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Secure Routing in Multihop Wireless Ad-hoc
Networks with Decode-and-Forward Relaying

Jianping Yao, Suili Feng, Xiangyun Zhou, and Yuan Liu

Abstract—In this paper, we study the problem of secure
routing in a multihop wireless ad-hoc network in the presence of
randomly distributed eavesdroppers. Specifically, the locations
of the eavesdroppers are modeled as a homogeneous Poisson
point process (PPP) and the source-destination pair is assisted
by intermediate relays using the decode-and-forward (DF) strat-
egy. We analytically characterize the physical layer security
performance of any chosen multihop path using the end-to-end
secure connection probability (SCP) for both colluding andnon-
colluding eavesdroppers. To facilitate finding an efficientsolution
to secure routing, we derive accurate approximations of theSCP.
Based on the SCP approximations, we study the secure routing
problem which is defined as finding the multihop path having
the highest SCP. A revised Bellman-Ford algorithm is adopted to
find the optimal path in a distributed manner. Simulation results
demonstrate that the proposed secure routing scheme achieves
nearly the same performance as exhaustive search.

Index Terms—Secure connection, physical layer security, mul-
tihop routing, homogeneous Poisson point process (PPP), decode-
and-forward (DF).

I. I NTRODUCTION

NETWORK security is a fundamental issue of commu-
nication systems. For wireless networks, secure com-

munication is more challenging due to the broadcast nature
of wireless channels. The traditional approach for secure
communication is to employ the cryptographic algorithms.
Recently, physical layer security has emerged as a comple-
mentary technology to the cryptography-based method, which
can achieve perfect secrecy by properly designing the encoder-
decoder of transceivers according to the channel conditions
[1], [2].

Following the recent advances in cooperative communica-
tions, physical layer security in relay networks has captured
considerable attention [3]–[14]. Relay nodes can achieve co-
operative diversity by forwarding information or act as coop-
erative jammers to degrade eavesdroppers’ channel conditions,
and thus improve the security of legitimate transmission. As
an example, the authors in [3] addressed the secure problem of
one source-destination pair with the help of multiple cooper-
ating relays in the presence of one or more eavesdroppers,
where three cooperative schemes are considered: decode-
and-forward (DF), amplify-and-forward (AF), and cooperative
jamming (CJ). The authors in [4] investigated the distributed
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beamforming of AF relay network with an external eaves-
dropper. The authors in [5] studied the secure beamforming
design in a multiple-antenna relay system for maximizing
the secrecy sum rate, where the relay is also an internal
eavesdropper. The authors in [6] studied the secure connection
probability (SCP) for DF and randomize-and-forward (RaF)
relaying strategies where a connection is called secure if the
secrecy rate of this connection is positive, as defined in [15].
RaF relaying deviates from the widely-used DF relaying in the
way that the relays add independent randomization in each hop
when re-encode the received signal [16]. The authors in [7]
performed a comprehensive study on the secure transmission
in both DF and RaF two-hop relay networks with only channel
distribution information of the wiretap channels, where both
the fixed-rate and adaptive-rate transmission at the sourceand
relay nodes were considered. The authors in [8] derived the
intercept probability expressions of optimal relay selection,
and the diversity orders of AF and DF were analyzed. The
authors in [9] analyzed the relationship between the secrecy
performance and the tolerated number of eavesdroppers. The
authors in [10] proposed a tree-formation game to choose
secure paths in uplink multihop cellular networks. The authors
in [11] considered minimum energy routing in the presence of
multiple malicious jammers such that an acceptable end-to-end
probability of outage is guaranteed.

A commonly-used assumption in the physical layer security
literature is that the channel state information (CSI) or (at
least) locations of eavesdroppers are available at legitimate
users. To relax such an assumption and take into account the
uncertainty of the eavesdroppers’ locations, the distribution of
the eavesdroppers’ locations can be modeled as homogeneous
Poisson point processes (PPPs) [17]–[22]. The authors in
[17] defined the secrecy transmission capacity to study the
impact of security requirements on throughput in large-scale
decentralized networks consisting of PPP distributed legitimate
nodes and eavesdroppers. The authors in [18] analyzed the
secrecy rates by using regularized channel inversion precoding.
The authors in [19] studied the outage performance based on
imperfect CSI. The authors in [20] proposed a relay selection
strategy to improve the SCP, where the locations of both the
relays and eavesdroppers follow homogeneous PPPs.

From the above discussions, we find that the problem of
secure routing in wireless multihop networks is still largely
an open problem. Existing work on secure routing, such
as [10], assumed that the CSI or locations of the eaves-
droppers are known to the legitimate users, which is often
impractical, especially in ad hoc networks enabled by multi-
hop communications. In practice, the eavesdroppers usually
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work in a passive way, i.e. they just try to overhear as
much information as possible conveyed from the legitimate
nodes and they do not attempt to actively thwart (i.e. via
jamming, signal insertion) the legitimate nodes. In order
to statistically characterize the secrecy performance of such
scenarios, a PPP is used to statistically model the locations
of the eavesdroppers. In this work, we study secure routing
in a large-scale multihop wireless network in the presence of
randomly-distributed eavesdroppers whose CSI and locations
are unknown to the legitimate users. Both colluding and non-
colluding eavesdropper scenarios are analyzed. We assume that
the intermediate relay nodes use the DF protocol which is
the default relaying strategy in wireless ad hoc networks. We
assume that the relays use the same codeword as the source,
which is a worse-case scenario from security point of view,
and hence, is a commonly-used benchmarking scenario in the
literature [23]–[25]. With DF relaying, the eavesdropperscan
intercept information from multiple hops by maximal-ratio
combining. This directly affects the secure routing solutions,
e.g., more hops may lead to worse secrecy performance. In
passive eavesdropping scenarios, perfect secrecy cannot be
guaranteed since the CSI and location of the eavesdroppers are
not available at the transmitters. Hence, we adopt the SCP as
useful secrecy metrics to characterize the secrecy performance.

