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Abstract—This paper studies the problem of global optimiza-
tion of zero-delay source-channel codes that map between the
source space and the channel space, under a given transmission
power constraint and for the mean square error distortion.
Particularly, we focus on two well known network settings:
the Wyner-Ziv setting where only a decoder has access to side
information and the distributed setting where independent en-
coders transmit over independent channels to a central decoder.
Prior work derived the necessary conditions for optimality of the
encoder and decoder mappings, along with a greedy optimization
algorithm that imposes these conditions iteratively, in conjunction
with the heuristic noisy channel relaxation method to mitigate
poor local minima. While noisy channel relaxation is arguably
effective in simple settings, it fails to provide accurate global op-
timization in more complicated settings considered in this paper.
We propose a powerful non-convex optimization method based
on the concept of deterministic annealing – which is derived from
information theoretic principles and was successfully employed
in several problems including vector quantization, classification
and regression. We present comparative numerical results that
show strict superiority of the proposed method over greedy
optimization methods as well as prior approaches in literature.

Index Terms—Joint source channel coding, deterministic an-
nealing, estimation, distributed coding.

I. INTRODUCTION

While it is well known that finite-delay coding schemes
do not achieve the asymptotic bounds in general (see, e.g., [1,
Theorem 21] or [2]), the problem of obtaining the optimal cod-
ing schemes for finite delay is an important open problem with
considerable practical implications [3]–[9]. Recently, there has
been growing interest in utilizing zero-delay mappings in net-
work applications, see, e.g., [10], [11] for coding over multiple
access channels, [12]–[14] for distributed coding of correlated
sources and [15], [16] for analog multiple description coding.

Until recently, there have been two main approaches to
numerical optimization of the mappings: i) Optimization of
the parameter set of a structured mapping [8], [9], [17], [18].
The performance of this approach is limited to the parametric
form (structure) assumed. For example, in [19] saw-tooth
like structure is assumed for the mapping in the Wyner-Ziv
setting and parameters of such mapping are optimized. ii)
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Design based on power constrained channel optimized vector
quantization where a discretized version of the problem is
tackled using tools developed for vector quantization [5], [20],
[21].

Our approach builds on the recent prior work in our lab
[22] where the problem is studied in the original analog (func-
tional) domain, i.e., without any discretization in the problem
formulation and without any assumption of a parametrized
mapping. In [22], necessary conditions for optimality of map-
pings were derived, noting that while such conditions have
theoretical value, they generally identify local optima. They
are practically useless in the case of highly complex cost
surfaces, in other words, simple greedy methods that are based
on iterative imposition of necessary conditions of optimality
tend to get trapped in local minima. In [22], “noisy channel
relaxation” (NCR) [23] was employed to mitigate this problem
inherent to such optimization problems. As we show in this
work, while NCR is rather sufficient for simple settings, using
more advanced non-convex optimization tools improve the
performance significantly in sophisticated network scenarios.

In this paper, we propose a method based on a powerful
non-convex optimization framework, deterministic annealing,
to numerically approach globally optimal zero-delay mappings
in network scenarios. Our preliminary results appeared in [24],
[25]. We particularly focus on scenarios given in Figure 1:
The first case is a point-to-point source-channel coding with
decoder side information (i.e., the decoder has access to side
information that is correlated with the source). The second
setting involves distributed (separate) coding and transmission
of two correlated sources to a central decoder that reconstructs
individual sources. We also consider the function computa-
tion problem, where the decoder estimates a function of the
sources. This is of interest for certain applications such as
a wireless sensor network deployed in order to compute a
function of the measurements [26]–[30].

Deterministic annealing (DA) is derived within a probabilis-
tic framework where the main idea is to introduce controlled
randomization into the optimization process, yet determinis-
tically optimize the appropriate expectation functionals. The
application-specific cost is minimized at successive stages of
decreasing randomness and nonrandom solution is obtained
while avoiding many poor local minima. Based on informa-
tion theoretic principles with analogies to statistical physics,
DA has been successfully used in non-convex optimization
problems including clustering [31], vector quantization [32],
regression [33] and more (see review in [34]). We note that
DA has been traditionally used in discrete settings such as
quantizer optimization and integrating DA within the analog
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framework in here poses a significant challenge. There are
many important advantages of the DA-based proposed method
compared to prior work, including ability to avoid poor local
minima and independence from initialization; and optimization
in the original (analog) domain without any discretization or
simplifying assumptions. Our approach improves significantly
over prior approaches, some of which are NCR based [21],
[22].

Having a powerful optimization method at hand, we analyze
the structure of experimentally obtained mappings and inves-
tigate some conjectures made in prior work. For instance, one
such claim was on the structure of optimal mappings in the
side information setting, for which our results provide contra-
dictory experimental evidence. Several practically important
observations are made regarding the functional properties of
the optimal mappings in network settings (see [35] for formal
discussions of such properties in the point-to-point setting).

The rest of this paper is organized as follows. In Section II,
we present preliminaries and the problem definition. In Section
III and IV, we describe the proposed method. Experimental
results are presented in Section V and concluding remarks are
in Section VI.

