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Abstract—In this paper, we investigate joint beamforming
and power allocation in multicell multiple-input single-output
(MISO) downlink networks. Our goal is to maximize the util-
ity function defined as the ratio between the system weighted
sum rate and the total power consumption subject to the users’
quality of service requirements and per-base-station (BS) power
constraints. The considered problem is nonconvex and its objec-
tive is in a fractional form. To circumvent this problem, we first
resort to an virtual uplink formulations of the the primal problem
by introducing an aucxiliary variable and applying the uplink-
downlink duality theory. By exploiting the analytic structure of
the optimal beamformers in the dual uplink problem, an effi-
cient algorithm is then developed to solve the considered problem.
Furthermore, to reduce further the exchange overhead between
coordinated BSs in a large-scale antenna system, an effective coor-
dinated power allocation solution only based on statistical channel
state information is reached by deriving the asymptotic optimiza-
tion problem, which is used to obtain the power allocation in a
long-term timescale. Numerical results validate the effectiveness
of our proposed schemes and show that both the spectral effi-
ciency and the energy efficiency can be simultaneously improved
over traditional downlink coordinated schemes, especially in the
middle-high transmit power region.

Index Terms—Coordinated energy-efficient transmission,
uplink-downlink duality, massive multiple-input-single-output
system, beamforming and power allocation.
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I. INTRODUCTION

ULTIPLE-INPUT multiple-output (MIMO) technolo-

gies have attracted much research interest in the past
decade due to the potential of significantly enhancing the link
reliability and improving the spectral efficiency (SE) without
requiring additional transmit power and bandwidth resources
[1]. Among those, multiuser MIMO and coordinated multi-
point transmission and reception (CoMP) have been intensively
studied for advanced cellular systems [2]. The cooperation
between the base stations (BSs) offers great advantages in
suppressing the inter-cell interference and enabling efficient
resource allocation to significantly increase the SE by exploit-
ing the spatial diversity and multiplexing gain [3]-[5].

Recently, besides the objective of improving the SE, energy
efficiency (EE) has become a main focus in mobile commu-
nications, due to the explosive growth of energy consumption
resulting from the exponential increase in mobile multime-
dia data traffic and mobile terminals [6], [7]. Motivated by
these, advanced technologies aiming at much improved EE
have emerged as an important topic both in industry and
academia [8].

EE is usually defined as the ratio of the system weighted
sum rate (WSR) to the system total power consumption.
Recently energy-efficient resource allocation has been widely
studied for orthogonal frequency division multiple access
(OFDMA) downlink networks with single antenna transceiver
or fixed transmit beamformers [9]-[13]. On the other hand,
there have been tremendous research efforts to improve the sys-
tem EE by using multiple antenna technologies [14]-[19]. In
[14] the authors studied the power allocation problem in the
uplink of multiuser MIMO systems and showed that the EE is
maximized by adaptively switching off some of the user anten-
nas. The EE of multiuser MIMO downlink systems was also
studied in [15]-[19]. In particular, in [15], the energy-efficient
multiuser beamforming optimization problem was solved by
approximating the objective with a convex and tight upper
bound function. In [16] a zero-gradient-based energy-efficient
iterative approach was developed which was guaranteed to con-
verge to a local maximum for MIMO interference channel. The
authors in [17] addressed the EE optimization problem by solv-
ing three subproblems and choosing the best one. Focusing on
the downlink of multicell multiuser systems, we addressed in
[18], [19] the energy-efficient beamforming problem with per-
BS power constraints by using jointly fractional programming
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[20]-[22] and the relationship between the user rate and the
minimum mean square error (MMSE). The research results in
the above literature have shown that in many cases, the sys-
tem EE is improved at the cost of decreasing system SE. This
means that it is crucial to achieve a reasonable tradeoff between
EE and SE in the design of a wireless communications system.

Recently, massive MIMO technology has emerged as a
promising solution to improve both SE and EE and is well
analyzed especially for the uncorrelated channel model [23]-
[25]. Particularly its achievable performance in metrics such
as the SINR and sum rate (SR) has been derived with closed-
form expressions for some special cases. For instance, the
deterministic quantity of the SINR for zero-forcing (ZF) and
regularized ZF (RZF) precoding were derived under channel
uncertainty for the multiple-input single-output (MISO) broad-
cast system [26], showing that the performance of massive
MIMO systems mainly depends on the channel statistics and
the channel small fading has little effect. By exploiting the
asymptotic behavior of the achievable performance of massive
MIMO system, recently a number of coordinated beamforming
algorithms have been developed for multicell systems, which
usually have reduced inter-cell communication burden. In [27],
[28], the signal to interference plus noise ratio (SINR) bal-
ancing problem for the multicell massive MIMO system was
solved by deriving the asymptotic expression of the achiev-
able SINR based on large-dimension random matrix theory
(RMT) [29]-[32]. Furthermore, the asymptotic properties of the
SINR were also used to address the power minimization prob-
lem subject to some predefined SINR constraints [33]-[35].
More recently, energy-efficient transmission design for mas-
sive MIMO systems has also drawn much attention. In [36],
the energy-efficient resource allocation problem was studied in
OFDMA downlink network with a large number of transmit
antennas and fixed maximum ratio transmission (MRT) beam-
forming. The tradeoff between SE and EE was investigated in
a massive MIMO uplink system with fixed receiver, such as
maximum-ratio combining (MRC) or zero-forcing (ZF) [37].
More recently, the authors in [38]-[40] investigated the energy
efficiency of massive MIMO systems with non-ideal hardware.
The research results illustrated that the maximal EE is achieved
at some finite number of transceiver antennas when there is a
non-zero circuit power per antenna. Similarly, the studies in
[41] also demonstrated that it is optimal from the perspective
of EE to have a few transceiver antennas when the transceiver
design is power inefficient.

In this paper, we investigate joint beamforming optimiza-
tion and power allocation (JBOPA) for coordinated multicell
downlink systems. First, the problem of interest is formulated
as maximizing the network utility function defined as the ratio
of system weighted sum rate to total power consumption sub-
ject to predefined user rate requirements and per-BS power
constraints. Due to the non-convex nature of the user rate and
the fractional form in the objective, the problem is hard to
solve directly. To circumvent this problem, we first resort to
an virtual uplink formulations of the the primal problem by
introducing an auxiliary variable and the uplink-downlink dual-
ity theory. By exploiting the property that the dual problem
has an analytic beamforming solution, we propose to further
solve the power allocation using a convex approximation. By
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this means, the dual problem can be efficiently solved and
its solution is converted into the downlink using the conven-
tional uplink-downlink theory. We show that the developed
algorithm has provable convergence. Then, in order to further
reduce the exchange of signalling overhead between coordi-
nated BSs, especially in a large-scale system, a new algorithm
used to update the downlink power based on the statistical
channel information is developed by exploiting the property
of a massive MIMO system. Numerical results validate the
effectiveness of our proposed schemes and show that both the
spectral efficiency and the energy efficiency can be simulta-
neously improved traditional downlink coordinated schemes,
especially in the middle-high transmit power region.

