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Abstract—This paper investigates the problem of carrier fre-
quency offset (CFO) recovery in an OFDM receiver affected by
frequency-selective in-phase/quadrature (I/Q) imbalances. The
analysis is based on maximum-likelihood (ML) methods and
relies on the transmission of a training preamble with a repetitive
structure in the time domain. After assessing the accuracy of the
conventional ML (CML) scheme in a scenario characterized by
I/Q impairments, we review the joint ML (JML) estimator of all
unknown parameters and evaluate its theoretical performance. In
order to improve the estimation accuracy, we also present a novel
CFO recovery method that exploits some side-information about
the signal-to-interference ratio. It turns out that both CML and
JML can be derived from this scheme by properly adjusting the
value of a design parameter. The accuracy of the investigated
methods are compared with the relevant Cramer-Rao bound.
Our results can be used to check whether conventional CFO
recovery algorithms can work properly or not in the presence of
I/Q imbalances and also to evaluate the potential gain attainable
by more sophisticated schemes.

Index Terms—Frequency recovery, OFDM, direct-conversion
receiver, I/Q imbalance.

I. INTRODUCTION

In recent years, the combination of OFDM with the direct-
conversion receiver (DCR) concept has attracted considerable
attention [1]. In contrast to the classical superheterodyne
architecture, in a DCR device the radio-frequency (RF) signal
is down-converted to baseband without passing through any
intermediate-frequency (IF) stage. On the one hand, this
approach avoids the use of expensive image rejection filters
and other off-chip components, with a remarkable advantage
in terms of cost and circuit board size. On the other hand, a
DCR front-end introduces some RF/analog imbalances arising
from the use of in-phase/quadrature (I/Q) low-pass filters
(LPFs) with mismatched frequency responses, and from local
oscillator (LO) signals with unequal amplitudes and imperfect
90o phase difference. Overall, I/Q non-idealities give rise to
conjugate mirror-image interference on the down-converted
signal, which can seriously degrade the system performance.
An OFDM receiver also exhibits a remarkable sensitivity to the
carrier frequency offset (CFO) between the received waveform
and the LO signals, which originates interchannel interference
(ICI) at the output of the discrete Fourier transform (DFT)
unit.

An intense research activity has been recently devoted to
the problem of CFO recovery in OFDM systems plagued by
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frequency-selective I/Q imperfections. The methods presented
in [2] and [3] exploit a dedicated training preamble (TP)
composed of three repeated parts to retrieve the cosine of the
normalized CFO. However, since the cosine is an even function
of its argument, the frequency estimates are affected by an
inherent sign ambiguity. In [4]-[6] the original preamble pro-
posed in [2] is extended by a second part which is rotated by an
artificial frequency shift before transmission. The resulting TP
allows one to recover both the cosine and the sine of the CFO,
which are eventually combined to get unambiguous estimates
of the frequency offset. A similar approach is adopted in [7],
where the sign ambiguity problem is fixed by rotating the
repeated parts of the TP by a specified phase pattern. Albeit
effective, all the aforementioned solutions cannot be applied to
practical OFDM systems since they rely on suitably designed
TPs that cannot be found in any commercial standard.

The schemes presented in [8]-[12] exploit the conventional
repeated TP of the IEEE 802.11a WLAN standard. Specifi-
cally, in [8] the authors present a suitable matrix formulation
of the received signal samples to derive novel sine and
cosine-based CFO estimators, while the frequency-domain
correlations of the TP are used in [9]. An alternative cosine-
based estimator is derived in [10] using a general relation
among three arbitrary TP segments, while rotational invariance
techniques (ESPRIT) [13] are applied in [11]. Finally, an
iterative interference-cancellation approach is presented in [12]
by resorting to the space-alternating generalized expectation-
maximization (SAGE) algorithm [14].

The common idea behind all the aforementioned schemes
is that conventional CFO estimators cannot work properly
when applied to a DCR architecture. However, so far only
numerical measurements and heuristic arguments have been
used to support such an established belief, while any solid
theoretical analysis is still missing. This paper tries to fill
such a gap by providing a theoretical investigation of the
CFO recovery problem in an OFDM receiver affected by
frequency-selective I/Q imbalance. In doing so, we adopt a
maximum-likelihood (ML) approach and consider a burst-
mode transmission wherein each frame is preceded by the
conventional repeated TP. Our goal is to provide answers to the
following key questions: i) To which extent can conventional
CFO recovery schemes perform satisfactorily in the presence
of RF imperfections? ii) How do CFO recovery schemes
devised for DCR architectures compare with conventional
methods that ignore the presence of I/Q imbalances? iii) Is
it possible to design more sophisticated algorithms to improve
the accuracy of available methods? iv) Can such improved
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performance be achieved with a tolerable increase of the
system complexity?

In order to address question i), we begin our study by
reviewing the classical ML (CML) frequency estimator pre-
sented in [15] and analytically assessing its accuracy in
the presence of I/Q imbalances. This analysis, which is not
available in the literature, is important for establishing the
price (in terms of estimation accuracy) that must be paid when
applying CML in an I/Q imbalance scenario. Next, we assess
the theoretical performance of the algorithm presented in [7]
for the joint ML (JML) estimation of the CFO, the channel-
distorted TP and its mirror image. Such an analysis is not
available in [7] and provides an answer to question ii). As we
shall see, JML is very sensitive to the magnitude of the CFO
value and fails whenever the CFO becomes vanishingly small.
Motivated by such a result, we move to question iii) and derive
a novel ML-based estimator of all the unknown parameters
which exploits some side information about the average signal-
to-image ratio (SIR). Such an estimator can be interpreted as
an extension of both CML and JML since the latter schemes
are obtained from the former by simply adjusting a design
parameter. Compared to CML and JML, the new estimator
provides improved accuracy at the price of a certain increase of
the computational load. The complexity analysis of CML, JML
and CJML is eventually used to answer question iv). A last
contribution is the derivation of the Cramer-Rao bound (CRB)
for CFO recovery in the presence of I/Q imbalance using the
true noise statistics. This result can be used to check whether
the approximated bound derived under the traditional white
Gaussian noise (WGN) assumption deviates substantially or
not from the true CRB.

The rest of the paper is organized as follows. Next section
illustrates the DCR architecture and introduces the signal
model. In Sects. III and IV we review the CML and JML,
respectively, while the novel CFO estimator exploiting SIR
information is derived in Sect. V. We provide the CRB analysis
in Sect. VI and discuss simulation results in Sect. VII. Finally,
some conclusions are drawn in Sect. VIII.

Notation: Matrices and vectors are denoted by boldface
letters, with IN and 0 being the identity matrix of order
N and the null vector, respectively. A =diag{a(n) ; n =
1, 2, . . . , N} denotes an N ×N diagonal matrix with entries
a(n) along its main diagonal, while B−1 is the inverse of
a square matrix B. We use E{·}, (·)∗, (·)T and (·)H for
expectation, complex conjugation, transposition and Hermitian
transposition, respectively. The notation arg{·} stands for the
argument of a complex-valued quantity, | · | represents the
corresponding modulus, while the real and imaginary parts
are expressed by Re(·) and Im(·), respectively. Finally, we
denote by λ̃ a trial value of an unknown parameter λ.