II. PRELIMINARIES AND PROBLEM DEFINITIONS

A. Notations

Let R, N, and R+ denote the respective sets of real numbers,
natural numbers, and positive real numbers. We represent
scalars and random variables with lowercase and uppercase
letters (e.g., x and X), column vectors and random column
vectors with boldface lowercase and uppercase letters (e.g.,
x and X), respectively. ‖ · ‖ denotes L2 norm operator.
Let E(·) and P(·) denote the expectation and probability
operators, respectively. The probability density function of
the random variable X is fX(x). Let ∇ and ∇x denote the
gradient and partial gradient with respect to x, respectively.
Let f

′
(x) = df(x)

dx denote the first-order derivative of the
continuously differentiable function f . The Gaussian density
with mean µ and covariance matrix R is denoted as N (µ, R).
We use natural logarithms which, in general, may be complex,
and the integrals are, in general, Lebesgue integrals.

B. Problem Definition: Side Information

In the side information setting, given in Figure 1a, side
information Z ∈ Rm2 is available to the decoder, while source
X ∈ Rm1 is mapped to a channel input by the encoding
function g : Rm1 → Rp and transmitted over the channel
with additive noise N ∈ Rp. The received channel output
Y = g(X) +N and side information Z are mapped to the
estimate X̂ by the decoding function w : Rp ×Rm2 → Rm1 .
The problem is to find optimal mappings g,w, where opti-
mality is in the sense that they minimize MSE

D(g,w) = E{‖X − X̂)‖2}, (1)

subject to some power constraint on the encoder

P (g) = E{‖g(X)‖2} ≤ PE (2)

where PE > 0 is the specified encoder power level. Simple
time-sharing arguments show that D is a convex functional of
P , hence the solution is achieved at P = PE (see [35] for
details.) Converting to Lagrangian formulation, we define the
following cost to be minimized

J = D(g,w) + λ(P (g)− PE) (3)

where λ is a Lagrange multiplier corresponding to the power
constraint on the encoder (we suppressed the dependence of
J on g and w).

C. Problem Definition: Distributed Coding

The distributed coding setting, given in Figure 1b, has two
sources X1 ∈ Rm1 and X2 ∈ Rm2 mapped to some channel
input by the encoding functions gi : Rmi → Rpi , and the
decoder receives Yi = gi(Xi) +N i for i = 1, 2. In general,
the decoder might have two type of objectives. In the first one,
the decoder aims to reconstruct each source with minimum
distortion. The decoder is defined as w : Rp1×Rp2 → Rm1×
Rm2 as it maps the received channel outputs to the estimates
X̂i for i = 1, 2. For this case, we define distortion as

D(g1, g2,w) = E{‖X1 − X̂1‖2 + η‖X2 − X̂2‖2} (4)

where η ∈ R+ is a given weight coefficient. The second
type of problems involve function computation. Denoting the
desired function as γ(X1,X2) : Rm1 × Rm2 → Rr, the
decoder is defined as w : Rp1 × Rp2 → Rr and the cost
is given by

D(g1, g2,w) = E{‖γ(X1,X2)−w(Y 1,Y 2)‖2}. (5)

The problem, for both cases, is to find the mappings g1, g2,w
that minimize the overall distortion (which is given in (4) or
(5) depending on the objective) subject to power constraints
on the encoders, which can be in two forms: Individual power
constraints given by

P (gi) = E{‖gi(Xi)‖2} ≤ PT,i for i = 1, 2. (6)

or a total power constraint of the form
2∑

i=1

P (gi) ≤ PT , (7)

which offers the additional degree of freedom of optimizing
power allocations to the encoders. For optimization purposes,
we similarly define the following Lagrangian functional as the
objective cost to be minimized

J = D +

2∑

i=1

λi(P (gi)− PT,i), (8)

where λi ∈ R+, i = 1, 2, are Lagrange multipliers to impose
the individual power constraints on the encoders in the first
case. The total power constraint case corresponds to the special
case of (8) with λ1 = λ2 = λ, i.e., the Lagrangian cost to
minimize is

J = D + λ(P (g1) + P (g2)− PT ), (9)

where λ controls the total power.
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(a) (b)

Fig. 1. Problem settings that we consider. (a) Decoder with side information. (b) Distributed coding setting.

D. Prior Work: Necessary Conditions of Optimality and
Greedy Descent Algorithms

Here, we summarize the relevant contributions of prior work
(see [22] for more details). For the side information setting,
let the encoder g be fixed. Then, the optimal decoder is the
MSE estimator of X given Z = z and Y = y:

w(y, z) = E{X|y, z}. (10)

Expanding the expressions for expectation and applying
Bayes’ rule, the optimal decoder can be written in terms of
known quantities as

w(y, z) =

∫
x fX,Z(x, z) fN (y − g(x)) dx∫
fX,Z(x, z) fN (y − g(x)) dx

, (11)

where we used the fact that fY |X(y,x) = fN (y − g(x)). For
optimality of g, assuming the decoder w is fixed, a necessary
condition is

∇gJ(g,w) = 0, (12)

where

∇gJ(g,w)=λfX(x)g(x)

−E{w′(g(x)+N ,Z)(x−w(g(x)+N ,Z))},
(13)

and w′ denotes the Jacobian of w with respect to its first
argument (see [22] for proof).