The remainder of this paper is organized as follows. The sys-
tem model is described in Section II. Section III reveals the
dual uplink form of the primal optimization problem via some
necessary optimization transformations. An effective optimiza-
tion algorithm based on instantaneous channel information is
proposed in Section IV by exploiting the newly derived uplink-
downlink duality. An extended effective optimization algorithm
based on statistical channel information is further proposed
in Section V to reduce the overhead of information exchange
between coordinated BSs. In Section VI, numerical evaluations
of these algorithms are carried out and conclusions are finally
drawn in Section VIIL

The following notations are used throughout this paper. Bold
lowercase and uppercase letters represent column vectors and
matrices, respectively. The superscripts ()7, and (-)~! repre-
sent the conjugate transpose operator, and the matrix inverse,
respectively. ||A|| denotes the Euclidean norm for vectors and
the Frobenius norm of matrix A. The probability density func-
tion (pdf) of a circular complex Gaussian random vector with
mean g and covariance matrix X is denoted as CN (u, X).
The function ceil (x) rounds the elements of x to the near-
est integers greater than or equal to x. The function floor (x)
rounds the elements of x to the nearest integers less than x.
(x,y)y = max (x, y). 1y denotes N dimensions column vec-

. a.s.
tor with all elements equal one and —> denotes almost sure
convergence.

II. SYSTEM MODEL

Consider a K -cell MU-MISO downlink system where the BS
incell j (j =1,..., K)isequipped with M; transmit antennas
and serves N; single-antenna user. We assume M; > N;,Vj,
thus, user scheduling is not taken into account. Let the k-th
user in cell j be User-(j, k) and the BS in cell m be BS-
m, respectively. Then, the received signal of the User-(j, k) is
denoted as

K Nj
H
Yjk = Z hm,j,k Z N PmaWmanXmn + Zj ks (D
m=1 n=1

where I,y jj € CMmx1 = om,j,kﬁm,j,k denotes the flat fading
channel coefficient from BS-m to User-(, k)!, in which Om, jk

IFor time division duplex (TDD) system, the transmitters can estimate the
channels from the sounding signals received in the reverse link. For frequency
division duplex (FDD) system, the transmitters are provided with quantized CSI
via feedback.
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represents the large-scale channel information from BS-m to
User-(j, k), and h,,_j x has i.i.d. complex entries of zero mean
and variance MLm [26], [28], w; € CMnx1 denotes the unit-
norm beamforming vector for User-(j, k), p; and x;  denote
respectively the transmit power and the information signal
intended for User-(j, k), and z x is a zero-mean circularly sym-
metric complex Gaussian random noise with power spectrum
density w% - Without loss of generality, in the rest of our paper,
we assume that each BS serves the same number of users in
each cell,ie., Nj = N, ij.

For notational
dEANEA IR
VO w5
coefficient from BS-[ 4] to User-([ % ].m — N | % |), where
‘W represents the occupied bandwidth, [-] and |-] denote
respectively the function ceil (-) and the function floor (-),

convenience, define hy =

as the normalized channel flat fading

nm=1,...,N, N = K N. Then, the instantaneous rate of
User-(f%} ,m—N L%J) is calculated as

—
Ry =Wlog(1+Vm), )
where and 7/, denotes the SINR of User-(f%} ,m—N L%J)
and is given as
g 2
o [

Vo=
m v i 5
Z Pn hn’mwn +1

n=1,n#m

with p, = pf%}vm—NL%J and w,, = w(%]vm—NL%J denot-
ing the transmit power and transmit beamforming vector for
User-([ %], m — N | % |), respectively. In this paper, the EE
of interest is defined as the ratio of the weighted sum rate to the

total power consumption, given by

N K ’ @)
EY pm+ Y (M;P.+ Po)

m=1 j=1
where w denotes the collection of all beamforming vectors, p =

[Pi..s P, pﬁ]T,é > 1 is a constant which accounts for
the inefficiency of the power amplifier, P, is the constant cir-
cuit power consumption per antenna which includes the power
dissipations in the transmit filter, the mixer, the frequency syn-
thesizer, and the digital-to-analog converter, Py is the basic
power consumed at the BS which is independent of the number
of transmit antennas’ [36], o, = arm) m-n| 2| denotes the

2The developed algorithms can be implemented in the case where different
BSs serve different number of users in each cell, i.e., N; # N;,i # j.

3Note that in communication system, a higher R, implies a higher code
rate or higher order modulation being used, thereby may increase the power
consumption of the encoder and decoder circuits. This leads to that the power
consumption in the baseband is a function of Ry;, which is usually nonlinear
and makes the EE optimization problem extremely complex. For simplicity,
similar to the existing literature [7]-[17], here this fact is ignored and we
assume that the power consumption at the baseband is a constant and is also
included in Py. This is reasonable due to the fact that the variation of power con-
sumption for different levels of code rates or modulations is in general marginal
in contrast to the basic power consumption.
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weighting factor that is used to represent the priority of User-
([%].m— N|%]) in the system, which is typically included
to achieve a certain fairness index among the users. For exam-
ple, to obtain the proportional fairness, we can set o, = %,

where R, is the average data rate of User-([ %] ,m — N | % |)
in the previous time slots [42], [43].

In order to balance the SE and the EE, our goal is to max-
imize the EE of the K-cell MU-MISO downlink transmission
system subject to some predefined user rate requirements and
per-BS transmit power constrains, i.e.,

%
max f (w,p)
w?p

JN
S.t. Z pm < Pj,VjeK,
m=(j—1)N+1
Vo = VYo Wil = 1, py > 0,¥m € U, ®)

where K={1,...,K}, U={1,..., N}, P; is the transmit
power constraint of BS-j, and y,, represents the target SINR
of User-((%] ,m—N I_%J) Note that, different from the EE
optimization problem considered in the existing literature [14]—
[19], the per-user minimum rate requirements are considered
in our problem formulation making more challenging. In what
follows, we attempt to find its solution from the perspective of
uplink-downlink duality and then design an effective algorithm.
Also, it is worth mentioning that though there is a feasibility
issue in the above optimization problem (5), it is similar to the
power minimization problem subject to a given minimum target
rate demand set as in [34]. Throughout this paper, we assume
that the set of per-user target rate requirements is feasible and
only focus on finding the solution to the problem.

III. PROBLEM TRANSFORMATIONS

It is easy to understand that problem (5) is non-convex in
the optimization variables and therefore it is difficult to find
the globally optimal solution, since the user rate is non-convex
in general for the MISO interference channel. Furthermore,
the objective function in a fractional form brings more obsta-
cles to solve the problem directly. In what follows, we focus
on finding an efficient optimization method to solve problem
(5) by extending the conventional uplink-downlink duality with
reformulating it into the following form based on the per-BS
constraints.

max g w,p, f)
w.p.p

JjN

2

m=(j—DN+1

s.t. pm < Pj,VjekK,

V= Yo Wil = 1, pm > 0,¥m € U,

N
> p
m=1

K
<B)Y PLB <B=I,

j=1

6)
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where § is a newly introduced auxiliary variable, 8* denotes the
ratio of the minimum total transmit power that needs to satisfy
the target SINR constraints to the total power constraints®, and

%am?m
T wp B = ——— NG
BY. Pi+ Y (MjP.+ P)
j=1 j=1

The equivalent relation between problem (5) and problem (6) is
given by the following theorem.
Theorem 1: Problems (5) and (6) have the same optimal
objective value and the same optimal solutions.
Proof: Let woP' and p°P' be the optimal solution to prob-
lem (5) and let W', p°P' and B°P' be the optimal solution
to problem (6), respectively. One can easily prove by contra-

N . K -
diction that Y py/' = B°P' Y P;. Otherwise, ' can be
m=1 j=1
scaled down to achieve a better objective value. On the one
hand, it is easy to know that w°P" and p°P" are also a feasi-
ble solution to problem (5) due to the fact that the constraint
sets of problem (5) is a subset of the constraint sets of prob-

lem (6). On the other hand, let B = Z pm , recalling

K
2 P

J
the per-BS transmit power constraints, we have 0 < B < 1and
easily know that woP' and p°P' are also a feasible solution
to problem (6) in conjunction with the rate constraints. With
these two observations, we can prove by contradiction that
7 (woP', poP') = g (W', poP', B°P") must hold and the same
objective is achieved with the same beamforming and power
solution. Otherwise, the objective with a lower value can be
improved by replacing the beamforming matrix and power vec-
tor with the solution of the other problem, which contradicts
the assumption that these two objective values are both optimal
ones. |

It is easy to verify that the achievable objective value of
(6) monotonically increases with the auxiliary variable 8 in
the range * < B < E"P’ , and monotonically decreases with
the auxiliary variable B in the range " < g < 1. Thus the
optimal value of B can be efficiently obtained through a one
dimension search method such as the simulated annealing algo-
rithm, or the hill-climbing method in the range 8* < 8 <1
[44], [45]. Based on these analysis, in what follows, the origi-
nal EE optimization problem is first transformed into a sum-rate
maximization problem subject to per-BS transmit power con-
straints, per-user target rate requirements and additional sum
power consumption, i.e., (8), where the value of the auxiliary
variable g is fixed. Then, we solve iteratively (8) by updating
via a one dimension search method to obtain the solution to the
energy efficiency optimization problem (6).