II. SIGNAL MODEL IN THE PRESENCE OF I/Q IMBALANCE

A. Direct conversion receiver

Fig. 1 illustrates the basic DCR architecture in the presence
of I/Q imbalances. The latter originate from I/Q filters with
mismatched impulse responses gI(t) and gQ(t), as well as
from LO signals with an amplitude imbalance α and a phase

Fig. 1. Basic architecture of a direct-conversion receiver.

error ψ. We call s(t) and v(t) the baseband representations of
the transmitted signal and propagation channel, respectively.
Then, denoting by r(t) the complex envelope of the received
waveform rRF (t) with respect to the carrier frequency f0,
we have r(t) = s(t)⊗ v(t) + n(t), with n(t) being circularly
symmetric AWGN with two-sided power spectral density 2N0.
From the analysis in [16], the down-converted baseband signal
x(t) = xI(t) + jxQ(t) can be written as

x(t) = ej2π∆ft[s(t)⊗ h(t)] + e−j2π∆ft[s∗(t)⊗ q(t)] + w(t)
(1)

where ∆f = f0 − fLO is the offset between the carrier and
LO frequencies, while the impulse responses h(t) and q(t) are
defined as

h(t) = v(t)⊗
[
p+(t)e−j2π∆ft

]
q(t) = v∗(t)⊗

[
p−(t)ej2π∆ft

] (2)

with p+(t) = 0.5 · [gI(t) + αgQ(t)e−jψ] and p−(t) = 0.5 ·
[gI(t)−αgQ(t)ejψ]. Finally, the noise term w(t) is related to
n(t) by

w(t) = n(t)ej2π∆ft ⊗ p+(t) + n∗(t)e−j2π∆ft ⊗ p−(t). (3)

Letting w(t) = wI(t) + jwQ(t), it follows that wI(t) and
wQ(t) are zero-mean Gaussian processes with auto- and cross-
correlation functions

E{wI(t)wI(t+ τ)} = N0[gI(τ)⊗ gI(−τ)]
E{wQ(t)wQ(t+ τ)} = α2N0[gQ(τ)⊗ gQ(−τ)]

E{wI(t)wQ(t+ τ)} = −αN0 sinψ[gI(τ)⊗ gQ(−τ)].
(4)

Inspection of (4) reveals that w(t) is not circularly symmet-
ric as its real and imaginary components are generally cross-
correlated and have different auto-correlation functions.

B. Signal model

The investigated system is an OFDM burst-mode transceiver
where each block has length T and is preceded by a cyclic
prefix (CP) to avoid interblock interference. We denote by N
the number of available subcarriers and by 1/T the subcarrier
spacing. As specified in [17], a TP is appended in front of each
data frame to facilitate the synchronization task. In particular,
we assume that the TP has a periodic structure in the time-
domain and is composed by M ≥ 2 identical segments [18],
[19]. The basic segment comprises P time-domain samples
(with P being a power of two) and is generated by feeding a
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sequence of pilot symbols c = [c(0), c(1), . . . , c(P−1)]T into
a P−point inverse DFT unit. Hence, denoting by s(k) the kth
sample of the TP, we have

s(k) =
1√
P

P−1∑
n=0

c(n)ej2πnk/P −Ng ≤ k ≤MP−1 (5)

where Ng is the CP length normalized by the signaling period
Ts = T/N .

After propagating through a multipath channel, the received
signal rRF (t) is down-converted to baseband and sampled
with period Ts using the DCR architecture of Fig. 1. Then,
samples belonging to the TP are arranged into M vectors
xm = [xm(0), xm(1), . . . , xm(P − 1)]T (m = 0, 1, . . . ,M −
1), each of them having length P and corresponding to a
specific TP segment. According to (1), the pth entry of xm
can be written as

xm(p) = ej[m−(M−1)/2]ϕa(p)+e−j[m−(M−1)/2]ϕb(p)+wm(p)
(6)

where wm(p) is the noise contribution and we have defined

ϕ =
2πν

Q
(7)

with Q = N/P and ν , ∆f ·T being the CFO normalized by
the subcarrier spacing. Furthermore, a(p) and b(p) are given
by

a(p) = ej(M−1)ϕ/2ej2πνp/N [s(t)⊗ h(t)]t=pTs
(8)

b(p) = e−j(M−1)ϕ/2e−j2πνp/N [s∗(t)⊗ q(t)]t=pTs
(9)

where

s(t) =
1√
P

P−1∑
n=0

c(n)ej2πnQt/T (10)

is the transmitted TP. In writing (8) and (9), we have borne
in mind that [s(t) ⊗ h(t)]t=pTs

and [s∗(t) ⊗ q(t)]t=pTs
are

periodic in p of period P due to the repetitive TP structure.
To proceed further, we consider the following

M−dimensional vectors

x(p) = [x0(p), x1(p), . . . , xM−1(p)]T p = 0, 1, . . . , P−1
(11)

where x(p) is obtained by collecting the pth entry of
{xm}M−1

m=0 . Hence, from (6) we get

x(p) = u(ϕ)a(p) + u(−ϕ)b(p) + w(p) (12)

where w(p) = [w0(p), w1(p), . . . , wM−1(p)]T is a zero-mean
Gaussian vector and

u(ϕ) = e−j(M−1)ϕ/2
[
1, ejϕ, ej2ϕ, . . . , ej(M−1)ϕ

]T
. (13)

Inspection of (12) and (13) reveals that x(p) consists of
two spectral lines u(ϕ) and u(−ϕ), symmetrically positioned
around the origin and accounting for the direct signal and
its mirror image, respectively. In the ensuing discussion, we
investigate the ML estimation of the normalized CFO ϕ in the
presence of the nuisance vectors a =[a(0), a(1), . . . , a(P −
1)]T and b =[b(0), b(1), . . . , b(P − 1)]T . In particular, we
begin by reviewing the CML estimator presented in [15],
which assumes b = 0, and evaluate its performance in the

presence of I/Q imbalance. Next, we assess the accuracy of
the JML algorithm proposed in [7], which jointly estimates
(ϕ,a,b) without exploiting any side information about b.
Such theoretical analysis will be used to compare the accuracy
of CML and JML in the presence of I/Q imbalance. Since the
signal component is typically much stronger than its mirror
image (i.e., ‖a‖ � ‖b‖), a novel ML estimator of (ϕ,a,b)
is eventually derived by putting a constraint on the ratio
‖a‖2/‖b‖2.

To make the analysis mathematically tractable, we model
the noise term w(t) as a zero-mean circularly-symmetric
Gaussian (ZMCSG) complex random process. This amounts
to saying that {w(p); p = 0, 1, . . . , P − 1} are statistically
independent ZMCSG vectors with covariance matrix Kw =
σ2
wIM . Although this assumption holds true only in the case of

a perfectly balanced DCR scheme, it has been largely adopted
in the literature even in the presence of non-negligible RF
imperfections [20]. In this work, the white noise assumption
is employed only to derive the frequency estimation algorithms
and for their performance analysis, while the true noise
statistics shown in (4) are used in the numerical simulations
and for the CRB evaluation.

