
P{R<r,NR>nr}

Frjr, (rj) =P{R <7j|R> 1} =

]P{R > 7’1}
0 ; r; < (7
=94 (Fr(rj) = Fr(r1))/(1 = Fr(r1)) ; m<r; < Bw+d
1 : Ry+d<r;

where Fi (-) is given in [4).

1. SINR AND USER CAPACITY

Using the results in the previous section, we now obtain #e¥ gapacity in an interference-
limited network, i.e., we first assume that the thermal nasseegligible as compared to the
interference and can be hence ignored. While this may béi@asin dense small cell net-

works [36], we then generalize the formulation to includerthal noise.

A. Interference-limited networks? = 0

Proposition. The averaged SIR coverage probability (averaged overrdifterealizations of AP

locations) at an arbitrary poink within the finite-area network is accurately approximatesd a

InT — Msm) dFpg, (r1)

d " d . (8)

Rw+d
CPS;S(Nv d7 Ta «Q, UL) - ]P){SIR > T} ~ / Q <
0 OsIR
whereT is a chosen SIR threshold and
pstn = In(02/v2) + Inry® — 2In(M;) + 0.5 In(M,), ©)

ooy =In2 + 0% — 2In(M,) + In(M,), (10)
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with

Y Fr(s; V) = F
My = (N = 1)o%" | (Ryy + d)~° +/ 1 rly ) ZEelm) g gy
(Rw-+d) = 1 — Fg(r1)
—2a —1/2a
r Fr(s; — F
My =2(N — 1)0*e?? | (Rw+ d) ™2 +/ 1 rls; © ) = Fa(n) ds;
(Rw+d)—2e 1 — Fg(ry) 12
) 7.1*(1 FR(S»_l/a) o FR(’["l) 2 ( )
+4(N = 1)(N = 2)ote” |(Rw+d)™® +/ J ds;| .
(Rw+d)—@ 1 — Fr(r1)
Proof: The achieved SIR at an arbitrary poktgivenry, is written as
2 ]_Z 2 —a
STR,. — ‘ ‘ A _ ;«h Z1 ’ (13)
SN0 |hy|* T D2 Wz

where the interference in the denominator is a linear coatlin of N — 1 lognormal RVs
237 = 2,---, N with coefficientsw,;;j = 2,---, N, which themselves are independent RVs.
The key to simplifying this expression is to use the fact (ttet shown in[[30], for many
applications, linear combinations of lognormal randomialzles can be closely approximated
by a single lognormal random variable. The work|[inl[30] preseseveral such approximations
based on a generalization of the MMA approach. For examplepdtching the first and second

moments, the denominator ih {13) can be modeled1&%enom ~ LN (1ipenom Tbenom), With

HDenom = /url = 2 ln(Ml) — 0 5 IH(MQ) (14)
U%enom: O-%Tl = —2 ln(Ml) + ln(MZ)a (15)

where N
M, = ZE{%} exp(ftz, + agj/2), (16)

=2

N
M, = Z E{w?} exp (2p., + 203]_)
7j=2

(17)
N N
+3 3 Blelu el + iy + (04 +01)/2)

J=2§'=2:5'#
Let s; = r;“. The CDF ofsj, givenry, is obtained fromFx, ., (r;) as Fs; |, (sj| 1) =
1—Fp; |, (5 1/“) Thus, we havé's, |, ((Rw+d)~*) = 0, andFg, |, (r;*) = 1. Since the average
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of a random variabl&” can be obtained from the CDF &fasE{Y} = yFy(y) |° — fab Fy (y)dy,

wherea andb are the values at whichy (a) = 0 and Fy (b) = 1, we get

B{r" In} =B [mb=ri" = [ (s
B — Falr 1o
" Fgr(s; ") = Fr(r
= (Rw +d _a+/ n ds;.
( v ) (Rw+d)—« 1—FR(7’1) ’
Similarly,
r;2a FR(S-_l/Qa) N FR(Tl)
E{r;*|r}=(R +d‘2a+/ ; ds;. 19
{j | 1} i : (Rw+d)—2 1 — Fg(r1) ! (19)

Therefore, [(I6)E(A7) can be rewritten as](11)}}(12). Thegmdls in [I1){{IR) can be easily
evaluated numerically. It is worth noting that since we do mave an ordering in the interfering
APs, for a givenry, all the random coefficients;, j = 2,--- , N have equal mean and standard
deviation as implied from[{18)-(19). Therefore, since &l tcomponents irEj.V:2 w;z; have
equal mean and standard deviation, the MMA approach prevadgood approximation for the
summations of lognormals [37], [38] (the accuracy is vedifiga simulations below).

The numerator in[(13), on the other hand, is a scaled logridRvigwith a random scaling
having exponential distribution), not a linear combinatmf lognormals; however, for the ana-
lytical tractability, we still use the MMA technique to agpimate the numerator as a lognormal

RV given as,SIRnum ~ LN (finum, Onum), With

pnem = 2In(By) — 0.51n(8y) = In(0?/v2) 4+ Inr;?, (20)
Onum = —2In(B1) +In(Bs) =In2 + o2, (21)

As we will see, this approximation is remarkably accurate.

With numerator and denominator both modeled as lognorma, Rve achieved SIR, con-
ditioned on the connection distanee between the user and the closest AP to the user, is
also a lognormal random variabl8IR,, ~ LN (usmk, 0sm) With sz = finum — fDenom @nd
02 = OdumT03enomaiven in [9) and[(10), respectively. Having found an appmade distribution
of the SIR as a lognormal random variable, the conditionBl &lverage probability (conditioned

on the distance,) is

InT —
P{SIR,, > T} = Q (M) , (22)
Os1IR
Finally, by averaging over distance, we obtain the result. [ ]
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Correspondingly, from[(3), the average user capacity @meiprobability follows as
Cpgvg(N, d, CQ, «, O'L) :]P){C > C()}

_/RW+dQ ln(QCO/N — 1) — pstr \ dFR, (Tl) d (23)
= ; dTl 1.

