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Abstract— Evaluating the channel capacity is one of many kegdditive Gaussian noise channel where the outpisg related
problems in information theory. In this work we derive rathgld g the inputX as follows:
sufficient conditions under which the capacity of contiraiohannels
is finite and achievable Y =X+ N, (1)
These conditions are derived for generic, memoryless asdliply
non-linear additive noise channels. The results are based aovel and whereX is independent of the nois¥. If no constraints
sufficient condition that guarantees the convergence dérdiftial 5re imposed onX, arbitrarily large transmission rates are
teig;r;)ples under point-wise convergence of probabilitysilgnfunc- 5 hieyaple. If a second moment constraint is imposed idstea
Perhaps surprisingly, the finiteness of channel capacitgséor (€ capacity is finite. What if a “weaker” constraint is impds
the majority of setups, including those where inputs angatsthave On X. Could the rates be arbitrary large? For illustrative pur-
possibly infinite second-moments. poses, consider the “weaker” constrainfin® (1 + | X )] < 4

for someA > 0. This channel[{]1) is equivalent to the channel:
I. INTRODUCTION Y = sgn(U) (e‘U| — 1) +N

Over continuous-alphabets channels, a common beliefyiere 7 now is average power constraindU?] < A. At
that with “sufficient” power, one is capable of transmitting, first look, it is not clear whether the capacity of such a
at arbitrarily large rates. Stated differently, if an inpot channel is finite or not. Indeed, in some sense the channel is
infinite power is allowed, the channel capacity is infinit&id “exponentially amplifying” the input and by more than what
belief is perhaps inspired from the well-known Additive Wi the cost is constraining it. An appropriately-chosen Cguch
Gaussian Noise (AWGN) and linear Gaussian channels f@tributed inputX will satisfy the constraint but will have an
example. infinite second moment. The averageot will be infinite as
However, recent studies have suggested that for some chggtl. Is the capacity of this channel finite? Our result pde&
nels this is not true: even if an infinite power input is allave an unexpected positive answer to this question.
the achievable rates are not arbitrarily large: Theoretical interests aside, it may seem unusual in a
« In [1], the authors studied a linear additive-noise chann@aussian setup to impose the constrainfln® (1 + |X|)
where the noise is heavy-tailed —modeled using alph@k any other type of input constraints that permtg.x?
stable statistics. They showed that even if the inpt@ be infinite. However, when the channel model features
constraint does allow for an infinite-power input, théoise distributions having an infinite second moment, as in
channel capacity is finite. Actually, the authors found thiée case of some channels subject to multiple access [3] or
optimal input to be surprisingly of finite power. radio-frequency [4] interference, imposing a second mdmen
« In [2], the authors studied an additive Cauchy-distributegbnstraint becomes less sensible; such a constraint mizeks t
noise, and the constraints did allow as well for infinitecharacterization of the behaviour of the transmissionsrate
power input signals. The capacity was proven to be finifgnction of the quality of the channel since the channelaign
despite the fact that the optimal input was found in thig9-noise ratio will constantly evaluate to zero. Furtherepave
case to have infinite power. note that the usage of constraints allowing the input to laave

The natural question that arises is: “under which conditiofpfinite second moment has Pee” previousl_y examined within
does one have a finite channel capacity?”, the answer to thBﬁ context of robust estimation and detection theory [&}—{

does clearly depend on the input constraints, but also on thd“lore formally, the notion of capacity of a discrete memory-
noise statistics. In this work, we study the interactioneen €SS channel was defined in the early works of Shannon [8], [9]

the input constraints, the input-output relationship ahd t© Pe “the largest” rate at which one can communicate over a

noise distribution and derive conditions on the triplet end channel with an arbitrarily low probability of error. Throha

which the channel capacity is finite. coding theorem, Shannon proved that the capacity is given by
This guarantee of finiteness is of high significance as it Ege solution to an optimization problem, whereby the mutual

typically the first step one would undertake in order to gifgnt information between the input and output of the channel is

the capacity of a channel at hand. Consider for example ximized. When it comes to continuous channels the inputs
' of which are potentially constrained, the results were reckel