III. CFO ESTIMATION IN THE ABSENCE OF I/Q
IMBALANCE

A. Estimator’s design

The CML is proposed in [15] for an OFDM receiver free
from any RF imperfection. This scheme performs the joint ML
estimation of (ϕ,a) based on the following signal model

x(p) = u(ϕ)a(p) + w(p) p = 0, 1, . . . , P − 1. (14)

The log-likelihood function (LLF) is expressed by [21]

Λ(ϕ̃, ã) = −N ln(πσ2
w)− 1

σ2
w

P−1∑
p=0

‖x(p)− u(ϕ̃)ã(p)‖2 (15)

and its maximization with respect to (ϕ̃, ã) leads to the
following CFO estimate

ϕ̂CML = arg max
ϕ̃∈[−π,π)

{ΨCML(ϕ̃)} (16)

where

ΨCML(ϕ̃) =

P−1∑
p=0

∣∣uH(ϕ̃)x(p)
∣∣2 . (17)

Taking (11) and (13) into account, we may put the metric
ΨCML(ϕ̃) in the equivalent form

ΨCML(ϕ̃) =

M−1∑
m=0

M−1∑
k=0

Re
{
χCML,m,k(ϕ̃)xHmxk

}
(18)

with χCML,m,k(ϕ̃) = ej(m−k)ϕ̃.
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B. Performance analysis

Since the CML is derived under the simplifying assumption
b = 0, it is interesting to assess its accuracy in the presence of
I/Q imbalance. For this purpose, we define the estimation error
as εCML = ϕ−ϕ̂CML, and we analyse the CML performance
assuming relatively small values of εCML. Hence, following
the approach outlined in [22], we get

E{εCML} ' −
E{Ψ′CML(ϕ)}
E{Ψ′′CML(ϕ)}

(19)

E
{
ε2
CML

}
' E{[Ψ′CML(ϕ)]2}

[E{Ψ′′CML(ϕ)}]2
(20)

where Ψ′CML(ϕ) and Ψ′′CML(ϕ) are the first and second order
derivatives of ΨCML(ϕ̃), respectively, evaluated at ϕ̃ = ϕ. In
Appendix A it is shown that

E{εCML} =
6

M2 − 1
· q
′
M (ϕ)[Re(aHb) + qM (ϕ)‖b‖2]

ΩM (ϕ)
(21)

with

qM (ϕ) =
sin(Mϕ)

M sinϕ
(22)

and

ΩM (ϕ) = ‖a‖2 + [qM (ϕ)− γM (ϕ)]Re(aHb)

− [βM (ϕ) + qM (ϕ)γM (ϕ)]‖b‖2. (23)

In the above equation, the quantities βM (ϕ) and γM (ϕ) are
expressed by

βM (ϕ) =
3

M2 − 1
[q′M (ϕ)]2 and γM (ϕ) =

3

M2 − 1
q′′M (ϕ)

(24)
where q′M (ϕ) and q′′M (ϕ) are the first and second order
derivatives of qM (ϕ), respectively. From (21)-(23) we see that
ϕ̂CML is a biased estimate of ϕ. The only exceptions occur
in the absence of I/Q imbalance or when ϕ = 0, since in the
latter case we have q′M (ϕ) = 0.

In Appendix A we also evaluate the mean square estimation
error (MSEE) of ϕ̂CML, which is found to be

E
{
ε2
CML

}
= E2{εCML}+

6σ2
w

M(M2 − 1)
· AM (ϕ)

Ω2
M (ϕ)

+
6Pσ4

w

M2(M2 − 1)
· 1

Ω2
M (ϕ)

(25)

with

AM (ϕ) = ‖a‖2 +2qM (ϕ)Re(aHb)+[βM (ϕ)+q2
M (ϕ)]‖b‖2.

(26)

C. Remarks

i) Observing that qM (0) = 1, βM (0) = 0 and γM (0) = −1,
for ϕ = 0 we get AM (0) = ΩM (0) = ‖a + b‖2 and (25)
reduces to

E
{
ε2
CML

}∣∣
ϕ=0

=
6σ2

w

M(M2 − 1)‖a + b‖2

[
1 +

Pσ2
w

M‖a + b‖2

]
.

(27)

ii) In the absence of I/Q imbalance we have AM (ϕ) =
ΩM (ϕ) = ‖a‖2. In such a case, (25) becomes independent of
ϕ and takes the form

E
{
ε2
CML

}∣∣
b=0

=
6σ2

w

M(M2 − 1)‖a‖2

(
1 +

Pσ2
w

M‖a‖2

)
(28)

which further simplifies to

E
{
ε2
CML

}∣∣
b=0,‖a‖2/σ2

w→∞
=

6σ2
w

M(M2 − 1)‖a‖2
(29)

at relatively high SNR values (i.e., for ‖a‖2/σ2
w → ∞). It

is worth noting that the right-hand side of (29) is the CRB
for CFO estimation reported in [15]. This means that CML is
asymptotically efficient when b = 0.

IV. JOINT ML ESTIMATION OF THE UNKNOWN
PARAMETERS

A. Estimator’s design

In this section we review the JML presented in [7], which
aims at jointly estimating the unknown parameters (ϕ,a,b).
After rewriting (12) as

x(p) = A2(ϕ)θ(p) + w(p) p = 0, 1, . . . , P − 1 (30)

with A2(ϕ) = [u(ϕ) u(−ϕ)] and θ(p) = [a(p), b(p)]T , the
LLF takes the form

Λ2(ϕ̃, θ̃) = −N ln(πσ2
w)− 1

σ2
w

P−1∑
p=0

∥∥∥x(p)−A2(ϕ̃)θ̃(p)
∥∥∥2

(31)
where θ̃(p) , [ã(p), b̃(p)]T and θ̃ = {θ̃(0), θ̃(1), . . . , θ̃(P −
1)}. The maximum of the LLF with respect to θ̃(p) is attained
at

θ̂(p; ϕ̃) = [AH
2 (ϕ̃)A2(ϕ̃)]−1AH

2 (ϕ̃)x(p) (32)

which is next substituted into (31) in place of θ̃(p), yielding
the concentrated likelihood function

Λ2(ϕ̃) = −N ln(πσ2
w)− 1

σ2
w

P−1∑
p=0

xH(p)[IM −C2(ϕ̃)]x(p)

(33)
with C2(ϕ̃) = A2(ϕ̃)[AH

2 (ϕ̃)A2(ϕ̃)]−1AH
2 (ϕ̃). The ML

estimate of ϕ is eventually given by

ϕ̂JML = arg max
ϕ̃∈[−π,π)

{ΨJML(ϕ̃)} (34)

where

ΨJML(ϕ̃) = M

P−1∑
p=0

xH(p)C2(ϕ̃)x(p). (35)

After some manipulations, it is found that the metric ΨJML(ϕ̃)
can also be written as

ΨJML(ϕ̃) =

M−1∑
m=0

M−1∑
k=0

Re
{
χJML,m,k(ϕ̃)xHmxk

}
(36)

where

χJML,m,k(ϕ̃) =
cos[(m− k)ϕ̃]− qM (ϕ̃) cos[(m+ k −M + 1)ϕ̃]

1− q2
M (ϕ̃)

(37)
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and qM (ϕ̃) is defined in (22).
It is worth noting that letting M = 2 yields C2(ϕ̃) = I2,

which makes ΨJML(ϕ̃) independent of ϕ̃. This amounts to
saying that application of JML is possible only for M ≥ 3.
Furthermore, since ΨJML(ϕ̃) is an even function of ϕ̃, it
exhibits two global maxima symmetrically positioned around
ϕ̃ = 0. This results into an ambiguity in the sign of ϕ̂JML

which cannot be removed unless additional information is
available. One possible solution relies on the fact that the
useful signal component is typically much stronger than its
mirror image. Hence, we suggest to consider the positive
solution of (34), say ϕ̂+

JML, and compute the estimates â

and b̂ from (32) after replacing ϕ̃ with ϕ̂+
JML. Then, we

set ϕ̂JML = ϕ̂+
JML if ‖â‖ > ‖b̂‖, otherwise we choose

ϕ̂JML = −ϕ̂+
JML.