The main contributions of this paper are summarized as
follows:

• For a given path from the source to its destination, we
derive exact expressions of SCP for both colluding and
non-colluding eavesdroppers, which are used to measure
the secrecy performance of that path. Having the exact
SCP expressions enables us to analyze and compare the
performance of different secure routing solutions.

• In order to facilitate finding the secure routing algorithm,
we first obtain approximations of the SCP. Based on the
SCP approximations, the classical Bellman-Ford routing
algorithm is adopted to find the highest SCP path between
any given source-to-destination pair in a distributed way.

• We conduct simulations to verify the analytical results on
SCP and show the effectiveness of the proposed secure
routing algorithm. The numerical results show that the
proposed secure routing algorithm performs closely to
the exhaustive search.

The remainder of this paper is organized as follows. In
Section II, the system model and performance metric are
described. In Section III, the exact expressions of SCP for
both colluding and non-colluding eavesdroppers are analyzed.
In Section IV, we obtain the approximations of SCP, then
the secure routing algorithms are derived. In Section V, we
present numerical results. Finally, the conclusion is provided
in Section VI.

II. SYSTEM MODEL AND METRIC

We consider a large-scale multihop wireless network with
arbitrarily distributed relay nodes and eavesdroppers. Weas-
sume that all nodes are equipped with a single omni-directional
antenna. AnN -hop route in the network is a sequence of
legitimate nodes({Ai}, i = 1, . . . , N + 1). We assume that

every link of the route is exposed to a set of eavesdroppers
({Ej}, j = 1, 2, . . .) denoted byΦE . The eavesdroppers are
randomly distributed in the network according to a homoge-
neous PPP with densityλE . We assume that the eavesdroppers
are passive and thus their CSI as well as locations are unknown
to the legitimate nodes. We assume that the legitimate nodes
(including source, relay and destination nodes) know the
distances between each other. The transmitter of every hop
uses a separate slot to transmit the message. We assume that
all the channels are modeled by large-scale fading with path
loss exponentα along with small-scale Rayleigh fading. Each
nodeAi+1 only receives information from its former node
Ai. The instantaneous received signal-to-noise (SNR) at the
legitimate nodeAi+1 and eavesdropperEj can be respectively
given as

SNRAiAi+1
=

pAi
|hAiAi+1

|2
dαAiAi+1

, (1)

SNRAiEj
=

pAi
|hAiEj

|2
dαAiEj

, (2)

wherepAi
denotes the transmit power of the legitimate node

Ai; dAiAi+1
andhAiAi+1

represent the distance and channel
coefficient between nodesAi andAi+1, respectively;dAiEj

and hAiEj
represent the distance and channel coefficient

between nodesAi and Ej , respectively. We assume that
|hAiAi+1

|2 and |hAiEj
|2 follow exponential distributions with

mean equal to one. Then according to [15], the achievable
secrecy rate of a single-hop linkAiAi+1 is

[

log2
(

1 + SNRAiAi+1

)

− log2 (1 + SNRAiE)
]+

, (3)

where [x]
+

= max (x, 0); SNRAiE represents the received
SNR at eavesdroppers from the legitimate nodeAi. For the
case of non-colluding eavesdroppers,SNRAiE is equivalent to
max

Ej∈ΦE

{

SNRAiEj

}

, where the maximization operation means

the selection of the eavesdropper which has the strongest
received signal. For the case of colluding eavesdroppers,
SNRAiE is equivalent to

∑

Ej∈ΦE

SNRAkEj
.

Due to the multihop DF relaying, we consider that the
eavesdroppers can combine the information from multiple
hops. Then according to the definition of secure connection
in [15], we say that a given path is secure if the achievable
secrecy rate on this path is positive, i.e. (4) shown at the top of
the next page is satisfied, whereIE is the combined received
SNR at eavesdroppers from the legitimate transmitter. Thus
the SCP of a given path can be expressed as (5), given at the
top of the next page.

For a given path,N is fixed and does not impact the SCP,
thus we drop1

N
in the analysis on a given path. Then, (5) can

be written as

PDF = P



log2







1 + min
i=1,...,N

{

SNRAiAi+1

}

1 + IE







> 0



 . (6)

Note that in (6), the eavesdropping SNRIE depends on
whether the eavesdroppers are colluding or non-colluding.
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1

N

(

log2

(

1 + min
i=1,...,N

{

SNRAiAi+1

}

)

− log2 (1 + IE)

)

> 0. (4)

PDF = P
(

1

N

(

log2

(

1 + min
i=1,...,N

{

SNRAiAi+1

}

)

− log2 (1 + IE)

)

> 0

)

. (5)

For the case of the non-colluding eavesdroppers,IE is the
maximum SNR after MRC among all eavesdroppers (where
eavesdropper applies MRC to combine signals received from
all hops). For the case of the colluding eavesdroppers,IE is
the sum of all SNRs after MRC at all the eavesdroppers. The
exact expressions ofIE for the both cases will be given in the
next section.

