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Abstract— Evaluating the channel capacity is one of many key
problems in information theory. In this work we derive rather-mild
sufficient conditions under which the capacity of continuous channels
is finite and achievable.

These conditions are derived for generic, memoryless and possibly
non-linear additive noise channels. The results are based on a novel
sufficient condition that guarantees the convergence of differential
entropies under point-wise convergence of probability density func-
tions.

Perhaps surprisingly, the finiteness of channel capacity holds for
the majority of setups, including those where inputs and outputs have
possibly infinite second-moments.

I. I NTRODUCTION

Over continuous-alphabets channels, a common belief is
that with “sufficient” power, one is capable of transmitting
at arbitrarily large rates. Stated differently, if an inputof
infinite power is allowed, the channel capacity is infinite. This
belief is perhaps inspired from the well-known Additive White
Gaussian Noise (AWGN) and linear Gaussian channels for
example.

However, recent studies have suggested that for some chan-
nels this is not true: even if an infinite power input is allowed,
the achievable rates are not arbitrarily large:

• In [1], the authors studied a linear additive-noise channel
where the noise is heavy-tailed –modeled using alpha-
stable statistics. They showed that even if the input
constraint does allow for an infinite-power input, the
channel capacity is finite. Actually, the authors found the
optimal input to be surprisingly of finite power.

• In [2], the authors studied an additive Cauchy-distributed
noise, and the constraints did allow as well for infinite-
power input signals. The capacity was proven to be finite
despite the fact that the optimal input was found in this
case to have infinite power.

The natural question that arises is: “under which conditions
does one have a finite channel capacity?”, the answer to which
does clearly depend on the input constraints, but also on the
noise statistics. In this work, we study the interaction between
the input constraints, the input-output relationship and the
noise distribution and derive conditions on the triplet under
which the channel capacity is finite.

This guarantee of finiteness is of high significance as it is
typically the first step one would undertake in order to quantify
the capacity of a channel at hand. Consider for example an
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additive Gaussian noise channel where the outputY is related
to the inputX as follows:

Y = X +N, (1)

and whereX is independent of the noiseN . If no constraints
are imposed onX , arbitrarily large transmission rates are
achievable. If a second moment constraint is imposed instead,
the capacity is finite. What if a “weaker” constraint is imposed
on X . Could the rates be arbitrary large? For illustrative pur-
poses, consider the “weaker” constraintE

[

ln2 (1 + |X |)
]

≤ A
for someA > 0. This channel (1) is equivalent to the channel:

Y = sgn(U)
(

e|U| − 1
)

+N

whereU now is average power constrainedE
[

U2
]

≤ A. At
a first look, it is not clear whether the capacity of such a
channel is finite or not. Indeed, in some sense the channel is
“exponentially amplifying” the input and by more than what
the cost is constraining it. An appropriately-chosen Cauchy
distributed inputX will satisfy the constraint but will have an
infinite second moment. The average ofY 2 will be infinite as
well. Is the capacity of this channel finite? Our result provides
an unexpected positive answer to this question.

Theoretical interests aside, it may seem unusual in a
Gaussian setup to impose the constraintE

[

ln2 (1 + |X |)
]

or any other type of input constraints that permitsE
[

X2
]

to be infinite. However, when the channel model features
noise distributions having an infinite second moment, as in
the case of some channels subject to multiple access [3] or
radio-frequency [4] interference, imposing a second moment
constraint becomes less sensible; such a constraint masks the
characterization of the behaviour of the transmission rates
function of the quality of the channel since the channel signal-
to-noise ratio will constantly evaluate to zero. Furthermore, we
note that the usage of constraints allowing the input to havean
infinite second moment has been previously examined within
the context of robust estimation and detection theory [5]–[7].

More formally, the notion of capacity of a discrete memory-
less channel was defined in the early works of Shannon [8], [9]
to be “the largest” rate at which one can communicate over a
channel with an arbitrarily low probability of error. Through a
coding theorem, Shannon proved that the capacity is given by
the solution to an optimization problem, whereby the mutual
information between the input and output of the channel is
maximized. When it comes to continuous channels the inputs
of which are potentially constrained, the results were extended
(see for example [9]–[11]) and the channel capacity was also
tied to a constrained optimization problem.

http://arxiv.org/abs/1504.03814v3


2

Naturally, in both setups it is implicitly assumed that the
optimization problem is “well-defined”, for otherwise relating
the channel capacity to a solution of a maximization of
mutual information is problematic. In this work we tackle
this assumption and provide a sufficient condition for such
an optimization problem to be bothwell-definedand yielding
a finite andachievable solutionfor a wide range of channels.