4The value of B* can be determined by solving a power minimization prob-
lem (PMP) subject to the same per-BS transmit power constraints and the same
per-user minimum rate demand constraints [34]. Note that the solution to the
PMP is not necessarily the solution to problem (5) [17], [18].

hn = A

4923
%leam \
iN

S.t. Z pmSPpV]eK,

m=(j—1HN+1

%

Y= Vs Wl =1, py > 0,¥Vm € U,

N K

Y pm=BY P ®)

m=1 j=l1

In contrast to the conventional WSR maximization
(WSRMax) problem, problem (8) has additional total power
constraint and minimum SINR requirements, which is named
as extended WSRMax problem, making the problem more
difficult to solve due to the coupling between the optimization
variables. In order to design an effective algorithm, in the
sequel, the uplink-downlink duality is applied to solve problem
(8) which can be rewritten as the following problem.

-
—
w(k):n‘}iszlamRm
m=

> Yous IWnll =1, ppp = 0,Vm € U,

>

StV m
N
m=1

K
mPm < Y (hj+ 2k 41B) Py, ©)
j=1

K+1
where A = {A; >0, > j # 0} are auxiliary variables, and
j=1

+ Ak +1, Ym. Note that a feasible solution to prob-
lem (8) is also feasible for problem (9). It also means that the
optimal objective value of problem (9) for any given A > 0, is
an upper bound on the optimal objective value of problem (8).
Furthermore, it has been shown in [46], [47] that the solution to
problem (8) can be equivalently achieved by solving the prob-
lem mlin ¥ (L). One can easily verify that the function ¥ (L) isa

convex function but is not necessarily differentiable’, so we can
solve the problem mxin ¥ (L) via the sub-gradient algorithm or

ellipsoid algorithm. Furthermore, it is shown in [48] that such
an algorithm is guaranteed to converge to its optimal solution.
The sub-gradient of the function ¥ (X) is given by the following
proposition, that can be proved with a similar method as used
in [46].

Proposition 1: The sub-gradient g of the function v (A) with
fixed parameters A

& *
P]_ Z pm’ j=17-"7K7
g = m—(]fl)N+l (10)
ﬂZP—Zp(*) j=K+1,

SNote that the interior point method requires the twice continuously differ-
entiable property, however, the function ¥ (1) is a convex function but is not
necessarily differentiable, so the interior point method cannot be used to solve
the problem of interest.
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where p™* is the optimal solution of problem (9) with fixed
parameters A = A and .

The conventional uplink-downlink duality theory in [49],
[50] shows that problem (9) is dual to the following virtual
uplink problem:

St Vo = Vs Wl = 1, g = 0, ¥m € U,
N K
Gm < Z(/\j+ﬂ)\K+1)PJ~ (11)
m=1 j=1

in which g € Rf“ denotes the virtual uplink transmit power
) <« <«

vector with ¢, = qrmym-N|% | and R,, = R [2]m-N|2 |

denotes the virtual uplink rate of User-([ 5], m — N | % |) and

is given by

<«

R =Wiog (14 7). (12)

e
where ¥, =

12 []m—n|2 | denotes the virtual uplink SINR
of User-([%—‘ ,m—

N I_%J) and is calculated as

—H
dm ”hm,mw’" ”2

13)

<«
Vm

N . ~
Z qn”hm’nwﬂ’lnz +)"m

n=1,n#m

According to the uplink-downlink duality theory [46], [47], the
uplink and the downlink have the same achievable SINR region
with the same beamforming vectors and the same total transmit
power constraint. This means that once the uplink problem is
solved, the beamforming solution to the downlink problem can
be obtained at the same time, while the downlink power solu-
tion remains to be calculated. Using the fact that the uplink and
the downlink achieve the same SINR, we have

—H 2
o |

—H

N 2
Z Pn hn,mwn + 1

n=1,n#m

Qm”hm,mwm”

— . (14)
N —H N
Z ‘1n||hm,nwm||2 +)\-m

n=1,n#m

By rearranging the terms in (14), we have

—H

2
hy o Wn| +am

N
qm Z Pn

n=1,n#m

N
_H ~
= Pm Z qn ||hm,nwm ”2 + PmAm

n=1,n#m

(15)

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 12, DECEMBER 2015

— 2
Adding the term g, p, thimwm H on both sides of (15) and
summing with respect to the subscript m, we have

N _ N
Am Pm = ZQm-

m=1 m=1

(16)

The above equalities can be used to calculate the downlink
power solution from the corresponding uplink solution.

IV. JBOPA ALGORITHM WITH INSTANTANEOUS
CHANNEL INFORMATION

In this section, we focus on finding the solution to the
rate constrained EE maximization problem (5). Section III has
revealed that solving (5) is equivalent to iteratively solving the
extended WSRMax problem (8) for fixed g and searching for
the optimal value of 8, which can be further recast to solve the
virtual uplink problem (11).

A. Algorithm Design

It is well known that the optimal receiver beamforming vec-
tor that maximizes the uplink SINR expressed in (13) is the
MMSE filter, which is in general calculated as® [50]

(Z A+ Fond) " Topm

Wy = = ,Vm e U, (17)
[(®n +700) " o
N = —H
where X,y = Y gnhmnh,, ,. In what follows, we focus
n=1,n#m

on the maximization over g of problem (11) for fixed w and B
that can be formulated as follows:

(18)

%Note that though the constants Pj, Pr and ¢ which model the power con-
sumption in transceiver circuits and the power amplifier efficiency affect the
energy efficiency through the denominator of the energy efficiency defined in
(4), Py and P, are independent of the expression of the normalized beamformer
w, as shown in (17). In other words, they are only related with the search over
B and thus has an impact on the value of energy efficiency. It also means that
a possible mismatch between the true value of P., Py and the value that is
used to design the proposed beamformer only impacts the value of energy effi-
ciency but does not impact the expression of the beamformer. Furthermore, it
is worth mentioning that the considered problem (5) is more complex than the
energy efficient design in [15]-[19] where the user rate requirements is not tak-
ing into account. Different from them, we solve the complex energy efficiency
optimization problem from the perspective of uplink-downlink duality by itera-
tively updating an auxiliary variable. In addition, we would like to point out that
the solution of the beamforming vector w given by (17) is the optimal receiver
to the dual problem (11) of the extended WSRMax problem with a fixed B, as
aresult ¢ is not included in the structure of the normalized beamformer w.
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where ¥ denotes the collection of the auxiliary variables {7,,}.
The optimization problem (18) is a signomial optimization
problem and is non-convex in general. Fortunately, note that, all
constraints are monomial function in problem (18). If therefore
the objective function can reformulated as a monomial func-
tion, problem (18) become a GP problem in standard form.
Motivated by this observation, a successive convex approxima-
tion approach is first presented in the following proposition, for
the proof please see [52].

