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Abstract

This paper designs hybrid analog-digital channel estimation and beamforming techniques for multiuser massive

multiple input multiple output (MIMO) systems with limited number of radio frequency (RF) chains. For these

systems, first we design novel minimum mean squared error (MMSE) hybrid analog-digital channel estimator

by considering both perfect and imperfect channel covariance matrix knowledge cases. Then, we utilize the

estimated channels to enable beamforming for data transmission. When the channel covariance matrices of all

user equipments (UEs) are known perfectly, we show that there is a tradeoff between the training duration and

throughput. Specifically, we exploit that the optimal training duration that maximizes the throughput depends on

the covariance matrices of all UEs, number of RF chains and channel coherence time (Tc). We also show that

the training time optimization problem can be formulated as a concave maximization problem for some system

parameter settings where its global optimal solution is obtained efficiently using existing tools. In particular, when

the base station equipped with 64 antennas and 1 RF chain is serving one single antenna UE, Tc = 128 symbol

periods (Ts) and signal to noise ratio of 10dB, we have found that the optimal training durations are 4Ts and 20Ts
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for highly correlated and uncorrelated Rayleigh fading channel coefficients, respectively. The analytical expressions

are validated by performing extensive Monte Carlo simulations.

Index Terms

Massive MIMO, Millimeter wave, RF chain, Hybrid channel estimation, Hybrid beamforming.

I. INTRODUCTION

Massive multiple input multiple output (MIMO) technology is one of the promising means for achieving

the extremely high energy and spectrum efficiency requirements of the future 5G networks [1]. To exploit

the full potential of a massive MIMO system, one can leverage the conventional digital architecture where

all the signal processing is performed at the baseband frequency. In a digital architecture, a complete radio

frequency (RF) chain is required for each antenna element at the transmitter and receiver, including low-

noise amplifier, down-converter, digital to analog converter (DAC), analog to digital converter (ADC)

and so on [2], [3]. Thus, when the number of base station (BS) antennas is very large (i.e., massive

MIMO regime)1, the high cost and power consumptions of mixed signal components, like high-resolution

ADCs and DACs, makes it difficult to dedicate a separate RF chain for each antenna [5]–[10]. For these

reasons, deploying massive MIMO systems with limited number of RF chains and hybrid analog-digital

architecture has recently received significant attention. In this architecture, the digital signal processing

can be realized at the baseband frequency using microprocessors whereas, the analog signal processing

can be enabled at the RF frequency by employing low cost phase shifters [11]–[13].

Hybrid architecture can be deployed for single user and multiuser massive MIMO systems. The key

difference between the analog and digital components of the hybrid architecture is that, as the analog part

is realized using phase shifters (i.e., to reduce cost), each having a constant modulus, it is more constrained

than that of the digital architecture. Furthermore, in the multiuser system, the digital component can be

1To the best of our knowledge, there is no strict definition on how large the number of antennas should be to be called as massive MIMO.

However, in a multiuser setup, the term ”massive MIMO” is used to reflect that the number of BS antennas is much larger than the number

of user equipments (UEs) [4].
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designed for each UE independently (i.e., it can be unique to each UE) whereas, the analog component

must be the same for all UEs (i.e., the analog part cannot be altered adaptively for each UE). In [14]–[16], a

hybrid architecture is suggested for single user massive MIMO systems where matching pursuit algorithm

is utilized for hybrid bemforming [2]. In [17], a low complexity codebook based RF beamforming based

on multi-level RF beamforming and level-adaptive antenna selection is considered. In [18], a hybrid

beamforming design utilizing interleaved and side-by-side sub-arrays is proposed [19]. This design is used

for adaptive angle of arrival (AoA) estimation and beamformings by utilizing two algorithms; differential

beam tracking and beam search.

In [20], hybrid precoding scheme for multiuser massive MIMO systems is considered. The paper

employs the zero forcing (ZF) approach where it is designed to maximize the sum rate of all users.

In [6], a beam alignment technique using adaptive subspace sampling and hierarchical beam codebooks

is proposed for millimeter wave (mmWave) cellular networks. In [21], a beam domain reference signal

design for downlink channel with hybrid beamforming architecture is proposed to maximize the gain in

a certain direction around the main beam. Hybrid analog-digital beamforming is proposed in [22] for

downlink multiuser massive MIMO systems where total sum rate maximization problem is considered. In

[23], hybrid beamforming design for multiuser setup with frequency selective channels is considered. This

paper also discusses the required number of RF chains and phase shifters such that the digital and hybrid

beamforming designs achieve the same performance. In [24], joint channel estimation and beamforming

design is considered for single user mmWave MIMO systems. This paper employs a codebook approach

to design its trainings for uniform linear array (ULA) channel models.

Channel state information (CSI) acquisition is an important aspect of a (massive) MIMO system.

In general, a wireless channel has a nonzero coherence time where the channel is treated as almost

constant. In a typical setup, increasing the training duration improves the channel estimation quality at

the expense of reduced overall system throughput when the channel coherence time is fixed. Hence, there

is a tradeoff between the training duration and system throughput. In most practical cases, the CSI needs
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to be learned to maximize the system throughput. This motivates us to study the training-throughput

tradeoff for massive MIMO systems with limited RF chains while leveraging the hybrid architecture.

The current paper particularly aims at determining the optimal training duration such that the system

throughput is maximized. As can be understood from the above discussions, there are a number of

research works utilizing hybrid architectures. However, none of the aforementioned works consider the

problems studied in the current paper. For example, the works of [14]–[16], [20], [22], [23] focus on the

design of hybrid beamforming under the assumption of perfect CSI. Furthermore, the works of [18], [24]

consider both channel estimation and beamforming with hybrid architecture without taking into account

the channel coherence time (i.e., the channel estimation duration derived by the aforementioned works

may not necessarily maximize the system throughput).

Given these discussions, however, the study of training-throughput tradeoff has been conducted in the

conventional MIMO systems where the number of RF chains is the same as that of antennas. In [25],

the training scheme for single user block fading channel under low signal to noise ratio (SNR) regions is

considered [26]. For the Rayleigh fading channel, the paper addresses on how long the channel coherence

time be such that the lower bound mutual information behaves closer to the capacity obtained when perfect

CSI is available at the receiver. In [27], the ergodic capacity of ultra wideband communications having

sparse multipath channels for single user system at low SNR regions is examined. In [28], the structure

of the optimal capacity achieving input matrix is derived. This paper also shows that there is no capacity

gain by deploying the number of transmit antennas to be more than the coherence interval (in symbols)

of the channel. In [29], the noncoherent MIMO capacity in the high SNR regime is examined where it is

shown that the number of transmit antennas required need not be more than half of the coherence interval

(in symbols) in this regime.

In [30], the authors consider multiple antenna communications over a wideband noncoherent Rayleigh

block fading channel. This paper examines the capacity of a MIMO system with an average power

constraint, and considers its relationship with the channel coherence time, number of transmit and receive
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antennas and SNR. The relation between wideband capacity and channel sparsity is studied in [31]. The

work of [32] computes the optimal number of UEs that can be served in a given channel coherence time.

From these explanations, we can understand that the works of [25]–[28], [30], [31] focus on the capacity

characterization of MIMO systems for different SNR regions and channel characteristics. On the other

hand, [32] tries to determine the optimal number of UEs for the given channel coherence time. However,

in the current paper, we have examined the optimal training duration using hybrid architecture for fixed

number of UEs and channel coherence time. We would like to emphasize here that one may still think to

directly use the solution derived in [32] for the setup of the current paper. However, as will be shown in

Section VI-A and demonstrated in the simulation section, such approach leads to the sub-optimal solution,

and the throughput gap is significant in some parameter settings.