We consider a generic average-constrained channel model
where the noise is additive and absolutely continuous. We
prove in Section III that under very mild conditions on the
noise and the constraint, the channel capacity is indeed finite
and achievable.

We start by deriving sufficient conditions that ensure that
mutual information is finite –and hence well-defined– and we
make use of the extreme value principle [12] to ensure that the
maximization problem yields a finite and achievable solution.
This could be achieved by enforcing two characteristics:

1- The input space of feasible distribution functions is
compact.

2- The mutual information between the input and the output
of the channel is continuous in the input distribution
function.

We emphasize that these two properties are intimately
related to the channel model and the input constraints if any.

The generic model adopted in this work encompasses
multiple channel models found in the literature: We con-
sider input-output relationships that are possibly non-linear;
A generic average cost functionC(·) is imposed on the input;
The absolutely continuous additive noise has a finite “super-
logarithmic moment”† as is the case for Gaussian, uniform,
generalized Gaussian, generalized t, Pareto, Gamma, alpha-
stable distributions, and their mixtures. We show that whenever
the input cost function has a “super-logarithmic growth”‡, the
channel capacity isfinite andachievable.

Establishing the continuity of mutual information under
any “super-logarithmic” input constraint is achieved using
a novel result on theconvergence of differential entropies.
While numerous studies have tackled this subject (see for
example [13], [14]), the conditions presented in Section II
are among the weakest that insure this convergence whenever
Probability Density Functions (PDFs) converge point-wise.

The rest of the paper is organized as follows: In Section II,
a preliminary theorem concerning the convergence of differ-
ential entropies is listed and proved. The primary problem and
the main result are presented in Section III, where we describe
the channel model and state the conditions under which our
result holds. Technical proofs are derived in Section IV. Some
extensions are listed in Section V and Section VI concludes
the paper.

†A “super-logarithmic moment” is an expectation of the formE [f(|X|)]
for some functionf(|x|) = ω(ln(|x|)).
We say thatf(x) = ω (g(x)) if and only if ∀κ > 0, ∃ c > 0 such that
f(x) ≥ κg(x), ∀x ≥ c.

‡We say that a functionf(x) has a “super-logarithmic growth” whenever
f(|x|) = ω(ln(|x|)).

II. CONVERGENCE OF DIFFERENTIAL ENTROPIES

In this section we establish a sufficient condition for the con-
vergence of differential entropies whenever there is point-wise
convergence of the corresponding PDFs. More precisely, we
prove a theorem that guarantees this convergence under some
rather-mild sufficient conditions. In layman terms, this theorem
states that whenever the PDFs satisfy a super-logarithmic type
of moment, point-wise convergence will imply convergence of
differential entropies. We emphasize that the new conditions
are weaker than some of those derived by Godavarti et al. [14,
Thm 1]. Alternative conditions found in [14, Thm 4] are not
directly related to those presented hereafter.

Theorem 1. Let the sequence of PDFs onR, {pm(y)}m≥1

and p(y) satisfy the following conditions:

C1- The PDFs {pm(y)}m and p(y) are uniformly upper-
bounded:

∃M ∈ (0,∞) s.t. sup
y∈R,m≥1

{

pm(y), p(y)

}

≤ M. (2)

C2- There exists a non-negative and non-decreasing function
l : [0,∞) → [0,∞), such thatl(y) = ω (ln(y))† and

sup
m

{

Epm
[l(|Y |)] ,Ep [l(|Y |)]

}

≤ L, (3)

for some positive (finite) valueL.

Under these conditions,h(pm) → h(p) whenever the PDFs
pm(y) → p(y) point-wise.

Before we prove the theorem, we highlight the importance
of condition C2 by providing an example where it is not
satisfied, and the theorem does not hold.

Example 1. Consider the sequence of PDFs{pm(x)}m≥3

defined onR as follows:

pm(x) =















1−
1

lnm
x ∈ [0; 1]

1

(lnm)2
1

x
x ∈ (1;m].