Lemma 1: Let ¢ (y) = ky? be a function used to approxi-
mate function ¢ (y) = 1 + y, near the point 3. The parameters
k and ¥ of the best monomial local approximation are given by

o~

1% 1+y
= A?K: -~ b
1+79 v

(19)

and ¢ (y) < ¢ (y),Vy > 0.

To overcome the non-convex nature of problem (18), we
start with reformulating problem (18) by applying the local
approximation of Lemma 1 in its objective function, yielding

N 7
. ~0m T
Inlp 1_[ - +ym
Y =i
<« ~
s.t. sz mo mz)/m,QmEO,VmGHL

<«
14

N K

D am <D (A + Brky1) P,

A=8)Vm =y =1 +8)Ym,Vm € U, (20)
where § is a small constant used to control the desired approx-
imation accuracy, typically set to be § = 0.1. Notice that prob-
lem (20) is lower boundary problem of the original problem
(18) that is difficult to solve directly. It has been proven in [53]
that problem (20) can be reformulated as a convex GP problem
in standard form by using jointly the logarithmic change of the
variable and a logarithmic transformation of the objective func-
tion and constraints, respectively. In other words, problem (20)
can be easily solved by using the powerful GP optimization tool
packets [54]. Furthermore, the results in [52] have shown that
by starting from an initial point, we can search for a close local
optimum by solving a sequence of GPs that locally approximate
the original problem (18).

Based on the above analysis, an effective JBOPA optimiza-
tion algorithm is developed to solve the virtual uplink problem
(8) with fixed B and is summarized as Algorithm 17. According
to the uplink-downlink duality, it is known that the optimal
uplink beamforming vectors w also serve as the optimal down-
link ones, while the optimal downlink power allocation p can be
calculated from the uplink solution. The details are discussed in
the following subsection.

Remark 1: Note that when the value of B equals to one,
Algorithm 1 is equivalent to solving the conventional WSRMax
problem. In order to solve the original EE maximization

TThe optimal value of 8 can be efficiently obtained through a search method
such as the simulated annealing algorithm or hill-climbing researching in the
range of B* < B < 1[44], [45].
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Algorithm 1. JBOPA Algorithm With Instantaneous Channel
Information

1: Initialize the uplink transmit power ¢© and the beam-
formers w(® such that the SINR constraints and the power
constraint are satisfied, and calculate the approximation
point 7@ with ¢© and w©®.

2: Initialize the auxiliary variable A =20, g® =0, R® =
0,7% =59 and w® = w©.

3: Calculate the approximation constants with (19) and
Solve problem (20) with ¥ () ,w® A and B, then obtain
q(**) and 7(**)_

~ (%)

4: If max ‘ym
m

5;(*)_

- P’

g™, and go to step 6, otherwise, let ) = Y and go
to step 3.

5: Update the beamformers w with q(*), A® and (17), then
obtain w*) . Calculate the objective value of problem (18)
with w**) and ¢, then obtain R**_ If |[R** — R™| <
Z, let w® = w9 and go to step 6, otherwise let w =
w9 and go to step 3.

6: Judge whether the stop criterion of the ellipsoid method is
satisfied or not. If yes, then stop the loop, otherwise update
the auxiliary variables A with w®), g and 7™ by using
the ellipsoid method, then obtain the updated A and go to
step 3.

< ¢, then let ™ =yt ¢t =

problem, we need to iteratively run Algorithm 1 to obtain the
solution of B by using a one dimension search method that
usually only requires a limited number of iterations. Let C be
the computational complexity of Algorithm 1, the computa-
tional complexity of our proposed EE maximization algorithm
is O (NgC) where Ny is the required number of iterations in
searching for an optimal g [44], [45].

B. Downlink Transmit Power Computation

It is necessary to point out that the sub-gradient given in
(10) is calculated based on a given downlink transmit power
p. Therefore, it is important to compute the dowlink transmit
power from the obtained uplink transmit power ¢ and transmit
beamforming vector w. Combining (14) with (16), we have

Ym=¥mVmel, (21a)
N
Z AmPm = Pmax, (21b)
m=1
N
where Pyux = Y. qm. After some basic manipulations, we
m=1
have
p =DGp + Dy, (22a)
N
Z )»um = Fmax, (22b)
m=1
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where matrices G and D are given by, respectively

0, m=n,
[G]m,n - —H 2 (23)
‘ nmWn m #n.
-
7Hy m 2 m — n’
(Dl = 1 [T (24)
0, m # n.
Multiplying  both sides of (22a) by 3=
['XI, s oy o .,XN]T and using (22), we have
~T ~T
1= A DGp + A Dl (25)
max max

p

Defining an extended power vector p = |: |

] and an extended

coupling matrix

0 (X ¥ Puar) = [

Thus, we have the following eigensystem by combining (22a)
and (26):

DG
2 DG

max max

Dl
N } (26)
Dl

p= Q (w”x’ ()77 Pmax)ﬁy Wlthﬁﬁ+l = 1 (27)

According to the conclusions in [51], we can easily obtain the
optimal power vector p as the first components of the dominant

eigenvector of Q (w, 3:, ()7, Pmax), which can be scaled so that
its last component equals one.

C. Algorithm Convergence and Complexity Analysis

Notice that at each iteration the achieved virtual uplink
energy efficiency is monotonically non-decreasing due to the
fact that steps 3 and 5 in Algorithm 1 all aim to maximize the
objective function in problem (7), i.e., g O < g T <. <
<g_(") < .... Since the achievable rate region under the sum
power constraint is bounded, the convergence of Algorithm 1
is guaranteed by the monotonic convergence theorem [56].
Meanwhile, the studies in [46] have revealed that the conver-
gence of the proposed update method based on the sub-gradient
ellipsoid method for the auxiliary variables A is guaranteed to
minimize ¥ (A). Thus, the convergence of the whole algorithm
is guaranteed and the convergence speed of our proposed algo-
rithm is similar with that of the proposed algorithm developed
in [46]. It is easy to see that the major computational load inv-
oles steps 3 and 5 in Algorithm 1. The GP operation at step 3
fortunately has very fast convergence speed and low computa-
tional complexity [53]. The matrix inversion at step 5 can be

K
computed efficiently with Y~ NO (M,%736) [55].
m=1

V. JBOPA ALGORITHM WITH STATISTICAL CHANNEL
INFORMATION

In this section, the joint beamforming optimization and
power allocation are studied based on the statistical channel
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information to reduce the frequency of power updates and
the overhead of signal exchange between coordinated BSs®.
The results in [26]-[28] have shown that the SINR of each
user converges to different deterministic values when BS is
equipped with a large number of transmit antennas. In what fol-
lows, these observations can be used to obtain an approximated
power allocation problem related only to the statistical chan-
nel information which is used to optimize the transmit power.
By plugging (17) in the expression of the virtual uplink SINR
of User-([ %] .m — N | % |). the asymptotic approximation for
<)7m is given in the following Theorem 2.

Theorem 2: The instantaneous random Variable Y m can

be approx1mated by a deterministic quantity Tm such that

Tm — <)7m 2% 0 as the system dimension M( 1 — o°. T

is given by:

< Qmar% m ~
Tm - 2’ M):m (_)&m) s (28)
m
N —  —H
where X, = > guhm,h,, ,, and My, (z) denotes the
n=1,n#m ’

Stieltjes transform of the matrix X,, evaluated at the point z.