The training-throughput tradeoff can be studied by taking into account different settings and assump-

tions. As massive MIMO systems have significant interest at millimeter wave frequencies [6], [14], [21],

[33], one may be interested in examining the training-throughput tradeoff for these frequencies only. For

instance, by exploiting the characteristics of mmWave channels which are often specular and of very low

rank. However, massive MIMO systems still have practical interest at microwave frequency bands [1]. For

this reason, we examine the training-throughput tradeoff for multiuser massive MIMO systems with limited

RF chains where the channel of each UE has arbitrary rank. It is assumed that the number of UEs are fixed,

the BS is equipped with a massive antenna array and each UE is equipped with single antenna, with flat

fading channels and TDD based channel estimation. Under these assumptions, first, we design novel TDD

minimum mean squared error (MMSE) based hybrid analog-digital channel estimator by considering both

perfect and imperfect channel covariance matrix cases. Then, we utilize the estimated channels to exploit

beamforming during data transmission. Finally, we study the training-throughput tradeoff for the scenario

where the channel covariance matrices of all UEs are known perfectly. The extension of the proposed

designs for the case where each UE is equipped with multiple antennas, and experiences a frequency

selective channel has also been discussed briefly. The main contributions of the paper are summarized as



Main manuscript: Accepted in IEEE Transactions on Communication

follows:

• First, we propose channel estimation for multiuser massive MIMO system with perfect and imperfect

channel covariance matrices by assuming that the number of RF chains is the same as that of

antennas. When the covariance matrix is not known perfectly, the global optimal solution of our

channel estimator is obtained by utilizing convex optimization approach. Second, we exploit these

estimators to design the hybrid analog-digital channel estimator and beamformings for the scenario

where the number of RF chains is less than that of antennas. As will be clear later in Section II,

unlike the approach of [24], the proposed hybrid channel estimator and digital beamforming design

can be applied for any channel model.

• When the covariance matrices of all UEs are known perfectly, we study the training-throughput

tradeoff for the multiuser massive MIMO systems having limited number of RF chains. We exploit the

fact that the optimal training duration that maximizes the overall network throughput depends on the

operating SNR, available number of RF chains, channel coherence time (Tc) and covariance matrices

of all UEs. Specifically, we show that the training time optimization problem can be formulated as a

concave maximization problem for some system parameter settings where its global optimal solution

can be obtained efficiently using existing tools.

• We have validated the analytical expressions by performing numerical and extensive Monte Carlo

simulations. In particular, when the base station equipped with 64 antennas and 1 RF chain is serving

one single antenna UE, and SNR=10dB, Tc = 128 symbol periods (Ts), we have found that the optimal

training durations are 4Ts and 20Ts for highly correlated and uncorrelated Rayleigh fading channel

coefficients, respectively.

This paper is organized as follows: Section II introduces the system model and problem statement.

Section III - V discusses the proposed channel estimation and transmission approaches when the number

of RF chains is the same as and less than that of antennas. Numerical and computer simulation results

are presented in Sections VI-A and VI-B. Finally, conclusions are drawn in Section VIII.
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Fig. 1. The considered channel estimation and transmission frame structure.

Notations: In this paper, upper/lower-case boldface letters denote matrices/column vectors. X(i,j), tr(X),

XH and E(X) denote the (i, j)th element, trace, conjugate transpose and expected value of X, respectively.

We define ‖X‖2
F as tr{XHX} and ‖X‖2 as the square root of the maximum eigenvalue of XHX, I is

an identity matrix with appropriate size, CM×M and RM×M represent spaces of M ×M matrices with

complex and real entries, respectively. The next integer greater than or equal to x, optimal x and max(x, 0)

are denoted by dxe, x? and [x]+, respectively. The acronyms blkdiag(.), s.t, rem and i.i.d denote ”block

diagonal”, ”subject to”, ”remainder” and ”independent and identically distributed”, respectively.

II. SYSTEM MODEL AND PROBLEM STATEMENT

This section discusses the system model and problem statement. We consider a multiuser system where

a BS having N antennas and NRF RF chains is serving K decentralized single antenna UEs. A TDD

based channel estimation is adopted where the channels of all UEs are estimated at the BS in the uplink

channel, and are utilized for both the uplink and downlink data transmission phases. Under such settings,

one can have a channel estimation and data transmission frame structure as shown in Fig. 1.

As we can see from this figure, one block incorporates L frames for channel estimation and data

transmission, where the duration of each frame is the same as the coherence time of the channel Tc = βTs.

In each frame, αTs is used for channel estimation and the remaining (β−α)Ts is used for data transmission.

In a typical massive MIMO system, the transmitted signal is received by an antenna array each described

by the number of scatterers, AoA, angle of departure (AoD), delay, and fast fading parameter. Unlike the

fast fading, the angles and delays are almost stationary over a considerable number of frames [34], [35].
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This motivates us to assume that the kth UE has a constant channel covariance matrix Rk, which does

not depend on the fast fading component, in the L frames of Fig. 1. Under this assumption, the channel

between the kth UE and BS in each frame can be expressed as

hk = R
1/2
k h̃k

where the entries of h̃k ∈ CN×1 are modeled as i.i.d zero mean circularly symmetric complex Gaussian

(ZMCSCG) random variables each with unit variance, and Rk ∈ CN×N is a positive semi-definite matrix.

Note that mmW channels are expected to be specular, consequently Rk will tend to be low rank.

However, at microwave frequency bands, the rank of Rk will be likely high. Nevertheless, as the current

paper does not assume any special structure on the channel, the above statistical channel model can be

utilized both for mmWave and microwave frequency band applications. For microwave frequency regions,

the assumption of perfectly (imperfectly) known Rk is commonly adopted in the existing literature.

The Doppler shift scales linearly with frequency, thus, the coherence time of mmWave bands is an

order of magnitude lower than that of comparable microwave bands. In a typical setting, for example,

one may experience channel coherence times of 500µs and 35µs when the system is deployed at the

carrier frequencies 2GHz and 28GHz, respectively [36], [37]. Furthermore, the fading channel statistics

becomes wide-sense stationary (WSS) when the scattering geometry relative to a given user remains

unchanged/varying slowly [38]. This validates that the covariance matrices of mmWave channels will also

be almost constant for a considerable symbol duration [38], [39]. On the other hand, different channel

covariance matrix estimation methods are recently proposed for millimeter wave channels in [40] by

utilizing hybrid analog-digital architecture. These motivate us to consider the following objectives:

Objectives of this paper:

1) The first objective of this work is to design the channel estimation algorithm by assuming that Rk

is known perfectly and imperfectly, and NRF < N .

2) The ultimate goal of the channel estimation step is to enable reliable data transmission on (β−α)Ts

durations. For this reason, the second objective of this work aims on the design of α such that
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the average throughput of each frame is maximized for the given Tc, β and NRF . This problem is

mathematically formulated as2

max
α

Th (1)

where Th is the total throughput obtained in each frame. To the best of our knowledge, when Rk

is known imperfectly, the exact throughput expression is not known, and its computation requires

considering significant bounds and expectations [43]. Therefore, we examine (1) and study the

training-throughput tradeoff when NRF < N and perfect Rk scenario only3.

Note that in some practical setup, the total energy available for both training and data transmission

tasks remain fixed on the basis of the overal SNR level. For such a case, the training throughput tradeoff

problem turns out to be on how to split the available energy into the training and data transmission

phases. However, the training throughput tradeoff studied in the current paper considers different devices.

Specifically, the training signal is transmitted from the UEs only (i.e., no training data is transmitted from

the BS). And, it is not clear how one can assume fixed total energy that will be shared by the training

and data communication phases for our TDD based channel estimation, and data transmission in both the

uplink and dowlink channels. For these reasons, we have tried to compute the optimal training durations

(in terms of symbol period) for maximizing the throughput while keeping the total coherence time and

SNR levels constant (i.e., to solve (1)). Nevertheless, one can still utilize the idea of fixed total energy

by considering both training and data transmission tasks in the uplink channel only where these tasks are

performed by the UEs (or in a frequency division duplex (FDD) system, in general, where training and

data signals are transmitted from the same source). And, since energy and SNR are interrelated quantitative

terms, we believe that considering the training-throughput problem in terms of SNR (energy) will lead to

2Note that the current paper assumes that the channel covariance matrices of all UEs are available at the BS. Furthermore, the coherence

time of the considered channel is known a priori. Although recent results at mmWave frequency bands support these assumptions for some

parameter settings (see for example, [36], [37], [41], [42]), further measurement results are required to validate the considered assumptions

for all practically relevant deployment scenarios.
3Studying the training-throughput tradeoff for imperfect Rk is left for future research.
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the same result.

III. CHANNEL ESTIMATION WHEN NRF = N

In this section, we provide the proposed channel estimation approaches for the case where NRF = N .

For some environments, the covariance matrix of each UE is known a priori. For example, an i.i.d

Rayleigh fading channel is commonly adopted in an urban environment (i.e., Rk = I); an exponential

correlation model with correlation coefficient ρk is also used to model the covariance matrix of each UE

[44]. Furthermore, in a ULA channel model with sectorized antenna and predefined array geometry, the

covariance matrix of each UE can also be known [45], [46]. However, the covariance matrix of each UE

may not be known for a general communication environment. In such a case, it may need to be estimated

from the received signal which introduces some error. In addition, as the current paper assumes a hybrid

architecture with NRF � N RF chains, it exploits less degrees of freedom (compared to the system

equipped with full number of RF chains) to estimate the covariance matrices of all UEs reliably in a

practically relevant block duration. Consequently, the effect of channel covariance matrix estimation error

could be prominent. These motivate us to design channel estimators for the following two cases:

1) Case I: In this case, it is assumed that Rk is perfectly known a priori.