This work was supported by AUB’s University Research Bo&/&B) and (_See for examplg [9]_[111) ‘T’md_the channel CapaCity was also
the Lebanese National Council for Scientific Research (LRLCS tied to a constrained optimization problem.
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Naturally, in both setups it is implicitly assumed that the  I|I. CONVERGENCE OF DIFFERENTIAL ENTROPIES

optimization problem is “well-defined”, for otherwise réf@y |, yis section we establish a sufficient condition for tha-co
the channel capacity to a solution of a maximization Qfgrgence of differential entropies whenever there is poise
mutual information is problematic. In this work we taCklet:onvergence of the corresponding PDFs. More precisely, we
this assumption and provide a sufficient condition for Sucﬁ}ove a theorem that guarantees this convergence under some
an optimization problem to be bothell-definedand yielding 4 er.mild sufficient conditions. In layman terms, thisdhem
a finite andachievable solutiorfor a wide range of channels.States that whenever the PDFs satisfy a super-logarithypéc t

We consider a generic average-constrained channel mogehoment, point-wise convergence will imply convergente o
where the noise is additive and absolutely continuous. Wéferential entropies. We emphasize that the new conulitio
prove in SectioriLIll that under very mild conditions on theire weaker than some of those derived by Godavarti et al. [14,
noise and the constraint, the channel capacity is indeet firThm 1]. Alternative conditions found in [14, Thm 4] are not
and achievable. directly related to those presented hereafter.

We start by deriving sufficient conditions that ensure tha}lheorem 1. Let the sequence of PDFs @ {pm(y)}
mutual information is finite —and hence well-defined— and we. | tistv the followi ditions: Pmiy) fmz1
make use of the extreme value principle [12] to ensure theat t ply) satisfy the following conditions: ,
maximization problem yields a finite and achievable sohutio®1" The PDFs {pu(y)}m and p(y) are uniformly upper-
This could be achieved by enforcing two characteristics: bounded:

1- The input space of feasible distribution functions is IM € (0,00) s.t. sup {pm(y)ap(y)} <M. (2
compact. veRm21

2- The mutual information between the input and the outpG2- There exists a non-negative and non-decreasing function
of the channel is continuous in the input distribution  [: [0,00) — [0, 00), such that/(y) = w (In(y))" and

function.
E,. [L(Y]D],Ep[I(]Y <L, 3
We emphasize that these two properties are intimately S&p{ oo (VD] B 10 |)]} - ®)
related to the channel model and the input constraints if any (5. some positive (finite) valug.

The generic model adopted in this work encompassesynger these conditions,(p,,) — /(p) whenever the PDFs
multiple channel models found in the literature: We €O (y) — ply) point-wise.

sider input-output relationships that are possibly noedir;
A generic average cost functi@gh-) is imposed on the input; Before we prove the theorem, we highlight the importance
The absolutely continuous additive noise has a finite “supéf condition C2 by providing an example where it is not
logarithmic momentfll as is the case for Gaussian, uniformsatisfied, and the theorem does not hold.

generali_ze(_j G_aussian, genera_lized t, Pareto, Gamma,—alp@)@ample 1. Consider the sequence of PDES,,(x)}m>s
staple dlstrlbutlons,_and their mixtures. We_ sho_vv that velven defined orR as follows: -
the input cost function has a “super-logarithmic gro@thﬁe

channel capacity ifinite and achievable 1— % x € [0;1]
Establishing the continuity of mutual information under Pm(x) = 1nm1
any “super-logarithmic” input constraint is achieved wsin Tm)? x € (1;m).
nm)=x

a novel result on theonvergence of differential entropies
While numerous studies have tackled this subject (see forThis sequence of PDFs converges point-wise (o), the
example [13], [14]), the conditions presented in Secfidn Uniform distribution on[0,1], and condition C1 is satisfied
are among the weakest that insure this convergence wheneyeh a uniform upperbound/ = 1. Computing the differential
Probability Density Functions (PDFs) converge point-wise entropies,

The rest of the paper is organized as follows: In Sedfibn I,
a preliminary theorem concerning the convergence of differ () =0
ential entropies is listed and proved. The primary problech a h(pm) = — (1 _ L) In (1 - L)
the main result are presented in Secfioh IIl, where we descri Inm

+

the channel model and state the conditions under which our 2In(lnm) (™1 d 1 ™ Inx d

result holds. Technical proofs are derived in Sedfioh IMn8o (Inm)?2 /1 T T+ (Inm)? /1 r v
extensions are listed in Sectigd V and Secfioh VI concludes 1 1 2In(lnm) 1
the paper. :_< _—)m (1_1 ) mm 12