Also, Ym can be obtained by solving the following fixed-point
equation

2
<~ 1 qdmO,
Tw=— T (29)
10} N
m ’X + l]mo',% m9n Um n
M|—m-| n=1, 9m%n, 2 n @R an o} m, e TW
n#m
Proof: Please refer to Appendix A. |

In order to reduce the overhead of signal exchange
between coordinated BSs and apply the conclusion obtained in
Theorem 2, in the sequel, we resort to achieve the power alloca-
tion solution by solving an approximated new power allocation
problem directly defined as (30) which only relies on the large
scale fading coefficients in place of solving problem (11) which
is related with the instantaneous CSI°.

N
<—
m;lx Zlam log, (1 + Tm)
m=

<
st. Y = VY, qm > 0,Ym € U,

N K
Y am <Y (A + Brrsr) Pj. (30)
j=I

n=1

81n this subsection, both the number of transmit antennas M ; and the number

of serving users per cell N go to infinity while the ratio (load factor) lim Mi

J
remains bounded, i.e., the notation M — 0 denotes that both M and N
become large, while lim inf > 0 and lim sup M < 00, Vj [26]-[28].

91n what follows, we assume that the target SINR ¥Ym, Ym are achievable in
the communication system with statistical CSI.
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o2

Defining ¢, = "”"M); (- h m), Vm, problem (30) is then
reformulated as follows

N
H%Iin —_ Z Uy 10g2 (1 + 6]m§0m)

m=1
St qm > y—m,qm >0,Vm € U,
@

m

€29

N K
ZCIm =< Z ()\.j + ,3)\[(4_1) P]
n=1 j=1

It is easy to verify that problem (31) is convex and thus can be
tackled using standard convex approaches [45]. Particularly, the
power constraint meets with equality in the optimal solution.
The corresponding Lagrange function is given by

Zam 10g2(1+Qm¢m) Zg‘_m <Qm_g_m>

m=1 mn

+g Z‘Im

£(q.§,¢5)=

K
D (hj+Brksr) P )L (32)
j=1

where & and ¢ are respectively the Lagrange multipliers asso-
ciated with the SINR constraints and the power constraint. The
Karush-Kuhn-Tucker (KKT) conditions are then given by

G = L gy = 0,6n = 0, ¢ > 0, (33a)
DPm
U Pm
——— &, + ¢ =0, (33b)
(I + gmem)In2) "
Em <qm - V—’") =0, (33c)
Pm
N K
> gm = Z (Aj + Bri+1) Pj. (33d)
n=1 j=1

Note that & > 0 acts as a slack variable in the last equation and
therefore can be removed. The above equations are rewritten as

g = 20 ¢ >0, (34a)
©Om
A Pm
_ , 34b
A+ gmom) @)~ ° (34b)
Ym A Pm
S (e — T )0, (34
("’" gom) (g i+ qmgomnn(z)) (34¢)
K
Zq => " (xj + Brk 1) Pj. (34d)
j=1
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Using a similar approach as in [45, pp. 245-246], we have
Um i - U Pm
In(2 ' 1 In(2)’
i = n2)s  ¢m (I + ym) In(2) (35)
VYm c> I Pm
Pm’ T (4 ym)In@)’

Pm’ Pm
this expression into the condition (34d), it yields

or, simply expressed as g, = (]n(z[Tm)g - L y—’”) . Substituting
+

N

K
A
-, — )» + BA P'. 36
E(ln(z)g (Pm §0m) ; P K+l 50

It is seen that the power solution in the energy-efficient large-
scale system is water-filling-like power allocation algorithm. As
noted in Proposition 1 and Algorithm 1 the update of auxil-
iary variables A needs to know the downlink transmit power

p obtained with p = Q (w, x, ()7, Pmax> Pp. A similar proce-

dure for analyzing the instantaneous random variable Y m can
be applied to the matrices G and D such that the asymp-
totic approximation that only depends on the statistical CSI
of the matrix Q (w, 3:, ()7,

Pmax) can be obtained. The asymp-

totic approximation of G and D are described as the following
Theorem.

Theorem 3: The entries of the instantaneous uplink-
downlink power transformation matrices G and D can be
approximated respectively by the entries of a deterministic
uplink-dowmlink power transformation matrices G and I such
that [Gly.n — [Glmn % 0 and (Dl — [Dln.n o 0, as
the system dimension M [m] — 00, Vm, n, the element [G],, ,
is given by

0, m=n,
2
[G]m,n = Ton m 75 n,

2 ‘imU;%m 2
M\t TR @

m

(37

and the element [D],, ,, is glven by (38), shown at the bottom of
= M):m( )» ),Vm.

the page, where ¢,, (q) =

2
qmopy,
Proof: Please refer to Appendlx A. ]

In what follows, in order to realize the ideas of power allo-
cation based on statistical channel information, the extended

coupling matrix Q (w, x, ()7, is approximated by the

} . (39)
N

Pmax)

following matrix.

DG

Q(W,X, 37, Pmax) = |: 1
Pmar

Dly

o mdm @ | ~ |

A
[D]m,n = w,zn mt

(38)

m#n,
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Algorithm 2. JBOPA Algorithm With Statistical Channel
Information

1: Initialize the uplink transmit power ¢*) by solving the PMP
such that the SINR constraints and the power constraint are
satisfied.

. (%)

2: Initialize the auxiliary variable A® let Y =0 and
g™ = ¢, and compute the objective values of problem
(31) with ¢® and A, then obtain o®).

3: Solve problem (36) with g*, LA™ and B, and then obtain

q*", and compute the objective values of problem (31)

<—=(xx)
with ¢** and A™, then obtain o®** and Y . If

(%) (k)
Q(**) _ Q(*)| <n, let q(*) = q(**), Y and then

(%)
e

(%)

20 to step 4, otherwise let g = g**), Y= and
go to step 3.

4: Judge whether satisfying the stop criterion of the ellipsoid

method or not. If yes, the stop the loop and go to step 5, oth-
()
erwise update the auxiliary variables A with ¢*) and ?

by using the ellipsoid method, then obtain the updated A*)
and go to step 3.
5: Calculate the beamformers w with (17).

TABLE 1
ACHIEVED SR COMPARISON, Pj =46 dBm, Nj =2,Vj, W= 10 MHz,
Py =40dBm, P, =30dBm,n=10"3,8=1
M;,Vj 8 16 32 64 128
Algorithm 1 11.667 | 12.315 | 13.036 | 13.209 | 13.226
Algorithm 2 7.340 8.109 9.061 9.443 9.527
percentage(%) 6291 65.85 69.51 71.49 72.03

Based on the above analysis, the power allocation problem (30)
can be solved via the alternating optimization approach. To
be more specific, we solve the power allocation problem (30)
by sequentially fixing two of the three variables 8, A, ¢ and
updating the third. The details of the alternating optimization
algorithm based on duality theorem that is used to solve the
power allocation problem (30) with fixed 8 based on statistical
channel information is summarized as Algorithm 2, where p
and o denote the large-scale system EE and the objective value
of problem (31), respectively.

Remark 2: In Algorithm 2, the power allocation is optimized
based on statistical channel information and thereby is carried
out in a long-term timescale, in which only the large-scale chan-
nel information and a few real numbers are exchanged between
the BSs. While the beamforming vector w,, can be updated
based on local instantaneous channel state information, i.e.,
Ry.n, Vn and thereby on a short-term basis. Compared with
Algorithm 1, the computational complexity can be significantly
reduce due the long-term timescale power allocation update.
In addition, Algorithm 2 only needs one time beamforming
vector computation for each change of the instantaneous CSI
and only needs the local CSI to compute the beamforming
vector. Table T lists the achieved SR in terms of 107 bps of
Algorithm 1 and Algorithm 2 for several antenna configurations
over 1000 random channel realizations. It is easy to see that the
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~——> Desired Signal = == Interference Signal

Fig. 1. Simulation Model.

difference between the achieved SR of Algorithm 1 and that of
Algorithm 2 decreases with an increasing number of transmit
antennas indicated by the percentage between the achieved SR
of Algorithm 2 and that of Algorithm 1.