Finally, using the fact that for a positive random variable E{ X } = ftZO P{X >t} dt, we

OSIR

can use the capacity coverage probability to obtain thedécgrapacity as

Cergodic(Na d7 Q, UL) = / Cpgvg(N7 da COv «, UL) dCO (24)

Co>0

Although (8)-[24) do not explicitly show the resulting depence on the AP density, they
can be rewritten as functions of by using the substitutiodv = 7R3, \. As we will see in the
next section, simulations show that in the asymptotic cdse large number of APs (large AP
density), the values obtained usirid (B)4(24) converge tsdhof an infinite network (or dense
network) given in[[4], [6].

B. Network with thermal noiset? # 0

When including thermal noise, the instantaneous achievalR is given by[(2). The noise
term, o2, in the denominator of{2) is deterministic, and therefaiis {trivially) a lognormal RV
with meany,2 = Ino? and zero variance;ﬁa = 0) for the associated Gaussian RMc2). Now,
the denominator of SINR becomes the addition of two logndiR¥s o ~ LN (4,2, 0,2) and
I, ~ LN (u1,,, 01, ). Consequently, as we apply the MMA technique in order to axprate
the addition of these two lognormal RVs with another lognarRV, the denominator of SINR
can be modelled as

SINRpenom ~ LN (fto241,,, 00241, ) (25)
with g2 7, = 21In(M;) — 0.51n(Ms,), and03%+lrl = —2In(M,) + In(M,), where
M, = énony 6“17'1+0§T1/2, (26)

5 2 2
M2 _ 62 Inoz + 62/”T1 +2017-1 4 20'26/”” +UI,.1 /2 ) (27)

Therefore, as before, since both the numerator and dentoner@ approximated as lognormal
RVs, the achieved SINR is a lognormal RV for a givan We get,SINR,, ~ LN (jsmg, Osyg)
With pige = finum — Mpenom @Nd 020 = 0fum + Thenomr THerefore, the SINR/capacity coverage
probability averaged over different realizations of APdbans is obtained from{8)-(24) by

substitutingusz and ogry With pspe and osmg, respectively.
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C. Worst-case Point

In Appendix A we show that, for small values of noise varignitee worst-case SINR and
hence user capacity occurs at the center of the circular\Ateige., whend = 0. In this case,
some of the expressions provided in the previous sub-sectian be simplified. Wit = 0,
the CDF of the distance between a user at the center to amaaybkP randomly located in the

circular region isF'r (r) = r*/R3. Therefore, the CDF and PDF of become

7’2 N
Ful) = 1= (1= 7k 28)
W
dFg,(r1) 2Nr r? N
fri(r) = =5 — = e\ TR , 0< 7 < Rw. (29)

Now, for a givenry, the distribution of theV — 1 interfering APs in the area between circles
centred at the origin with radi; and Ry, denoted as B, is that ¢fV — 1) i.i.d. random points
(z5,9;),7 = 2,---, N, uniformly distributed in B with common distributiotf, . (z;,v;) =
1/5(B) = 1/m(R3 — r?) expressed in Cartesian coordinates. With the change adbleri; =
rjcosf; andy; = r;sinf;, and then integrating over the resulting uniform distribatin 6;,

0 < 0; < 2m, the distance PDF of an individual AP location, for a givetuesof 4, is given by

2r;
ij\Tl(Tj) = 1’:{\,2\,7—]7‘% ;

and zero elsewhere. Therefore, we have

TISTjSRW7 j:27"'7N7 (30)

Rw 2( —a+2 R—a+2)
E « - d 31
{T |7’1} / i SRy (1) drj = (o —2)(R2 —12)’ (31)
Rw 2(7,—2014-2 R—ZCH—Q)
E —2a — —2a . ) o 1 w ) 2
{TJ |7°1} [1 /rj fR]'Tl (Tj)d/r] (2 _ 2)<R\%/ _ T%) (3 )
and so Eqs.[(16]-(17) simplify to
2(N o 1)0. e’ o?/2 —a+2 o R\7va+2
M pum—
! a—2 R —r} ’ (33)
4(N 1)0.4620 r1—2a+2 _ R\7v2a+2
My = 20 — 2 RZ —r?
4N — 1)(N = 2)gte” (1702 — Ryr*?\* (34)
(o — 2)2 RZ —1r? '

The rest of the expressions remain unchanged.
It is worth noting that, in general, no closed-form expresss available for the integrations

in 8)-(24) as a function ofx. However, a tractable analysis is possible for specificgete

September 17, 2018 DRAFT



14

values ofa. As an example for the popular value ef= 4 [4], we show in Appendix B that
an accurate analytical approximation for the worst-cagedic user capacity in an interference-
limited network is obtained as (favV > 2)

N 1 N(N-2)Y2 1 N-2 1 2%
oworst < 4+ —_In—+-In|l4+ —-—
ergodic ln2<7+2N+n (N_1)3/2 +2nN—1+2n +3(N—2)

e @)
(o gy ) ([ )

wherey = 0.578 is the Euler-Mascheroni constant [39] anél = (0.11n 10)?0%. Using similar

approximations, closed-form expressions can also berwdor other integer values of > 2.

Further analysis is possible to investigate how quickly gpleeformance approaches the worst
case as/ becomes small compared #®,. We show in Appendix C that, fod < Ry, the
change in averaged SIR (expressed in dB) compared to the wase obtained at the centre
of an interference-limited network with = 3.87, can be closely approximated by3& order

polynomial function ofd.

IV. NUMERICAL RESULTS

In general, the CP results obtained in the previous sectpernd on various parameters of the
network. In this section, we simulate two typical examplésie= 3, anda = 3.87. Results can
also be given for other values af, but the example provided here is sufficient to illustrate th
approach. A circular finite-area downlink with radii®s, = 1 km is considered and the transmit
signal power of each AP correspondsotp= 20 dBm; we note that the parameter values in the

simulations are just for illustration purposes, and anyeptralues only scale the results.