III. SECURE CONNECTION PROBABILITY OF A GIVEN

PATH

In this section, we derive the exact SCP of a given path for
both colluding and non-colluding eavesdroppers.

A. SCP for Colluding Eavesdroppers

For the colluding case, the eavesdroppers can share their
eavesdropped information. In this case, all the information
obtained by the eavesdroppers can be combined, which is the
worst scenario from the security point of view. The combined
received SNR at eavesdroppers from all hops is given as

IE C =
∑

Ej∈ΦE

N
∑

k=1

SNRAkEj

=
∑

Ej∈ΦE

N
∑

k=1

pAk

∣

∣hAkEj

∣

∣

2

dαAkEj

. (7)

Then the SCP in (6) can be rewritten as

PC = P











log2











1 + min
i=1,...,N

{

pAi |hAiAi+1 |2
dα
AiAi+1

}

1 +
∑

Ej∈ΦE

N
∑

k=1

pAk |hAkEj |2
dα
AkEj











> 0











,

(8)

which is equivalent to (9), shown at the top of the next page.
Since each|hAiAi+1

|2 is independent exponentially dis-
tributed random variable with unit mean and independent

of ΦE , and min
i=1,...,N

{

pAi |hAiAi+1 |2
dα
AiAi+1

}

is also exponentially

distributed with the mean of
N
∑

i=1

dα
AiAi+1

pAi

. Then (9) can be

derived as (10), written at the top of the next page, where the
last stepη stands as

∣

∣hAkEj

∣

∣

2
is independent and identically

distributed, thus the expectation over the sum of
∣

∣hAkEj

∣

∣

2

is equal to the product of the expectation over
∣

∣hAkEj

∣

∣

2
.

For a homogeneous PPP, the probability generating functional

(PGFL) is given by [26]

EΦE





∏

Ej∈ΦE

f
(

xEj

)



 = exp

[

−λE

∫

R2

1− f
(

xEj

)

dxEj

]

,

(11)

wherexEj
is the location ofEj .

Then (10) can be turned to

PC = exp









−λE

∫

R2

1−
N
∏

k=1

1

1 +
pAk

dα
AkEj

N
∑

i=1

dα
AiAi+1

pAi

dxEj









.

(12)

B. SCP for Non-Colluding Eavesdroppers

In this subsection, we analyze the SCP for non-colluding
eavesdroppers. In this case, the eavesdroppers are non-
cooperative, so the performance is limited by the eavesdrop-
per which has the strongest received signal. The combined
received SNR at eavesdroppers from all hops can be written
as

IE N = max
Ej∈ΦE

{

N
∑

k=1

SNRAkEj

}

= max
Ej∈ΦE

{

N
∑

k=1

pAk

∣

∣hAkEj

∣

∣

2

dαAkEj

}

. (13)

As the case of colluding eavesdroppers, we also obtain an
exact expression of the SCP under the case of non-colluding
eavesdroppers. Similar to (8), we can define the SCP for the
case of non-colluding eavesdroppers as (14) at the next page.

SinceΦE is a homogeneous PPP, (14) can be turned to (15),
shown at the next page. Then using (11) and (15), we can get
(16), presented at the next page.

According to [27], for a set of independent exponential
random variablesX = {X1, . . . , Xn} with the parameters
of λXi

, i = 1, . . . , n, the cumulative distribution function
(CDF) of the sum of independent not identical exponentially

distributed random variablesY =
n
∑

i=1

Xi is given by

P {Y < y} =
n
∑

i=1

δi (1− exp [−λXi
y]), (17)

where

δi =
n
∏

j=1,j 6=i

λXj

λXj
− λXi

. (18)

Basing on (16) and (17), we obtain the SCP in (19) shown
at the next page.
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PC = P



 min
i=1,...,N

{

pAi

∣

∣hAiAi+1

∣

∣

2

dαAiAi+1

}

>
∑

Ej∈ΦE

N
∑

k=1

pAk

∣

∣hAkEj

∣

∣

2

dαAkEj



 . (9)

PC = E hAkEj
k=1,...,N

,ΦE







exp



−
(

N
∑

i=1

dαAiAi+1

pAi

)





∑

Ej∈ΦE

N
∑

k=1

pAk

∣

∣hAkEj

∣

∣

2

dαAkEj















η
= EΦE















∏

Ej∈ΦE

N
∏

k=1

1

1 +
pAk

dα
AkEj

N
∑

i=1

dα
AiAi+1

pAi















. (10)

PN = P











log2(

1 + min
i=1,...,N

{

pAi |hAiAi+1 |2
dα
AiAi+1

}

1 + max
Ej∈ΦE

{

N
∑

k=1

pAk |hAkEj |2
dα
AkEj

} ) > 0











= P
(

min
i=1,...,N

{

pAi

∣

∣hAiAi+1

∣

∣

2

dαAiAi+1

}

> max
Ej∈ΦE

{

N
∑

k=1

pAk

∣

∣hAkEj

∣

∣

2

dαAkEj

})

. (14)