B. Performance analysis

The accuracy of ϕ̂JML is assessed by applying the same
methods used for ϕ̂CML. Skipping the details, it is found
that E{ϕ̂JML} = ϕ, thereby indicating that JML is unbiased.
Furthermore, denoting by εJML = ϕ− ϕ̂JML the estimation
error, the MSEE turns out to be

E
{
ε2
JML

}
=

6σ2
w

[
M(M2 − 1)

]−1[
ΓM,1(ϕ)

(
‖a‖2 + ‖b‖2

)
+ 2ΓM,2(ϕ)Re(aHb)

]
+

12Pσ4
wΓM,3(ϕ)

[
M2(M2 − 1)

]−1[
ΓM,1(ϕ)

(
‖a‖2 + ‖b‖2

)
+ 2ΓM,2(ϕ)Re(aHb)

]2
(38)

where

ΓM,1(ϕ) = 1− βM (ϕ)

1− q2
M (ϕ)

(39)

ΓM,2(ϕ) = γM (ϕ) +
βM (ϕ)qM (ϕ)

1− q2
M (ϕ)

(40)

and

ΓM,3(ϕ) =
1

1− q2
M (ϕ)

[ΓM,1(ϕ)− qM (ϕ)ΓM,2(ϕ)] (41)

with βM (ϕ) and γM (ϕ) defined as in (24).

C. Remarks

i) For M = 2 we have ΓM,1(ϕ) = ΓM,2(ϕ) = 0 and the
denominator in (38) vanishes. Such a result confirms that ϕ
cannot be estimated when M < 3.

ii) Using the fourth-order Maclaurin series of qM (ϕ)

qM (ϕ) ' 1− M2 − 1

6
ϕ2 +

(M2 − 1)(3M2 − 7)

360
ϕ4 (42)

it is found that, for small values of ϕ, functions ΓM,i(ϕ) (i =
1, 2) can be approximated as

ΓM,i(ϕ) ' M2 − 4

15
ϕ2 i = 1, 2 (43)

while ΓM,3(ϕ) ' ΓM,1(ϕ)/2. Substituting these results into
(38) produces

E
{
ε2
JML

}∣∣
ϕ→0

' 90σ2
w

M(M2 − 1)(M2 − 4) ‖a + b‖2

(
1 +

Pσ2
w

M ‖a + b‖2

)
· 1

ϕ2

(44)

which indicates that the accuracy of JML rapidly degrades as
ϕ approaches zero. The reason is that the two spectral lines in
(12) collapse into a single dc component when ϕ = 0, thereby
preventing the joint estimation of a and b.

iii) In the absence of any I/Q imbalance we have b = 0
and (38) takes the form

E
{
ε2
JML

}∣∣
b=0

=
6σ2

w

M(M2 − 1) ‖a‖2
· 1

ΓM,1(ϕ)

+
12Pσ4

w

M2(M2 − 1) ‖a‖4
· ΓM,3(ϕ)

Γ2
M,1(ϕ)

(45)

which, at relatively high SNR values, reduces to

E
{
ε2
JML

}∣∣
b=0,‖a‖2/σ2

w→∞
=

6σ2
w

M(M2 − 1) ‖a‖2
· 1

ΓM,1(ϕ)
.

(46)
Comparing (29) with (46) and recalling that 0 ≤ ΓM,1(ϕ) ≤ 1,
it turns out that CML outperforms (at least asymptotically)
JML when applied to an ideal receiver with no I/Q imbalance.
This result is not surprising since, in the considered scenario,
ϕ̂CML is the ML estimate of ϕ.

V. CONSTRAINED JOINT ML ESTIMATION OF THE
UNKNOWN PARAMETERS

A. Estimator’s design

JML is derived without considering the fact that in a
practical situation we have ‖a‖ � ‖b‖. We now illustrate
how such a side information can be exploited to improve the
performance of JML. Our approach aims at maximizing (31)
subject to a constraint on the SIR. The resulting scheme is
referred to as the constrained JML (CJML) and solves the
problem

min
ϕ̃,θ̃

P−1∑
p=0

∥∥∥x(p)−A2(ϕ̃)θ̃(p)
∥∥∥2

s.t. ‖b̃‖2 ≤ δ‖ã‖2
(47)

where δ > 0 is a design parameter. In Appendix B it is shown
that CJML takes the form

ϕ̂CJML = arg max
ϕ̃∈[−π,π)

{ΨCJML(ϕ̃)} (48)

where the metric ΨCJML(ϕ̃) is found to be

ΨCJML(ϕ̃) =

M−1∑
m=0

M−1∑
k=0

χCJML,m,k(ϕ̃)xHmxk (49)
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with

χCJML,m,k(ϕ̃) ={
2ζ1(ϕ̃)−M [ζ2

1 (ϕ̃)− 2qM (ϕ̃)ζ1(ϕ̃)ζ2(ϕ̃) + ζ2
2 (ϕ̃)]

}
ej(m−k)ϕ̃

+
{

2ζ3(ϕ̃)−M [ζ2
3 (ϕ̃)− 2qM (ϕ̃)ζ2(ϕ̃)ζ3(ϕ̃) + ζ2

2 (ϕ̃)]
}
e−j(m−k)ϕ̃

+ 2
{
M [ζ1(ϕ̃) + ζ3(ϕ̃)]ζ2(ϕ̃)−MqM (ϕ̃)[ζ1(ϕ̃)ζ3(ϕ̃) + ζ2

2 (ϕ̃)]

− 2ζ2(ϕ̃)
}

cos[(m+ k −M + 1)ϕ̃]
(50)

In the above equation, functions ζ1(ϕ̃), ζ2(ϕ̃) and ζ3(ϕ̃)
depend on δ and are expressed by

ζ1(ϕ̃) = [M + λ(ϕ̃)]/D(ϕ̃) (51)

ζ2(ϕ̃) = MqM (ϕ̃)/D(ϕ̃) (52)

ζ3(ϕ̃) = [M − δλ(ϕ̃)]/D(ϕ̃) (53)

with D(ϕ̃) = [M + λ(ϕ̃)][M − δλ(ϕ̃)]−M2q2
M (ϕ̃) and

λ(ϕ̃) = max

(
0,

Υ2(ϕ̃)−
√

Υ2
2(ϕ̃)−Υ1(ϕ̃)Υ3(ϕ̃)

Υ1(ϕ̃)

)
.

(54)
Furthermore, we have

Υ1(ϕ̃) = δ
(
δ‖t2(ϕ̃)‖2 − ‖t1(ϕ̃)‖2

)
(55)

Υ2(ϕ̃) = Mδ
[
‖t1(ϕ̃)‖2 + ‖t2(ϕ̃)‖2

− 2qM (ϕ̃)Re{tH1 (ϕ̃)t2(ϕ̃)}
] (56)

Υ3(ϕ̃) = M2
{ [
q2
M (ϕ̃)− δ

]
‖t1(ϕ̃)‖2

−2qM (ϕ̃)(1− δ)Re{tH1 (ϕ̃)t2(ϕ̃)}+ [1− δ q2
M (ϕ̃)]‖t2(ϕ̃)‖2

}
(57)

where t1 and t2 are P -dimensional vectors with entries
[t1(ϕ̃)]p = uH(ϕ̃)x(p) and [t2(ϕ̃)]p = uH(−ϕ̃)x(p) for
p = 0, 1, . . . , P − 1.