A. Interference-limited networks? = 0

In Sectior{1ll, a series of approximations were used to d@eitie expressions for the SIR/SINR
coverage probability (or capacity coverage probabilififius, it is important to validate the
approximations. The 2D plot of the averaged SIR coveragegimtity, for the target SIR of dB,
obtained within the area of the circle is given in Hig. 3. listexample, we set = 1 APs/knt,

a = 3.87, ando;, = 6 dB. At this low density, the network is interference limitédthe
transmit power is high. Figuld 3-(a) presents results abthifrom the analysis developed here

while Fig.[3-(b) presents the results from Monte Carlo satiohs. The analysis accurately
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(a) Results from analysis (b) Results from simulations

Fig. 3. SIR coverage probability (for the target SIR @fdB) in a circular finite-area interference-limited netwonkth
A =1 APs/kn?, o = 3.87, andor, = 6 dB.

approximates the exact results obtained from simulationisinvan average error of 5%. The
difference betweehl 3-(a) amd 3-(b) is due to the discretimaand number of iterations chosen
for the simulations. Since, by averaging over AP locatidhs,coverage probability in a circular
area is independent of angle, it is enough to evaluate thdtsemlong any radial line. Figufd 4
illustrates the approximate averaged SIR coverage prbtyabor the target SIR of) dB, along

a radial line of the circle. The results are illustrated foe two examples of;, = 0 dB (no
shadowing) andr;, = 6 dB. The figure plots the results for different values of AP sign The
results from Monte Carlo simulations are also included ie figure (the dotted lines in the
figure).

As is clear from the figure, the analysis of the previous sectiapture the behavior of the
system quite well. For low-density networks £ 1 AP/kn¥) the analytical results are within 5%
of the simulated results while the error reaches 9.5% fanlsigense networks\(= 30 AP/knv)
under moderate to high values of shadowing standard dewiati

Of importance is the significant differences in the coverpg®bability between low-density
networks and the asymptotic case available in the litegaftire infinite PPP network curve).
As has been reported earliér [16], in an interference-&thihetwork, the results of an infinite
network underestimates the SIR coverage probability falkto moderate values of AP density.

In particular, in this example in Figl 4 with;, = 6 dB, the SIR coverage probability at the worst-

September 17, 2018 DRAFT



16

1 1 : :
0.9 | = # = infinite PPP network
) A =1AP/Km? A = 30 APs/Km? 09 formulations (finite—area)| |
- 0.8 4 - 0.8 A= 1AP/Km 2 — — — simulations (finite-area) ||
ER e 3
N e e g
S 0.6 -~ X
O Eem——— o
°* _-—— i
g os e g il DEEELL,
% 0.4 o —e— & 9 —.T.— * —0— 0 ® —0— 0 - - * —0—0 o -9 % 0.4 L --""- -3
o 2 O 4 —=t == e == B Tk W e e
x 03 A =2 APs/Km x 03} 1
n — infinite PPP network ]
0.2+ — @ = infinite PPP network 0.2 2 2 7
formulations (finite-area) A =2 APs/Km A =30 APs/Km
0-1r| - — - simulations (finite-area) 01
0 : " . . 0 . . . .
0 200 400 600 800 1000 0 200 400 600 800 1000
Distance to the origin: d (m) Distance to the origin, d (m)
(@ a=3, 0L =0dB (b) a =3, 0, =6 dB
1 T 1 . .
09l A =1 AP/Km? - # — infinite PPP network
’ 09 B 2 formulations (finite—area)| |
0.8 A =1AP/Km — = = simulations (finite-area) |{
2 z
3 0 N
2o Bosp- - ~—" "7 T oo T
e e R e ——— o= F -
go S 05R
2 A = 2 APS/Km? % o = ¢
g 045 TeATs 1 S 04f g
o 03 infinite PPP network ] o )
z ) x 03 ) A =30 APS/Km
0.2L] = = infinite PPP network A =30 APs/Km” | 7] 02l A =2 APs/Km
formulations (finite—area)
01 - - simulations (finite—area) 0.1
0 N N . . 0 . . . .
0 200 400 600 800 1000 0 200 400 600 800 1000
Distance to the origin: d (m) Distance to the origin, d (m)
() a=3.87, 0, =0dB (d) « =387, 0, =6dB
Fig. 4. SIR coverage probability (for the target SIR®B) along the radius of the circular finite-area interfeetimited

network with AP densities\ = 1 APs/kn?, A\ = 2 APs/kn? and A = 30 APs/kn? for: a) a = 3, o = 0 dB; b) a = 3,
o, =6dB; ¢c)a =387, 0 =0dB; d)a=3.87, o, =6 dB.

case point (at the origin) of a circular network with= 1 APs/knt anda = 3.87, outperforms
that of dense network by 34%. The improvement in the SIR @mesprobability increases to
63% under the PLE ofv = 3. It is characterizing this difference that has motivateid traper.

It is worth noting that the improvement in SIR in a low-depsitetwork depends heavily
on the PLE, shadowing standard deviation and the locati@emunonsideration. For example,
for the target SIR of) dB under no shadowing, an increase of at least 28% in SIR ageer
probability is obtained in an interference-limited netwavith o« = 3.87 and A\ = 1 APs/knt
as compared to a dense network with= 30 APs/kn? (56% improvement withe = 3). It
is also interesting to note that for users near the edgee(ld,geven this curve deviates from
the simulation results for the high-density network; thisbecause infinite-area PPP networks

inherently cannot account for edge effects.

September 17, 2018 DRAFT



17

-

2

formulations, A = 1.5 APs/Km'
—#— formulations, A = 30 APs/Km?

o
©

)

= = = simulations, A = 1.5 APs/Km?

3
7

- % - : - 2 ]
#* — formulations, A = 30 APs/Km o =387

SIR Coverage Probability
o o o o o

2 L L L L
500 1000 1500 2000 2500 3000
Radius of the cicular finite—area network, RW (m)

Fig. 5. The effect of network radius size on the worst SIR cage probability. The results are shown for a circular ietemnce-
limited network withA = 1.5 AP/km? and XA = 30 APs/kn? under two PLEs ofv = 3 anda = 3.87 andor = 6 dB.

As is seen from Figsl13 and 4, for a given AP density, the carctinite-area network
experiences a peak in SINR CP at a certain distaht®m the center. In addition, for small
values of noise variance, the worst-case SINR and/or upacis occurs at the center of circular
region W. Please refer to Appendix A for the explanation @sthbehaviours. In particular, the
worst-case point is of particular interest in parametnsts for network design since it can be
directly related to a coverage constraint. Therefore, irsthod the simulations below, we focus
on the worst-case point.