2) Case II: In this case, we assume that R
1/2
k = R̂

1/2
k + ∆k with ‖∆k‖2 ≤ εk, where R̂

1/2
k is the

estimate of R
1/2
k and εk is the maximum error bound4.

A. Channel Estimation for Case I

As explained in Section I, the channel estimation of a massive MIMO system is performed in the uplink

channel. During the uplink training phase, the BS will receive the following signal at symbol period j.

ytj =
K∑

i=1

hip
∗
ij + ntj (2)

where K is the number of UEs, p∗ij is the pilot symbol of the ith UE at symbol time j, nj ∈ CN×1 is the

received noise vector at symbol time j and hi ∈ CN×1 is the channel between the ith UE and BS.

4We would like to mention here that such bounded error parameter estimation approach is termed as worst case design [47].
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When NRF = N and the coherence time of the channel is Tc, channel estimation is performed just by

employing τ = K symbol periods (Ts) and data transmission is performed on the remaining Tc − τ time

durations [32], [48]. By spending K training symbols, the BS receives the following signal

Yt =HPH + Nt

where H = [h1,h2, · · · ,hK ], Yt = [yt1,yt2, · · · ,ytK ], P = [p1,p2, · · · ,pK ], Nt = [nt1,nt2, · · · ,ntK ] is

the additive noise which is modeled as Nt ∼ CN (0, σ2
t I) and pi = [pi1, pi2, · · · , piK ]T . For simplicity, the

entries of P are selected from a constellation satisfying PHP = I. With this training, the channel estima-

tion phase follows two steps. The first step is used to decouple the channels of each UE independently

and the second step is used to get the estimated channel of each UE from the decoupled terms.

In the first step, the BS can decouple the channels of each UE by multiplying the overall received

signal Y with P, i.e.,

E , YtP = H + NtP⇒ ek = hk + ñk, (3)

where ñk = Ntpk. As we can see from (3), ek does not contain hi, i 6= k. In the second step, the

well known MMSE estimator is employed to estimate the kth channel from ek. This is performed by

introducing an MMSE matrix WH
k for the kth UE and expressing the estimated channel ĥk as

ĥk = WH
k ek, (4)

where Wk is designed such that the MSE between ĥk and hk is minimized as follows

ξk = tr{E{|ĥk − hk|2}} = tr{E{|WH
k (hk + ñk)− hk|2}}

= tr{(WH
k − IN)Rk(W

H
k − IN)H + σ2

tW
H
k Wk}. (5)

The optimal Wk is obtained from the gradient of ξk as

∂ξk
∂WH

k

= 0⇒W?
k = (Rk + σ2

t I)−1Rk. (6)

Note that when NRF = N and Rk is known perfectly, the above channel estimation approach is

commonly adopted in the existing literature and can be considered as an existing approach [32], [48].



Main manuscript: Accepted in IEEE Transactions on Communication

B. Channel Estimation for Case II

In this subsection, we provide the proposed channel estimation approach when Rk is not known perfectly

(i.e., Case II). As we can see from the above subsection, the channel estimation phase has two main

steps when Rk is known perfectly. The first step (i.e., user decoupling) can still be used even if Rk is

not known perfectly. However, the second step depends on the knowledge of Rk. Thus, the remaining

issue will be on how to design Wk such that ξk of (5) is minimized under imperfect Rk. To this end, we

propose robust convex optimization approach as follows.

min
Wk

‖(WH
k − IN)(R̂

1/2
k + ∆k)‖2

F + σ2
t tr{WH

k Wk}, s.t ‖∆k‖2 ≤ εk. (7)

This problem can be equivalently expressed as [49]

min
Wk,Dk

tr{Dk}+ σ2
t tr{WH

k Wk} (8)

s.t ‖∆k‖2 ≤ εk, (WH
k − IN)(R̂

1/2
k + ∆k)(R̂

1/2
k + ∆k)

H(Wk − IN) � Dk, Dk � 0

where � 0 denotes positive semi-definite. Using Schur Complement, the last inequality becomes [49]



I (R̂
1/2
k + ∆k)

H(Wk − IN)

(WH
k − IN)(R̂

1/2
k + ∆k) Dk


 � 0.

This inequality can also be expressed as

Ak � BH
k ∆kCk + (BH

k ∆kCk)
H (9)

where

Ak =




I R̂
1/2
k (Wk − IN)

(WH
k − IN)R̂

1/2
k Dk


 , Bk = [0, (Wk − IN)], Ck = [−I, 0]. (10)

Thus, the last constraint of (8) can be replaced by (9). To solve (8), we consider Lemma 1 below.

Lemma 1: Let A,B and C are given matrices with A = AH , the relation

A � BH∆C + (BH∆C)H , ∆ : ‖∆‖2 ≤ ε (11)
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exists if and only if there exists λ ≥ 0 and



A− λCHC −εBH

−εB λI


 � 0.

Proof: See Proposition 2 of [50].

Using Lemma 1, problem (8) can be reformulated as

min
Wk,Dk,Mk,λk≥0

tr{Dk}+ σ2
t tr{Mk}, s.t




Ak − λkCH
k Ck −εkBH

k

−εkBk λkI


 � 0,




Mk WH
k

Wk I


 � 0 (12)

where Ak,Bk and Ck are as defined in (10). This problem is the well known semi-definite programming

problem where its global optimal solution can be found by applying interior point methods [49].

We would like to mention here that problem (7) has ”similar” mathematical structure to that of the

worst case robust MIMO beamforming problem (see for example (39) of [47] and (25) of [51]). Thus,

the approach used to solve (7) can be considered as the modified versions of the techniques used in [47],

[51]. Furthermore, as will be detailed in the next subsection, we have exploited the solution of (7) to

handle the scenario where the number of RF chains is smaller than those of antennas.

C. Low Complexity Channel Estimator

When Rk is known perfectly, the complexity of (6) is the same as that of matrix inversion which is

O(N3). On the other hand, under imperfect Rk, (12) has 6N2 + 1 real optimization variables, and two

semi-definite constraints with 6N and 4N dimensions. The worst case computational complexity of (12) in

terms of number of iterations is upper bounded by O(
√

6N + 4N) where the complexity of each iteration

is on the order of O((6N2 + 1)2((6N)2 + (4N)2)). Hence, the overall complexity of solving (12) is upper

bounded by O(
√

10N(6N2 + 1)2(52N2)) ≈ O(N6.5) [52]. Although these complexities have polynomial

order, they may be expensive especially when N is very large (i.e., in massive MIMO systems).

In a typical indoor massive MIMO (mmWave) communication, Rk will often tend to be a very low

rank matrix. Thus, one approach of reducing the complexity of the channel estimators is to exploit the
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rank of Rk which is explained as follows. From the eigenvalue decomposition of Rk, we will have

Rk = QkΛkQ
H , where Qk ∈ CN×Lk with Lk as the rank of Rk, and we can reexpress hk as

hk = Qk
˜̄hk,⇒ QH

k hk = ˜̄hk (13)

where ˜̄hk ∈ CLk×1 = Λ
1/2
k h̃k is modeled CN (0,Λk). As we can see, hk is the product of Qk and ˜̄hk.

The main idea of reducing the complexity of the channel estimators is to first estimate ˜̄hk and then to

multiply the estimated value just by Qk. Using (3) and (13), we can have

ek = Qk
˜̄hk + ñk,⇒ QH

k ek = ˜̄hk + QH
k ñk.

By introducing W̃H
k , one can express the estimated ˜̄hk as

̂̄̃
hk = W̃H

k QH
k ek. (14)

When Rk are known perfectly, W̃k can be designed using the MMSE method like in (6). When Rk

is not known perfectly and ek is multipled by QH
k , the error covariance becomes QH

k ∆k. From the

Cauchy-Schwarz inequality, we will have

‖QH
k ∆k‖2 ≤ ‖QH

k ‖2‖∆k‖2 = ‖∆k‖2 ≤ εk. (15)

As the error bound is still maintained in such a case, the optimal W̃H
k can be obtained similar to (12)

when Rk is not known perfectly.