PN = EhAiAi+1

i=1,...,N

,ΦE







∏

Ej∈ΦE

P
(

min
i=1,...,N

{

pAi

∣

∣hAiAi+1

∣

∣

2

dαAiAi+1

}

>

N
∑

k=1

pAk

∣

∣hAkEj

∣

∣

2

dαAkEj

∣

∣

∣

∣

∣

hAiAi+1

i=1,...,N

,ΦE

)







. (15)

PN = EhAiAi+1

i=1,...,N

{

exp

[

−λE

∫

R2

P
(

min
i=1,...,N

{

pAi

∣

∣hAiAi+1

∣

∣

2

dαAiAi+1

}

<

N
∑

k=1

pAk

∣

∣hAkEj

∣

∣

2

dαAkEj

∣

∣

∣

∣

∣

hAiAi+1

i=1,...,N

)

dxEj

]}

. (16)

PN = EhAiAi+1

i=1,...,N







exp



−λE

∫

R2

N
∑

k=1

N
∏

m=1,m 6=k

p−1
Am

dαAmEj

p−1
Am

dαAmEj
− p−1

Ak
dαAkEj

exp

[

−
dαAkEj

pAk

min
i=1,...,N

{

pAi

∣

∣hAiAi+1

∣

∣

2

dαAiAi+1

}]

dxEj











.

(19)

IV. ROUTING ALGORITHM

In Section III, we derived the exact expressions of the SCP
under the cases of colluding and non-colluding eavesdroppers
for any given path. In this section, we obtain approximations
of the SCP to facilitate finding the secure routing algorithm.
The approximations are shown to be close to the exact
SCP in Section V. The simple analytical form of the SCP
approximations allows us to derive efficient secure routing
algorithms.

A. Approximation of SCP for Colluding Eavesdroppers

Lemma 1: Let ak (k = 1, 2, . . . , n) be arbitrary constants
andBk (k = 1, 2, . . . , n) be arbitrary non-negative constants.

Let a be anyone of{ak}. For an arbitrary positive integern,
∫ ∞

−∞

(

1−
n
∏

k=1

1

1 +Bk(x+ ak)
−2

)

dx

≥
∫ ∞

−∞

(

1−
n
∏

k=1

1

1 +Bk(x+ a)
−2

)

dx. (20)

Proof: See Appendix A.

Applying Lemma 1, we can obtain an upper bound of
(12) given in (21) whereA can be anyone of{Ak}, shown
at the next page. Then we use the upper bound (21) as an
approximation of (12).

B. Approximation of SCP for Non-Colluding Eavesdroppers

In Eq. (19), we derived the exact expression of SCP for
the case of non-colluding eavesdroppers, which is applicable
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PC approx = exp









−λE

∫

R2









1−
N
∏

k=1

1

1 +
pAk

dα
AEj

(

N
∑

i=1

dα
AiAi+1

pAi

)









dxEj









. (21)

PN approx1 = EhAiAi+1

i=1,...,N

{

exp

[

−λE

∫

R2

P
(

min
i=1,...,N

{

pAi

∣

∣hAiAi+1

∣

∣

2

dαAiAi+1

}

<

N
∑

k=1

pAk

∣

∣hAEj

∣

∣

2

dαAEj

∣

∣

∣

∣

∣

hAiAi+1

i=1,...,N

)

dxEj

]}

= EhAiAi+1

i=1,...,N



















exp











−λE

∫

R2

exp











−
dαAEj

N
∑

k=1

pAk

min
i=1,...,N

{

pAi

∣

∣hAiAi+1

∣

∣

2

dαAiAi+1

}











dxEj





























. (22)

for all conditions of legitimate nodes’ and eavesdroppers’
densities. However, the exact expression has a complex form
and involves a mathematical expectation. To facilitate finding
an efficient solution to the secure routing problem, we resort
to an approximation of the SCP. We derive the approximation
by considering that the set of legitimate nodes are assumed to
share identical distance from an arbitrary eavesdropper. Based
on the assumption, we can obtain an approximation of (16) as
(22), given at the top of the page.

Using Jensens inequality, (22) can be turned to (23), given
at the next page.

Since min
i=1,...,N

{

pAi |hAiAi+1 |2
dα
AiAi+1

}

is exponentially distributed

with the mean of
N
∑

i=1

dα
AiAi+1

pAi

, then (23) can be derived as (24),

written at the top of the next page.
Then (24) can be turned to

PN approx2 = exp



−K1

(

N
∑

k=1

pAk

N
∑

i=1

dαAiAi+1

pAi

)

2
α



 , (25)

whereK1 = πλEΓ(1 +
2
α
)Γ(1 − 2

α
) andΓ(·) is the gamma

function.

C. Routing Algorithm Based on the SCP Approximations

In the former subsections, we derive the approximations of
the SCP for both colluding and non-colluding eavesdroppers
for any given path. In this subsection, we find the path with
highest SCP between an arbitrary source and destination.

1) Colluding Eavesdroppers Case: The routing problem
depending on (21) is still formidable to be solved. We assume
that the transmit powers of all nodes are the same. Then (21)
can be simplified as

PC approx= exp



−K2 (N)

(

N
∑

i=1

dαAiAi+1

)

2
α



 , (26)

whereK2 (N)=λE
πΓ(1− 2

α
)Γ( 2

α
+N)

Γ(N) .