This sequence of PDFs converges point-wise top(x), the
uniform distribution on[0, 1], and condition C1 is satisfied
with a uniform upperboundM = 1. Computing the differential
entropies,

h(p) = 0

h(pm) = −

(

1−
1

lnm

)

ln

(

1−
1

lnm

)

+
2 ln(lnm)

(lnm)2

∫ m

1

1

x
dx+

1

(lnm)2

∫ m

1

lnx

x
dx

= −

(

1−
1

lnm

)

ln

(

1−
1

lnm

)

+
2 ln(lnm)

lnm
+

1

2

→
1

2
asm → ∞,

and hence there is no convergence of differential entropies.
This is explained by the fact that condition C2 is not satisfied.
Indeed, consider any functionl(x) that is non-negative, non-
decreasing andl(x) = ω (lnx). By definition, for anyκ >
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0, there exists ac > 0 such thatl(x) ≥ κ lnx for x ≥ c.
Therefore, for anym ≥ c,

Epm
[l(|X |)]

=

(

1−
1

lnm

)
∫ 1

0

l(x) dx +
1

(lnm)2

∫ m

1

1

x
l(x) dx

=

(

1−
1

lnm

)
∫ 1

0

l(x) dx +
1

(lnm)2

∫ c

1

1

x
l(x) dx

+
1

(lnm)2

∫ m

c

1

x
l(x) dx

≥

(

1−
1

lnm

)
∫ 1

0

l(x) dx +
1

(lnm)2

∫ c

1

1

x
l(x) dx

+
κ

(lnm)2

∫ m

c

1

x
lnx dx

=

(

1−
1

lnm

)
∫ 1

0

l(x) dx +
1

(lnm)2

∫ c

1

1

x
l(x) dx

+ κ
(lnm)2 − (ln c)2

2(lnm)2

≥ κ
(lnm)2 − (ln c)2

2(lnm)2
,

which is greater than38κ wheneverm > c2. Since the
inequality holds for anyκ > 0 and m large enough then

supm

{

Epm
[l(|X |)]

}

is unbounded which violates condition

C2. We proceed next to the proof of Theorem 1.

Proof: We start by noting that the differential entropies
h(p) and{h(pm)}m≥1 exist and are finite by virtue of the fact
that the PDFs are upperbounded and have a finite logarithmic
moment [15, Proposition 1].

Assume now that the conditions of the theorem hold and
that pm converges top point-wise. If the upperbound (2)M
is larger than one, consider the change of variables,Z = MY
(for which h(Z) = h(Y ) + lnM ,) or equivalently the PDFs,

d(y) =̂
1

M
p
( y

M

)

, dm(y) =̂
1

M
pm

( y

M

)

,m ≥ 1.

These densities are upperbounded by one and the sequence
{dm(y)} converges point-wise tod(y). Furthermore, the func-
tion l′(y) = l(y/M) is non-negative, non-decreasing and
l′(y) = ω (ln(y)). Additionally,

Edm
[l′(|Y |)] = Epm

[l′(|MY |)] = Epm
[l(|Y |)] ≤ L.

The conditions of the theorem therefore hold for the laws
{dm, d} and in what follows we assume without loss of
generality thatM ≤ 1, and the differential entropies are all
non-negative .

Let ỹ be any positive scalar such thatl(ỹ) > 0, and
denote byq(y) = 1

π
1

1+y2 the Cauchy density. Then, using
the convention “0 ln 0 = 0” and the fact thaty ln y ≥ − 1

e
for

y > 0, we can write

−

∫

|y|≥ỹ

p(y) ln p(y) dy

= −

∫

|y|≥ỹ

p(y) ln q(y) dy +

∫

|y|≥ỹ

q(y)
p(y)

q(y)
ln

q(y)

p(y)
dy

≤ lnπ

∫

|y|≥ỹ

p(y) dy +

∫

|y|≥ỹ

ln
[

1 + y2
]

p(y) dy

+
1

e

∫

|y|≥ỹ

q(y) dy

≤
lnπ

l(ỹ)

∫

|y|≥ỹ

l(|y|) p(y) dy +

∫

|y|≥ỹ

ln
[

1 + y2
]

p(y) dy

+
1

e

1

ln [1 + ỹ2]

∫

|y|≥ỹ

ln
[

1 + y2
]

q(y) dy, (4)

where equation (4) is due to the fact thatl(·) is non-decreasing.
Hence,

−

∫

|y|≥ỹ

p(y) ln p(y) dy

≤ lnπ
Ep [l(|Y |)]

l(ỹ)
+ 2

∫

|y|≥ỹ

ln [1 + |y|] p(y) dy

+
1

e

Eq

[

ln
[

1 + Y 2
]]

ln [1 + ỹ2]
(5)