Once W̃k is designed, the estimated channel can be computed as

ĥk = Qk
̂̄̃
hk. (16)

From the above explanation, we can understand that the complexity of the channel estimation (16) becomes

O(L3
k) and O(L6.5

k ) for perfect and imperfect Rk, respectively. And in practice as Lk � N , this channel

estimation approach can reduce the complexity significantly.

Note that the channel estimators of this section are designed by assuming α = K. However, in some

cases, there could be an interest to design the channel estimator for more general training duration such

as α = θ̃K, where θ̃ is a positive integer. For such a case, the same pilot symbols as those of this section
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can be reused for K consecutive symbol periods, and utilize linear combination approach. By doing so,

one can obtain similar structure as ek of (3) but the effective noise variance is reduced by a factor of θ̃.

This shows that the estimation techniques of this section can be applied straightforwardly for such cases.

Design perspective: As explained in the previous section, the ultimate goal of the channel estimator

is to enable data transmission. In this regard, two design approaches are commonly adopted, one is by

assuming perfect CSI and the other is by considering imperfect CSI. Perfect CSI can almost be achieved

when Rk is known perfectly and σ2
t � 1 (i.e., at very high SNR). In all other cases, perfect CSI can never

be achieved. Thus, in general, the transmission phase should also take into account the effect of imperfect

CSI especially due to the imperfect Rk. However, designing the transceivers by assuming imperfect CSI is

not trivial and it requires a robust approach for each frame duration which is almost infeasible particularly

for large antenna array systems (see for example [43], [47], [53], [54]). For this reason, the estimated

channel obtained by utilizing the Wk of (6) and (12) or W̃k of (14) is treated as perfect channel for data

transmission phase5. As we can see from Fig. 1, the MMSE channel estimator Wk(W̃k) is designed only

once in each block. This validates that the considered MMSE channel estimators have practical interest.

Once the channel estimation phase is accomplished, the next phase will be to perform data transmission.

As discussed above, data transmission may take place in both the uplink and downlink channels. During

data transmission phases, the BS exploits antenna arrays to design the appropriate beamforming matrices.

In the current paper, we employ the well known ZF approach in both the downlink and uplink transmission

phases. This is because ZF approach is optimal in a rich scattering environment and easy to implement

for massive MIMO systems [4], [23]. When Rk is known perfectly, NRF = N and given K, the optimal

solution of (1) is α = K [32].

In the following, we discuss the channel estimation and data transmission phases when NRF < N .

As will be clear in the sequel, the channel estimator of this section is exploited to design the channel

estimator and study the training-throughput tradeoff when NRF < N . For better flow of the text, we first

5We are particularly interested for high SNR regions σ2
t � 1.
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start with single user case and then we proceed to multiuser.

IV. CHANNEL ESTIMATION AND TRAINING-THROUGHPUT TRADEOFF FOR SINGLE USER WHEN

NRF < N

This section discusses the channel estimation and studies the tradeoff between the training duration and

throughput when NRF < N for the single user case.

A. Channel Estimation

For the single user setup, the BS will receive the following signal in all antennas during the training

duration (i.e., (2) with K = 1). Throughout this section, we have removed the subscript 1 for readability.

y = hp∗ + n

where p is chosen as |p|2 = 1. As mentioned in the introduction section, the hybrid analog-digital channel

estimator consists of the analog and digital part, where the analog part is realized at the RF frequencies.

Assume that we employ α trainings to perform channel estimation and Ūi ∈ CN×NRF is used as the

analog channel estimator in the ith pilot symbol. With this matrix, the received samples after ADC in the

ith pilot symbol can be expressed as

ỹi = ŪH
i (hp∗ + ni). (17)

By multiplying this signal with p, we will get

h̃i = pỹi = ŪH
i (h + nip). (18)

Now if we employ α pilot symbols for training, we will have

h̃ = ŪHh + n̄ (19)

where h̃ = [h̃T1 , h̃
T
2 , · · · , h̃Tα ]T , Ū = [Ū1, Ū2, · · · , Ūα], n̄i = ŪH

i nip and n̄ = [n̄T1 , n̄
T
2 , · · · , n̄Tα ]T . Finally,

we utilize the digital channel estimator W̄ to estimate h from h̃ as follows

h̄ = W̄Hh̃. (20)
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By doing so, we will get the following MSE ξ̄

ξ̄ =tr{E{|h̄− h|2}} = tr{(W̄HŪH − IN)R(W̄HŪH − IN)H + W̄HRn̄W̄} (21)

where R is the covariance matrix of h, Rn̄ = E{n̄n̄H}. Thus, when R is known perfectly, our objective

will now be to design W̄ and Ū to solve

min
W̄,Ū
‖(W̄HŪH − IN)

√
R‖2

F + W̄HRn̄W̄. (22)

And when R is not known perfectly, we will have the following problem

min
W̄,Ū
‖(W̄HŪH − IN)(R̂1/2 + ∆)‖2

F + W̄HRn̄W̄, s.t ‖∆‖2 ≤ ε. (23)

In general, the problems (22) and (23) are non-convex. However, for fixed Ū(W̄) these problems are

convex. Therefore, one approach of solving such problems is to iteratively optimize one variable while

keeping the other constant. In a massive MIMO system, as N is typically large, solving these two problems

iteratively is computationally expensive. For this reason, we preselect Ū from the solution of Section III

and then we optimize W̄ for fixed Ū. The question now is how do we select Ū?

In the following, we provide the proposed method to select Ū when R is known perfectly6. By

computing the singular value decomposition (SVD) of W? in (6), one can get

W? = UDVH (24)

where D is a diagonal matrix containing the non-zero singular values of W? arranged in decreasing order.

According to the detailed results discussed in [23], when each of the elements of Ū has a modulus

less than or equal to 2, this matrix can be implemented using phase shifters in two approaches. The first

approach assumes the availability of sufficiently high resolution (or theoretically infinite) phase shifters

(i.e., as in Section IV.A of [23]) whereas, the second approach assumes to utilize switches and constant

phase shifters (i.e., the phases of each phase shifter is fixed a priori as in Section IV.B of [23]). Given the

limitations of the current electronic technology, it is almost infeasible to have low cost and sufficiently

6The same approach can also be applied for imperfect R.
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high resolution phase shifters. For this reason, we believe that the second implementation approach is

realistic (see also the discussions in Section VI-B).

As each of the elements of U has a maximum modulus of 1, Ū can be chosen as the first αNRF

columns of U. From these discussions, one can understand that the solution obtained in Section III is

useful for designing the hybrid analog-digital channel estimator with NRF < N .

Optimality: If rank(W?) ≤ NRF and α = 1, then the optimal solution of (22) becomes Ū = U and

W̄ = DVH . This is due to the fact that the objective function of (22) is lower bounded by the minimum

value of (5). However, as rank(W?) ≤ NRF may not hold always, choosing Ū as the first αNRF columns

of U is not optimal for an arbitrary parameter settings.

For the given Ū, (22) and (23) can be solved exactly as in Section III. After solving (22), we will have

the following normalized MSE

ξ̄ =
1

N
tr{ξ̄}. (25)

Note that one can preselect Ū different from the current paper. However, as the focus of the paper is

to study the training-throughput tradeoff of the proposed hybrid analog-digital architecture, we utilize this

Ū. And as will be detailed in the next subsection, the approach of examining the tradeoff between the

training duration and its corresponding throughput can still be extended for other choices of Ū.

B. Training-Throughput Tradeoff

In this section, we study the training-thoughput tradeoff for single user case when NRF < N and R is

known perfectly. Data transmission can take place either in the downlink or uplink channel. As the BS

has antenna arrays, it applies beamforming both in the downlink and uplink channels. By doing so, we

will have the following estimated signals

x̃ =hHbx+ nd Downlink channel, x̃ = aH(hx+ nd) Uplink channel (26)

where x is the transmitted signal which is assumed to have E|x|2 = 1, x̃ is the estimate of x, b (aH) is

the precoding (decoding) vector, and nd and nd are additive noises in the downlink and uplink channels,
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respectively with nd ∼ CN (0, σ2
d) and nd ∼ CN (0, σ2

dI).

Note that the current paper examines both the training and data transmission phases. In some cases, it

may be required to utilize different SNRs in these two phases. Specifically, the channel estimation phase

may need to have high SNR to obtain better performance in the beamforming phase. One approach of

controlling the SNR is by assigning different transmission powers in these two phases (i.e., the noise

variance is fixed), and the other approach is to set the same transmission powers in both training and

data transmission phases, and assume different noise variances. In the current paper, we have followed the

latter approach just for mathematical convenience and better flow of the text. Nevertheless, in practice, the

noise variance would be the same both in the channel estimation and beamforming phases. The desired

SNR levels will, therefore, be maintained just by controlling the transmission power.