Remark 1. Note that in the case of jointly Gaussian sources
and Gaussian channel(s) with matched source-channel dimen-
sions, linear mappings satisfy the necessary conditions of
optimality, however, they are highly suboptimal, see, e.g., [22].
As we will see, careful optimization obtains considerably better
mappings that are far from linear.

The necessary conditions of optimality for the distributed
coding setting can be derived similarly, and are omitted for
brevity, see [22]. Iteratively alternating between the imposition
of individual necessary conditions of optimality will succes-
sively decrease the Lagrangian cost until a stationary point is
reached. We refer to this method as “greedy descent”. There
is no reason to expect that a greedy descent algorithm will
converge to the globally optimal solution. In fact, experiments
show severe issues of local optima and strong dependence
on initialization of such methods. As a remedy, the noisy
channel relaxation (NCR) method of [23] was embedded in
the algorithm in [22], i.e., the descent method was run at

gradually decreasing levels of λ, wherein the result at each
level serves as initialization for the next level of λ (see [23] for
details). While such simple relaxations are effective in simple
communication settings, the networked problems we consider
here require a stronger optimization approach.

E. Asymptotically Achievable Limits

It is insightful to consider asymptotic bounds, which are
obtained at infinite delay, while keeping in mind that the
problem we consider is delay limited. Let R(D) and C(P )
denote the source rate-distortion function and channel capacity,
respectively. According to Shannon’s source and channel cod-
ing theorems, the source can be compressed to R(D) bits (per
source sample) at distortion level D, and that C(P ) bits can be
transmitted over the channel (per channel use) with arbitrarily
low probability of error (see, e.g., [36]). The optimal coding
scheme is the tandem combination of the optimal source and
channel coding schemes, hence, by setting

R(D) = C(P ), (14)

one obtains a lower bound on the distortion of any source-
channel coding scheme. For simplicity, we derive the expres-
sions for the “optimum performance theoretically attainable”
(OPTA) for Gaussian scalar source and noise. The channel
capacity with additive white Gaussian noise is given by

C(P ) =
1

2
log

(
1 +

P

σ2
N

)
, (15)

where P is the transmission power and σ2
N is the noise

variance.
For source-channel coding with decoder side information,

OPTA can be obtained by equating Wyner-Ziv rate distortion
function [37] to the channel capacity. The Wyner-Ziv rate
distortion function of X , when Z serves as side information,
and (X,Z) ∼ N (0, RX,Z) where RX,Z = σ2

X

[ 1 ρ
ρ 1

]
and σ2

X ,
ρ are the variance and correlation coefficient, respectively, with
|ρ| ≤ 1 is:

R(D) = max

(
0,

1

2
log

(1− ρ2)σ2
X

D

)
. (16)

We plug (16) and (15) in (14) to obtain

DOPTA =
(1− ρ2)σ2

X(
1 + PT

σ2
N

) . (17)
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For quadratic Gaussian distributed source coding for sources
(X1, X2) ∼ N (0, RX1,X2) where RX1,X2 = σ2

X

[ 1 ρ
ρ 1

]
with

|ρ| ≤ 1, the complete rate distortion region satisfies the
following inequalities [38]:

R1 ≥
1

2
log+

(
1− ρ2 + ρ22−2R2

D1

)
(18)

R2 ≥
1

2
log+

(
1− ρ2 + ρ22−2R1

D2

)
(19)

R1+R2 ≥
1

2
log+

(
(1− ρ2)β(D1, D2)

2D1D2

)
(20)

where log+ x = max(0, log x) and

β(D1, D2) = 1 +

√
1 +

4ρ2D1D2

(1− ρ2)2
. (21)

We set Ri = C(Pi) for i = 1, 2, where C(P ) is given in (15)
to obtain OPTA.

III. PROPOSED METHOD FOR SIDE INFORMATION
SETTING

A. Overview

In this section, we develop the DA based method for the
optimization of encoder and decoder mappings. Since the
decoder is given in closed form, the method focuses on
optimizing the encoder mapping. We first partition the input
space of the encoder into partition cells and assign a local
model to each of the cells. Next, the encoder output is made
probabilistic by randomizing the partitions, i.e., input points
are assigned to each local model according to some probability
distribution. We then propose an optimization process where
the (random) encoder is optimized (along with the decoder)
while constraining the Shannon entropy. By gradually reducing
the entropy to 0, we obtain the desired mappings.