VI. NUMERICAL RESULTS

In this section, we investigate the performance of the
proposed JBOPA algorithms via numerical simulations. We
consider a cooperative cluster of K = 3 hexagonal adjacent
cells each consisting of one BS and multiple users. In cell
Jj, BS-j is equipped with M transmit antennas and serves
N single antenna users. The cell radius is set to 500 m and
each user randomly locates in the cooperation region and
has a least 400 m distance from its serving BS as shown
in Fig. 1. The channel vector hy, ;; from BS-m to User-
(J, k) is generated based on the formulation h,, ; x € cMx1
Om,jily k= Pm.jihy ;g where by . denotes the small
scale fading part and is assumed to be Gauss1an distributed with
zero mean and variance 111/1’ and B, j x denotes the large scale
fading factor which in decibels is given as 10log;,(Bn, k) =
—38logo(dm,j.k) — 34.5 + nj i, where n;  represents the log-
normal shadow fading with zero mean and standard deviation
8 dB, d,, j 1 denotes the distance between the BS-m and User-
(J, k) [57]. The circuit power per antenna is P, = 30 dBm,
and the basic power consumed at the BS is Py = 40 dBm [36].
The noise power spectrum density w2 k== 174 dBm/Hz, Vj, k
and the occupied bandwidth W = 1() MHz. For simply, we
assume that each BS has the same transmit power budget P,
ie., P; = P,Vj. The noise figure is 9 dB [4]. The weighting
factor & and the inefficiency factor of power amplifier £ are all
set to unit.

For comparison, several related existing algorithms are
also evaluated in our numerical simulations, including the
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Fig. 2. Average EE Comparison, M =4, N =2, = 1073,

power minimization algorithm that aims to minimize the trans-
mit power subject to the same constraints, the conventional
WSRMax algorithm that aims to maximize the SE with the
same constraints, the performance of an extension of the algo-
rithm developed in [15] that is described in Appendix D, and the
normalized MRT beamforming transmission with equal power
allocation at each BS and subject to no rate constraints. In
our simulations, the target rate of each user is set respectively
to be 70% of the user rate achieved by the normalized MRT
beamforming with equal power allocation.

Fig. 2 illustrates the average EE of the above coordinated
beamforming algorithms for finite-size system over 1000 ran-
dom channel realizations. It can be seen that our proposed
Algorithm 1 achieves the best EE performance among all algo-
rithms, with a considerable gain at the high transmit power
region. It is interesting to see that the Algorithm 1 and the
SRMax algorithm achieve the same EE performance in the
lower transmit power region such as 26-38 dBm. This implies
that in this region it is possible to simultaneously achieve
the optimal EE and SE, while in other regions a reasonable
tradeoff between SE and EE is desired, which is the goal of
our algorithm design. The results also show that our proposed
Algorithm 1 outperforms the power minimization algorithm in
all regions. This suggests that the power minimization subject
to rate constraints in general cannot achieve the optimal EE,
in which all the achieved user rates exactly meet with the con-
straints. In other words, it is very possible that achieving rates
greater than the constraints also bring improved SE.

Fig. 3 illustrates the average WSR performances of some
coordinated beamforming algorithms for finite-size system
over 1000 random channel realizations. It can be seen that
Algorithm 1 and the SRMax algorithm achieve the same SE
performance in the lower transmit power region. In other words,
the optimal EE algorithm also achieves the optimal system SE
in the lower transmit power region, and vice versa. However, in
terms of the SR, in the middle-high transmit region, the SRMax
algorithm achieves the best WSR performance at the cost of a
certain EE loss.

Fig. 4 illustrates the average EE of the proposed algorithm
and the WSRMax algorithm achieved with imperfect CSI,
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Fig. 3. Achieved WSR Comparison, M =4, N =2,n = 1073,

x10°
== Proposed Algorithm 1 (3=0)
=P— SRMax Algorithm (5=0)

| == Proposed Algorithm 1 (3=0.1)

== SRMax Algorithm (5=0.1)

== Proposed Algorithm 1 (§=0.2)

—A— SRMax Algorithm (5=0.2)

Energy Efficiency (bit/Hz/Joule)

1
26 28 30 32 34 36 38 40 42 44 46
Transmit Power Constraint (dBm)

Fig. 4. Average EE Versus Number of Transmit Antennas, M =4, N =2,n =
1073,

under configuration {M, N} = {4, 2}. In our numerical simu-
lation, only an imperfect estimate h,, ;x of the true channel
hy, j k is available at the transmitter which is modeled as [26]

Mx1 i’ e
hm,j,k e C"* = hm,j,k +hm,j,k

= \/mﬁZ,j,k + 6\/ ﬂm,j,khz’j,k

(40)

e

~e o ~ ~
where h,, ; ; denotes the estimation error, h, j« and h,, ; ;

have i.i.d entries of zero mean and variance % and indepen-

dent of each other and independent of z;x, B, ;i denotes
the large scale fading factor which in decibels is given
as 101log (B, k) = —38logio(dm, jk) — 34.5 4+ njk, where
1.k« represents the log-normal shadow fading with zero mean
and standard deviation 8 dB, d, ;i denotes the distance
between the BS-m and User-(j, k) [57]. The parameter § €
[0, 1] reflects the accuracy or quality of the channel estimate
iz\m,j,k, i.e., 6 = 0 corresponds to perfect channel state infor-
mation, whereas for § = 1 the imperfect estimate ﬁ,n, jk 18
completely uncorrelated to the true channel. Numerical results
show that the EE performance achieved by the related algo-
rithms become worse with an increasing value of §. It is see
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Fig. 5. Average EE Versus Number of Transmit Antennas, M/N = 16, n =
1073, Pe = 10 dBm, Py = 20 dBm.

that under different levels of imperfect CSI, the EE perfor-
mance achieved by Algorithm 1 is always better than that of
the WSRMax Algorithm at the high transmit power region.

Fig. 5 illustrates the performance comparison of the two
developed coordinated beamforming algorithms versus the
number of transmit antennas over 1000 random channel real-
izations, where the the ratio between the number of transmit
antennas and the number of served users is set to be 16.
Numerical results show that the performance achieved by the
proposed Algorithm 2 is very closed to that of the proposed
Algorithm 1 with lower computational complexity and limited
scale information between the coordinated BSs. This suggests
that the proposed Algorithm 2 based on statistical state channel
information is feasible for using the determination approximate
expression of SINR to optimize the transmit power while the
beamformers are calculated based on the instantaneous channel
information.

VII. CONCLUSIONS

In this paper we have studied joint beamforming and power
allocation in multicell downlink systems to maximize the sys-
tem energy efficiency subject to per-BS transmit power con-
straints and per-user target SINR requirements. The considered
objective function in fractional form is non-convex and it is
hard to find the globally optimal solution. In order to obtain
a tractable form, the primal problem was investigated from
the viewpoint of the uplink-downlink duality by introducing
some auxiliary variables. Furthermore, the uplink power alloca-
tion problem with fixed beamformers can be efficiently solved
by using standard GP solvers. The convergence of the pro-
posed JBOPA Algorithm 1 has been proven with the monotonic
boundary theorem and the property of sub-gradient of convex
problem. To reduce the overhead of the CSI collection, a new
power allocation algorithm based on statistical channel infor-
mation has been further developed. Numerical results have vali-
dated the effectiveness of our proposed schemes and shown that
both SE and EE performance can be simultaneously improved

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 12, DECEMBER 2015

over traditional downlink coordinated schemes, especially in
the middle-high transmit power region.