When K = 1, the downlink and uplink ZF approaches turn out to be maximum ratio transmission

(MRT) and maximum ratio combining (MRC) approaches, respectively which can be designed as [23]

b =κh̄ DL−MRT, a = h̄H UL−MRC (27)

where κ = (E{h̄Hh̄})−1/2 is chosen to ensure that the average transmitted power in the uplink and

downlink channels are the same (i.e., unity), and DL-MRT and UL-MRC denotes the downlink MRT and

uplink MRC approaches, respectively.

According to [23], the transmitter and receiver vectors b and a can be implemented with a hybrid

analog-digital architecture without performance loss when NRF ≥ K. For this reason, NRF = K = 1 is

sufficient for the transmission phase. Under this setting, the downlink and uplink average SNRs become

E{γ} =
E|hHbx|2

E|nd|2
=
|t|2 + t̃

σ2
d t̄

DL−MRT, E{γ} =
E|aHhx|2
E|aHnd|2

=
|t|2 + t̃

σ2
d t̄

UL−MRC (28)

where

E{h̄Hh̄} = t̄, E{|hHW̄n̄|2} = t̃, E{hHW̄ŪHh} = t (29)

with t = tr{RM}, t̃ = σ2
t tr{W̄HRW̄}, t̄ = tr{MRMH} + σ2

t tr{W̄HW̄} and M = W̄HŪH . In
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particular, when σ2
d � 1 and h is an i.i.d Rayleigh fading channel with R = I, we will have

E{γ}σ2
d�1 ≈

tr{ŪHR2Ū(ŪHRŪ)−1}
σ2
d

=
α

σ2
d

, DL−MRT and UL−MRC. (30)

With the above average SNRs, we get the following average normalized throughput7

Th =E

{
(Tc − αTs)

Tc
log2(1 + γ)

}
≤ (Tc − αTs)

Tc
log2(1 + E{γ}) (31)

where the second inequality employs Jensen’s inequality as log(1 + x) is a concave function [55]8.

As we can see from (28), E{γ} depends on t, t̃ and t̄ which are functions of Ū. This validates that E{γ}

depends on the training duration α. In particular, increasing α increases E{γ} (easily seen from (30)) but

it decreases (Tc − αTs). This shows that the average throughput of the considered hybrid architecture is

not necessarily the same for all training periods. Hence, α must be optimized to solve (1) as

max
α

(Tc − αTs)
Tc

log2(1 + E{γ}). (32)

To get better insight about the optimal α, we consider the following lemma.

Lemma 2: When NRF = 1, MRT (MRC) beamforming is employed and each of the elements of h is an

i.i.d Rayleigh fading, (32) is strictly concave optimization problem where the optimal α is unique and can

be obtained by simple bisection search method. Furthermore, for an arbitrary h with known covariance

matrix R with
(∑α

i=1
g2i

gi+σ2
t

)
� σ2

t and E{γ} � 1 (i.e., at very high SNR), (32) is also a concave

optimization problem where the optimal α can be found from

(β − α) log2[f̄(α + 1)]− (β − α + 1) log2[f̄(α)] = log2(γmax) (33)

where gi are the eigenvalues of R sorted in decreasing order (i.e., g1 ≥ g2 ≥, · · · ,≥ gN ), γmax = g1
σ2
d
,

f̄(α) =
∑α

i=1 δi and δi = gi
g1

with 0 ≤ δi ≤ 1.

Proof: See Appendix A

It is evident that γmax increases as the spatial correlation of the UE’s channel increases. From (33),

we can thus notice that the optimal α decreases as the channel correlation increases. In other words,

7Since E{γ} is the same in both the downlink and uplink channels, the average normalized throughput is the same in both of the channels.
8As will be demonstrated in the simulation section, this bound is tight.
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maximum training duration is required when the UE’s channel coefficients are independent. This fact has

also been validated in the numerical and simulation sections.

As can be seen from Fig. 1, both channel estimation and data transmission operations are executed in

each frame. In the Tc − τ duration, data transmission can be performed by three approaches. In the first

approach, each of the Tc−τ duration is partitioned for both uplink and downlink channel data transmissions.

In the second approach, either of the uplink or downlink data transmission takes place alternatively in

each frame. The third approach could be a combination of the first and second approaches. In all these

approaches, since E{γ} is the same in the downlink and uplink channels, the optimal α of (32) is the

same for all of these three transmission approaches.

V. CHANNEL ESTIMATION AND TRAINING-THROUGHPUT TRADEOFF FOR MULTIUSER WHEN

NRF < N

The key difference between the single user and multiuser cases is that the former does not experi-

ence interference while the latter does. This interference arises both during channel estimation and data

transmission phases. In the following, first we provide our channel estimation approach for multiuser

system employing hybrid analog-digital architecture, and then we utilize the estimated channel to study

the tradeoff between training duration and throughput.

A. Channel Estimation

Like in Section IV, the channel estimation phase can be performed both for perfect and imperfect Rk

cases. To remove the effect of interference between the channel vectors of K UEs, we assume that α

is a multiple of K. And under this setting, the channel of each UE can be decoupled by allowing K

orthogonal pilots for fixed analog channel estimator part. In this regard, we suggest to fix Ūi (i.e., the

analog channel estimator matrix) constant for the ith set of K trainings. By doing so, one can get

h̃ki = ŪH
i (hk + ñk) (34)
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where ñk is as defined in (3). Now if we apply α = θK trainings and introduce the digital channel

estimator of the kth UE W̄k, we can express the estimate of hk as

h̄k = W̄H
k h̃k (35)

where h̃k = [h̃Tk1, h̃
T
k2, · · · , h̃Tkθ]T and Ū = [Ū1, Ū2, · · · , Ūθ]. The design of Ū and W̄k can be examined

like in (22) and (23) for perfect and imperfect Rk cases, respectively. Furthermore, it can be shown that

the joint optimization of Ū and W̄k will result to a non-convex problem. For this reason, we preselect

Ū and optimize W̄k for fixed Ū like in the above section. To this end, we choose Ū as the first θNRF

columns of U, where

W? =[W?
1,W

?
2, · · · ,W?

K ] = UDVH , (36)

D is a diagonal matrix containing the non-zero singular values of W? arranged in decreasing order, and

W?
k are the solutions obtained from (6) for perfect Rk case (by solving (12) for imperfect Rk case).

Once the channel estimation is performed, we will have the following normalized total MSE

ξ̄ =
1

KN

K∑

k=1

tr{ξ̄k}. (37)

B. Training-Throughput Tradeoff

This subsection discusses the training-throughput tradeoff for multiuser scenario with perfect Rk. For

better exposition of the proceeding discussions, here we also assume that α is a multiple of K. Under this

assumption and after doing some mathematical manipulations, we can rewrite the combined estimated

channel of all UEs H̄ , [h̄1, h̄2, · · · , h̄K ] obtained from (35) as

H̄ = MHd + W̄N̄d (38)

where M = [M1,M2, · · · ,MK ] with Mk = W̄H
k ŪH , W̄ = [W̄1,W̄2, · · · ,W̄K ], Hd = blkdiag(h1,h2, · · · ,hK)

and N̄d = blkdiag(n̄1, n̄2, · · · , n̄K). If we again assume that the channels of all UEs are uncorrelated

which is usually the case in practice, we will have

E{H̄HH̄} = diag(t̄1, t̄2, · · · , t̄K), E{(MHd)
HH} = E{HHMHd} = diag(t1, t2, · · · , tK) (39)
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where t̄k = tr{RkM
H
k Mk}+ σ2

t tr{W̄H
k W̄k} and tk = tr{RkW̄

H
k ŪH}.

The data transmission phase can be either in the uplink or dowlink channel. To this end, we employ

the well known ZF approach in both the downlink and uplink transmission phases, respectively as

B =κ̃H̄(H̄HH̄)−1 DL− ZF, A = (H̄HH̄)−1H̄H UL− ZF (40)

where κ̃ = (E{tr{(ĤHĤ)−1}})−1/2 is introduced to maintain the BS average transmitted power to unity,

and DL-ZF (UL-ZF) denotes the downlink (uplink) zero forcing.