We further justify the accuracy of the presented formulaidor different sizes of the finite-
area via Fig[b. The figure illustrates the worst SIR coveragbability (for the target SIR of
0 dB) in a low-density and a highly-dense network for the exiemg o, = 6 dB. Here, the
accuracy of the presented formulations decreases withizeeofthe finite-area in a low-density
network and the error reach&s5% of the simulation results in large networks. In addition,
Fig.[3 illustrates two interesting behaviors. First, in ghly-dense interference-limited network,
the SIR performance does not change with the size of the metwais effect reflects the fact
the results of a highly dense network can be closely appratachby the results obtained in an
infinite-area network - a result which was also reportedieai [1]. Second, the sensitivity of
the network to the AP density decreases with the size of titwank to such an extent that a
large network becomes insensitive to the AP density. THeceimatches the results previously
obtained in [[4] that the SIR performance in an interferelméed infinite-area PPP network

does not depend on the AP density.
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Fig. 6. The effect of noise variance on the SINR coverage abibity of a low-density finite-area network with AP density

X =1 APs/kn? with PLEs of « = 3.87 for: @) o, =0 dB ; b) o =6 dB

B. Network with thermal noiset? # 0

The previous results were for an interference-limited oekwvhere we ignored thermal noise.
We next determine the accuracy of the analysis with respetigt noise variance. Figuré 6 shows
the effect of noise variance on the SINR coverage probgholitained at the centre of a low-
density circular network forr = 3.87. As expected, the SINR coverage probability degrades
with an increase in the noise variance. The results from ddations are within 9% for all
values of noise variances. For typical values of noise madan practice > < —100 dBm)
the accuracy of the presented formulation is within 5%. Ingaly, in all cases, the analysis
captures the behavior of the system. Therefore, the pes$edi®;y, expression is accurate for
practical values of2.

The effect of AP density on the SINR CP (for the target SINR) afB) is illustrated in Fig[l7
for different values of noise variances. The dotted lineshia figure correspond to the SINR
CP obtained at the worst-case point and the solid lines aecthresponding results for the
maximunH of achievable SINR CP within the finite-area. The differeattls in SINR CP under
different values of noise variance can be explained asvisllo

In general, the increase in AP density (d7) causes the distance PDfg, () to become

®In general, no closed-form analytical expression is albldor the maximum of SINR CP from the presented analytical
formulations, so we use computer simulations to computertheimum achievable SINR CP along the radius of the circlagisi

the integral expression ifl(8).
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narrower (as seen in Appendix A, in Fig.]13-(b)). As a reghk, average received signal power
increases with\. The interference power also increases wittin a noisy network with moderate
to high values of noise variance, the noise power dominiesnterference power. Therefore,
the increase in signal power causes the SINR CP to increates wo the extent that, for large
AP densities the interference power dominates the noisepdyg a result, the behavior of the
system under consideration converges to that of an inaréex-limited network. On the other
hand, in an interference-limited network (very small valwé noise variance), the interference
dominates the thermal noise for aiylt turns out that, the impact of interference power is more
than that of signal power causing the SINR CP to degrade withinally, when increasing,
the SINR CP converges to that in the infinite network caseclwis also interference limited.

The effect of AP density on the SINR performance of the fiaitea network can be further
investigated by defining the “transmit SNR” as the ratio o tinansmit power to the noise
variance,SNR; = o2 /o2, Figure[8 illustrates the contour plot and the color plot led SINR
CP (for the target SINR of dB) obtained based on different values of transmit SNR and AP
density in a finite-area network with = 3.87 ando;, = 6 dB. As is seen from the contour plot
in Fig.[8-a, there exists a very small rangesoiR; (108.5 dB < SNR; < 109.5 dB), for which
two AP densities would yield the same SINR CP for a chosenevafi®NR; . In other words, in
this region, for a choseslR,, it is possible to obtain an optimal AP density in terms ofeieed
SINR CP (see the color plot in Figl 8-b).

The relative behaviour of the highly-dense network as coeth#o a low-density network is
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Fig. 8. The contour plot and the color plot of the worst SINR @* the target SINR of 0 dB) obtained based on different

values of transmit SNR and AP density in a finite-area netwaith o = 3.87 andoz, = 6 dB

further investigated in Fid.]9. Fi¢l 9 illustrates the effe€ the transmit SNR on the coverage
probability at the center for the target SINR @fdB in a network with no shadowing. Again,
the dotted lines represent the simulation results whileshied lines represent the analytical
expression. As is clear from the figure, the infinite-areauaggion (that matches the results in
a dense network) underestimates low-density network pedoce forSNR, = 108 dB for the
PLE of a = 3.87. With a transmit signal power of? = 20 dBm, this corresponds to a noise
variance ofs? < —88 dBm which, clearly, is common in practice. In a network with= 3,
the transmit SNR threshold decreasesstia.; ~ 83 dB. Nevertheless, in general, the range of
transmit SNR for which the highly-dense network outperferor falls behind a low-density
network in SINR performance depends heavily on their ndaiP densities and.

Although the achievable SINR with respect to AP density delgseheavily on the value of
transmit SNR (decreases in an interference-limited nétwoincreases in a noisy network with
AP density), the pre-log factolN in the user capacity formulaC(, = N log, (1 + SINR,,))
means that the user capacity increases monotonically withdénsity irrespective of the noise
variance. Figur€_10 illustrates this effect on the worsttliat center) and maximum achievable
user capacity coverage probability (for the target capaaitC, = 5 b/s/Hz)) within a circular
finite-area network. As seen from Fig. 7 and Higl 10, even Alhidense finite-area network

does not experience a uniform performance all through th®merather, there is always a peak
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target capacity ofCy = 5 b/s/Hz) in a finite-area network with PLEs of = 3.87.

in the performance typically near the edges. As before, tifiaiie-area assumption does not

fully capture the behaviour of a finite-area network.