1
— 5 asm — oo,
TA “super-logarithmic moment” is an expectation of the foBrf(|X|)] ) ) ) )
for some functionf(|z|) = w(In(|z|)). and hence there is no convergence of differential entropies

We say thatf(z) = w(g(x)) if and only if ¥ > 0,3c > 0 such that  Tpjg j5 explained by the fact that condition C2 is not satisfie
f(z) > kg(x),Vz > c.

fWe say that a functiorf(z) has a “super-logarithmic growth” whenever Indeed, _ConSider any funCtidmI) that i.S _qon-negative, non-
f(z|) = w(n(|z|)). decreasing and(z) = w (Inz). By definition, for anyx >



0, there exists a > 0 such thati(z) > klnz for x > ¢. y > 0, we can write

Therefore, for anym > ¢,
- [ s mp)ay

E,. [1(1X])] i3 v
1 ! 1 _ p(y) | a)
(1. a)de + —— | Zi(x)d = p(y)Ing(y) dy + q(y) In dy
:(LPEE)AZWMH+(mmVA‘EM”“7 Shwh/p@ﬁw+ /1nﬂ+yﬂmwdy
1 ™1 lyl=5 ly|>7
— —(z)dx 1
1 2
- 1 (“"?1/ : to [ away
> (1——)/ l(z)dz + 2/ — () dz ly|>3
sl e S T d+/ln1—|— (v)d
+ 7(111;)2 /c é Inzdx B l(g)\y\zg Y Y . Y Y
1 ! 1 1 11 N
(Inm)? — (Inc) yi=y
2(Inm)? where equatiori{4) is due to the fact ti@} is non-decreasing.
(Inm)? — (Inc)? Hence,

—/PMMMMM@

-
which is greater tharéx wheneverm > 2. Since the lvl27

inequality holds for anyn > 0 and m large enough then < hlﬂ-w +2 In[1+ |y p(y) dy

sup,,, § Ep,. [[(|X])] ¢ is unbounded which violates condition 9) ly|>7
C2. We proceed néxt to the proof of Theorem 1. 1E, [In[1+ V2] )
. . ) . e In[l+ 3?]
Proof: We start by noting that the differential entropies Lo In {1 + |y]

(p) and{1(p) }n1 €xist and are finite by virtue of the fact < = 42 sup {Tl)y} / 1(y) p(y) dy
that the PDFs are upperbounded and have a finite logarithmic Y |29 y yi>5
moment [15, Proposition 1]. 1 In4

Assume now that the conditions of the theorem hold and Tom 1+ 2] )
that p,,, converges tg point-wise. If the upperboundl(2)/ L1 nl 1 In4
is larger than one, consider the change of varialffes, MY’ < l({l)w 2L { n [l(|+|)|y” } o [1n+ ik (7
(for which h(Z) = h(Y') +1n M,) or equivalently the PDFs, y ly|>7 Yy emn Yy

where equatior{5) is justified siné¢gy) is positive and(y) is
.1 i .1 Y non-negative. In order to write equatidn (6) we use the itient
d(y) = P (M) ' dm(y) = wuPm (M) »m 2 L. E, [In (1+9?)] = In4 [16, Sec.3.1.3, p.51]. The supremum
in equations[(6) and17) is finite —and goesite for ¢ large-
These densities are upperbounded by one and the sequéﬁ&}'gh becausky) = w (Iny).
{d(y)} converges point-wise td(y). Furthermore, the func- ~ Since the upperboundl(7) also holds for amy(y), then
tion I’(y) = I(y/M) is non-negative, non-decreasing andor everys > 0, there exists @ > 0 such that for allm > 1:
'(y) = w(In(y)). Additionally,

/pm< Y p(y) dy| < 6 & / (v) Wnp(y) dy| < 6.

ly|>7 ly|>g

Ea,, ['(IV])] = Ep,, ['(IMY])] =Ep,, I(Y])] < L

The conditions of the theorem therefore hold for the Iang remains to show that

{dm,d} and in what follows we assume without loss of _— () 10 pon () dy = — () np(y) d
generality thatM < 1, and the differential entropies are all m=+oo Pm{y) MPpmlY) &Y = Py mp\y) ay,
non-negative . lyl<gy lyl<g