≤
L lnπ

l(ỹ)
+ 2 sup

|y|≥ỹ

{

ln [1 + |y|]

l(|y|)

}
∫

|y|≥ỹ

l(y) p(y) dy

+
1

e

ln 4

ln [1 + ỹ2]
(6)

≤
L lnπ

l(ỹ)
+ 2L sup

|y|≥ỹ

{

ln [1 + |y|]

l(|y|)

}

+
1

e

ln 4

ln [1 + ỹ2]
, (7)

where equation (5) is justified sincel(ỹ) is positive andl(y) is
non-negative. In order to write equation (6) we use the identity
Eq

[

ln
(

1 + y2
)]

= ln 4 [16, Sec.3.1.3, p.51]. The supremum
in equations (6) and (7) is finite –and goes to0– for ỹ large-
enough becausel(y) = ω (ln y).

Since the upperbound (7) also holds for anypm(y), then
for everyδ > 0, there exists ãy > 0 such that for allm ≥ 1:
∣

∣

∣

∣

∣

∣

∣

∫

|y|≥ỹ

pm(y) ln pm(y) dy

∣

∣

∣

∣

∣

∣

∣

< δ &

∣

∣

∣

∣

∣

∣

∣

∫

|y|≥ỹ

p(y) ln p(y) dy

∣

∣

∣

∣

∣

∣

∣

< δ.

It remains to show that

lim
m→+∞

−

∫

|y|<ỹ

pm(y) ln pm(y) dy = −

∫

|y|<ỹ

p(y) ln p(y) dy,

which is guaranteed by the Dominated Convergence Theorem
(DCT) since|pm(y) ln pm(y)| ≤ 1

e
by virtue of the fact that

pm(y) ≤ 1 for all m, which completes the proof.
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III. SUFFICIENT CONDITIONS FOR FINITENESS OF

CHANNEL CAPACITY

In what follows we derive sufficient conditions for a mem-
oryless additive-noise channel to have a finite and achievable
capacity. More specifically, we consider a generic discrete-time
real and memoryless noisy communication channel where the
noise is additive and where the input and output are possibly
non-linearly related as follows:

Y = f(X) +N, (8)

whereY ∈ R is the channel output and where the inputX
is assumed to have an alphabetX ⊆ R. The channel’s input
is distorted according to the deterministic and possibly non-
linear functionf(x). Additionally, the communication channel
is subjected to an additive noise –that is independent of the
input– that is absolutely continuous with PDFpN (·).

Finally, we assume that the input is subject to an average
cost constraint of the form:E [C (|X |)] ≤ A, for someA ∈
(0,∞) and whereC(·) is some cost function:

C : [0,∞) −→ R.

Accordingly, we define forA > 0

PA =
{

Prob. distributionsF :

∫

C (|x|) dF (x) ≤ A
}

, (9)

the set of all distribution functions satisfying the average cost
constraint.

The primary question that we would like to answer is
whether one can reliably transmit an arbitrarily large number
of bits per use over this channel. Said differently, are the
achievable rates over this channel bounded? The answer to this
question follows from those of the following two questions:

• Is the mutual information between a feasible input and
the corresponding output always finite?

• If it is the case, can this mutual information be arbitrarily
large?

A positive answer to the first question allows by the coding
theorem [17] to state that the channel capacity is the supremum
of the mutual informationI(·) between the inputX and output
Y over all input probability distributionsF that meet the
constraintPA:

C = sup
F∈PA

I(F ).

For the channel at hand (8), we note that the channel
transition probability law is absolutely continuous with density
function given by

pY |X(y|x) = pN (y − f(x)), y ∈ R, x ∈ X . (10)

and the mutual information may be expressed as [11]

I(F )=̂

∫∫

pN (y − f(x)) ln

[

pN (y − f(x))

p(y;F )

]

dy dF (x),

(11)
wherep(y;F ) =

∫

pN (y − f(x)) dF (x) is the output PDF.

Sufficient conditions

We make the following rather-mild assumptions:
• The cost functionC(·):

A1- The cost function is lower semi-continuous.
A2- The cost function is non-decreasing.
A3- C (|x|) = ω (ln |f(x)|).
Without loss of generality, one may assume thatC(·) is
non-negative. For if it were not, defineC′(|x|) = C(|x|)−
C(0) and adjust the input constraint accordingly.