B. Derivation of proposed method

We consider piecewise functions which approximate the
desired mappings by partitioning the space and matching
a simple local model to each region. Piecewise functions
consist of two components: a space partition and a parametric
local model per partition cell. First, the source space Rm is
partitioned into K regions (cells) denoted Rmk . Each cell Rmk
has an associated function gk which is parametrized (affine,
lattice, etc.) and the parameter set is denoted by Λk. Thus, the
encoding function can be written as

g(x) = gk(x) for x ∈ Rmk and for k = 1, . . . ,K (22)

In (22), the selection of local model index k is deterministic
for a given realization ofX , i.e., the output of the encoder only
depends on X . To derive a DA based approach, we introduce
a random variable, K, that corresponds to random selection of
index k. In other words, let the encoder randomly select the
local model index k when it receives an input x, according
to the value of a random variable that we call K. For a given
realization of X , the output of the encoder is now given in

probability as

g(x) = gk(x) with probability pK|X(k|x). (23)

The conditional probability pK|X(k|x) is referred to as
association probability, in the sense that it represents the
probability of input point x belonging to cell Rmk (thus,
the source space partition is now random). The probability
distribution that we introduce (and optimize) is pK|X (not
the joint pX,K) since the input distribution is given in the
problem statement and is therefore fixed. The MSE cost and
transmission power are still calculated as in (1) and (2), though
the expectation is now taken over K in addition to what
was done before. Let us now fix Λk and w, and consider
optimizing (3) with respect to pK|X . It is clear that the
optimal pK|X will implement ’hard’ associations, that is,
every point x will be fully associated with the local model
that makes the minimum contribution to cost1. Although this
is desirable eventually, in order to avoid poor local optima
we impose and control the level of randomness, i.e., we
introduce a constraint on the randomness of the encoder, which
is measured by the Shannon entropy. The total entropy of
the encoder is given by H(X,K) = H(X) + H(K|X)
and since H(X) is constant (predetermined by the source),
the entropic quantity of interest is the conditional entropy
H(K|X). This is also intuitively justified in the sense that
the randomness we introduced into the problem is precisely
captured by pK|X , hence can be measured and controlled by
H(K|X). We denote the randomness of the solution by H
and define it as H , H(K|X) where

H(K|X) = −E{log pK|X}. (24)

The problem is now recast as minimization of the expected
cost with respect to parameters of local models, association
probabilities and decoder, subject to a constraint on the level
of randomness of the system, i.e.,

minimize
Λ1,...,ΛK,p(1|x),...,p(K|x),w

J,

subject to H ≥ H0,

where J is defined in (3) and H0 specifies the minimum
requirement on the entropy level. This constrained optimiza-
tion problem can be reformulated by introducing Lagrange
parameter T ∈ R+ to obtain the Lagrangian

F = J − T (H −H0), (25)

to be minimized. There are two important extremal points
of this Lagrangian. First, for T → ∞, the minimum F is
obtained by maximizing the entropy, which is achieved by
uniform association probabilities: pK|X(k|x) = 1/K for all k
and x. Consequently, all local models equally account for all
points and are identical once optimized, or effectively, there
is a single distinct local model. Secondly, in the limit T → 0,
minimizing F corresponds to minimizing J directly, which
produces a deterministic encoder. This intuitive observation
can be verified by the expression for optimal pK|X(k|x) given

1Therefore, the generalized search space of random encoders have the same
global minimum as the original problem.
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in Section III-D.
Although DA is derived from information theoretic prin-

ciples, it is motivated by and has strong analogies to an-
nealing processes in statistical physics (see [34] for details).
We accordingly refer to the Lagrangian functional in (25)
as (Helmholtz) free energy, and Lagrange parameter T as
“temperature”.

C. Deterministic Annealing

The optimization method starts at a high value of T and
gradually lowers it while minimizing F at each step. At
high temperature, there is effectively a single distinct local
model. As the temperature is decreased, a bifurcation point is
reached where the current solution is no longer a minimum,
so that there exists a better solution with a higher number
of distinct local models. Intuitively, at this temperature, the
current solution is a saddle point where multiple local models
are coincident (i.e., their parameters are same) and in order
to move to a better solution, it is necessary to perturb the
local models. Such bifurcations are referred to as “phase
transitions” and the corresponding temperatures are called
“critical temperatures”2.

We present an example simulation in Figure 2 that illustrates
the basics of the method, including phase transitions. Here the
sources and channel are scalar, i.e.,m = n = 1, gk are selected
as affine and K = 2. When T is large, there is a single distinct
local model. As we lower T , the system goes through a phase
transition where the two local models split from each other
(after a slight perturbation). The corresponding value of T is
referred to as the first critical temperature. Note how entropy
(H) is traded for reduction in cost (J).

Mappings with more than 2 local models can be obtained
by starting with a larger K. However, a computationally
more efficient method that we employ here is as follows:
We start with 1 local model and keep only the distinct local
models, but duplicate and perturb them at each temperature.
The duplicates will merge at every iteration until a critical
temperature is reached, and will split into distinct models at a
phase transition.

Although our method is derived in the general, continu-
ous source and channel domain, in practical simulations we
sample the source and noise distributions to allow numerical
computation of integrals. The sampling is not “inherent” to
the derived method and, in fact, can be adjusted during the
algorithm run. We emphasize that this is in contrast with prior
quantizer design based methods that are entirely formulated in
a discrete setting.

The practical algorithm is initialized with a single local
model. Since T must be set higher than the first critical
temperature, we simply choose T large enough that during
the first couple of temperatures, duplicated local models
merge back, i.e., no phase transitions are observed. As the
temperature is gradually lowered, we track the minimum,
i.e., find the association probabilities pK|X(k|x), local model
parameters Λk and decoderw that minimize the Lagrangian F .