Based on (26), the secure routing problem for finding the
highest SCP path can be expressed as

max
L∈LASAD

exp



−K2 (|L|)
(

∑

i∈L

dαAiAi+1

)
2
α



 , (27)

whereLASAD
is the set of all pathsL connecting the pair

of source nodeAS and destination nodeAD. Then (27) is
equivalent to

min
L∈LASAD

K2 (|L|)
(

∑

i∈L

dαAiAi+1

)
2
α

. (28)

It can be easily shown that (28) can be solved by exhaustive
search, but computationally expensive. The routing metricof
problem (28) is not isotonic and the problem cannot be solved
easily. However, we can prove that the problem (28) can be
solved exactly optimally in polynomial time. In the following
we detail the process.

Since |L| can only take the value1, 2, . . . , NL − 1, where
the NL is the number of the legitimate nodes. According to
the divide-and-conquer principle [28], then problem (28) can
be rewritten as [29]

Mt(L
∗) = min

1≤v≤NL−1
Mt(Lv), (29)

where

Mt(Lv) = min
L∈LASAD

:|L|=v
K2 (|L|)

(

∑

i∈L

dαAiAi+1

)
2
α

= min
L∈LASAD

:|L|=v
K2 (v)

(

∑

i∈L

dαAiAi+1

)
2
α

.(30)

HereL∗ andLv are the optimal solution to problem (28) and
subproblem (30), respectively;Mt(L

∗) and Mt(Lv) are the
corresponding optimal values of the objective function.

We can solve each subproblem (30) to get the optimal
solution to problem (28). But the subproblem (30) is still
arduous to be solved, we relax it to

Mt(L̃v) = min
L∈LASAD

:|L|≤v
K2 (v)

(

∑

i∈L

dαAiAi+1

)
2
α

, (31)
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PN approx2 = exp











EhAiAi+1

i=1,...,N



















−λE

∫

R2

exp











−
dαAEj

N
∑

k=1

pAk

min
i=1,...,N

{

pAi

∣

∣hAiAi+1

∣

∣

2

dαAiAi+1

}











dxEj





























. (23)

PN approx2 = exp















−λE

∫

R2

N
∑

i=1

p−1
Ai

dαAiAi+1

dα
AEj

N∑

k=1

pAk

+
N
∑

i=1

pAi
−1dαAiAi+1

dxEj















. (24)

where L̃v and Mt(L̃v) denote the optimal solution and the
corresponding optimal value of the objective function to
the relaxed problem (31), respectively. In the following, we
discuss the relationship between problem (28) and (31).

According to (29) and (30), we can obtain

Mt(L
∗) = min

1≤v≤NL−1
K2 (v)

(

∑

i∈Lv

dαAiAi+1

)
2
α

. (32)

Since (31) is the relaxed problem of (30) andLv is also a
feasible solution to (31), then

Mt(L
∗) ≥ min

1≤v≤NL−1
Mt(L̃v)

= min
1≤v≤NL−1

K2 (v)





∑

i∈L̃v

dαAiAi+1





2
α

. (33)

It can be easily known that
∣

∣

∣L̃v

∣

∣

∣ ≤ v sinceL̃v is the optimal

solution to the relaxed problem (31) andK2

(∣

∣

∣L̃v

∣

∣

∣

)

≤ K2 (v),
then

Mt(L
∗) ≥ min

1≤v≤NL−1
K2

(∣

∣

∣L̃v

∣

∣

∣

)





∑

i∈L̃v

dαAiAi+1





2
α

. (34)

SinceL̃v is also a feasible solution to problem (30), then

Mt(L
∗) ≤ min

1≤v≤NL−1
K2

(∣

∣

∣L̃v

∣

∣

∣

)





∑

i∈L̃v

dαAiAi+1





2
α

. (35)

From (34) and (35), we can easily obtain

Mt(L
∗) = min

1≤v≤NL−1
M̃t(L̃v), (36)

and

M̃t(L̃v) = K2

(∣

∣

∣L̃v

∣

∣

∣

)





∑

i∈L̃v

dαAiAi+1





2
α

. (37)

(36) and (37) imply that problem (28) can be solved optimally
by solving a sequence of relaxed subproblems (31). Based
on the fact that the path loss exponentα > 2, it is easy to
know that the solution to the relaxed subproblem (31) for a

given hop-countv is equivalent to min
L∈LASAD

:|L|≤v

∑

i∈L

dαAiAi+1
,

which means that each link usesdαAiAi+1
as the link weights

to find the path connecting source nodeAS and destination
nodeAD which has the minimum total link weights and is
no more thanv hops. The problem can be directly solved
by the classical Bellman-Ford shortest path algorithm which
computes shortest paths from a single source vertex to all
of the other vertices in a weighted digraph. A distributed
variant of the algorithm is used in distance-vector routing
protocols, for example the Routing Information Protocol (RIP)
[30]. However, the number of hops|L| in the objective
function in (28) changes with the selected pathL. Having
the weighting factor of|L| in the objective function, the
optimization problem cannot be solved directly by using the
classical Bellman-Ford algorithm, because it does not takethe
weighting factor into account. Hence, we develop a revised
Bellman-Ford algorithm as shown in Algorithm 1 below. The
classical Bellman-Ford algorithm has an implicit propertythat
at its hth iteration, it identifies the optimal path from the
source to the destination among all paths of at mosth hops.
This property is used in Step 1 of the algorithm. On the other
hand, Steps 2 and 3 reflect our revision in the Bellman-Ford
algorithm in order to solve the problem in (28). The whole
procedure is shown in Algorithm 1.