• The functionf(·):
A4- The function is continuous.
A5- The absolute value of the function|f(·)| is an non-

decreasing function of|x| and |f(x)| → +∞ as
|x| → +∞.

• The noise PDFpN (·):
A6- The PDF is continuous onR.
A7- The PDF is upperbounded.
A8- There exits a non-decreasing function

CN : [0,∞) −→ R,

such thatCN (|n|) = ω (ln |n|), and

EN [CN (|N |)] = LN < ∞.

As an example, this condition holds true for any
noise PDF whose tail is “faster” than 1

x(lnx)3
.

Conditions A7 and A8 guarantee that the noise differen-
tial entropyhN , exists and is finite [15, Proposition 1].
Since from an information theoretic perspective, the gen-
eral channel model (8) is invariant with respect to output
scaling, we consider without loss of generality that the
noise PDF is upperbounded by one.
Also without loss of generality, one may assume
that CN (·) is non-negative. Otherwise, one may adopt
C′

N (|x|) = CN (|x|) − CN(0).
The above assumptions are sufficient conditions on the

triplet f(·), C(·), andpN (·) that guarantee the finiteness and
the achievability of the capacity of channel (8):

Theorem 2. Under conditions A1 through A8, the capacity
of the average-cost constrained channel (8) is finite and
achievable.

Furthermore, the maximum is achieved by a uniqueF ∗ in
PA if and only if the output PDF is injective inF .

We point out that assumptions A4 through A8 are related
to the channel model at hand and are not “conditions” per
say. These assumptions are satisfied by the vast majority of
common models found in the literature.

When thinking in terms of conditions on the input – con-
trolled by the user, A1, A2 and A3 are to be considered. Note
that these conditions are also common to all cost functions
found in the literature. While A1 and A2 are rather technical,
the relevance of A3 may be seen in the following example.

Example 2. Consider the linear additive channel (1), where
now the noiseN is a uniformly distributed random variable
on the interval[0, 1).
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Let X1 andX2 be two discrete random variables taking in-
teger valuesk ≥ 2, with respective probability mass functions:

pX1
(k) = B1

1

k(ln k)2
, pX2

(k) = B2
1

k(ln k)3
, k ≥ 2,

whereB1 & B2 are the normalizing finite constants,

B1 =

[

∞
∑

k=2

1

k(ln k)2

]−1

B2 =

[

∞
∑

k=2

1

k(ln k)3

]−1

.

Let Y1 andY2 be the outputs of channel (1) whenever its
inputs areX1 and X2 respectively. Given the placement of
the mass points,X1 may be perfectly inferred fromY1 and
H(X1|Y1) = 0. Similarly H(X2|Y2) = 0 and therefore the
mutual informations

I(X1;Y1) = H(X1)−H(X1|Y1) = H(X1)

I(X2;Y2) = H(X2).

ComputingH(X1) andH(X2), we obtain:

H(Xi) = −
∑

k≥2

pXi
(k) ln pXi

(k)

= − lnBi +Bi

∑

k≥2

ln k + (1 + i) ln(ln k)

k(ln k)1+i
i = 1, 2,

which diverges fori = 1 and converges fori = 2. Accordingly,
the mutual information of channel (1) is infinite when the
input is X1 whereas it is finite for inputX2. Note that
E [lnX1] is infinite while E [lnX2] is finite, and this example
showcases the importance of condition A3 when it comes
to the finiteness of mutual information. Whenever A3 is not
enforced, the channel capacity might be infinite asX1 yields
an infinite mutual information. The theorem states that when
the condition is enforced, the capacity will be finite.

An interesting observation is that bothE
[

X2
1

]

andE
[

X2
2

]

are infinite, however as inputs to the channel they yield
respectively an infinite and a finite mutual information. We
proceed next to prove Theorem 2.

Proof: The first statement of the theorem is established
using the extreme value principle which we state for complete-
ness and can be found in [12]:

Theorem. If I(·) is a real-valued, weakcontinuousfunctional
on a compactsetΩ ⊆ F , thenI(·) achieves its maximum on
Ω.

In order to apply this principle, we show in Section IV
that the setPA is compact(Theorem 3) and that the mutual
informationI(F ) is finite andcontinuous(Theorems 4 and 5).
Therefore, the capacity of the average-cost constrained channel
is finite and achievable.