2We omit the derivation of critical temperatures in this paper, see [34] for
phase transition analysis in the general DA setting.

As demonstrated, the system will go through phase transitions
during which the number of local models, K, increases. We
stop when T is near 0 and perform ”zero entropy iteration”,
i.e., associate every source point with the “best” local model
to obtain deterministic encoder. We accordingly give a brief
sketch of the practical method in Algorithm 1. In Step 6, we
employed an exponential cooling schedule. Update equations
for Step 3 are given in the next section.

Algorithm 1 Proposed DA-Based Method
Inputs: Involved distributions, desired local model type, λ, α,
ε, ∆F , Tmin, ∆g .
Outputs: Optimized g,w.
Initialization: T = Tmax, K = 1, randomly chosen g1. Jold =

Jinitial.
1. Duplication:

For each gi, create an identical local model gj .
p(i|x)← p(i|x)

2 and p(j|x)← p(i|x)
2 .

K ← 2K.

2. Perturbation:
For each parameter φk ∈ Λk, φk ← φk + εR, where R
is standard Gaussian random variable.

3. Thermal Equilibrium:
Compute F and set Fold ← F .
3.1. Compute optimal w using (30).

3.2. Compute optimal p(k|x), ∀k using (26).

3.3. Optimize Λk, ∀k using (28).

3.4. Compute F . If F−Fold

Fold
≤ ∆F , go to Step 4, other-

wise Fold ← F and go to Step 3.1.

4. Model Size:
If d(Λi,Λj) < ∆g , where d(·, ·) is euclidean distance,
remove gj and set p(i|x)← p(i|x) + p(j|x), ∀i, j.
K ← New model size.

5. Stopping:
Stop if T ≤ Tmin, otherwise go to Step 6.

6. Cooling:
T ← T ∗ α.
Go to Step 1.

D. Update Equations
The central part of the method is the minimization of free

energy (F ) by iteratively updating the association probabilities,
local model parameters and decoders. The following theorem,
whose proof is presented in the Appendix, states the update
equations for association probabilities.

Theorem 1. At any temperature T , minimum free energy F
is achieved when association probabilities are in the form of
Gibbs distribution given as:

p(k|x) =
e−Jk(x)/T

∑
k′
e−Jk′ (x)/T

∀k, (26)
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Fig. 2. The evolution of the encoder in the algorithm is demonstrated. The two models are shown by dotted lines and the sizes of dots are relative to the
probability association at that input point. The line in (d) is the deterministic encoder obtained. K = 2.

where Jk(x) is given by

Jk(x) = E{‖x−w(gk(x) +N ,Z)‖2}+ λ‖gk(x)‖2. (27)

Remark 2. Theorem 1 is analogous to the principle of mini-
mal free energy in statistical physics. A fundamental principle
in statistical physics states that the minimum free energy is
achieved when the system is at thermal equilibrium, at which
point it is governed by Gibbs distribution.

The evolution of association probabilities, p(k|x), during
the annealing process can be observed from how (26) is chang-
ing with T . The following corollary confirms the intuitive
explanation we provided earlier.

Corollary 1. As T →∞ (at a high temperature) the system is
governed by uniform association probabilities and the entropy
is maximum. As T → 0, the associations become deterministic
and the entropy is 0.

The optimal local model parameters cannot be obtained in
closed form, hence we perform gradient descent search. A
local model parameter φk ∈ Λk is updated according to

φk ← φk − ϕ
∂F

∂φk
(28)

where ϕ is selected by line search and the gradient can be
obtained as

∂F

∂φk
=

∂J

∂φk
=

∫

x

fX(x)p(k|x)
∂Jk(x)

∂φk
dx. (29)

The derivative ∂Jk(x)
∂φk

is calculated numerically. The optimal
decoder can be derived similar to (11):

w(y, z) =

∫
x fX,Z(x, z)

∑
k

fN (y − gk(x))p(k|x) dx

∫
fX,Z(x, z)

∑
k

fN (y − gk(x))p(k|x) dx
.

(30)

E. Design Complexity

Due to difficulties in estimating the time required for gradi-
ent descent, exact comparison of computational complexity
of numerical optimization methods (including the method
presented here and others referred to in Section II-D) is
difficult and depends on the actual source-channel distributions
as well as choice of various algorithm parameters. On the other
hand, optimization of parametrized mappings (e.g., in [13]) is
faster, but requires knowing the structure of a good solution,
which can be obtained by methods such as the one presented
here. In our experiments, the time required for DA was on
the same order as that of NCR, albeit with a higher constant.
Thus, better performance is obtained at the expense of slight
increase in complexity.

IV. METHOD FOR DISTRIBUTED CODING

Although the method described in the previous section can
be used for optimizing the distributed encoders separately
(within separate annealing processes), we found that such a
method fails to avoid poor local minima as it fails to account
for interaction between encoder optimizations. Instead, we
develop a method here that optimizes the (random) encoders
and decoders within a single annealing process. The resulting
annealing method is a direct extension of the previous one,
albeit with higher complexity due to the distributed nature of
the problem.