With these beamfoming matrices and using (39), the downlink and uplink average SNR of the kth UE

are given as

E{γk} =
κ̃2

σ2
d

[
HHH̄(H̄HH̄)−2H̄HH

]

k,k

=
|tk|2

σ2
d|t̄k|2(

∑K
i=1 t̄

−1
i )

, DL− ZF and UL− ZF. (41)

And the average normalized throughput becomes

Th =E

{
(Tc − αTs)

Tc

K∑

i=1

log2(1 + γi)

}
≤ (Tc − αTs)

Tc

K∑

i=1

log2(1 + E{γi}). (42)

Like in the single user case, E{γk} depends on tk and t̄k which are functions of Ū. This validates that

E{γk} depends on the training duration α which may need to be optimized for maximizing Th as

max
α

(Tc − αTs)
Tc

K∑

i=1

log2(1 + E{γi}). (43)

For better exposition on the optimal α for multiuser systems, we consider the following lemma.

Lemma 3: When α = θK and the channel of each UE is i.i.d zero mean Rayleigh fading (i.e., Rk = qkI),

(43) is a strictly concave optimization problem where the optimal θ is unique and can be obtained by

simple bisection search method. Specifically, when E{γk} � 1 (i.e., at high SNR), the optimal θ satisfies

β

θ
−K log2(θ) = K

[
1 + log2

(
q̄

σ2
d

)]
(44)

⇒ K

[
1 + log2(θ) + log2

(
q̄

σ2
d

)]
=
β

θ

where q̄ =

(∑K
i=1

qi+σ
2
t

q2i

)−1

.

Proof: See Appendix B
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From (44) one can notice that the optimal θ decreases when q̄ increases (i.e., the optimal training

duration increases as the SNR decreases). This fact has also been demonstrated both in the numerical and

simulation results by considering practically relevant SNR regions.

For the fixed q̄, σ2
d and θ (i.e., independent of K), one can notice from (44) that β may need to increase

as K increases to maintain the above equality which is required at optimality. From this discussion, we

can understand that the maximum possible value of β for the mmWave and microwave frequency bands

may vary from one scenario to another (i.e., cannot be determined a priori). However, the minimum value

of β should be the same as that of the optimal training duration obtained from the fully digital architecture

case. This is because the digital architecture has more degrees of freedom (which consequently help utilize

the minimum training duration) than that of the hybrid architecture.

In the multiuser setup, providing analytical proof showing that (43) is concave for general settings is

not trivial as the E{γk} of (28) depends on K, Rk, σ2
t and σ2

d. Nevertheless, since computing E{γk}

numerically is quite simple for the given Rk, it is still possible to get the optimal θ by examining Th

numerically. And as will be demonstrated in the numerical and simulation sections, problem (43) is still

concave for practically relevant parameter settings.

Note that the analog channel estimation matrix Ūi is realized using RF electronic components which

usually introduce some delays when the corresponding matrix is switched from Ūi to Ūi+1. For instance,

in the single user setup, Ūi may need to be updated every Ts. However, one can still treat ỹi of (17) as

the received signal obtained at each measurement period Tm which consists of Ts and possible delay Td

(i.e., Tm = Ts + Td). And, from the discussions of Sections IV and V, one can learn that the optimal

training duration does not depend on the specific values of Tm(Ts). For this reason, the introduction of

delays in the analog components will not affect the analysis of the current paper. We would also like to

point out that adaptive compressive sensing method has been utilized in [24] where the authors employ

the number of measurements (observations) to facilitate the channel estimation. This paper also follows

the assumption that the analog beamforming matrix be varied for each measurement (see (9) of [24]).
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Extension for the case where α 6= θK: The channel estimation and training-throughput tradeoff

discussions assume that α is a multiple of K. However, it may also be interesting to consider the case

where α 6= θK. In such a case, we propose to allow only the first K̄ = rem( α
K

) UEs transmit their

orthogonal pilots during the channel estimation phase when (θ − 1)K < α < θK,∀θ. And these K̄ UEs

can be selected based on their equivalent channel gains (i.e., tr{ŪH
θ RkŪθ}). By doing so, each UE’s

channel vector will not experience interference from the other UE’s channel. To compute the optimal α,

we suggest to use a two step approach, i.e., first we compute θ using (43) (fast searching), then we tune

α in the range (θ− 1)K ≤ α ≤ (θ+ 1)K (tuning). By doing so, the complexity of searching the optimal

α can be reduced significantly9.

Complexity: The computational complexity of the considered training-throughput tradeoff arises from

solving the channel estimator discussed in Section III-C and the complexity of Appendix A (B) (i.e.,

computation of the optimal training time). However, since the optimal solution computed from Appendix

A (B) can be obtained using bisection search which has negligible computational load [49], the overall

complexity of the training-throughput tradeoff study is the same as the one discussed in Section III-C.

We would like to recall here that the training-throughput tradeoff is studied by utilizing the normalized

throughputs Th given in (31) and (42). Since each of these expressions has an outer expectation term,

optimizing Th as it is appears to be challenging. For this reason, we employ Jensen’s inequality to get

the upper bound of the normalized throughput which has convenient mathematical structure for studying

the training-throughput tradeoff. Furthermore, we have demonstrated by computer simulation that the

examined throughput is tight (see Section VI-A). However, this simulation result cannot act as a general

proof to ensure the tightness of the upper bound throughput. Therefore, studying the training-throughput

tradeoff by considering the exact (theoretically tight bound) throughput is left for future research.

Up to now, we assume that the covariance matrix of each UE is known either perfectly or imperfectly.

9As will be clear in the numerical and simulation sections, the optimal α decreases as the rank of Rk decreases. This fact again can be

exploited to get the optimal α with reduced complexity.
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In fact, when Rk are known and available a priori (for example in the i.i.d Rayleigh fading channel

environment), there is no need to estimate the covariance matrix. However, this may not happen for all

scenarios such as an indoor environment. This validates the need to estimate the covariance matrix. In this

regard, we have provided a brief summary of the sample channel covariance matrix estimator for each

UE when NRF < N in Appendix C10.

Extension to Multiuser MIMO Case: In the analysis of this paper, it is assumed that each of the

UEs is equipped with single antenna. However, the deployment of multiple antennas are adopted in

different existing standards. In microwave frequency bands, as each of the UEs is likely equipped with

few number of antennas, the conventional digital architecture is still a reasonable solution. For such a

case, one can apply the training-throughput tradeoff study of the current paper just by treating the number

of antennas as the total number of ”virtual single antenna UEs”. However, at mmWave frequencies, a

hybrid architecture can be deployed at each UE. For such a case, one can study the training-throughput

tradeoff by considering two systems: The first system assumes that each UE utilizes prefixed analog

channel estimation and beamforming matrices. This analog matrix can be selected by exploiting the

history of channel covariance statistics (such an approach drastically reduces the power consumption and

computational load at each UE). For this system, one can notice that the analysis of the current paper can

be applied straightforwardly. The second system does not impose any a priori assumption on the analog

architecture of each UE. In general, such an assumption leads to a superior performance at the expense

of increased complexity. And studying the training-throughput tradeoff for this system is still an open

problem and is left for future work.

VI. NUMERICAL AND MONTE CARLO SIMULATION RESULTS

This section provides numerical and Monte Carlo simulation results of the normalized MSE and

throughput expressions. In this regard, we set NRF = K, σ2
t = σ2

d, β = 2KTo, α = θK and we vary

10We would like to point out here that as the analysis of the current paper depends on Rk which is the same for all sub-carriers, the

training-throughput tradeoff study is also valid for frequency selective channels.
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To, N , K, θ,Rk, where To is introduced for convenience. To this end, Rk are taken from a widely used

exponential correlation model as Rk = ρ
|i−j|
k , where 0 ≤ ρk < 1. We have used exponential correlation

model because of the following two reasons11. First, the exponential model is physically reasonable in a

way that the correlation between two transmit antennas decreases as the distance between them increases

[44]. Second, this model is a widely used antenna correlation model for an urban area communications

where traffic is usually congested [56]. We utilize the SNR which is defined as E{|xk|2}
σ2
d

(i.e., the multiuser

version of x in (26)) and normalized training duration (i.e., θ).

A. Numerical Results

This subsection presents the numerical results obtained from the normalized MSE and throughput

expressions for the scenario where Rk are known perfectly.

1) Single User: The achieved normalized MSE ξ̄ for N = 64 and To = 64, and different θ, ρ = ρ1 and

SNR is plotted in Fig. 2. As can be seen from this figure, increasing θ improves the quality of the channel

estimator by reducing the MSE which is expected. On the other hand, for a given operating SNR, the

required training duration to achieve a given target MSE decreases as ρ increases. This result is expected

because as ρ increases, λi
λ1

with λ1 ≥ λ2, · · ·λN decreases with i which consequently help to reduce the

training duration. Fig. 3 shows the achievable throughput versus training duration for different SNR and

ρ.