When it comes to uniqueness, sincePA is convex(Theo-
rem 3) wheneverI(·) is strictly concave, then the maximum

C = max
F∈PA

I(F ),

is achieved by a uniqueF ∗ in PA.
Knowing thatI(·) is concave(Theorem 5), its strict concav-

ity is equivalent to the strict concavity of the output differential

entropy inpY (·). This is indeed the case if and only ifpY (·)
is injective inF .

The next section is dedicated to the proofs of Theorems 3, 4
and 5.

IV. PROOFS OF THETHEOREMS

We use techniques that have been first developed in [11] and
later adopted in various works on mutual information maxi-
mization as in [18]: Denote byF the space of all probability
distribution functions onR. We adopt weak convergence [19,
III-1, Def.2, p.311] onF , and use the Levy metric to metrize
this weak convergence [5, Th.3.3, p.25]. The optimization is
carried out in this metric topology.

Optimization set properties

Theorem 3. Whenever conditions A1, A2, A3 and A5 are
satisfied, the setPA defined in (9) is convex and compact.

Proof:
We note first that the theorem was shown to hold for cost

functions of the formC (|x|) = |x|r, for r > 1 in [1], [18].
We adopt the same methodologies to generalize the results
presented hereafter.

Convexity: Let F1 andF2 be two probability distribution
functions inPA, andλ some scalar between0 and1. Define
F = λF1+(1−λ)F2. It is clear thatF is a probability distri-
bution function because it is non-decreasing, right continuous,
F (−∞) = 0 andF (+∞) = 1. Additionally,
∫

R

C (|x|) dF =

∫

R

C (|x|) d (λF1 + (1− λ)F2)

= λ

∫

R

C (|x|) dF1 + (1 − λ)

∫

R

C (|x|) dF2

≤ λA + (1− λ)A = A.

Therefore,F ∈ PA andPA is convex.

Compactness:Consider a random variableX with prob-
ability distribution functionF ∈ PA. Applying Markov’s
inequality to random variableC (|X |) yields,

Pr{C (|X |) ≥ α} ≤
E [C (|X |)]

α
, ∀α > 0.

Now let

K = inf
{

x ∈ [0,∞) s.t. C(x) ≥ α
}

+ 1,

which is always greater or equal to 1. For any finite value of
α, such aK exists sinceC(x) increases to+∞ asx → +∞
by virtue of properties A3 and A5. Additionally, sinceC(·) is
non-decreasing by property A2,

Pr{C (|X |) ≥ α} ≥Pr{|X | > K − 1} ≥ Pr{|X | ≥ K}

≥F (−K) + [1− F (K)] .

Hence, for allF ∈ PA, we obtain

F (−K) + [1− F (K)] ≤
E [C (|X |)]

α
≤

A

α
.
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Therefore, for everyǫ > 0, there exists aKǫ > 0, namely

Kǫ = min
{

x ∈ [0,∞) s.t. C(x) ≥ (A/ǫ)
}

+ 1,

such that

sup
F∈PA

[F (−Kǫ) + [1− F (Kǫ)]] ≤ ǫ.

This implies thatPA is tight [19, III-2, Def.2, p.318]. By
Phrokhorov’s Theorem [19, III-2, Th.1, p.318],PA is therefore
relatively sequentially compact and every sequence{Fn} of
distribution functions inPA has a convergent sub-sequence
{Fnj

} where the limitF ∗ does not necessarily belong toPA.
If we prove thatF ∗ ∈ PA, the latter will be sequentially
compact and hence compact since the space is metrizable [20,
Th.28.2, p.179]. In order to show that the limiting distribution
functionF ∗ is in PA, it must satisfy the cost constraint which
is the case. In fact,

∫

C (|u|) dF ∗(u) ≤ lim
nj→∞

inf

∫

C (|u|) dFnj
≤ A,

where the first inequality holds becauseC(|u|) is lower semi-
continuous (property A1), and is bounded from below byC (0)
for all u ∈ R (property A2) [21, Th. 4.4.4]. In addition, the
second inequality is valid since the sub-sequence{Fnj

} is in
PA and therefore satisfies the cost constraint∀nj . Finally,
F ∗ ∈ PA andPA is compact.