Algorithm 1 The routing algorithm for the colluding eaves-
droppers case.
Input: The transmission distancedAiAi+1

between the legit-
imate nodes;

Output:
1: Each legitimate nodes usedαAiAi+1

as link weights , obtain
the shortest path̃Lv in each iterationv (1, . . . , NL − 1) by
the classical Bellman-Ford shortest path algorithm;

2: Calculate the function values for each pathL̃v using (37);
3: Get the optimal pathL∗ with the minimum function value

using (36);
4: return L∗;

Before using the algorithm, each legitimate node calcu-
lates the distances between itself and all other nodes in the
network and stores the topology information which contains
the neighbor list and transmission distancedAiAi+1

between
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them. Then it sends its topology information to all neighboring
nodes. Note that the value ofλE does not influence the routing
algorithm, since SCP decreases as the value ofλE increases
as shown in the exact expression (12). The optimal secure path
will always have the highest SCP which is independent with
the value ofλE . The proposed routing algorithm provides a
theoretical basis for finding a link weightdαAiAi+1

, which is
the key point of a routing algorithm, considering the security.
Without the proposed algorithm, the classical Bellman-Ford
algorithm does not have a reasonable way to choose a link
weight which takes the security into consideration. The com-
plexity of the classical Bellman-Ford algorithm isO(NL

3)
[30]. From Algorithm 1, it is clear that the computational
complexity is dominated by Step 1. Hence, our proposed
algorithm has the same level of computational complexity as
the classical Bellman-Ford algorithm, which isO(NL

3). It is
polynomial and much lower than that of the exhaustive search
whose complexity isO((NL − 2)!).

2) Non-colluding Eavesdroppers Case: Depending on the
SCP approximation (25), the highest SCP path can be pre-
sented as the following problem:

max
L∈LASAD

exp



−K1

(

∑

k∈L

pAk

∑

i∈L

dαAiAi+1

pAi

)
2
α



 , (38)

whereLASAD
is the set of all pathsL connecting the pair

of nodes (AS , AD). When the network parametersλE andα
are determined,K1 is a constant and positive. Then (38) is
equivalent to

min
L∈LASAD

(

∑

k∈L

pAk

∑

i∈L

dαAiAi+1

pAi

)
2
α

. (39)

We assume that the transmit powers of all nodes are the
same. Then (39) can be simplified as

min
L∈LASAD

(

|L|
∑

i∈L

dαAiAi+1

)
2
α

. (40)

Similar to the case of colluding eavesdroppers, we also can
prove that problem (40) can be solved optimality by solving
a sequence of subproblems

Mu(
⌢

Lu) = min
L∈LASAD

:|L|≤u

(

u
∑

i∈L

dαAiAi+1

)
2
α

, (41)

Mu(
⌢

L
∗

u) = min
1≤u≤NL−1

M̃u(
⌢

Lu), (42)

and

M̃u(
⌢

Lu) =







∣

∣

∣

⌢

Lu

∣

∣

∣

∑

i∈
⌢
Lu

dαAiAi+1







2
α

, (43)

where
⌢

L
∗

u and
⌢

Lu are the optimal solution to problem (40)

and subproblem (41), respectively;Mu(
⌢

L
∗

u) andMu(
⌢

Lu) are
the corresponding optimal values of the objective function;

Algorithm 2 The routing algorithm for the non-colluding
eavesdroppers case.
Input: The transmission distancedAiAi+1

between the legit-
imate nodes;

Output:
1: Each legitimate nodes usedαAiAi+1

as link weights , obtain

the shortest path
⌢

Lu in each iterationu (1, . . . , NL − 1)
by the classical Bellman-Ford shortest path algorithm;

2: Calculate the function values for each path
⌢

Lu using (43);

3: Get the optimal path
⌢

L
∗

u with the minimum function value
using (42);

4: return
⌢

L
∗

u;

M̃u(
⌢

Lu) is the function value of (43). The whole procedure
is shown in Algorithm 2.

The computational complexity of Algorithm 2 for the non-
colluding eavesdroppers case is the same as Algorithm 1 for
the colluding eavesdroppers case which is alsoO(NL

3).

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results and evaluate
the performance of the derived expressions of SCP, then we
compare the performance of different routing algorithms on
security. We take path loss exponentα = 4, and we assume
that all the transmit powers are the same.

A. Performance of Derived SCP

We simulate a multihop wireless network, in which
the nodes are deployed in a2000 × 2000 square area.
The eavesdroppers are located at random positions
which follow a homogeneous PPP. In this subsection,
we consider an example of 6 legitimate nodesA1 ∼ A6, and
they locate at (−10, 0), (5 cos (0.75π) , 5 sin (0.75π)),
(0, 0), (5 cos (−0.25π) , 5 sin (−0.25π)), (10, 0) and
(15 cos (0.25π) , 15 sin (0.25π)). It takes 10000 simulation
runs to obtain Monte Carlo simulation results.

Fig. 1 depicts the Monte Carlo simulation results of SCP
for differentλE . It can be seen that our analysis results match
with the Monte Carlo simulation results, which validates our
analysis.

Fig. 2 illustrates the SCP for the case of colluding eaves-
droppers as a function ofλE . As the value ofλE and the
number of hops grow, the SCP decreases. The gap between the
approximation and the exact value of the SCP is small, and we
can see that our SCP approximation is a precise approximation
of the exact value for allλE .