C. Design Example

By using the worst-case user capacity at the centre of tloellair network, we are able to
answer the question as to how many APs are needed to guamamesplired target value of
capacity in the network. For example, in the discussion @ated with Fig.[1D-b, we chose

a capacity coverage probability threshold of 0.6, i.e., waquire that a user at any point in
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Fig. 11. The required number of APs versus target value afdécgcapacity for different values ef;, in a finite-area network
with oo = 3.87

the network is able to achieve a capacity @f = 5 b/s/Hz with probability 0.6. For such a
requirement to be satisfied in an interference-limited dhaitea network withr;, = 6 dB, the
network requires a minimum AP density af= 1.59 APs/Kn¥. In a circular finite-area with
radius Ryw = 1 km, this corresponds to a minimum &f = 5 APs within the network. Under
the same requirement, an interference-limited network w shadowing requires one less AP
as compared to the network witty, = 6 dB.

The design can be carried out for a target ergodic capacityedls Figured 11 illustrates the
relationship between the worst achievable ergodic useaagpand the number of AP4 for
different values ofr;, with o = 3.87. For a target value of capacity, Fig.111 suggests a larger
number of APs required for more severe shadowing envirotsn®oreover, the approximately
linear relationship between the worst average user cgpacd the number of APs is clear from
the figures. This effect is expected beforehand from the modeéer consideration where the
bandwidth allocated to each user grows with

Finally, Figure[ 12 compares the approximate ergodic uspaaity results obtained from the
analytical formulation in[(35) with those from the integoat expression in[(24) as well as
the exact results from simulations for the two examplesspf= 0 dB ando;, = 6 dB in
an interference-limited network withh = 4. As is clear, there is a close match between the
approximate and actual results (the approximate resudtsalvays within10% of the actual
capacity for anyN). It is worth noting that, Eq.[(35) provides an approximatior a lower-
bound on the integral (24). Therefore, the fact that in Efy(4), (3%) outperforms the numerical
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Fig. 12.
with those from the integration expression[inl(24) as wellh&sexact results from simulations in an interferencettchinetwork
with o = 4 for the two examples of: ay, =0 dB ; b) o, =6 dB

Comparison between the approximate ergodic uggciy results obtained from the analytical formulation(@d)

integration [[24) when compared to the exact results, islpung accident. For instance, as is

seen from Fig[_12-(a), the above fact does not holdofore= 0 dB.

V. SUMMARY AND CONCLUSIONS

This paper analyzes the effect of AP density on the perfoomar afinite-areanetwork with
a finite numberof uniformly distributed APs. Our motivation is two-fold hée available analyses
in the literature are asymptotic and do not apply in the cdslw-density networks and/or
near edges of the finite area. As traditional cellular nekwanake way for newer network
architectures, considering such a finite-area model is rtapb for a better understanding of
network capabilities and limitations. To further our arsadywe obtain the achievable SINR
coverage probability and the user capacity coverage pilitiyadt any point of the finite-area
network. For practical values of "transmit SNRNR, > 110 dB, the presented results are within
5% of the actual results obtained from simulations.

The analysis also provides the specific loss in performaneetd noise. In an interference-
limited network, the SIR decreases monotonically with thenber of APs, however, this is
not the case when thermal noise is accounted for. In a finda-aetwork with a moderate
noise variance, the SINR increases with(or AP density) and converges to the SINR of the
interference-limited dense network. It has been reportatiee that an infinite-area network
underestimates the performance of a low-density intemtaxdimited network. Correspondingly,

the formulations allow a network designer to quantify theng#oss) in performance from low
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values of AP density in an interference-limited networkd@mnoisy network) as compared to the
highly-dense network. In particular, for the target SIR0alB under no shadowing, an increase
of at least 28% in SIR coverage probability is obtained inraerference-limited network with
o = 3.87 and A = 1APs/knt as compared to a dense network with= 30 APs/knt. The gain

in SIR coverage probability increases to 56% in an envirartmeth o = 3.

The formulation here accounts for different PLEs and netwmarameters, so they can lend
themselves to parametric studies for network design. Asxample of a parametric design, the
worst-case user capacity coverage probability or average capacity expression can be used
to find the required number of APs (or AP density) to maintéie tapacity at all points of the

network above a target value.

APPENDIX A

WORSTFCASE POINT

The worst-case SINR, and hence capacity, is said to occineatenter of the circular finite-
area network for small values of noise variance. In this agpe we justify this claim. For a
given point in W with the associated distanceto its nearest AP, the averaged SINR coverage

probability is obtained as
Rw+d
CPS;I?R(Nv d7 Tv «, UL) = / P{SINRH > T}le(/rl) drl
0

whereP{SINR,, > T} ~ Q ((InT — psmr)/0osmr) @nd fr, (r1) are the conditional SINR cover-
age probability (conditioned on;) and the PDF of the distance to the nearest AP, respectively.
Due to the severe nonlinearities®{SINR,, > 7'} andfr,(r1), the analytical proof for obtaining
the location of the worst-case point is intractable. As d@erahtive, we resort to an intuitive
explanation and simulation as to illustrate the worst-aasage SINR occurs at the centre.
Figure[13 illustrates the minimum distance PPk, (1) in a circular finite-area network with
Rw = 1 km for different values ofl and N. As is seen from Fid._13-(a), for a giveH, there
is only a slight change irfg, () for d < 0.75R\. Therefore, we first concentrate on the area
with d < 0.75Rw. Let Cirgx, R) denote a circle with the radiu8 and the origin located at the
point x. For a user located at the origin, denotedoashe PDF of the distance to the nearest
AP atd = 0, is given in [29) and is depicted in Fig.]13-(b) for differerdlues of N with

Rw =1 km. In this examplefz, (1) can be closely approximated by its truncated version for
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Fig. 13. Minimum distance PDFr, (r1) in a circular finite-area network witlRw = 1 km for: a) different values ofl with
N = 10; b) different values ofV with d =0

Fig. 14. Circular finite-area W with radiuBw: the gray area indicates the region that the distance PDdciassd with the

user at the origin is effectively non-zero.

0 < r; <0.75Ry since fr,(r1) is almost zero foi0.75Ry < r; < Rw. This is like as if the
largest possible distance to the nearest AR is- 0.75Rw and fz, (1) is effectively non-zero
only in Circ(o, 0.75Ryw). The choice of).75 Ry is somewhat arbitrary and any reasonable choice
would not change the justification.