Properties of the mutual information,I(·)

We prove in what follows the finiteness, concavity and
continuity of I(·) on PA through Theorems 4 and 5.

Theorem 4. Whenever conditions A3, A7 and A8 hold, the
mutual informationI(F ) between the input and output of
channel (8) is finite for all input distribution functionsF such
that E [C (|X |)] is finite.

Proof: SinceY = f(X) +N ,

ln [1 + |Y |] ≤ ln [1 + |f(X)|] + ln [1 + |N |] ,

and E [ln [1 + |Y |]] is finite because bothE [ln [1 + |f(X)|]]
andE [ln [1 + |N |]] are finite (by properties A3 and A8).

Moreover, and sincepY (y) is upperbounded (by A7) by one
hY (F ) = −

∫

p(y;F ) ln p(y;F ) dy, the differential entropy
of Y , is well defined [15, Proposition 1] and0 ≤ hY (y) <
+∞.

The differential entropyhN of the noise being finite (due
to properties A7 and A8), the mutual information (11) can
therefore be written as the difference of two terms:

I(F ) = hY (F ) − hY |X(F ) = hY (F ) − hN , (12)

both of which are finite and this completes the proof.

Theorem 5. Assume that conditions A2 through A8 hold.
Under a cost constraint

∫

C (|X |) dF (x) ≤ A A > 0,

the mutual informationI(F ) between the input and the output
of channel (8) is concave and continuous wheneverC (|x|) =
ω (ln |f(x)|).

Before we proceed with the proof, we note that under
the conditions of the Theorem, the mutual informationI(F )
between the input and the output of channel (8) is finite by
virtue of Theorem 4.

Proof:

Concavity: The output differential entropyhY (F ) is a
concave function ofF on F . In fact,

hY (F ) = −

∫

pY (y;F ) ln pY (y;F ) dy

exists (by Theorem 4) and is a concave function ofpY (·)
because−x lnx is concave inx. SincepY (F ) is linear inF ,
I(F ) = hY (F ) − hN is concave onPA.

Continuity: To prove the continuity ofI(F ), it suffices to
show thathY (F ) is continuous by virtue of equation (12). To
this end, we letF ∈ PA and let{Fm}m≥1 be a sequence of
probability measures inPA that converges weakly toF .

In order to apply Theorem 1 and show the convergence of
hY (Fm) to hY (F ) and hence the weak continuity ofhY (F ) on
PA, we establish that the appropriate conditions are satisfied:

• By definition of weak convergence, sincepN (y − x) is
bounded and continuous (properties A6 and A7), then
p(y;Fm) =

∫

pN (y − f(x)) dFm(x) converges point-
wise top(y;F ) =

∫

pN (y − f(x)) dF (x).
• The induced output PDFp(y;Fm) is also bounded by

one.
• It remains to find a non-negative and non-decreasing

function, l : [0,∞) → [0,∞) such thatl(y) = ω (ln(y)),
and a scalarL > 0 such that equation (3) holds for
p(y;Fm), m ≥ 1 and p(y;F ), a task which we fulfill
in what follows.

For anyy ≥ |f(0)|, let S = f−1 ([|f(0)|, y]) be the inverse
image by f(·) of the closed interval[|f(0)|, y]. Since f(·)
is continuous (A4), the setS is closed. It is also bounded
because|f(x)| is non-decreasing in|x| and tends to infinity
(A5). Therefore any element inS is smaller than a positivetu
such that|f(tu)| = 2y and greater than a negativetb such that
|f(tb)| = 2y. Suchtu andtb exist becausef(·) is continuous.

The set is compact and has a maximal value that we denote
z(y) = max{z : z ∈ S}. Note that|f(z(y))| = y.

Define the functionCmin(·): [0,∞) −→ R as follows:

Cmin (y) =

{

min {C (z(y)) ; CN(y)} y ≥ |f(0)|
0 otherwise,

whereCN (·) is defined in A8. The functionCmin(y) is non-
negative and non-decreasing on[0,∞) since bothC(y) and
CN(·) are non-negative and non-decreasing by properties A2
and A8 andz(y) is non-decreasing fory ≥ |f(0)|. Addition-
ally, Cmin(y) = ω (ln y) becauseC(x) = ω (ln |f(x)|) (A3)
andCN(x) = ω (lnx) (A8).
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Now, for anyX with distributionF ∈ PA,

EY

[

Cmin

[

|Y |

2

]]