We have two independent sets of partitions of input source
space: K1 cells represented by Rmk1 and K2 cells represented
by Rmk2 . We define both encoders in this setting as

gi(xi) = gki(xi) for xi ∈ Rmki , i = 1, 2. (31)

Following the same procedure of randomization, we define
random variables K1 and K2 along with association probabil-
ities:

p(ki|xi) , P{xi ∈ Rmki}, ∀ki,xi, for i = 1, 2. (32)
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The cost is to be minimized subject to the constraint on the
joint entropy of the system. Noting that K1 ↔ X1 ↔ X2 ↔
K2 form a Markov chain by construction, we express the joint
entropy as

H(X1,K1,X2,K2)=H(X1,X2)+H(K1|X1)+H(K2|X2).
(33)

Since H(X1,X2) is a constant determined by the sources,
we define H , H(K1|X1) +H(K2|X2) where

H(Ki|Xi) = E{log p(Ki|Xi)} for i = 1, 2, (34)

and the free energy of the system is given by (25).
The algorithm sketch is similar to the side information

setting and is not reproduced here. Since we optimize both en-
coders within the same annealing process, the same operations
in the Algorithm are performed for both encoders, sequentially.
The following theorem presents the optimal association prob-
abilities for the distributed setting. The proof follows from the
steps in the proof of Theorem 1 and omitted for brevity.

Theorem 2. At any temperature, minimum free energy (F ) is
achieved when the system is governed by Gibbs distribution
given as:

p(ki|xi) =
e−Jki

(xi)/T

∑
k′i

e
−Jk′

i
(xi)/T

for i = 1, 2 (35)

where

Jki(xi)=E{‖X1−X̂1‖2+η‖X2−X̂2‖2|Xi=xi,Ki=ki}
+λig

2
ki(xi) (36)

if the cost is defined as in (4), and

Jki(xi)=E{‖γ(X1,X2)−w(Y 1,Y 2)‖2|Xi=xi,Ki=ki}
+λig

2
ki(xi) (37)

if the cost is defined as in (5).

The parameters of local models can be optimized through
gradient descent search. Optimal decoding is achieved simi-
larly as X̂i = E{Xi|y1,y2} for i = 1, 2 for first type of
objective, and w(y1,y2) = E{γ(X1,X2)|y1,y2} for the
second type. Both expressions can be written in terms of
known quantities similar to that in (11).

V. EXPERIMENTAL RESULTS

While the proposed algorithm is general and directly appli-
cable to any choice of source and channel dimensions, for
conciseness of the results section, we assume that sources
and channels are scalar. In this case, the encoder mapping
is denoted as g : R → R and the local model functions gk
are selected as affine. In principle, the set of gk can be chosen
from any parametric model. Choosing a more complex model,
such as a higher order polynomial, can potentially improve the
performance of the algorithm, albeit with increased computa-
tional complexity. For the exponential cooling schedule, we set
α = 0.95, i.e., T ← T ∗0.95. The performance of the proposed
method is assessed by comparisons to the optimal affine
solution, greedy method and NCR-based method developed in
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(c) SNR=26.0 dB, CSNR=15.0 dB, ρ = 0.99

Fig. 3. Example encoder mappings, generated by DA, for the decoder side
information setting, jointly Gaussian source and side information.

[22], as well as OPTA (for reference only, as OPTA requires
infinite delay). For the NCR based method, we decrease λ
(in distributed coding, we decrease λ1 and λ2 simultaneously)
exponentially as λnew = λold ∗ 0.8 in 50 steps to the desired
value.

The noise signals in all examples are chosen as independent
zero-mean Gaussians with unit variance, i.e., N ∼ N (0, 1),
N1 ∼ N (0, 1), N2 ∼ N (0, 1) . For numerical computations,
we sample the source and noise distributions on a uniform
grid with spacing ∆ = 0.02. We also impose bounded
support (−5σ to +5σ), i.e., we neglect tails of infinite support
distributions in the examples.

A. Side Information Setting

We first give examples for the Gaussian case, where the
source and side information are jointly Gaussian, distributed
according to N (µ, R) where µ = [0, 0], R =

[ 1 ρ
ρ 1

]
, and

|ρ| < 1 is the correlation coefficient between source and side
information. We define SNR = 10 log10(1/D) and CSNR =
10 log10(P (g)).

Example mappings are given in Figure 3. We first note
that the central characteristics observed in digital Wyner-Ziv
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mappings are captured by analog mappings as noted before
(see, e.g., [21], [22]), in the sense of many-to-one mappings,
where multiple source intervals are mapped to the same
channel interval. We refer to each one-to-one section in these
mappings as a “bin”, in Figure 3a there are 5 bins in the
interval shown (the meaning of bin here is different than in
digital Wyner-Ziv mappings). The uncertainty about the source
interval is resolved (significantly decreased) by the decoder
using the side information. Since all variables are Gaussian
and distortion measure is MSE, it is intuitively intriguing to
investigate whether the optimal mappings have any parametric
form or structure to be exploited in the design stage. For
example, since in the absence of decoder side information
optimal mappings are well known to be linear, one can expect
to see linear mappings in each bin. In fact, such parametric
form was explicitly assumed in [19], and it was reported
the optimized parametric mappings perform very close to
the results obtained via NCR in [22]. Our numerical results
demonstrate that each bin is non-linear as some nonlinearity
can be observed especially near the ends of each bin, as
opposed to the conjecture in [22].