Fig. 3 depicts the Monte Carlo simulation results of SCP
for the case of non-colluding eavesdroppers as a function of
λE . Again, we see that the analytical results match well with
the simulation.

Fig. 4 illustrates the SCP for the case of non-colluding
eavesdroppers as a function ofλE . We can see that the SCP
approximation (25) is accurate compared to the exact value
obtained in (19) for a wide range ofλE . This implies that
the accuracy of the approximation is good for a wide range
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Fig. 1. Monte Carlo simulation results of SCP for colluding eavesdroppers
case. The squares represent (12). The stars show the Monte Carlo simulation
of (8).
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Fig. 2. SCP for colluding eavesdroppers case. The solid lines represent (12)
and the dashed lines denote the SCP approximation (26).

of eavesdropper density. Hence, the derived routing algorithm
based on the approximation will give the optimal result in
most cases.

B. Performance of Routing Algorithm

We consider a multihop wireless network in whichNL = 32
legitimate nodes are placed uniformly at random on a50× 50
square area in the center of the network. The source node
is placed at the lower left corner of the network and the
destination is located at the upper right corner. Note that
the eavesdroppers are still randomly distributed in the entire
network of size2000×2000. Our goal is to find the route that
gives the highest SCP between the source and destination. For
comparison, we consider the optimal route from exhaustive
search as the benchmark routing algorithm.

In Fig. 5, we present a snapshot of the network for the
case of colluding eavesdroppers. The proposed route based
on the SCP approximation (26) and the benchmark route
by exhaustive search between the source and destination are
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Fig. 3. Monte Carlo simulation results of SCP for non-colluding eaves-
droppers case. The squares represent (19). The stars show the Monte Carlo
simulation of (14).
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Fig. 4. SCP for non-colluding eavesdroppers case. The solidlines represent
(19) and the dashed lines denote SCP approximation (25).

plotted in the picture. The link weight isdαAiAi+1
. The actual

source-destination SCP of the proposed route and benchmark
route computed by (12) for differentλE are shown in Table
I. It can be seen that our proposed route is exceedingly close
to the benchmark route on security.

TABLE I
SCPOF THE ROUTING ALGORITHM UNDER THE CASE OFCOLLUDING

EAVESDROPPERS FORDIFFERENTλE .

λE 10
−6

10
−5

10
−4

proposed route 0.9933 0.9349 0.5103

benchmark route 0.9933 0.9351 0.5112

In Fig. 6, we present a snapshot of the route based on
the SCP approximation (25) with the same system nodes as
in Fig. 5 under the case of the non-colluding eavesdroppers.
As shown in the figure, we can derive the same results as
the case of colluding eavesdroppers. Specially, the optimal
route for the non-colluding case is the same as that for the
colluding eavesdroppers. This is because that the eavesdropper
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Fig. 5. Routing algorithm based on the SCP approximation (26) under the
case of colluding eavesdroppers. A snapshot of the network is shown when
NL = 32 legitimate nodes (shown by circles) are placed uniformly atrandom.
The proposed route is plotted by the red solid line and the benchmark route
is shown by the blue dashed line.
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Fig. 6. Routing algorithm based on the SCP approximation (25) under the
case of non-colluding eavesdroppers. A snapshot of the network with the same
system nodes as in Fig. 5 is shown. The proposed route is plotted by the red
solid line and the benchmark route is shown by the blue dashedline.

with the strongest signal reception contributes the most inthe
eavesdropping capability of a set of colluding eavesdroppers,
unless the density of eavesdroppers becomes comparable to
that of the legitimate nodes. This implies that in most scenarios
the best secure route against the strongest eavesdropper, which
is in fact the non-colluding case, is also likely to be the best
route against all eavesdroppers when they collude. The actual
source-destination SCP of the proposed route and benchmark
route computed by (19) for differentλE are shown in Table

II.

TABLE II
SCPOF THE ROUTING ALGORITHM UNDER THE CASE OF
NON-COLLUDING EAVESDROPPERS FORDIFFERENTλE .

λE 10
−6

10
−5

10
−4

proposed route 0.9933 0.9373 0.5651

benchmark route 0.9934 0.9375 0.5662

We assumeλE = 10−5. For comparison, we consider
the optimal route from exhaustive search as the benchmark
routing algorithm. For different number of legitimate nodes,
we simulate the routing algorithms1000 times based on the
SCP approximation (26) and exhaustive search. However, the
computational complexity of the exhaustive search for the case
of non-colluding eavesdroppers is too high to simulate, we
only show the case of colluding eavesdroppers in the follow-
ing. Note that enumerating all the routes of the benchmark
routing algorithm from the source to the destination becomes
prohibitive in a large number of legitimate nodes, so we only
simulate the number of the legitimate nodes up to 12. The
results are shown in Table III.

In Table III,NL denotes the number of the legitimate nodes.
PSC approx andPSC best represent the exact SCP of the route
for the approximation and exhaustive search, respectively.
PEQ approx represents the probability of the routes based on
the SCP approximation which coincide with the benchmark
routes. As shown in the table, the SCP increases with the
number of legitimate nodes growing. It is because that more
legitimate nodes will give more chance to get a safer route for
a given source-destination pair of nodes. The gap between the
proposed route and benchmark route is minuscule. The prob-
ability of the route based on the SCP approximation choosing
the same route as benchmark route is80.8% ∼ 91.4%. Such
a small but notable difference in the routes results in very
insignificant performance degradation. As we can see, the
route based on the SCP approximation is intensely close to
the benchmark route on security.