= EX,N

[

Cmin

[

|f(X) +N |

2

]]

≤ EX,N

[

Cmin

[

|f(X)|+ |N |

2

]]

(13)

= EX,N

[

Cmin

[

|f(X)|+ |N |

2

]
∣

∣

∣

∣

|f(X)|≤|N |

]

P(|f(X)|≤|N |)

+ EX,N

[

Cmin

[

|f(X)|+ |N |

2

] ∣

∣

∣

∣

|f(X)|>|N |

]

P(|f(X)|>|N |)

≤ EX,N

[

Cmin (|N |)

∣

∣

∣

∣

|f(X)|≤|N |

]

P(|f(X)|≤|N |)

+ EX,N

[

Cmin (|f(X)|)

∣

∣

∣

∣

|f(X)|>|N |

]

P(|f(X)|>|N |) (14)

≤ EN [Cmin (|N |)] + EX [Cmin (|f(X)|)] (15)

≤ EN [CN (|N |)] + EX [C (|X |)]

≤ LN +A = L < ∞. (16)

where 0 ≤ LN = EN [CN (|N |)] < ∞ by property A8.
Equations (13) and (14) are justified sinceCmin (|x|) is non-
decreasing in|x| and (15) is due to the fact thatCmin (|x|) is
non-negative. Since the value0 ≤ L < ∞ is independent of
the input distribution functionF ∈ PA, then (16) holds for any
output variableY , i.e for all p(y;F ) whereF ∈ PA. Letting
l(y) = Cmin

(

y
2

)

, y ∈ [0,∞), then equation (3) is satisfied for
p(y;Fm), m ≥ 1 andp(y;F ). Therefore, Theorem 1 holds and
hY (Fm) converges tohY (F ) and hencehY (F ) is continuous
which concludes the proof.

V. EXTENSIONS

The results may be extended to the case where the noise
PDF is not necessarily continuous onR. In fact, we weaken
condition A6 and we show that Theorem 2 also holds for
noise PDFs which are piece-wise continuous on a countable
number of pieces. Note that under this category fall absolutely
continuous noise variables with a compact support†† such as
the uniform, and also ones that are one-sided such as the
Gamma or the Pareto random variables. We start by noting
the following:

• It can be seen from the proof of Theorem 1 that almost
everywhere (a.e.)‡‡ point-wise convergence with respect
to the Lebesgue measure (in addition to C1 and C2)
is sufficient in order to have convergence of differential
entropies.

• According to the definition of weak convergence [22, p.
700], one can replace continuous bounded test functions
by F -a.e. continuous functions whereF is the limit
distribution.

We show now that ifpN (·) has a countable number of dis-
continuities then weak convergence of the input distributions

††we define the support of a random variable as being the set of its points of
increase, i.e., the set{x ∈ R : Pr(x− η < X < x+ η) > 0 for all η > 0}.

‡‡We say that a property holds almost everywhere with respect to a measure
µ and we denote itµ-a.e. if and only if the measure byµ of the set where
the property fails is equal to zero.

implies Lebesgue-a.e. point-wise convergence of the output
PDFs: Denote by{ai}i≥1 the countable discontinuities of
pN (·) and by {xi}i≥1 the discontinuity points ofF , which
are necessarily countable (see Jordan decomposition lemma
in [23, p. 40]). Point-wise convergence of the PDFs holds
except at values ofy of the formyij = ai − f(xj), i, j ≥ 1.
The fact that the{yij}’s are countable proves our assertion.

VI. CONCLUSION

Tangible models for communication channels implicitly
assume a finite value for the channel capacity. Knowing that
maximizing the transmission rates is directly related to a
constrained maximization problem, we have derived sufficient
conditions for finiteness and achievability of the capacityof
generic memoryless additive noise channels. The involved
conditions on the input-output relationship, the input cost
function and the type of the noise define a wide collection
of models for which finding codes that strive toward achiev-
ing maximum transmission rates is sensible. The result is
applicable to possibly non-linear channels, to nearly all the
widely known additive noise models and for cost functions
that are “super-logarithmic”. Interestingly, communications at
finite rates is not directly related to an input average-power
constraint. Even when signaling strategies are allowed to have
an infinite second moment on average, transmission rates could
not be arbitrarily large. We mention that while searching
for sufficiency, intermediately we derived conditions under
which point-wise convergence of PDFs implies convergence
of differential entropies.
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