APPENDIX
A. Related Proof

Useful Results from Random Matrix Theory: We reproduce
the following Lemmas [29]-[32].

Lemma 2: Let x € CV, independent and identically dis-
tributed (i.i.d.), with zero mean and variance %, A € CNxN
Hermitian with bounded spectral norm whose elements are
independent of x, then

1
xTAx — 5@ LN (41)

N—o00
Lem/\;}n}c‘z/l 3: Consider an N x M random matrix A =
(Ai.j);Z).;—, whose the entries are given by: A; ; = %Bi’i’
where B, ; is i.i.d., with the following assumptions hold.
S1: The complex random variables B; ; are ii.d. with

E[Bi;]=0.E[B ]| =0.E[|B, ] = 1andE||B,[*] <
o0

S§2: There exists a real number o,,,, < oo such that:

sup max |oi,j| < omax
M>1 I<i<N1I<j<M

There exists a deterministic N x N matrix-value function
V¥ (z) =diag (V1 (2), ..., Yy (2)) analytic in C — R4 such
that:

L, (AA” 1)_1 Lw ) 50 (42)
—tr - — —tr — 0,
N ¢ N
whose elements are the unique solutions of the deterministic
system of N + M equations

-1

Y (z) = ”
Z <l +4 > aflxbj (z))

I <i<N,

(43)

=1
~1

N
(144 pom)

i=1

D;(z) =

d=j=M, 44

where %tr (¥ (2)) is the Stieltjes transform [31] of the proba-
bility measure.

The values of W¥; (z) and ®; (z), Vi, j can be obtained by
initializing them to known values and iterating over equations
(43) and (44) until their values converge. Furthermore, the dif-
ferential of the Stieltjes transform of the matrix AA can be
calculated with the method used in [33].

Proof of Theorem 2: Plugging (13) in the expression of the
virtual uplink SINR of User-( f%} ,m—N L%J), and employ-
ing Lemma 2 and Lemma 3, we have

—H ~ -
<J7m = thm,m (Zm + )\ml) hm,m
a.s. qma)%l,m Y

Tr ((Zm +dond) ™
M[-%-l—xx) Mf%]wrzn ( )

2
qmam,m ity A
= 2 Mzm (_)\'m) =
a)m

al

(45)

mos
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where M, (z) denotes the Stieltjes transform of the matrix X,
evaluated at the point z which can be computed using Lemma 3.
2

Let ¢m (@) = qma%
equation by employing Lemma 3:

, we can obtain the following fixed-point

1

ém (@) = (46)

2
4n%mn.n

w% +qn ‘Tl%r,n d)m (q)

-~ N
o + 5 )
f%] n=1,n#m
This completes the proof of Theorem 2.
Proof of Theorem 3: To mitigate the impact of the small
scale fading coefficients on the matrix G, we firstly obtain

mwm||2 and

||ﬁg mWn |*> based on the large dimension random theory. Then
the asymptotic approximation of the uplink-downlink transfor-
mation matrix G is obtained and is denoted as G. Similar to
the derivations of (45), we have the following two asymptotic

H —H
W |* and ([, , w,||* [28]:

. . . —H
the asymptotic determine expression of |h,,

determine expressions of ||A

1 Wm = =

_ Tnn®n @
—wn b, @'

(47)

N
— —H
where X, = )Y  guhmnuh, ,, Ms, (z) denotes the
n=1,n#m ’
Stieltjes transform of the matrix X, evaluated at the point z,
and M%m (z) denotes the differential of My, (z) with respect

to z evaluated at the point z and ¢,, (¢) is given by

—¢m (q)
¥, (@) = — @
~ N i
o+ g Y g
(%1 n=1.n#m (1+"""#¢m(q>)

By using jointly the Rank-1 perturbation Lemma [29] and
Lemma 3, we have

||hn‘mwn|| =

 (F)

q?””r%.m
Mgy (1+ 255

m

- . . (49)
2 qmornzm
mef%} (1 + wrzn' P (tI))
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N _ ~
where ®, = ) qkhn,khfk + An1. Thus, the elements of
k=1k#n,m '
the matrix G can be calculated as follows:
0, m=n,
2
[G]m,n = Oam 5 m 7& n. (50)
GHMp (H"”f’: 1 ¢n<q>)
)’ m —
“r%,m(’);n(q) m=n,
(Dl = — w2, O (@) (51
0, m # n.

Plugging (48) in (51) yields the deterministic uplink-dowmlink
power transformation matrix G in Theorem 3. This completes
the proof of Theorem 3.

B. JBOPA Initialization Algorithm With  Instantaneous
Channel Information

Before proceeding to propose an effective method to solve
problem (11), we would like to discuss the feasiblity of the tar-
get SINRs in the considered systems [51]. In general, the PMP
subject to SINR constraints can be adopted to validate the fea-
siblity of some given SINR subject to transmit power constraint
in wireless communications. Herein, we propose to solve the
PMP that is formulated as (17) for fixed feasible target SINRs,
given by

K
minw P
j=1
[
s.t. > Ym, Ym € U,
N —H
> [ww
n=1,n#m
JN
> Wl <@ PV (52)
m=(j—1)N+1

By using the similar derivation method used in [27], [50], we
can obtain the dual problem of problem (14) that is given by the
following optimization problem:

N
max mm Z qm

ml

St Ym = Ymogm = 0,YVm € U,
K
> (1—v)) P =0,
j=1

where Y, denotes the SINR of User-((”ﬁ—| m— N |_ NJ) and
is calculated as

(53)

—H 2
} [
Ym=—= , (54)
N —n 2
S o ||+ vpay
n=1,n#m
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where ¢, represents the dual uplink power of User-
([%].m=N|%]). vfm1 denotes the virtual uplink noise

variance of BS- f%} . Similarly, it is easily known that the maxi-
mization over w in (53) can be solved explicitly for fixed power
q. In particular, the optimal receiver beamforming vector wy
that maximizes the SINR is the MMSE filter. According to the
Sherman-Morrison identity, the MMSE receiver filter can be
equivalent to the following form:

1_
hm,m

(zm + )
(20 -+ vr300)

VmeU. (55

1 _
hm,m

Bases on this, problem (53) can be equivalent to the follow-
ing optimization problem by substituting the expression of
beamformers w given by (55) into the target SINR constraints:

N
max min Z qm
m=1
St qm > Yo = ,Vm e U,
hm,m (Em + U(%‘H) hm,m

K
> (1=vj)Pj=0,gm >0,YVm € U. (56)

Jj=1

It is easy to see that the inner optimization of problem (53) over
variable ¢ can be realized by using the fixed-point equation.
The optimal beamforming vectors on the downlink are of the
form w,, = \/pPuWm, where ,/p,, is the power allocated to the
beamforming vector w,, [27]. From the downlink-uplink SINR
relations for all users, we have

N
—H 2 _ —H 2
Pm Hhm,mwm H =V O Pn|Byn| +Vn  (572)
=1,
Z#m
N N
2 VTP = D 4 (570)
m=1 m=1
Similarly, we have the following eigensystem
pP=0(W. V.7, Punax) P, with py, | = 1, (58)
_ N _
where P = Y gm, v is a N dimension column vector
m=1

and is defined as v, = Ve, Vm. The details of the optimal
uplink power allocation algorithm for finite-size system are
summarized as Algorithm 3 where g denotes the subgradient
of variables v given by § = [g.....8;,....9x] with g; =
iN K
pm and S, =Jv:v >0, (l—vj)Pj=O
m=(j—1)N+1 j=1
[50]. Furthermore, the convergence of Algorithm 3 can be
guaranteed by the fixed function theorem [49].
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Algorithm 3. JBOPA Initialization
Instantaneous Channel Information

Algorithm  With

1: Initialize the auxiliary variable v* > 0, ¢®* =0 and
O
q .
2: Update the virtual uplink transmit power g, i.e., g =
Yin with ¢, then obtain ¢**).