Let y be any positive scalar such thaty) > 0, and which is guaranteed by the Dominated Convergence Theorem
denote byq(y) = +17,> the Cauchy density. Then using(DCT) since |pm (y) Inpm (y)| < L by virtue of the fact that
the convention 01n 0 = 0” and the fact thaylny > —: L for p,.(y) <1 for all m, which completes the proof. [ ]



IIl. SUFFICIENT CONDITIONS FOR FINITENESS OF Sufficient conditions
CHANNEL CAPACITY We make the following rather-mild assumptions:

In what follows we derive sufficient conditions for a mem- ® The cost functiorC(.):
oryless additive-noise channel to have a finite and achievab Al- The cost function is lower semi-continuous.
capacity. More specifically, we consider a generic disetiete A2- The cost function is non-decreasing.
real and memoryless noisy communication channel where the A3- C (|z]) = w (In|f(x)]).
noise is additive and where the input and output are possibly Without loss of generality, one may assume tf& is
non-linearly related as follows: non-negative. For if it were not, defi®(|z|) = C(|z|) —
C(0) and adjust the input constraint accordingly.

Y=7x)+N, ® e The functionf(-):
whereY € R is the channel output and where the inptt A4- The function is continuous.
is assumed to have an alphattC R. The channel’s input A5- The absolute value of the functidifi(-)| is an non-
is distorted according to the deterministic and possiblp-no decreasing function ofz| and |f(z)| — +oco as
linear functionf (x). Additionally, the communication channel |z| = +o0.

is subjected to an additive noise —that is independent of the Th ise PD i
input— that is absolutely continuous with PDF (-). ¢ he noise l_sz(-)-_
Finally, we assume that the input is subject to an average A6~ The PDF is continuous oR.

cost constraint of the formE [C (] X|)] < A, for someA € A7- The PDF is upperbounded. _
(0,00) and whereC(-) is some cost function: A8- There exits a non-decreasing function

Cn: [0,00) — R,
such thatCy (|n]) = w (In|n|), and
En[Cn (IN])] = Ly < 0.

C:[0,00) — R.

Accordingly, we define ford > 0

Py = {Prob. distributions* : /C(l:vl) dF(z) < A}, 9) As an example, this condition holds true for any
noise PDF whose tail is “faster” thaglﬁq(ml—z)?,.
the set of all distribution functions satisfying the averagst Conditions A7 and A8 guarantee that the noise differen-
constraint. tial entropyhy, exists and is finite [15, Proposition 1].

The primary question that we would like to answer is  Since from an information theoretic perspective, the gen-
whether one can reliably transmit an arbitrarily large nemb eral channel model18) is invariant with respect to output
of bits per use over this channel. Said differently, are the scaling, we consider without loss of generality that the
achievable rates over this channel bounded? The answesto th noise PDF is upperbounded by one.
question follows from those of the following two questions: Also without loss of generality, one may assume

« Is the mutual information between a feasible input and tr}at Cn(-) is non-negative. Otherwise, one may adopt

the corresponding output always finite? C'n(J2]) = Cn(l)) - Cn (0). o -

. Ifitis the case, can this mutual information be arbitrarily The above assumptions are sufficient conditions on the

large? triplet f(-), C(-), andpx(-) that guarantee the finiteness and

A positive answer to the first question allows by the codintgrj1e achievability of the capacity of channgl (8):

theorem [17] to state that the channel capacity is the supmemTheorem 2. Under conditions Al through A8, the capacity
of the mutual informatior (-) between the inpuk and output of the average-cost constrained channgl (8) is finite and
Y over all input probability distributions” that meet the achievable.
constraintP4: Furthermore, the maximum is achieved by a unidtein

C = sup I(F). P4 if and only if the output PDF is injective it

FePa We point out that assumptions A4 through A8 are related

For the channel at hand(8), we note that the chanri€l the channel model at hand and are not “conditions” per

transition probability law is absolutely continuous witbresity Say. These assumptions are satisfied by the vast majority of
function given by common models found in the literature.

When thinking in terms of conditions on the input — con-

pyix(ylz) =pn(y — f(x), yeR, zeX. (10) trolled by the user, A1, A2 and A3 are to be considered. Note

that these conditions are also common to all cost functions
and the mutual information may be expressed as [11] found in the literature. While A1 and A2 are rather technical
the relevance of A3 may be seen in the following example.

. py (Y — f(2))
I(F)://PN (y — f(z))In [ (i F) dy dF (z), Example 2. Consider the linear additive channgl (1), where
(11) now the noiseN is a uniformly distributed random variable
wherep(y; F) = [pn (y — f(z)) dF(x) is the output PDF. on the intervall0, 1).