Now consider a poirt within Circ(o, 0.25R\y) as another user location within W (see Figl 14).
Let »; denotes the distance from poirtto the nearest AP. Since th¥ APs are uniformly
distributed in W, the PDF of, i.e., fx, (1), in the Cirdx, R = 0.75Rw) would be the same as

the truncatedfz, (r1) in Circ(0,0.75Ry). As a result, for any, = r, both users located at the
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two points ofo andx, receive the same signal power, on average, from their edsdmearest
APs. However, the two users do not experience the sameantede power for; = ;. This

is explained as follows. For the user at the originthe N — 1 interfering APs are uniformly
distributed between Cifo, Ry) and Circo, ;). On the other hand, th& — 1 interfering APs
for the user ak, are uniformly distributed in the area between Qixdz,, ) and Cirgx, } = 1),
which is composed of two regions: the area between(gig) and Cirdx,r; = r,), and the
area between Cifo, Ry) and Cirdx, R). The effect of the uniformly distributed interfering APs
in the area between Cipe, R) and Cirgx,»; = r;) on the user ak, is the same as the one
from uniformly distributed interfering APs in the area beem Cir¢o, R) and Cir¢o, ;) on the
user ato. However, since on average, the distances of the remainiiegféering APs between
Circ(o, Rw) and Cirgx, R) corresponding to the user &t is larger than the distances of the
remaining uniformly distributed interfering APs betweeiro(o, Ry) and Cirdo, R) related to
the user ab, the user ak experiences lower interference power compared to the asefTéaus,
the user at the origin has the worst-case average SINR inntire €irq0, 0.25Ry ).

For other points between Ciie 0.25R\) and Cirgo, 0.75Ry), the PDF of distance to the
nearest AP is nearly the same g (r1 | d = 0) (see Fig[IB-(a)). Therefore for a given distance
r1, the user receives the same signal power from its nearestsAiBrahe user ab, while it
experiences much less interference power since the integfdPs are at a greater distance
away, on average, compared to the ones for the userAs$ a result, it is intuitively clear that
the worst-case SINR and so the worst-case user capacithisvad at the centre of the circular
area Cir¢o, 0.75Ry).

On the other hand, for larger values @/5Ry < d < Ry, the mean of random variabie
slightly increases withi. It follows that the average signal power decreases wittesulting in
the degradation of SINR in this region (this effect can benseeFigs.[3 -[4.). However, still,
since the user in this region experiences much less inégréerpower in compared to the user at
0, the worst-case SINR appears to be at the centre of €iftyy). Figs.[3 {4 in the simulation
section further justify this claim for different values oanameters ofV, «, ando;,.

We note that in a noise-limited finite-area network, the @&olim does not hold anymore.
In this case the SNR remains approximately constant/fer(0.75Ry and degrades witld for

d > 0.75Ry. It follows that the worst SNR occurs at the edge of the cactihite-area network.
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APPENDIX B

APPROXIMATION FOR THEWORSTERGODIC USER CAPACITY UNDER a@ = 4

In SectiorIl] the coverage probability and ergodic capaviere presented in terms of finite
integrals that required numerical evaluation. In generalgclosed form expressions are available;
however, for the special case of the worst-case point (Ceated for an integer choice af,
some analysis is possible. Here, we present a closed-fopmox@mation to the worst-case user
capacity in an interference-limited network with= 4 [4]. The worst achievable user capacity

(in b/s/Hz) averaged over different realizations of AP lowas is given by

Rw Rw
C arqotic = / C arqodiar, Jry (11)dr = / E {Nlogy(1+ SIR,,)|r1} fr,(r1)dri,  (36)
0 0

where fx, (1) is given in [29) and the ergodic capacity for a givenis the ensemble average
over different realizations of the channels [ih (1).
For a givenr;, the ergodic capacitg'¥ot. =K {N log,(1 + SIR,,)|r:} is upper-bounded

ergodic| 1

by N log,(1+E{SIR,,|r:}). Onthe other hand, since the mé&{SIR ., |r;} = exp (usir + o5Rr/2)
is always greater than one, the, (1+E{SIR,, | }) itself is lower-bounded bivg, (E{SIR,, |7 }).

In general, there is no guarantee thétog,(E{SIR,,|}) is lower thaanVrg[fc}ic‘ .- However,

for small values ofusr and ogir, N log,(E{SIR, |r}) < Ce‘“’rg[fjic‘rl holds. Therefore, an

approximate lower-bound on thg"erst can be obtained as

ergodic| r1?

(L worst ~ Nlogy(E{SIR,, |71}) = N(usr + U%lR/Q)/ In2. (37)

ergodic| 1

In an interference-limited network with = 4, ppenom @and o3,.om from (I4)-[(I%) simplify to

-2

_ 2
(v-1oter? ()
[penom = In S/ r2_r—2\2\1/2 e 2 2 2 9 1/2}
L((N-1)(N—2)0teo? (ﬁ) ) (14 sz A + 71/ Ry + Ry /1)
wot N - ) (38)
QR\%V/'r%
~ _(N—1)3/20§e"§/2 r2—Ry? 1 272 R2
~In (N—2)1/2 } +In [ 1}2@,_7«\%’ 3 In |1+ 57— r2
o2 —1In {N—2 i 2¢°3 (1+ i_'_R_\2/v>} ~In |:(N—2) (1_'_ 272 RZ, )}
—_— ~~ 2 .
Denom N—1 " 3(N-1) R, 2 —1 3(N—=2)r2 (39)
R:Rav/r%

In the first line of [38){(3P), the ternl + r}/R3 + R /r?) is approximated byR2 /r?. This

is justified as follows. As is seen from Fig.]13-(k), (r1) at the worst-case point is small for
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0.75Rw < 11 < Rw. As a result, for the range of values of that effectively contribute in the
average capacity (86)73/r2 > 1 and so the approximation is valid. Followirdg{38)4(39),

(N —2)1/2 ) 1 2¢° R2,
~2In Ry — 21 mh—F  —Inv2—0¢?/24+-In|1+—"W 40
HsIR n Lo nry + n(N_1)3/2 nv2—a?/ +35ln +3(N—2)r% . (40)

N —2 2¢7: R,
U;Rzagjtln?—l—lnN_l+lnl1—l—m], (41)
which gives the conditional ergodic capact rggfjﬁq ., as

N (N—=2)/2 1. N-2 27 R2

t _ W
Cevl\'lé)(g?ilc\rl_l 2<2lan—2lH’f’1+lﬂ (N—1)3/2+§1HN—1+1H 1+m . (42)