From Figure 3 we see how the width of bins depends on
the correlation between the source and side information. It can
be seen that at higher correlation the bins are narrower. This
is intuitively expected since, as the correlation increases, so
does the benefit of side information in terms of distinguishing
different bins. To exploit this capability, the encoder narrows
the bins, which in turn reduces the power E{g2(X1)}.

To illustrate the improvement of DA over NCR in the encod-
ing mappings themselves, we present two mappings obtained
by NCR in Figure 4. We emphasize that the performance of
NCR depends on initial mappings, initial noise level and the
noise-relaxation schedule. This dependence is illustrated in
Figure 4, where in one case the shape of bins are different
then those in DA and sub-optimal, and in the other the points
of discontinuity are not optimal.

We also give an example with a different source distribution,
Gaussian mixture, in Figure 5:

(X1, X2) ∼
(

1

2
N (µ1, R) +

1

2
N (µ2, R)

)
(38)

where µ1 = [−3,−3], µ2 = [3, 3] and R = [ 1 0.95
0.95 1 ]. This

distribution has two Gaussian “nodes” centered far from each
other at x = −3 and x = 3. From an intuitive point of view,
the optimum encoder can be viewed as two Wyner-Ziv like
encoders, occupying the negative and positive halves of real
line and both centered at the node centers. It is clear that
for several source and channel distributions, optimal encoding
mappings are many-to-one, i.e., this property is not unique to
the Gaussian distribution.

The comparative performance results for different optimiza-
tion techniques is given in Figure 6 for correlation coefficient
ρ = 0.99. Since NCR performance depends on the initial con-
ditions, we ran the NCR algorithm several times with different
conditions and pick the mappings with best performance.
Results from the greedy method are also presented in order
to illustrate the abundance of locally optimum points and the
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Fig. 4. Two results by NCR for side information setting. In (a) the bins do not
have the optimal shape that was obtained by DA and in (b) the discontinuity
points are not optimal.
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Fig. 5. Example encoder mappings, generated by DA, for Gaussian mixture
distribution, side information setting.
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Fig. 6. The performance comparison for the side information setting, the
proposed method versus the noisy relaxation (NCR), greedy optimization and
the linear mappings. ρ = 0.99.

difficulty of the optimization problem. Note that the proposed
method is independent of the initialization and only run once.
We also present the performance of OPTA as benchmark while
noting that it is asymptotic and may require infinite delay. The
performance of linear encoder and decoder is plotted as well,
since it is also a local minimum (see Remark 1). It is important
to note that the linear solution performs significantly worse
than the non-linear mappings obtained.

B. Distributed Coding Setting

In these experiments the sources are jointly Gaussian with
unit variance and their correlation coefficient is denoted by ρ.
We first analyze the case of individual reconstructions, where
the cost is as defined in (4). The weighing coefficient η in (4)
is 1.

The encoding mappings observed are many-to-one, where
an example is given in Figure 7a to gain intuition into the
workings of these coding schemes. From Figure 7a, where
both encoders are plotted together, we see that in different
source intervals, one of the mappings is many-to-one while
the other one is one-to-one (usually linear). For instance, in
the interval X ∈ [−0.3, 0.5], g1 is approximately linear while
g2 is many-to-one. Intuitively, in each of these intervals, one
channel is used as side information to reduce the uncertainty
about the interval of other source.

Next, we analyze how the channel space is filled. We plot g1

vs. g2 in Figure 7b, which would be the channel space mapping
if the two sources were fully correlated (ρ = 1). In case of
lower correlation, a line widens into a strip (see figures and
discussion in [13]), however the plot in Figure 7b is sufficient
for demonstration. This mapping has the same characteristics
with that of Archimedean spirals used in literature (example
plotted in Figure 7c), in the sense that most likely source
values are mapped to the area around origin and the mapping
continues outwards in a circular fashion, to fill the channel
space while preserving transmission power. In fact, spirals are
suggested since they have this characteristic. Although our
mappings have the same characteristic, they are far different
from a spiral.

Spiral-like channel filling may sometimes be sub-optimal.
The channel space can be filled in a different way, especially in
case of unequal transmission powers. In Figure 8, we provide
such mappings where we still see the same characteristics
mentioned earlier (both sources acting as side information in
different intervals), but the channel space is filled differently.
Other examples can be found in literature as well, see, e.g.,
[12], [13].

In [13], the authors noted that for 0 < ρ < 0.95, their
structured solutions does not improve over linear solutions at
high CSNR. We provide an example of non-linear scheme
in Figure 9 for ρ = 0.9 that improves over linear solution.
For lower correlations our method produces linear solutions.
Based on these experiments, we reach to a similar conclusion
that optimal mappings are non-linear only at high correlation
- albeit our method offers non-linear gains over a larger range
of ρ values.