Let X; and X, be two discrete random variables taking inentropy inpy (). This is indeed the case if and onlyyf (-)

teger valueg > 2, with respective probability mass functionsis injective in F. ]
1 1 The next section is dedicated to the proofs of Theoldhs 3, 4
kY=B] —— kY= By ——— k>2
le( ) 1 k(lnk)gv sz( ) 2 k(lnk)3a = 4y andB.

IV. PROOFS OF THETHEOREMS

where B; & By are the normalizing finite constants,
i 1 ! We use techniques that have been first developedin [11] and
Z rm BE . later adopted in various works on mutual information maxi-
k=2

o —1
1
b= lzk(lnwl b= er adope m
k=2 mization as in [18]: Denote by the space of all probability
Let Y; andY; be the outputs of channdll(1) whenever itslistribution functions orR. We adopt weak convergence [19,
inputs areX; and X, respectively. Given the placement oflll-1, Def.2, p.311] onF, and use the Levy metric to metrize
the mass pointsX; may be perfectly inferred frony; and this weak convergence [5, Th.3.3, p.25]. The optimizat®n i
H(X:|Yy) = 0. Similarly H(X|Y2) = 0 and therefore the carried out in this metric topology.
mutual informations

[(X; Y1) = H(X,) — HX, Y1) = H(X)) Optimization set properties
I(X2;Ya) = H(X,). Theorem 3. Whenever conditions Al, A2, A3 and A5 are

satisfied, the seP, defined in [[(P) is convex and compact.
ComputingH (X;) and H(X>), we obtain:

H(X;) ==Y px.(k)Inpx, (k) Proof:
k>2 We note first that the theorem was shown to hold for cost
Ink+ (14+4)In(lnk) functions of the formC (|z|) = |=|", for » > 1 in [1], [18].
=-InBi+ B} %e(ln k)i i=1.2, we adopt the same methodologies to generalize the results
k>2

presented hereafter.
which diverges foi = 1 and converges far= 2. Accordingly,

the mutual information of channell(1) is infinite when th?u
input is X; whereas it is finite for inputX,. Note that
E [In X;] is infinite while E [In X5] is finite, and this example bution function because it is non-decreasing, right cor
showcases the importance of condition A3 when it com%s(_oo) — 0 and F(+o0) — 1. Additionall ' '
to the finiteness of mutual information. Whenever A3 is not B T 4
enforced, the channel capacity might be infiniteXasyields _ B

an infinite mutual information. The theorem states that when RC (I2l) dF" = RC (2]) dAFL+ (1= A)F2)
the condition is enforced, the capacity will be finite.

Convexity: Let F; and F» be two probability distribution
nctions inP4, and A\ some scalar betwedhand 1. Define
F = A\F1 + (1 —\)Fs. ltis clear thatF' is a probability distri-

= [ €l a1 =) [ € (jal) d,
An interesting observation is that bofh[ X?| andE [ X3] R R
are infinite, however as inputs to the channel they yield SAM+(1-NA=A
respectively an infinite and a finite mutual information. We Therefore, ' € P, and P, is convex.
proceed next to prove Theordmh 2.

Proof: The first statement of the theorem is established Compactness:Consider a random variabl& with prob-
using the extreme value principle which we state for conepletability distribution function ' € P4. Applying Markov’s

ness and can be found in [12]: inequality to random variablé (| X|) yields,
Theorem. If I(-) is areal-valuedweakcontinuousunctional PHC (|X]) > a} < ECIXD] v, 50
on acompactset C F, thenI(-) achieves its maximum on -0 a ’ '
Q. Now let

In order to apply this principle, we show in Sectibn] IV K= inf{:v € [0, 00) s.t.C(x) > a} +1

that the setP4 is compact(TheorenB) and that the mutual

information/(F) is finite andcontinuoug Theorem§ ¥ and 5). which is always greater or equal to 1. For any finite value of

Therefore, the capacity of the average-cost constrainadred o, such aK exists sinceC(x) increases tofoo asz — +0o

is finite and achievable. by virtue of properties A3 and A5. Additionally, sinc¥-) is
When it comes to uniqueness, sinBg is convex(Theo- non-decreasing by property A2,

rem[3) whenevel () is strictly concavethen the maximum PHC(|X]) > a} > Pr{|X| > K — 1} > Pr{|X| > K}

C:}%%’)ZI(F)’ ZF(—K)—!—[I—F(K)].
is achieved by a uniqué&™ in P,. Hence, for allF € P, we obtain
Knowing that/(-) is concavg Theorenib), its strict concav- E[C(X])] A
ity is equivalent to the strict concavity of the output difatial F(-K)+[1 - F(K)| < ——=—" < —.