Now the worst ergodic user capacity [n{36) is given as

(N—2)1/2 1. N— 2)

Rw N
C\eAll’groséic = /0 Cg(g[)séiqu le (Tl)d’f’l l 5 (2 In RW +In m ] m

b " 27 R (43)
s —~ _2eT Ry
+1n2</0 21H7“1fR1(7’1)d7’i+/0 In [1+3(N—2) ]fm(ﬁ)dri)

*) (%)
All that remains is to solve the integrals {a) and (xx). Using the binomial equivalence for

(14 2)" =31, (1)z*, the distance PDFz, () in 29) can be rewritten as

&

N-1
2Nr N -1
fR1(r1) - —21 (_l)k 2k2 ; O < (] < RW (44)
R k R
W k=0
Now, the integration in(x) follows as
N—-1 Nk B
fORW —21Inry fg, (r)dr; = —% [(R\,I%i (Nk 1) ORW r2 1 n drl}
k=0

N—-1 -
= —4NIn Ry Y (_1>k(Nk_1)T::-2 +4AN 2 (_Uk(Nk_l) TP

N-1

= QIHRWlk%O(_l)k'(k/) _ 1] +k§1(_1) _1(2\{) 01 K1y (45)
=2In RW[(l - f)N le=1 — 1} + fol [k%l(—l)k,_l (g)uk/_l du

:—21nRW—|—flﬂ — (1 = u)N]du
= —2InRw+ [, Y2 dr = —2In Ry + Hy

In the last Iine,fol(l —a)/(1—x)dx is an integral representation of theth harmonic number,

Hy = Z]kvzl 1/k, given by Euler. The corresponding expansion/bf is given as([39]
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HNN1HN+7+——22]§;’;%, (46)

wherevy =~ 0.578 is the Euler-Mascheroni constant afjdk = 1, - - - are the Bernoulli numbers.

Approximating Hy with the first three terms ir_(46), the integration [nl(45) igem as

Rw 1
/ —2Inr fr,(r1)dri & —2In Ry + In N + v + N (47)
0

For the integration denoted 4s+), let b = 2¢° R2,/(3(N — 2)). The integration follows as
Rw b Rw Rw
/ In[1+ =] fr, (r1)dr; = / —2Inry fr,(r1)dr +/ In(r? 4 b) fr, (r1)dry
0 1 0 0

921 1 fiw 2 : (48)
~-—2InRy+InN+~v+ v T ln(rl + b)le (Tl)dﬁ
0

7

g

(s
Using integration by parts and letting= In[7?+b] anddv = r*"dr,, the integration(s )
can be rewritten as

Fw 2N <= N —1\ r#
(***):/O NP — 7 Z(—l)k( i )RL\?derl

W k=0

N—
— Z (N " fORW In[r? +b]r¥*+tdr,
Ry E—0 H_/Hd,_/
N—1 i ln R +b R2k2+2 Rw 2 2k+3
N 5 ey (M e )
= o 2k+2 o (2k+2)(r1+b)
e ~ 3 , (49)
_ ln[R2 +b] _NNZ_:I (=1)k (N—l) (_1)k+1bk+1 ln[Tz—l—b]—l—T%k—m
= S ATk — Tkt
21n Rw+In[1+5] (49—a) ~—~
(49—b)
2k+2 ~ k e 2k’bk+1 k' 7Rw
+ In(1+b)+ Yy (=11l —
CIETTRAP S e,
(49 c) (49‘:d)
with b = b/ R2,. The results associated with the ter(149 — a)-(49 — d) are obtained as
2k+1 _
(49 - a) — —Nh'l[l -+ 36_0 (N 2)] 2 W(Nk 1)bk+1
N— 1
=In[l + 2e77(N - 2)] kzo SOl
50
=In[l + %e“’ [ Mok — 1} ’ (50)
k=0
=In[l+3e (N - 2)] (1 +b)N —1)
= [l + e (V = 2)] (1 + (2]3_22))N -1)
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N-1
(49—b) = N> (1 <N - 1) Ry _ —(InN 4+~ + i), (51)

2RI\ k) (k+1)2 2N
N-1 k+2
(-DF (N -1\ Ry _ 1 _
49 — —-N In[l14+b]=—=In[1+b 52
( C) - e R\2/\]/€+2 k 2<l{?+ 1) n[ + ] 2 n[ + ]7 ( )

N—-1 k )
— — _(=DF N-1 kR -1 B
(49 —d) — NRZ:O Rﬁv‘““(kﬂ)( . )k§1( 1) it

(I = 1] ) (Be) + 5o (et ph Ger)N1)  (53)
2
—(In[N —1] + ) (e — 1)

~

~
~
~

1
In(3/2) 2(N-1)

The last line in[(5B) is obtained from the Taylor series agpnation of ¢* = nNz‘Ol " /n!
for x < 1. For further simplification, for large values a@f, we approximatez(wg/3> by (1 +
2¢7% /(3(N — 2)))N = (1 + b)N using the identity lim (1+1/x)" = e. As a result, [(5B) can
be approximated as (In[N — 1] + 1/(2(N — 1))) ((1 + b)™ — 1). Now, the equations i (53)
and [50) have a common term vﬁél + )N — 1) which can be factored out. Finally, after some
manipulations, the integration denoted(as) in (48) is obtained as
Fw b 1 _
/0 In [1+ﬁ}fR1(r1) dr; = 51n[1+b]

1

2 (54)
1+1.5¢ (N —2)

F (8 = 1) ([ ]_Ml_l))

which along with [(4F7), gives the worst ergodic user capaekgression in[(35).

APPENDIX C

THE CHANGE IN PERFORMANCE FORd < Rw

In this Appendix we investigate how quickly the performamagproaches the worst casedas
becomes small compared Ry, i.e.,d < Ry. In this case, an accurate approximation for the

distance CDFFr(r) is given as

r? /Ry ;  0<r<Rw-d
Fria(r)~< Fr(Rw) ~1— 24 Ry—d<r<Rw+d (55)
1 ; Rw—FdS’F

where F'z( - ) is given in [3). The sub-scrigtl in (53) means that the expression is evaluated at

d. Now consider the distance CDF at the centre of network @ehasF|o(r). Let d denote a
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small value compared t®y, i.e.,d < Ry . For a givend, Fgr|o(r) can be approximated as

Frio(r)=q1—+ ; Rw—d<r<Rw (56)

It follows that for anyd = d < Rw, we get Fria(r) ~ Frjo(r),0 < r < Rw, and so
fri1a(r1) = frijo(r1),0 <71 < Rw.