Since evaluating the theoretical performance of CJML is
extremely challenging, the accuracy of this scheme will be
assessed in Sect. VII by means of numerical simulations.

B. Remarks

i) When δ approaches zero, we have limδ→0 λ(ϕ̃) = +∞
and limδ→0 δλ(ϕ̃) = 0. Hence, from (51)–(53) it is found
that ζ1(ϕ̃) approaches 1/M , while ζ2(ϕ̃) and ζ3(ϕ̃) become
vanishingly small. This leads to

lim
δ→0

χCJML,m,k(ϕ̃) =
1

M
ej(m−k)ϕ̃ =

1

M
χCML,m,k(ϕ̃)

(58)
which means that CJML reduces to CML. The reason is that
letting δ = 0 in the constraint ‖b‖2 ≤ δ‖a‖2 amounts to
putting b = 0, which is just the underlying assumption of
CML.

ii) When δ goes to infinity, we have limδ→+∞ λ(ϕ̃) =
limδ→+∞ δλ(ϕ̃) = 0, leading to

lim
δ→+∞

ζ1(ϕ̃) = lim
δ→+∞

ζ3(ϕ̃) =
1

M [1− q2
M (ϕ̃)]

lim
δ→+∞

ζ2(ϕ̃) =
qM (ϕ̃)

M [1− q2
M (ϕ̃)]

.

(59)

In such a case it is found that

lim
δ→+∞

χCJML,m,k(ϕ̃) =

2

M
· cos[(m− k)ϕ̃]− qM (ϕ̃) cos[(m+ k −M + 1)ϕ̃]

1− q2
M (ϕ̃)

(60)
which, compared with (37), reveals that CJML reduces to
JML. This fact can be explained by observing that letting
δ → +∞ amounts to removing any constraint on the mag-
nitude of b.

The above remarks qualify CJML as a general ML-based
estimator, which incorporates both CML and JML as special
cases when δ → 0 and δ → +∞, respectively.

VI. COMPUTATIONAL COMPLEXITY OF CML, JML AND
CJML

A. CML Algorithm

In this section we assess the complexity of the investigated
schemes in terms of real multiplications (RMs) and real
additions (RAs). For this purpose, we observe that a complex
multiplication is equivalent to four RMs plus two RAs, while
a complex addition involves two RAs.

We start by rewriting (17) in the form

ΨCML(ϕ̃) = ‖t1(ϕ̃)‖2

where [t1(ϕ̃)]p = uH(ϕ̃)x(p), for p = 0, 1, . . . , P − 1. Since
the computation of [t1(ϕ̃)]p requires M complex multiplica-
tions and M − 1 complex additions, evaluating t1(ϕ̃) needs
4PM RMs and 4PM − 2P RAs. Additional 2P RMs and
2P−1 RAs are required to obtain ‖t1(ϕ̃)‖2, so that computing
ΨCML(ϕ̃) for each ϕ̃ needs 4PM + 2P RMs and 4PM − 1
RAs.

B. JML Algorithm

The complexity of JML is assessed by reformulating (35)
as

ΨJML(ϕ̃) =
1

1− q2
M (ϕ̃)

[
‖t1(ϕ̃)‖2 + ‖t2(ϕ̃)‖2

−2qM (ϕ̃)Re{tH1 (ϕ̃)t2(ϕ̃)}
] (61)

where [t2(ϕ̃)]p = uH(−ϕ̃)x(p) for p = 0, 1, . . . , P−1. Based
on the results obtained for the CML algorithm, it is shown
that the computation of a single value of ΨJML(ϕ̃) requires
8PM + 6P + 4 RMs plus 8PM + 2P RAs.

C. CJML Algorithm

We first observe that, once t1(ϕ̃) and t2(ϕ̃) have been com-
puted, evaluating Υ1(ϕ̃), Υ2(ϕ̃), and Υ3(ϕ̃) through (55)–(57)
requires additional 6P +14 RMs and 6P +5 RAs. Also, given
Υ1(ϕ̃), Υ2(ϕ̃), and Υ3(ϕ̃), the computation of λ(ϕ̃) through
(54) involves 4 RMs and 2 RAs. Considering the calculation
of t1(ϕ̃) and t2(ϕ̃), we conclude that computing λ(ϕ̃) requires
a total of 8PM + 6P + 18 RMs and 8PM + 2P + 7 RAs.
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TABLE I
COMPLEXITY OF THE INVESTIGATED SCHEMES.

Algorithm Real operations WLAN scenario
CML 8PM + 2P − 1 544
JML 16PM + 8P + 4 1124

CJML 16PM + 48P + 28 1510

Now, we focus on the computation of ΨCJML(ϕ̃) through
(85) which, after neglecting irrelevant terms independent of ϕ̃,
is equivalent to

ΨCJML(ϕ̃) = M ‖â‖2 +M‖b̂‖2 − 2Re{âHt1(ϕ̃)}
−2Re{b̂Ht2(ϕ̃)}+ 2MqM (ϕ)Re{b̂H â}.

(62)

Assuming that λ(ϕ̃), and hence uH(ϕ̃)x(p) = [t1(ϕ̃)]p and
uH(−ϕ̃)x(p) = [t2(ϕ̃)]p, are available, the calculation of â
and b̂ through (84a)–(84b) requires a total of 13P RMs and
7P RAs. Additional 2P RMs and 2P−1 RAs are required for
the computation of each quantity ‖â‖2, ‖b̂‖2, Re{âHt1(ϕ̃)},
Re{b̂Ht2(ϕ̃)} and Re{b̂H â}, while 4 additional RMs and 4
RAs are needed for evaluating the right-hand side of (62). It
can be concluded that the computation of ΨCJML(ϕ̃) for each
ϕ̃ requires a total of 8PM+29P+22 RMs and 8PM+19P+6
RAs.

Table I summarizes the number of real operations involved
in the computation of ΨCML(ϕ̃), ΨJML(ϕ̃), and ΨCJML(ϕ̃)
as a function of M and P . The rightmost column reports the
overall complexity required in a WLAN scenario, where the
useful part of the TP (excluding the CP) is composed by M =
8 repeated segments carrying P = 16 samples. These figures
indicate that CJML is computationally more demanding than
CML and JML, since it leads to an increase of the system
complexity by a factor 2.8 and 1.3, respectively.