Therefore, for every > 0, there exists &, > 0, namely Before we proceed with the proof, we note that under
. the conditions of the Theorem, the mutual informatiki#")
K = min {x €[0,00) st.C(x) 2 (A/E)} +1, between the input and the output of chanmhél (8) is finite by
such that virtue of Theoreni 4.

sup [F(—K.) +[1 - F(K)]| < e. Proof.
FePa
This implies thatP, is tight [19, I1-2, Def.2, p.318]. By ~ Concavity: The output differential entropy:y (F) is a
Phrokhorov’s Theorem [19, 111-2, Th.1, p.318}, is therefore concave function of” on F. In fact,
relatively sequentially compact and every sequefieg} of
distribution functions inP4 has a convergent sub-sequence
{F,,} where the limitF* does not necessarily belong Ry. hy(F) = - / py (y; F) In py (y; F') dy
If we prove thatF™* € P4, the latter will be sequentially
compact and hence compact since the space is metrizable [20 . . .
Th.28.2, p.179]. In order to show that the limiting disttiioun LXIStS (by Theorenill4) and is a concave functionpef(.)

function F* is in P4, it must satisfy the cost constraint Whichbecause—:clna: IS concave ine. Sincepy (F) is linear in F,
: I(F) = hy(F) — hy is concave orPy4.
is the case. In fact,

/C (Jul]) dF*(u) < lim inf /C (Ju]) dF,, < A, Continuity: To prove the continuity of (F), it suffices to
oo show thathy (F) is continuous by virtue of equation (12). To

where the first inequality holds becausgu/|) is lower semi- this end, we letF" € P4 and let{F,,}.,,>1 be a sequence of

continuous (property Al), and is bounded from belowCh¥)) probability measures i?4 that converges weakly t&'.

for all u € R (property A2) [21, Th. 4.4.4]. In addition, the |y order to apply Theorefd 1 and show the convergence of
second inequality is valid since the sub-sequefiEg } is in 1. (F, ) to hy (F) and hence the weak continuity bf- (F) on
Pa and therefore satisfies the cost constraint;. Finally, p, we establish that the appropriate conditions are satisfied
F* e Py andP, is compact. [ |
e By definition of weak convergence, singg; (y — x) is

Properties of the mutual informatioriy-) bounded and) continuous (properties A6 and A7)_, then

. o ) p(y; Fn) = [pn(y — f(x))dF,,(z) converges point-

We prove in what follows the finiteness, concavity and wise top(y; ) = [ pn(y — f(x)) dF (z).

continuity of I(-) on P4 through Theoremis]4 arid 5. e The induced output PDR(y; F,,) is also bounded by

Theorem 4. Whenever conditions A3, A7 and A8 hold, the one. . . .
mutual informationI(F) between the input and output of e It remains to find a non-negative and non-decreasing

channel[[8) is finite for all input distribution functiorg such function, : [0, 00) — [0, 00) such that(y) = w (In(y)),
that E[C (| X )] is finite. and a scalarL > 0 such that equation(3) holds for

p(y; Frn), m > 1 and p(y; F), a task which we fulfill

Proof: SinceY = f(X) + N, in what follows.

W1+ Y[ <1+ [ + L+ [N, For anyy > |£(0)], letS = £~ ([|£(0)|,]) be the inverse
andE [In[1 + |Y]]] is finite because botE [In[1 + |f(X)|]] image by f(-) of the closed interval|f(0)],y]. Since f(-)
andE [In[1 + |N|]] are finite (by properties A3 and A8). is continuous (A4), the sef is closed. It is also bounded
Moreover, and sincgy (y) is upperbounded (by A7) by onebecause f(z)| is non-decreasing ifiz| and tends to infinity
hy (F) = — [ p(y; F) In p(y; F) dy, the differential entropy (A5). Therefore any element ifi is smaller than a positive,
of Y, is well defined [15, Proposition 1] antl < hy (y) < such thatf(t,)| = 2y and greater than a negatitiesuch that
~+00. |f(t»)| = 2y. Sucht,, andt;, exist becausg(-) is continuous.
The differential entropy:y of the noise being finite (due The set is compact and has a maximal value that we denote
to properties A7 and A8), the mutual informatidn(11) can(y) = max{z: z € S}. Note that|f(z(y))| = v.
therefore be written as the difference of two terms:

I(F) = hy(F) = hyx(F) = hy(F) —hn,  (12)

both of which are finite and this completes the proof. m Conin (y) = { l(f)nin {C(2(v):Cn(y)} ytﬁ [£(0)]
otherwise

Define the functiorCuin(+): [0,00) — R as follows:

Theorem 5. Assume that conditions A2 through A8 hold.

Und t traint . . . . .
nder a cost constrain whereCy (-) is defined in A8. The functio,,, (y) is non-

/c (|X]) dF(z) < A A >0, negative and non-decreasing {fhco) since bothC(y) and
Cn(-) are non-negative and non-decreasing by properties A2

the mutual informatiord (F') between the input and the outputand A8 andz(y) is non-decreasing fog > | f(0)|. Addition-

of channel[(B) is concave and continuous when&vgr:|) =  ally, Coyin(y) = w(lny) becauseC(z) = w (In|f(z)|) (A3)

w(ln|f(x)]). andCy(z) = w (Inz) (A8).



Now, for any X with distribution F' € P4,

e fe 2]
= Exn _Cmin X )2+N|]
< Ex,n _Cmin W] (13)
= Exn -Cmin w ’f(X)SNI} P(1r(x)I1<INY)
+Ex,n -Cmin w ’If(X)I>IN} P(17(x)[>IN])
< Ex,n |Cumin (|N]) ’f(X)SNI} P(1rx)1<INy)

+Ex,n [Cmin(lf(X)l) ‘f(X)>NI] P(lre)>Iny)  (14)
< En[Cn (IN])] +Ex [C(IX])]
< Ly+A=L<c. (16)

where0 < Ly = En[Cn (JN]|)] < oo by property A8.
Equations[(IB) and(14) are justified sin€g;, (|z|) is non-
decreasing infz| and [I5) is due to the fact thélt,;, (|z]) is
non-negative. Since the valie< L < oo is independent of
the input distribution functiod” € P4, then[16) holds for any
output variableY, i.e for all p(y; F') where F' € P4. Letting
1(y) = Cumin (¥), y € [0,00), then equation {3) is satisfied for

implies Lebesgue-a.e. point-wise convergence of the dutpu
PDFs: Denote by{a;};>1 the countable discontinuities of
pn(-) and by {z;};>1 the discontinuity points ofF’, which

are necessarily countable (see Jordan decomposition lemma
in [23, p. 40]). Point-wise convergence of the PDFs holds
except at values of of the formy;; = a; — f(x;), i,5 > 1.

The fact that the{y;; }'s are countable proves our assertion.

VI. CONCLUSION

Tangible models for communication channels implicitly
assume a finite value for the channel capacity. Knowing that
maximizing the transmission rates is directly related to a
constrained maximization problem, we have derived sufficie
conditions for finiteness and achievability of the capaaty
generic memoryless additive noise channels. The involved
conditions on the input-output relationship, the inputtcos
function and the type of the noise define a wide collection
of models for which finding codes that strive toward achiev-
ing maximum transmission rates is sensible. The result is
applicable to possibly non-linear channels, to nearly ladl t
widely known additive noise models and for cost functions
that are “super-logarithmic”. Interestingly, communioat at
finite rates is not directly related to an input average-pgowe
constraint. Even when signaling strategies are allowedit@ h
an infinite second moment on average, transmission ratég cou
not be arbitrarily large. We mention that while searching
for sufficiency, intermediately we derived conditions unde

p(y; F), m > 1 andp(y; F). Therefore, Theorefd 1 holds andwhich point-wise convergence of PDFs implies convergence

hy (F,
which concludes the proof.

m) converges tdy (F') and hencéwy (F) is continuous
|

V. EXTENSIONS

The results may be extended to the case where the noigd

PDF is not necessarily continuous & In fact, we weaken

condition A6 and we show that Theordm 2 also holds fof2]
noise PDFs which are piece-wise continuous on a countable

number of pieces. Note that under this category fall absbjiut

of differential entropies.
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