On the other hand, using the Taylor series expansion ardund, the two termg Ry +d) ™
and (Rw + d)~2* can be closely approximated as

ala+1)
2

(Rw + d) 2% ~ Ry** — 20dRy** " + a(2a + 1)d*Ry,* 2. (58)

(Rw +d)™™ ~ Ry® — adRy* ' + d*Ry" 2, (57)

From (57) - [(58) and the approximation thg 4(r) ~ Fr|o(r),0 < r < Rw, the parameters
M, and M, (given in [11) - [12)) can be rewritten as

Mg~ Mo+ AMyq, (59)
Moy g = Majo+ AMy) 4, (60)

where M|, and M|, are the values of\/, and M, evaluated atl = 0, respectively. Also,

AM, 4 and AM,, are the correction terms given as

Jms
AMyq= (N — 1)03603/2 [ — adRy " + @ﬁﬁ’v@a”—k/ ! G‘d(sj_l/a) dsj} , (61)
(Rw+d)—«
and
RVT[QQ
AM o q=2(N — 1) [—2ozdRVT,2O‘_1+oz(2oz + 1)d2RVT,20‘_2+/(R ) QG\d(s;l/m) ds]}
wtd) =<

i . i ) )
+4(N = 1)(N = 2)ce” | — adRVT,a_l+%d2RVT,O‘_2+/ Gla(s; ey dsy}
L (Rw+d)

: . N (62)
+8(N — 1)(N — 2)ce” | R, +/ G|d(sj_1/a) ds]}
I Ry®
[ a1 la+1) o Fu” —1/a
X | —adRy* +——=d"Ry” —|—/ Gla(s; ") ds;|,
2 (Rw-+d)—o

whereG () = (Frja( ) = Frja(r1))/(L = Faja(r)).
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Substituting [(5P) -[(60) inL(14) {(15),
Hpenomd = Q[IH(MHO + A-]wlld)] - 0-5[IH<M2\0 + AMZId)]

= EIH(M”Q) — 05IH(M2‘QZ—|—21H(]_ + AM1|d/M1|0) — 05 ln(l + AMQM/MQ‘QZ, (63)

g '

HDenom| 0 A/»‘Denom\ d

U%enorﬂd ~ :2 IH(Ml‘()) + 11’1(M2‘0) —2 111(1 + AMl‘d/M1‘0> + ll’l(l + AM2|d/M2\O>1- (64)

<\
~~ -~

Ao

Denom| d

2
JDenom\O
Since pnum and o, in 20) - (21) do not depend od, for a givenr,, we getSIR,, 4 ~
LN (ps1r|d> Osir|a) With

HsIR|d = MNum — MDenom|d == HSIR|0 — A/~LDenom|d7 (65)
2 2 2 o~ 2 2
USIR|d = Onum + UDenom|d - USIR|0 + AO-Denom\d' (66)

As it is shown above, forl < R\, we can accurately approximate each of the parameters
fts|a @nd gy, by the corresponding value obtained at the centre of theefarita network
(with d = 0) plus a correction term. However, due to the nonlinear siirecof the conditional
SIR coverage probability given a&{SIR,, ;s > T} = Q ((InT — pista|a)/0sr|a), it iS NOt
possible to havé’{SIR,, 4 > T} ~ P{SIR,,|o > T’} + AP{SIR,,|; > T'}. As an alternative,
for the formulation tractability, we consider the mean oRSkexpressed in dB) averaged over

different realizations of nearest AP locations, as thequarnce metric. It follows that

Rw+d
SIRTZg(dB) = / 101og,(E{SIR,, \d})le‘d(rl) dr
P
=10 :
Since fr,a(r1) =~ fr.jo(r1),0 <7y < Rw and fg,jo(r1) ~ 0,71 > 0.75Rw (see Fig[IB in
Appendix A), Eq. [6V) simplifies to

10 [Hw

SIRTZzg(dB) = m10 J, (Hstmio + U§IR|0/2)fRHO(T’1) dry

(67)
(kstrja + UgIR\d/Q)fRHd(T1> dry.

7

SIR T‘Vofg(dB)
10 Rw+d (68)

+— (—Apipenomd + Aodenoma/2) fry 4 (r1) d 1.
hl 10 0

-

ASIR T‘;g(dB)
avg

whereSIR|;*(dB) is the worst-case performance obtained at the centre ofrtite-irea network

and ASIR|;%(dB) is the associated correction term given as a functiod. dfig.[I3 illustrates
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formulations _ 2
0.15F | = = = curve fitting A =10 APs/km

(dB)

0.1f A = 2 APs/km?

avg
|d

ASIR

A =1 AP/km?
0.05

——

0 20 40 60 80 100
Distance to the origin: d (m)

Fig. 15. Performance correction terﬁSIRan(dB) versusd for different values of\ in an interference-limited network with
a =3.87, 0 =6 dB, andRw = 1 km.

ASIRa"g(dB) (evaluated numerically) versusfor different values of\ in an interference-limited
network witha = 3.87, o, = 6 dB, andRy = 1 km. In general, a smaller change in performance
is observed for higher values of to the extent that, in a dense interference-limited networ
there is only a very slight change in performance compardtidaesult obtained at the centre.
Further, in order to quantify the change in performance, way mse a polynomial fit as a

function of d to provide a simple closed-form expression #8IR*(dB) as

n

ASTR7H(AB) ~ ) " a;d" ™, (69)
=0
wherea;, i = 1,--- ,n are the coefficients found by curve fitting the numerical galobtained

from formulations. The resultant curve-fitting approximas are also included in Fig. 15 (the
dotted lines) using &' order polynomial. The associated coefficients are given ahld.
As is clear, for the example under consideration“order polynomial is adequate to describe
ASIRan(dB) though, if required, an even more accurate fit is possible ahigher polynomial

degree.
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