VII. CRB ANALYSIS

It is interesting to compare the performance of the estima-
tion algorithms illustrated in the previous section with the rele-
vant CRB. The latter is computed from (30) using the true sta-
tistical distribution of wI(t) and wQ(t) as given in (4). For this
purpose, we arrange the samples xm(p) = xIm(p) + jxQm(p)
into a real-valued vector x = [xI0(0), xQ0 (0), xI0(1), xQ0 (1) · · ·
xIM−1(P −1), xQM−1(P −1)]T with 2PM entries. Then, from
(6) we can write

x = η + w (63)

where w = [wI0(0), wQ0 (0), wI0(1), wQ0 (1) · · · wIM−1(P −
1), wQM−1(P − 1)]T is the noise contribution, with wIm(p)
and wQm(p) being the real and imaginary parts of wm(p),
respectively. Furthermore, letting a(p) = aI(p) + jaQ(p) and
b(p) = bI(p) + jbQ(p), we have

η = Qz (64)

with z = [zT (0) zT (1) · · · zT (P − 1)]T and z(p) =
[aI(p), aQ(p), bI(p), bQ(p)]T , while Q is a matrix of dimen-
sion 2PM × 4P with the following structure

Q =
[
QT

0 QT
1 · · · QT

M−1

]T
. (65)

In the above equation, Qm is a 2P × 4P matrix

Qm = diag{Rm,Rm, . . . ,Rm︸ ︷︷ ︸
P

} m = 0, 1, . . . ,M − 1

(66)
where Rm is defined as

Rm =

[
cm(ϕ) −sm(ϕ) cm(ϕ) sm(ϕ)
sm(ϕ) cm(ϕ) −sm(ϕ) cm(ϕ)

]
(67)

with cm(ϕ) and sm(ϕ) being a shorthand notation for
cos[(m − M−1

2 )ϕ] and sin[(m − M−1
2 )ϕ], respectively. For

notational simplicity, in (65) we have omitted the dependence
of Q on ϕ.

In Appendix C it is shown that

CRB(ϕ) =
1

zT Q̇T
[
C−1
w −C−1

w Q
(
QTC−1

w Q
)−1

QTC−1
w

]
Q̇z

(68)
where Cw is the correlation matrix of w and Q̇ is the
derivative of Q with respect to ϕ. A simpler expression is
obtained by assuming a white-noise scenario wherein Cw =
(σ2
w/2)I2PM . In such a case, after lengthy computations it is

found that (68) takes the form

CRB(ϕ) =
6σ2

w

[
M(M2 − 1)

]−1[
ΓM,1(ϕ)

(
‖a‖2 + ‖b‖2

)
+ 2ΓM,2(ϕ)Re(aHb)

]
(69)

with ΓM,1(ϕ) and ΓM,2(ϕ) defined as in (39) and (40). It is
worth noting that, at relatively high SNR values, the accuracy
of ϕ̂JML given in (38) approaches the CRB in (69), meaning
that JML is asymptotically efficient in the presence of AWGN.

VIII. SIMULATION RESULTS

A. Simulation model

The investigated system is compliant with the IEEE 802.11a
standard for WLANs [17]. Specifically, the DFT size is N =
64 with a signaling interval Ts = 50 ns which corresponds to
a subcarrier distance of 312.5 kHz. The TP is composed by
ten repeated segments of length P = 16. By considering the
first two segments as the CP of the TP, the remaining M = 8
segments are exploited for CFO recovery. We adopt a discrete-
time channel model and collect the Ts-spaced samples of v(t)
into a vector v = [v(0), v(1), . . . , v(Lv − 1)]T . The entries of
v are independent and circularly symmetric Gaussian random
variables with zero-mean and power

E{|v(k)|2} = σ2
v exp(−k/Lv) k = 0, 1, . . . , Lv − 1

(70)
where σ2

v is chosen such that E{‖v‖2} = 1. Unless otherwise
specified, we consider the following two scenarios [7]:

1) Frequency-selective I/Q imbalance (FS-I/Q): the analog
I/Q filters have discrete-time impulse responses gI = [0, 1, µ]T

and gQ = [µ, 1, 0]T with µ = 0.1, while the LO-induced
imbalance is characterized by α = 1.122 (1 dB) and ψ = 5
degrees. From (2), it follows that h(k) and q(k) have support
k = 0, 1, . . . , L− 1, with L = Lv + 2.

2) Frequency-flat I/Q imbalance (FF-I/Q): only frequency
independent imbalance is considered with α = 1.122 and ψ =
5o, while the I/Q filters have ideal response [0, 1, 0]T .
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Fig. 2. Accuracy of CJML vs δ for different SNR values in the FS-I/Q
scenario.

In order to assess the sensitivity of the considered schemes
to the amount of RF imperfections, we also consider a general
set-up wherein a coefficient ρ ∈ [0, 4] is used to specify the
I/Q imbalance parameters as µ = 0.1ρ, α = 1 + 0.122ρ and
ψ = 5ρ degrees. Clearly, ρ = 0 corresponds to the absence of
any I/Q imbalance, while ρ = 1 yields the FS-I/Q scenario.

The average SIR is defined in [7] and can expressed as

SIR =
(1 + α2)(1 + µ2) + 2α cosψ

(1 + α2)(1 + µ2)− 2α cosψ
(71)

yielding the values of 19.9 dB and 22.8 dB for the FS-I/Q and
FF-I/Q cases, respectively.

Assuming a carrier frequency of 5 GHz and an oscillator
instability of ±30 parts-per-million (ppm), the maximum value
of the normalized CFO is approximately given by νmax = 0.5.
Hence, recalling that Q = N/P = 4, from (7) it follows
that ϕ ∈ [−π/4, π/4]. The global maximum of the CFO
metrics shown in (18), (36) and (49) is found by evaluat-
ing the metric over a grid of K uniformly-spaced values
ϕ̃k = −π/4 + kπ/(2K) for k = 0, 1, . . . ,K (coarse search),
followed by a parabolic interpolation (fine search). Parameter
K has been set to 128 since no significant improvement is
achieved when using K > 128.

B. Performance assessment for FO estimation

An important design parameter for CJML is the coefficient
δ, which specifies the constraint on the SIR level. Fig. 2
shows the accuracy of CJML as a function of δ for different
SNR values and with ϕ uniformly distributed over the range
[−π/4, π/4]. These results are obtained in the FS-I/Q scenario,
and are qualitatively similar to those pertaining to the FF-
I/Q case (not shown for space limitations). As is seen, at
intermediate and low SNR values the MSEE monotonically
increases with δ, while at high SNR values a global minimum
occurs around δ = −22 dB. Extensive numerical measure-
ments carried out in the general set-up with ρ ∈ [0, 4] indicate
that nearly optimal performance can be achieved by letting
δ = (SIR)−1, which is therefore used in all subsequent
simulations.

Figs. 3 and 4 illustrate the MSEE of the CFO estimators as
a function of ρ with ϕ uniformly distributed over [−π/4, π/4].
The SNR is 15 dB in Fig. 3 and 30 dB in Fig. 4. The solid
line illustrates theoretical analysis for CML, while for JML
and CJML it is used to facilitate the reading of the plot. It
turns out that the accuracy of JML is virtually independent
of ρ, while CML exhibits a remarkable sensitivity to the
amount of I/Q imbalances. However, at SNR=15 dB the CML
outperforms JML for all the considered values of ρ, while at
SNR=30 dB CML is worse than JML only for ρ > 1.9. These
results indicate that, contrary to the well-established belief,
CML performs satisfactorily in most practical situations and
the adoption of more sophisticated schemes is justified only
at high SNR values and in the presence of extremely severe
RF imbalances. We also see that, in the presence of non-
negligible I/Q imbalances, the best accuracy is achieved by
CJML. The reason is that this scheme is able to find a good
balance between CML and JML thanks to a proper design of
δ. In particular, for ρ = 0 we have δ = 0 and CJML reduces
to CML, while for large values of ρ it departs from CML and
approaches JML.
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Fig. 3. Accuracy of the CFO estimators vs ρ with SNR = 15 dB.
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Fig. 4. Accuracy of the CFO estimators vs ρ with SNR = 30 dB.