As can be seen from this figure, despite the conventional channel estimation approach, the optimal

training duration of the proposed hybrid analog-digital channel estimator is not necessarily the same for

all ρ. In particular, the optimal training duration decreases as the rank of the channel covariance matrix

decreases (i.e., as ρ increases). As an example, when SNR=10dB, the optimal training durations are around

4Ts, 12Ts and 20Ts for ρ = 0.9, 0.5 and 0 (i.e., i.i.d Rayleigh fading channel), respectively. On the other

hand, less training period is employed when the UE’s channel is highly correlated which consequently

11We have also applied the analysis of the current paper for ULA and uniform planar array (UPA) channel models, and have found similar

training-throughput tradeoff characteristics to that of the current paper. More detailed results can be found in the next section.
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Fig. 2. Normalized MSE versus training duration of the hybrid

analog-digital channel estimator for single user case.
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Fig. 3. Normalized throughput of the hybrid analog-digital

channel estimation and beamforming for single user case.

results a higher normalized throughput. These results confirm that the training period should be selected

carefully when the BS has less number of RF chains than that of antennas.

2) Multiuser: This subsection examines the training-throughput tradeoff for multiuser case. To this end,

we set K = 4 To = 32, normalized SNR of all users as {10, 20}dB, and three sets of ρ as ρ1 = [0, 0, 0, 0],

ρ2 = [0.5, 0.5, 0.3, 0.5] and ρ3 = [0.85, 0.9, 0.75, 0.95]. Fig. 4 shows the througput versus normalized

training for these settings. As we can see from this figure, the optimal training duration depends on

the channel coherence time. Furthermore, like in the single user case, the optimal θ for multiuser case

decreases as the correlation coefficients of all UEs increase. On the other hand, for a given ρ, the optimal

training duration is not necessarily the same for all SNR regions. For instance, when ρ = ρ2, the optimal

θs are around 18 and 25 for the 20dB and 10dB normalized SNR values, respectively. This observation

validates the optimal structure of θ which is provided in Lemma 3 for ρ = 0.

B. Simulation results

This subsection demonstrates the theoretical normalized MSE and throughput expressions via Monte

Carlo simulations. All of the results are obtained by averaging 20000 channel realizations. For this

subsection, we employ N = 64, K = 4 and Tc = 256Ts, and the training symbols P are taken from the
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Fig. 5. Theoretical and simulated normalized MSE of the

hybrid analog-digital channel estimator with perfect ρ.

discrete Fourier transform (DFT) matrix with appropriate size.

1) Channel Estimation: The channel estimation phase is examined both for perfect and imperfect Rk

scenarios. To this end, this subsection verifies the theoretical normalized MSE expressions, and validates

the effectiveness of the proposed robust channel estimator compared to that of the non-robust one. Fig. 5

shows the theoretical and simulated normalized MSEs for different θ when the SNR is set to 10dB and

20dB, and Rk is known perfectly and is computed from ρ = [0.4, 0.6, 0.2, 0.7]. As can be seen from this

figure, the simulated normalized MSEs match that of the theoretical ones for both SNRs.

In the next simulation, we examine the effect of covariance matrix estimation error on the MSE of

the robust and non-robust designs. Towards this end, we compare the MSE achieved by the robust and

non-robust channel estimators. Fig. 6 shows the achieved normalized MSEs for the estimated values

ρ̂1 = [0.40, 0.60, 0.20, 0.70], ρ̂2 = [0.75, 0.90, 0.70, 0.95] and ρ̂3 = [0.95, 0.96, 0.90, 0.98] while setting

εk =
√
N . And the true R

1/2
k = R̂

1/2
k + ∆k, where ‖∆k‖ ≤ εk. As can be seen from this figure, the

robust design achieves less normalized MSE compared to that of the non-robust one, and its improvement

is higher when ρ is higher. This is because as ρ is higher, the preselected Ū in (22) will be closer to its
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Fig. 7. Theoretical and simulated normalized throughput of

hybrid analog-digital channel estimator and beamformer.

optimal value which consequently helps to improve the performance of the robust channel estimator12.

As expected, the lowest normalized MSE is achieved when ρ is known perfectly.

2) Data Transmission: In this subsection, the throughput expression given in (42) is verified via

computer simulations. We also demonstrate the optimal training duration and examine the tightness of

the average upper bound throughput given in (42) with simulations. In this regard, we choose ρ =

[0.40, 0.60, 0.20, 0.70] and consider the case where Rk is known perfectly. To plot the simulation normal-

ized throughput, first we compute the SNR from Monte Carlo simulation for each channel realizations,

then we employ the first equality of (42) for the evaluation of the average normalized throughput.

Fig. 7 shows the theoretical and simulated normalized throughput versus training when Rk is known

perfectly. This figure demonstrates that the bound derived in (42) is tight since the simulated normalized

throughput is almost the same as that of the upper bound throughput for both the downlink and uplink

ZF beamforming schemes13. On the other hand, the optimal θ that maximizes the average throughput

decreases as the SNR increases which is expected. From Fig. 7, one can also realize that utilizing the

12The non-robust channel estimator is the design that does not take into account εk in the design. And the perfect channel estimator

corresponds to the case where εk = 0.
13The cause of this throughput tightness is likely due to the fact that massive MIMO systems become less sensitive to the actual entries

of the channel matrix which yields E{γ} ≈ γ (i.e., channel hardening [4]).
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solution of [32] (i.e., θ = 1) yields a significant reduction in throughput.

Note that the simulation results of this paper assumes that Ū is realized with sufficiently high (theoreti-

cally infinite) resolution phase shifters. When the hybrid architecture employs constant phase phase shifters

and switches, each of the elements of Ū can be realized with some accuracy only [23]. Specifically, as

the required accuracy increases, the number of fixed phase phase shifters and switches increase. When the

accuracy is set to 10−1 (i.e., the absolute difference between Ūij and its approximated value), we have

found almost the same MSE and throughput as those of the plots of this section. The simulation results

demonstrating this fact has been omitted for conciseness.

VII. EXTRA SIMULATION RESULTS FOR ULA CHANNELS

Millimeter wave channels are expected to be specular and have low rank, and may not necessarily

follow the same covariance structure as that of the exponential channel correlation models discussed in

the above section. In this regard, this section provides some simulation results on the evaluation of the

training throughput tradeoff for mmWave channels. To this end, we consider a ULA having different

number of scatterers (Lk) (all the other settings are the same as that of the above section). The AOD of

each UE is assumed to have arbitrary phases taken from the uniform distribution in [0, 2π].

Fig. 8 shows the training versus throughput curves for different number of scatterers. All the other

parameter settings are as in the first paragraph of Section VII of the revised manuscript. As can be seen

from this figure, the optimal training duration increases as Lk increases which is expected. This is because,

the rank of the channel increases as Lk increases which fits with the theoretical result provided in the

above section.

VIII. CONCLUSIONS

This paper considers hybrid analog-digital channel estimation and beamforming for multiuser massive

MIMO systems with limited number of RF chains. Under these settings, first, we design novel TDD MMSE

based hybrid analog-digital channel estimator by considering both perfect and imperfect channel covariance
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Fig. 8. Theoretical and simulated normalized throughput versus training of the hybrid analog-digital channel estimator and beamformer

with ULA channel model having different number of scatterers (Lk). (a): Lk = 4, (b): Lk = 12, (c): Lk = 24, (d): Lk = 64.

matrix cases. Then, we utilize the estimated channels to exploit beamforming for data transmission.

Under the assumption of perfect channel covariance matrix, we show that there is a tradeoff between the

training duration and achievable throughput when the number of RF chains is limited and hybrid analog-

digital channel estimation and beamforming is applied. Specifically, we exploit the fact that the optimal

training duration that maximizes the overall network throughput depends on the available number of RF

chains, channel coherence time and covariance matrices of all UEs. We also show that the training time

optimization problem can be formulated as a concave maximization problem for some system parameter
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settings where its global optimal solution can be obtained efficiently using existing tools. The analytical

expressions are validated by performing extensive numerical and Monte Carlo simulations. The robustness

of the proposed robust channel estimator is demonstrated using computer simulations.