-

—H [— _

hm.m<zm+v(|—*)ﬂ-|1) hm,m
N

3:1f g — g™ | < ¢, thenlet g™ = ¢™** and go to step 4,

otherwise let g™ = g** and go to step 2.
4:1f ||g® —q@| < ¢, then stop, otherwise, calculate the

downlink powerp,i.e.p = Q (w, %", ¥, Pyax)p with g™
- N

and Ppgy = > q,(,f ), then obtain p(*). Update v with sub-
m=1

gradient method i.e., v,i**) =Ps, {VIE*) + Gﬁk} with p®,

and obtain v let ¢ = ¢™, and v® = v*® then go
to step 2.

C. JBOPA Initialization Algorithm With Statistical Channel
Information

Similar to the JBOPA Algorithm 1, we also need to solve
the initialization problem of the virtual uplink transmit power
before applying the developed power allocation optimization
Algorithm 2 to solve effectively problem (6). Similar proce-
dure for obtaining the deterministic quantity ?m of ¥ ,u can
be applied also to ¥, in order to examine the asymptotically
optimal solution of the PMP (53) based on statistical CSI.

Proposition 2: The instantaneous random variable y,, can
be approximated by a deterministic quantity I,,, such that T, —
V. =25 0 as the system dimension Mpmq — o0. Also, T, is
given by:

2

_ qm0,
I, = mw;nm Ma,, <_U[_%-|) s 59)
m
N — —H
where A, = Y. gnhmnh,, ,, and My, (z) denotes the
n=1,n#m ’

Stieltjes transform of the matrix A,, evaluated at point z.
Now, instead of solving directly problem (53) to obtain initial
solution, we resort to solve the following problem.

N
max min Z qm
4 q

m=1

st. T > Ym,qgm = 0,Ym € U,

(1—vj)Pj=0. (60)

-

1

J

For fixed v, the optimal solution of problem (60) with respect
to variables ¢ can be easily obtained by using fixed equa-
tion theory. In addition, the optimization of problem (60) with
respect to variables v can also be solved by using the sub-
gradient method. The details of the algorithm that is used to
solve problem (60) in large-scale system is summarized as
Algorithm 4.
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Algorithm 4. JBOPA Initialization Algorithm With Statistical
Channel Information

1: Initialize the auxiliary variable y® = 0, q(o) =0, and
q® =0.

2: Update the virtual uplink transmit power u, ie., u =
- with v® and ¢, then obtain g***).

‘7m m MA”, _Ul_m_l

3:If ||q(*) g™ | < ¢, thenlet ¢ = ¢** and go to step 4,
otherwise let ) = ¢** and go to step 2.
4: If ||q(*) —q(o) “ < ¢, then stop, otherwise, calculate the

downlink power p, ie., p =Q (w,F(’),f, Fmax)ﬁ with
) N (*)
g® and Puu = Y gn’, then obtain p®. Update

m=1

v with sub-gradient method and p® ie., (**) =

Ps, {v { () 4 ng}, then obtain v**, let ¢ = ¢, ‘I(O)
g, v® = p*H and go to step 2.

D. An Extended JBOPA Optimization Algorithm

It is interesting to find that the authors in [15] also adopted
the convex approximation method to investigate the energy effi-
ciency optimization problem for single cell multiuser downlink
broadcast channel. It is easy to see that the developed algo-
rithm in [15] can be easily extended to solve the considered
energy efficiency optimization problem. To optimize the trans-
mit power, the following lemma is applied to approximate the
objective function of problem (5)

Lemma 4: Let ¢ () = 2 T 19 be a function used to approx-
imate function ¢ () = « log, (l + %), near the point 3. The
parameters « and ¥ of the best monomial local approximation
are given by

_e@+9p)? o 20+PInd+7) -2
S 4d+p)m2’ y?

and ¢ (7) < ¢ (7). V7 > 0.

By using the local approximation given by Lemma 4 and
the arithmetic-geometric mean inequality in the objective func-
tion of problem (5), the energy efficiency optimization can be
reformulated into the following classical GP problem for fixed
transmit beamformers.

(61)

pm =< Pj,Vj €K, (62)

m=(j—1)N+1

where © = (5 > pm+ Z (M P.+ P())). Similar to prob-
j=1

lem (23), problem (62) can also be solved by using the powerful

Algorithm 5. An Extended JBOPA Algorithm

1: Let [ =0, initial the downlink transmit power p®) and
the beamformers w(®) such that the SINR constraints and
the power constraint are satisfied, ?(1) = 0, calculate the
approximation point )7 with p© and w), and calculate
the approximation constants 19,(,,1 ) and K(l) with ¥ (l), Ym.

2:Let/ =1+ 1, solve problem (62) with approximation point
y D for fixed w®, and obtain the optimal transmit power
p® and the optimal SINR 7.

3: Solve problem (63) with the target user SINRs are set to be
)7(*) and obtain the update beamformers w( ),

4: Compute ¢ 2D with p®, w® and (7), and check the
stopping criterion, ie 70— _g)(l_l)| < ¢.Ifitis not sat-
isfied, let y(l) y update the approximation constants
19,(,11) and K(l) with y(l), Vm, and go to step 2, otherwise stop.

GP optimization tool packets. In order to solve the energy effi-
ciency optimization problem with respect to the beamformers
w, we resort to solve a power minimization problem (PMP) that
is a classical SOCP problem which preserves the SINR of each
user and given by

N
. ~ 12
min E W,
w
m=1

—H
[
§.t. —— > y(*) vm € U,
N “H 2
Z hn,mw'l + 1
n=1,n#m
pm =>0,Ym e U,
jiN
D Wl < PV (63)
m=—1)N+1

where W denotes the collection of the beamformers {W;}.
Assume that w™ is the optimal solution of problem (63), then

56)
let w(l) = W;’;) and p(*) = H , Vm e U, respectively!?

Based on these the details of the extended energy efficiency
optimization algorithm is summarized as Algorithm 2.

Note that at step 2, the objective value of problem (62) is fur-
ther minimized at current approximation point, i.e., obtaining
an improvement of the energy efficiency. The improvement at
step 3 is that less or at most equal power is used for each beam
as that at step 2, which in turn satisfies power constraints and
all user rate that achieved in step 2 constraints. In other words,
an increasing or equal energy efficiency can be obtained after
the update of step 3 of Algorithm 5. Therefore, the sequence
generated by Algorithm 5 is a monotonic sequence. Since the
achievable SINR region under the transmit power constraint
is bounded, the sum rate is also bounded. In other word, the
achieved system energy efficiency is also bounded. Based on

10We would like to point out that this method can also be used to initialize the
initial beamformers and power allocation.



4934

this, the convergence of Algorithm 5 is also guaranteed by the
monotonic boundary theorem [56].

N K
In addition, problem (60) has M = 2N}~ M real optimiza-

J=1

tion variables, N + 1 second-order;cone (SOC) constraints
where each of them consists of M real dimensions. It is
known from [48] that the computational complexity of the
power minimization problem in terms of number of iterations
is upper bounded by O (\/ N + 1), and the complexity of

each iteration is within the order of O (21171 3N). Thus, the
total worst-case computational complexity of PMP is given by
0 (2\/ﬁ + 1M 3N>. Also, since both the Algorithm 1 and the

extended Algorithm 5 include a GP step, we ignore this GP step
in the complexity analysis.
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