Fig. 5 illustrates the MSEE of the CFO estimators as
a function of ϕ measured at SNR = 15 dB in the FS-
I/Q scenario. The CRB reported in (69) is also shown for
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comparison. As expected, JML performs poorly for small CFO
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Fig. 5. Accuracy of the CFO estimators vs ϕ in the FS-I/Q scenario with
SNR = 15 dB.

values since in this case the useful signal component and its
mirror image collapse into a single dc line and cannot be easily
resolved. This is also reflected in the CRB curve, which goes
to infinity as ϕ approaches zero. In contrast, the accuracy of
both CML and JCML depends weakly on the CFO value and is
remarkably better than that of JML for |ϕ| < 0.1π. Since CML
is derived by ignoring the presence of I/Q imbalances, the
fact that this scheme outperforms JML may appear surprising.
Actually, such a behaviour can be explained by observing that
for ϕ = 0 the received signal in (12) reduces to a dc line
embedded in (approximately) white Gaussian noise and, due
to the absence of any mirror interference, CML provides nearly
optimum performance. On the other hand, in this scenario JML
cannot work properly due to the impossibility of providing
independent estimates of the nuisance vectors a and b. It is
worth noting that the theoretical analysis of CML and JML
is in good agreement with simulation results except when we
consider JML at small CFO values. Such a discrepancy is
due to the fact that the MSEE shown in (38) is derived using
the approach of [22], which is valid in the presence of small
estimation errors. It is also worth recalling that no tangible
difference has been observed between the true CRB (68) and
its approximation (69), meaning that the noise term w(t) in
(3) can reasonably be approximated as a circularly symmetric
wihite Gaussian process.

The results shown in Fig. 6 are obtained under the same
operating conditions of Fig. 5, except that the SNR is now set
to 30 dB. In this case, we see that CML outperforms JML only
when |ϕ| is approximately smaller than 0.05π. Such behaviour
is justified by the fact that, at large SNR values, the MSEE of
JML becomes proportional to (SNR)−1, while the accuracy of
CML is essentially determined by the bias term E2{εCML}
present in (25), which vanishes only for specific values of ϕ.
The CJML provides better estimates than CML except in the
proximity of ϕ = 0. Compared to JML, it performs slightly
worse when |ϕ| > 0.05π, while a significant improvement is
observed at smaller CFO values.

Fig. 7 illustrates the bias of the investigates schemes as a
function of ϕ in the FS-I/Q scenario with the SNR fixed to
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Fig. 6. Accuracy of the CFO estimators vs ϕ in the FS-I/Q scenario with
SNR = 30 dB.

30 dB. As is seen, the bias of CJML and CML is smaller
than 1.5× 10−3, while higher values are observed with JML.
This contradicts the theoretical analysis of Sect. IV.B, where
it was shown that E{ϕ̂JML} = ϕ. Such a discrepancy can be
justified by recalling that our theoretical results are accurate
only in the presence of small estimation errors.
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Fig. 7. Bias of the CFO estimates ϕ in the FS-I/Q scenario with SNR = 30
dB.

Figs. 8 and 9 illustrate the MSEE of the investigated
schemes as a function of the SNR for the FS-I/Q and FF-I/Q
scenarios, respectively, when ϕ varies uniformly over the range
[−π/4, π/4]. Comparisons are made with available CFO
recovery methods which exploit a repeated TP to cope with
I/Q imbalances. Specifically, we consider the ESPRIT-based
estimator illustrated in [11] and other heuristic algorithms
proposed by Pan and Phoong (PP) in [8], by Kume, Lin and
Yamashita (KLY) in [10], and by Wang, Xue, Liu, Ye and
Ren (WXLYR) in [9]. At SNR values smaller than 24 dB,
both CML and CJML outperform all the other methods, with
CJML taking the lead as the SNR increases. Compared to
CML and CJML, the ESPRIT-based scheme entails a loss of
approximately 5 dB at medium SNR values, which increases
to 10 dB when considering the JML. Such a remarkable loss
is due to the poor accuracy of JML in case of small CFOs.
The PP algorithm operates satisfactorily at medium-to-high
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SNR values, while a significant degradation is observed when
the SNR decreases. As for KLY and WXLYR, they perform
quite poorly. This is particularly evident for the latter scheme,
whose MSEE curve is plagued by a considerable floor.
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Fig. 10. BER for a 64-QAM modulation vs ρ with SNR = 30 dB.

Fig. 10 provides the bit-error-rate (BER) performance of
an uncoded 64-QAM transmission when CFO correction is
accomplished by resorting to CML, JML or CJML. We

consider the general simulation set-up with ρ varying in the
interval [0, 4] and with the SNR value fixed to 30 dB. In
order to distinguish the impact of the frequency estimates from
that of other system impairments, ideal compensation of the
I/Q imbalance parameters and ideal channel equalization is
assumed. The BER value obtained in the presence of perfect
frequency knowledge (PFK) is also shown as a benchmark.
As expected, the BER curves exhibit the same trend of the
MSEE curves shown in Fig. 4. In particular, we see that the
error-rate increases with ρ when using CML, while a reduced
sensitivity to the I/Q imbalance is observed when adopting
JML and CJML. For ρ = 1 all the considered schemes
provides similar BER results, thereby confirming that CML
can perform satisfactorily in most practical situations.

IX. CONCLUSIONS

We have presented an analytical investigation of the fre-
quency recovery problem in a direct-conversion receiver af-
fected by frequency selective I/Q imbalance. The first objective
was to check whether traditional CFO estimators can be
applied or not to a DCR architecture. For this purpose, we
have analytically assessed the impact of the I/Q imbalance
on the performance of the conventional ML (CML) scheme.
Next, we have reviewed and analyzed the JML method,
which provides joint estimates of the CFO, the useful signal
component and its mirror image. Finally, we have derived a
novel scheme (CJML), which exploits some side-information
about the signal-to-interference ratio. It was shown that both
CML and JML can be obtained from CJML by properly
adjusting the value of a design parameter. In response to the
questions raised in Sect. I, the main conclusions that can be
drawn from this study are as follows:

1) CML performs satisfactorily in most situations and out-
performs JML at SNR values of practical interest in both
the FS-I/Q and FF-I/Q scenarios. This result contradicts
the common idea that conventional frequency recovery
schemes for OFDM systems perform poorly in the pres-
ence of I/Q imbalance;

2) CJML is able to get an effective balance between CML
and JML, and exhibits an excellent accuracy over a
large range of CFO and SNR values at the price of an
increased complexity. In a forward-looking perspective,
its improved resilience against I/Q imbalances can be ex-
ploited to relax the requirements on hardware components
for DCR architectures;

3) JML performs poorly for small CFO values and, in
the medium SNR range, the MSEE analysis exhibits
a loss of approximately 10 dB with respect to CML
and CJML. A remarkable loss is also observed with
alternative schemes based on the ESPRIT algorithm or
other heuristic methods;

4) The question of whether the improved accuracy of CJML
justifies or not its increased complexity with respect to
CML is controversial. The answer depends on many
different factors, such as the cost of hardware compo-
nents, the impact of the increased power consumption
on the battery life and the relative weight of the CJML
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complexity with respect to that of other fundamental
functions, including data decoding. Overall, we expect
that such a relative weight is marginal since data decoding
must be continuously performed in the receiver, while
frequency synchronization is typically accomplished once
per frame.