Performance comparison of different numerical optimiza-
tion techniques (DA, NCR and greedy descent with random
initialization) for total power allocation case (λ1 = λ2) is pro-
vided in Figure 10a where we define SNR = 10 log10(2/D)
(average distortion in dB) and CSNR = 10 log10((P (g1) +
P (g2))/2) (average power in dB). We note that since individ-
ual powers are not constrained, different transmission powers
are allowed in this comparison for all methods.

We also provide comparison to other coding schemes found
in the literature. In [13], authors analyze parametric mappings
of two types, spirals and sawtooth mappings, in distributed
coding setting and compare to distributed quantizer scheme
analyzed in [12]. In their comparison they use same power
allocation for both encoders, as opposed to a total power
allocation we consider. We therefore obtain solutions that
allocate same power to both encoders. In Figure 10b, we
provide comparison with our results to the ones reported in
[13] for the same setting. As expected, mappings optimized in
function space perform better than parametric mappings which
only approximately model optimal mappings as demonstrated
in Figure 7.

We finally take a look at the function computation problem
for which the cost is given in (5). As a test case, we employed
the difference function, γ = X1 − X2. Encoder mappings
optimized with DA are given in Figure 11a. Both sources are
mapped in many-to-one fashion with no way to resolve the
uncertainty about the source interval. This is unlike previous
mappings, where the uncertainty about source interval is
resolved by side information (in the distributed coding case,
the other source would act as side information, at least locally).
In the case of difference function, the actual values are not
needed, thus, both sources are mapped in many-to-one fashion.
Nevertheless, the decoder is able to estimate the difference of
sources accurately.

We give performance comparison in Table I where
CSNRi = 10 log10(P (gi)) for i = 1, 2 and SNR =
10 log10(1/D). DA achieves 10 dB higher SNR than the linear
solution with the same power allocation, whereas the linear
solution that achieves the same SNR requires 9 dB more power
for each channel. Although the improvements depend on the
problem parameters, these results nevertheless demonstrate
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Fig. 7. Example encoding scheme for distributed coding scheme with ρ = 0.999. In (a), g1 and g2 are plotted together. In (b) we see how channel space
is filled. In (c) a typical Archimedean spiral used in literature is shown.
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Fig. 8. An example, obtained by DA, with different transmission power
constraints on encoders. (a) Both encoders are plotted together. (b) Channel
space filling is shown. Although similar characteristics are observed, the
channel space is filled differently.
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Fig. 9. Non-linear solution that improves over linear for ρ = 0.9. CSNR =
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Fig. 10. (a) Performance comparison of different numerical optimization
methods for distributed coding setting with the constraint on total transmis-
sion power. ρ = 0.99. (b) Performance comparison for distributed coding
setting with other approached found in literature. Optimized S-K refers to
performance of structured mappings in [13] (spirals and sawtooth mappings)
and 5-bit DQ is from [12]. 5-bit DQ is optimized for 18 dB CSNR. ρ = 0.999.
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TABLE I
PERFORMANCE OF OBTAINED MAPPINGS FOR DIFFERENCE FUNCTION

Method CSNR1 (dB) CSNR2 (dB) SNR (dB)
DA 19.9 21.4 27.3

Linear-1 19.9 21.4 17.0
Linear-2 28.9 30.4 27.2

NCR 19.9 21.5 24.0
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Fig. 11. Example solutions obtained for function computation problem,
where γ = X1 −X2. (a) DA result (b) NCR result. CSNR and SNR values
are in Table I.

that there are significant gains in utilizing non-linear encoder
functions instead of linear ones. DA performance is better than
NCR as well, as the shape of encoders are better optimized
as can be seen in comparison in Figure 11.

VI. CONCLUSIONS

In this paper, we studied the problem of finding globally
optimal encoder and decoder pairs in zero delay source-
channel coding, focusing on two basic network settings. Since
the cost surface is riddled with local optima, we developed
a method based on the deterministic annealing to approach
global optimality. The numerical results show that, by using
carefully optimized non-linear (and in many cases many-to-
one) mappings, significant gains can be obtained over linear
solutions, which are optimal in point-to-point settings (for the
specific case of Gaussians under MSE). Simulation results
demonstrate the performance of the proposed algorithm, which
consistently outperform greedy optimization methods and
noisy channel relaxation, as well as the previous approaches
found in literature.

APPENDIX

Proof of Theorem 1: We write the Lagrangian cost in (25)
as

F =
∑

k

∫

x

Jk(x)p(k|x)fX(x)dx− λPE

+ T
∑

k

∫

x

p(k|x) log p(k|x)fX(x)dx+ TH0, (39)

where Jk(x) is given in (27). From (39) it can be seen that F is
convex in p(k|x), since first term is linear and second term is
convex in p(k|x). To find the minimum, we set ∇p(k|x)F = 0:

Jk(x) + T log p(k|x) + T = 0, (40)

which yields

p(k|x) = Ce−(Jk(x)−T )/T . (41)

The normalizing factor C is to ensure that
∑

k

p(k|x) = 1. (42)

Plugging (41) in (42), we have

C =
1∑

k′
e−(Jk′ (x)−T )/T

. (43)

Plugging (43) in (41) yields (26).
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