VI. CONCLUSION

This paper studied the secure routing problem in multihop
wireless networks. Given a path of a source-destination pair
of nodes, we obtained the exact expressions of the secure
connection probability (SCP) for both colluding and non-
colluding eavesdroppers. Then the SCP approximations were
derived to facilitate finding the routing algorithm. Based on the
SCP approximations, we solved the routing problem between
an arbitrary pair of nodes to find the highest SCP path
connecting them. Our proposed secure routing protocol finds
the optimal path in a distributed way by using a revised
Bellman-Ford algorithm.

Our work focused on a benchmarking scenario where the
most commonly-used DF relaying protocol is assumed. To
further improve the secrecy performance, the RaF relaying
protocol can be implemented which uses independent code-
words at the relays and is specifically designed from the
viewpoint of physical layer security. In our future work, we
will extend our analysis to this scenario and compare with the
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TABLE III
COMPARISON OFDIFFERENTROUTING ALGORITHMS VARYING WITH THE NUMBER OF LEGITIMATE NODES

NL 4 5 6 7 8 9 10 11 12
PSC best 0.8364 0.8522 0.8635 0.8731 0.8794 0.8847 0.8910 0.8949 0.8986
PSC approx 0.8360 0.8518 0.8632 0.8728 0.8790 0.8844 0.8908 0.8946 0.8983
PEQ approx 91.4% 90.9% 88.1% 87.3% 85.6% 84.3% 85.0% 83.3% 80.8%

benchmarking case to see to what extent the secure routing
protocols differ from each other.

APPENDIX A
PROOF OFLEMMA 1

Let

fn (x) =

∫ ∞

−∞

(

1−
n
∏

k=1

1

1 + Bk(x + ak)
−2

)

dx, (44)

gn (x) =

∫ ∞

−∞

(

1−
n
∏

k=1

1

1 +Bk(x+ a)−2

)

dx. (45)

Let x = x+ a, then

gn (x) =

∫ ∞

−∞

(

1−
n
∏

k=1

1

1 +Bkx−2

)

dx. (46)

Whenn = 1,

f1 (x) = g1 (x) =
√

B1π. (47)

Whenn = 2,

f2 (x) =

(√
B1 +

√
B2

)(

B1 +
√
B1B2 +B2 +

⌢
a
2
)

B1 + 2
√
B1B2 +B2 +

⌢
a
2 ,

(48)

g2 (x) =
B1 +

√
B1B2 + B2√

B1 +
√
B2

, (49)

where⌢
a = a2 − a1, then

f2 (x)−g2 (x) = (50)
⌢
a
2 (

B1 +
√
B1B2 +B2

)

(√
B1 +

√
B2

)

(

⌢
a
2
+
(√

B1 +
√
B2

)2
) > 0.

Whenn = 3,

f3 (x) =

∫ ∞

−∞

(

1−
3
∏

k=1

1

1 +Bk(x + ak)
−2

)

dx. (51)

Let x = x+ a3, then (51) can be turned to

f3 (x) =

∫ ∞

−∞

(

1− 1

1 +B3x−2

2
∏

k=1

1

1 +Bk(x + bk)
−2

)

dx,

(52)

wherebk = ak − a3(k < 3).

f3 (x)− g3 (x) =

∫ ∞

−∞

1

1 +B3x−2

×
(

2
∏

k=1

1

1 +Bkx−2
−

2
∏

k=1

1

1 +Bk(x+ bk)
−2

)

dx. (53)

According to first mean value theorem [31], there exists a
constant−∞ ≤ ε1 ≤ ∞ holding the equation

f3 (x)− g3 (x) =
1

1 +B3ε
−2
1

×
∫ ∞

−∞

(

2
∏

k=1

1

1 +Bkx−2
−

2
∏

k=1

1

1 +Bk(x+ bk)
−2

)

dx.

(54)

Then (54) can be rewritten as

f3 (x)− g3 (x) =
1

1 +B3ε
−2
1

(f2 (x)− g2 (x)) > 0. (55)

We assume that whenn = j and

fj (x)− gj (x) > 0. (56)

Then whenn = j + 1, we have

fj+1 (x) =

∫ ∞

−∞

(

1−
j+1
∏

k=1

1

1 +Bk(x+ ak)
−2

)

dx. (57)

Let x = x+ aj+1, then (57) can be turned to

fj+1 (x) =
∫ ∞

−∞

(

1− 1

1 +Bj+1x−2

j
∏

k=1

1

1 +Bk(x+ ck)
−2

)

dx,

(58)

whereck = ak − aj+1(k < j + 1).

fj+1 (x)− gj+1 (x) =

∫ ∞

−∞

1

1 +Bj+1x−2

×
(

j
∏

k=1

1

1 +Bkx−2
−

j
∏

k=1

1

1 +Bk(x+ ck)
−2

)

dx. (59)

Similar to n = 3, (59) can be rewritten to

fj+1 (x)− gj+1 (x) =
1

1 +Bj+1ε
−2
2

(fj (x)− gj (x)) > 0.

(60)

So we can conclude thatfn (x) is greater thangn (x) for
an arbitrary positive integrate random variablen > 1.
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