APPENDIX A
In this Appendix we evaluate the mean and the MSEE of the

CML estimate given in (16) under the simplifying assumption
that the noise term w(t) in (1) is a ZMCSG complex random
process. We begin by taking the derivatives of ΨCML(ϕ) in
(18), yielding

Ψ′CML(ϕ) =

M−1∑
m=0

M−1∑
k=0

(k −m)Im
{
xHmxke

j(m−k)ϕ
}

(72)

Ψ′′CML(ϕ) = −
M−1∑
m=0

M−1∑
k=0

(k −m)2Re
{
xHmxke

j(m−k)ϕ
}
(73)

and rewrite (6) in vector form as

xm = ηm + wm (74)

where ηm = aej[m−(M−1)/2]ϕ + be−j[m−(M−1)/2]ϕ, while
{wm; m = 0, 1, . . . ,M−1} are statistically independent ZM-
CSG random vectors with covariance matrix σ2

wIP . Denoting
by δ(n) the Kronecker delta function, from (74) we get

E
{
xHmxke

j(m−k)ϕ
}

= ηHmηke
j(m−k)ϕ+σ2

wPδ(m−k)ej(m−k)ϕ

(75)
which, after substituting into (72) and (73), produces

E{Ψ′CML(ϕ)} = M2q′M (ϕ)
[
qM (ϕ)‖b‖2 + Re(aHb)

]
(76)

E{Ψ′′CML(ϕ)} =
M2(M2 − 1)

6

{
[βM (ϕ) + qM (ϕ)γM (ϕ)]‖b‖2

− ‖a‖2 − [qM (ϕ)− γM (ϕ)]Re(aHb)
}

(77)

where qM (ϕ), βM (ϕ) and γM (ϕ) are defined in (22) and (24).
Finally, inserting these results into (19), yields E{εCML} as
given in (21).

Now, we concentrate on the computation of the MSEE.
From (20), it turns out that we need the expectation of
[Ψ′CML(ϕ)]2 which, using (72), can be rewritten as

[Ψ′CML(ϕ)]2 = −
M−1∑
m=0

M−1∑
k=0

M−1∑
n=0

M−1∑
`=0

(m− k)(n− `)×

×ej(m−k)ϕej(n−`)ϕxHmxkx
H
n x`.

(78)

The expectation of (78) is computed by exploiting the identity

E{wH
mwkw

H
n w`} = P 2σ4

wδ(m−k)δ(n−`)+Pσ4
wδ(m−`)δ(k−n)

(79)
and is found to be

E
{

[Ψ′CML(ϕ)]2
}

= [E{Ψ′CML(ϕ)}]2 +

M3(M2 − 1)

6
AM (ϕ)σ2

w + P
M2(M2 − 1)

6
σ4
w (80)

where AM (ϕ) is defined in (26). Finally, taking (77) and (80)
into account, yields the MSEE of ϕ̂CML as expressed in (25).

APPENDIX B

In this Appendix we solve the optimization problem (47),
which is reformulated as

min
ϕ̃

{
min
θ̃

P−1∑
p=0

∥∥∥x(p)−A2(ϕ̃)θ̃(p)
∥∥∥2
}

s.t. ‖b̃‖2 ≤ δ‖ã‖2
(81)

We start by solving the inner optimization problem with
respect to θ̃ and for a fixed ϕ̃. Applying the Karush-Kuhn-
Tucker (KKT) conditions to the Lagrangian function

L(ã, b̃, λ) =

P−1∑
p=0

∥∥∥x(p)− ã(p)u(ϕ̃)− b̃(p)u(−ϕ̃)
∥∥∥2

+λ(‖b̃‖2−δ‖ã‖2)

(82)
we obtain

∂

∂ã∗(p)
L(ã, b̃, λ) =

[
‖u(ϕ̃)‖2 − λδ

]
ã(p)

+ uH(ϕ̃)u(−ϕ̃)b̃(p)− uH(ϕ̃)x(p) = 0

(83a)

∂

∂b̃∗(p)
L(ã, b̃, λ) = uH(−ϕ̃)u(ϕ̃)ã(p)

+
[
‖u(−ϕ̃)‖2 + λ

]
b̃(p)− uH(−ϕ̃)x(p) = 0

(83b)

for p = 0, 1, . . . , P − 1, with

λ ≥ 0 ‖b̃‖2 − δ‖ã‖2 ≤ 0 λ(‖b̃‖2 − δ‖ã‖2) = 0.
(83c)

After some algebraic computations, the solution of the KKT
equations is found to be

â(p) =
[M + λ(ϕ̃)]uH(ϕ̃)x(p)− uH(ϕ̃)u(−ϕ̃)uH(−ϕ̃)x(p)

[M − δλ(ϕ̃)][M + λ(ϕ̃)]− |uH(ϕ̃)u(−ϕ̃)|2
(84a)

b̂(p) =
[M − δλ(ϕ̃)]uH(−ϕ̃)x(p)− uH(−ϕ̃)u(ϕ̃)uH(ϕ̃)x(p)

[M − δλ(ϕ̃)][M + λ(ϕ̃)]− |uH(ϕ̃)u(−ϕ̃)|2
(84b)

λ(ϕ̃) = max

(
0,

Υ2(ϕ̃)−
√

Υ2
2(ϕ̃)−Υ1(ϕ̃)Υ3(ϕ̃)

Υ1(ϕ̃)

)
(84c)

where Υ1(ϕ̃), Υ2(ϕ̃) and Υ3(ϕ̃) are defined in (55)–(57). The
optimal value of ϕ̃ that solves (81) is eventually obtained
by searching for the global minimum of the concentrated
likelihood function, yielding

ϕ̂c = arg min
ϕ̃∈[−π,π)

P−1∑
p=0

∥∥∥x(p)− â(p)u(ϕ̃)− b̂(p)u(−ϕ̃)
∥∥∥2

.

(85)
Taking (84a) and (84b) into account, after some computations
we obtain the CJML estimator shown in (48)-(50).

APPENDIX C

In this Appendix we compute the CRB for the estimation of
ϕ based on the signal model shown in (63) and (64). For this
purpose, we collect the unknown parameters into a (4P + 1)-
dimensional vector ς = [ϕ zT ]T and let Cw be the correlation
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matrix of w in (63). Then, the entries of the Fisher information
matrix (FIM) Fς are given by [21]

[Fς ]k1,k2 =

(
∂η

∂ςk1

)T
C−1
w

(
∂η

∂ςk2

)
1 ≤ k1, k2 ≤ 4P + 1.

(86)
Taking (65)–(67) into account, after lengthy computations we
get

Fς =

[
γ mT

m M

]
(87)

where γ = zT Q̇TC−1
w Q̇z, m = QTC−1

w Q̇z and M =
QTC−1

w Q. In the latter expressions, Q̇ is defined as

Q̇ =
∂Q

∂ϕ
=
[
Q̇T

0 Q̇T
1 · · · Q̇T

M−1

]T
(88)

with Q̇m = diag{Ṙm, Ṙm, . . . , Ṙm︸ ︷︷ ︸
P

} and

Ṙm =

(
m− M − 1

2

)[
−sm(ϕ) −cm(ϕ) −sm(ϕ) cm(ϕ)
cm(ϕ) −sm(ϕ) −cm(ϕ) −sm(ϕ)

]
.

(89)
The CRB for the estimation of ϕ corresponds to

[
F−1

ς

]
1,1

.
Using well-known results for the inverse of a partitioned
matrix [21], we obtain

CRB(ϕ) =
1

γ −mTM−1m
(90)

which reduces to (68) after using the expressions of γ, m and
M.

.
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