APPENDIX A

PROOF OF Lemma 2

As can be seen from (28), E{γ} is the same for both MRC and MRT approaches. For this reason,

this appendix provides the proof of Lemma 1 when the BS has 1 RF chain and employ downlink data

transmission. After some mathematical manipulations, the average SNR can be expressed as

E{γ} =
E|hHb|2

σ2
d

=
1

σ2
d

[(∑α
i=1

g2i
gi+σ2

t

)2

+ σ2
t

∑α
i=1

g2i
(gi+σ2

t )2

]

∑α
i=1

g3i +σ2
t g

2
i

(gi+σ2
t )2

(45)

where gi are the eigenvalues of R sorted in decreasing order (i.e., g1 ≥ g2 ≥, · · · ,≥ gN ).

A. When h is an i.i.d Rayleigh fading channel

Under an i.i.d Rayleigh fading channel, we will have g1 = g2 = · · · ,= gN , g and E{γ} becomes

E{γ} =
1

σ2
d

(
αg2 + σ2

t

g + σ2
t

)
.

Thus, we can rewrite (32) as

max
α

(β − α)

β
log2(αa+ b) , f(α) (46)

where a = g2

σ2
d(g+σ2

t )
and b =

σ2
t

σ2
d(g+σ2

t )
+ 1. From the second order derivative of f(α) we get

d2f

dα2
= − a

αa+ b

(
2

β
+
β − α
β

a

αa+ b

)
. (47)

As a > 0 and b > 0, d2f
dα2 < 0 for 0 < α ≤ β. Therefore, (46) is strictly concave function, and the optimal

α is unique and obtained by applying simple bisection search approach [49], [57].
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B. Arbitrary h

In the following, we show that (46) is strictly concave for an arbitrary R (i.e., h) when
(∑α

i=1
g2i

gi+σ2
t

)
�

σ2
t (i.e., at very high SNR). For such a setting, E{γ} of (45) can be expressed as

E{γ} =
1

σ2
d

α∑

i=1

gi = γmax

α∑

i=1

δi (48)

where γmax = g1
σ2
d
, δi = gi

g1
with 0 ≤ δi ≤ 1. We again assume that E{γ} � 1. Under such assumption,

we can reexpress the optimization problem (32) as

max
α

(β − α)[log2(γmax) + log2(f̄(α))] , f(α) (49)

where f̄(α) =
∑α

i=1 δi. The first and second derivatives of f(α) can be obtained by applying a finite

difference method. Upon doing so, we will have

df(α)

dα
=(β − α)[log2(f̄(α + 1))− log2(f̄(α))]− [log2(γmax) + log2(f̄(α))] (50)

d2f(α)

dα2
=(β − α) log2[f̄(α + 2)]− 2(β − α + 1) log2[f̄(α + 1)] + (β − α + 2) log2[f̄(α)]

=(β − α)(log2[f̄(α + 2)]− log2[f̄(α + 1)])− (β − α + 2)(log2[f̄(α + 1)]− log2[f̄(α)])

≤(β − α)(log2[f̄(α + 1)]− log2[f̄(α)])− (β − α + 2)(log2[f̄(α + 1)]− log2[f̄(α)])

=− 2(log2[f̄(α + 1)]− log2[f̄(α)]) ≤ 0 (51)

where the fourth and last inequalities are because of the fact that δi are arranged in decreasing order and

f̄(α) ≤ f̄(α + 1) ≤ f̄(α + 2). As d2f(α)
dα2 ≤ 0, f(α) is again concave function and the optimal α can be

obtained by equating df(α)
dα

= 0 as in (33).



Main manuscript: Accepted in IEEE Transactions on Communication

APPENDIX B

PROOF OF Lemma 3

From (39), one can obtain

t̄k = tr{RkW̄
H
k ŪH} = tr{ŪHR2

kŪ(ŪHRkŪ + σ2
t I)}

tk = tr{RkW̄
H
k ŪH}+ σ2

t tr{WH
k RkWk}

= tr{ŪHRkŪ(ŪHRkŪ + σ2
t I)−1ŪHR2

kŪ(ŪHRkŪ + σ2
t I)−1}+ σ2

t tr{ŪHR2
kŪ

H(ŪHRkŪ + σ2
t I)−2}.

When hk are i.i.d zero mean Rayleigh fading, Rk can be represented by a scaled identity matrix (i.e.,

Rk = qkI). Consequently, tk and t̄k can be expressed as tk = t̄k = θ
q2k

qk+σ2
t
. By plugging these expressions

into (39), one can represent the average SNR of the kth UE as

E{γk} =
q̄

σ2
d

θ. (52)

where q̄ is as defined in Lemma 3. By defining fk(θ) , (β − θK) log2(1 + E{γk}), the optimization

problem (43) can be rewritten as

max
θ

K∑

i=1

fk(θ). (53)

After some manipulations, the first and second derivatives of fk(θ) can be expressed as

dfk(θ)

dθ
=−K log2(1 + E{γk}) +

β − θK
1 + E{γk}

dE{γk}
dθ

d2fk(θ)

dθ2
=−K 1

1 + E{γk}
dE{γk}
dθ

+
−K

1 + E{γk}
dE{γk}
dθ

+
β − θK

1 + E{γk}
d2E{γk}
dθ2

(54)

=
−1

1 + E{γk}

[
2K

dE{γk}
dθ

+ (β − θK)
d2E{γk}
dθ2

]
.

It follows that

dE{γk}
dθ

=
q̄

σ2
d

,
d2E{γk}
dθ2

= 0.

By substituting dE{γk}
dθ

and d2E{γk}
dθ2

into (54), one can obtain d2fk(θ)
dθ2

< 0 in the desired region θK ≤ β.

Hence (53) is strictly concave function and the optimal θ can be obtained using bisection approach from

∑K
k=1

dfk(θ)
dθ

= 0 [49].
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Next we examine the optimal θ when E{γk} � 1 (at high SNR regions). For these regions, the optimal

θ will satisfy

K∑

k=1

(
−K log2(1 + E{γk}) +

β − θK
1 + E{γk}

dE{γk}
dθ

)
= 0⇒−K log2(E{γk}) +

β − θK
θ

= 0

⇒β

θ
−K log2(θ) = K

[
1 + log2

(
q̄

σ2
d

)]
. (55)

APPENDIX C

COVARIANCE MATRIX ESTIMATION

As we can see from Fig. 1, the uplink and downlink data, and uplink pilot transmissions are executed in

each Tc. This shows that the BS can exploit the uplink pilot and decoded data symbols to obtain sufficient

samples for computing the covariance matrix of each UE. From the uplink pilot, one can have h̃k which

is defined as (35). For the given h̃k, we suggest a simple least squares estimation approach to maintain

the statistical behavior of hk as

˜̃hkt = Ū(ŪHŪ)−1h̃k = Ūh̃k. (56)

The second equality is due to ŪHŪ = I. Also, during the uplink data transmission, we will have

Yd = ŨH(HXH + N) (57)

where ŨH is the analog unitary matrix in the uplink data transmission phase [23] and it may vary from

one coherence time to the other, and X = [x1,x2, · · · ,xK ] are the transmitted symbols of all UEs with

xk ∈ C(β−α)×1. In practice, as each UE transmits its own data symbols independently, xk are likely to be

uncorrelated. For this reason, the term that contains hk can be obtained from

˜̃hkd =
1

|x̂k|
Ũ(ŨHŨ)−1Ydx̂k ≈ ŨŨH(hk + Nx̂k) (58)

where x̂k are the decoded data symbols of the kth UE. Note that when β − α is higher, the second

approximation term of this expression is closer to equality.
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From the uplink pilot and data transmission phases of L frames, one can compute the following sample

covariance matrix for the kth UE

R̃k =
1

2L
(R̃kt + R̃kd) (59)

where R̃kt =
∑L

i=1
˜̃hkit

˜̃h
H

kit, R̃kd =
∑L

i=1
˜̃hkid

˜̃h
H

kid, and ˜̃hkit and ˜̃hkid are the ˜̃hk obtained from (56) and

(58) for each Tc duration, respectively. It is clearly seen that R̃k contains both the channel and noise

information. As the noise is assumed to be white, it has an impact on the eigenvalues of R̃k only. Thus,

one approach of estimating the channel covariance matrix is

R̂k = VtΓt+VH
t + VdΓd+VH

d (60)

where Γt(Γd) and Vt(Vd) are the eigenvalue and eigenvector matrices of R̃kt(R̃kd), respectively, Γd+ =

[Γd − σ2
dI]+ and Γt+ = [Γt − σ2

t I]+.

We would like to mention here that the current paper proposes a particular approach to estimate Rk. And,

as such an estimate is not necessarily optimal, better estimation accuracy can be achieved by considering

different approach (for instance by incorporating weights in (59)). Furthermore, the estimation of εk from

R̂k is still an open research topic and is left for future research.
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