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Abstract—This paper analyzes the spectral efficiency of mas-
sive multiple-input multiple-output (MIMO) systems in bot h
centralized and distributed configurations, referred to as C-
MIMO and D-MIMO, respectively. By accounting for real envi-
ronmental parameters and antenna characteristics, namely, path
loss, shadowing effect, multi-path fading and antenna correlation,
a novel comprehensive channel model is first proposed in closed-
form, which is applicable to both types of MIMO schemes.
Then, based on the proposed model, the asymptotic behavior
of the spectral efficiency of the MIMO channel under both
the centralized and distributed configurations is analyzedand
compared in exact forms, by exploiting the theory of very
long random vectors. Afterwards, a case study is performed by
applying the obtained results into MIMO networks with circu lar
coverage. In such a case, it is attested that for the D-MIMO of
cell radius rc and circular antenna array of radius ra, the optimal
value of ra that maximizes the average spectral efficiency is
accurately established byropta = rc/1.31. Monte Carlo simulation
results corroborate the developed spectral-efficiency analysis.

Index Terms—Antenna location optimization, centralized and
distributed MIMO, massive MIMO, spectral efficiency.

I. I NTRODUCTION

M ASSIVE multiple-input multiple-output (MIMO) com-
munication technique, where tens or a few hundred

antennas are deployed at either or both ends of a wireless link,
promises significant performance gains in terms of spectral
efficiency, energy efficiency, security and reliability compared
with conventional MIMO [1], and is becoming a cornerstone
of future 5G systems [2]. To implement massive MIMO in
wireless networks, two different schemes can be adopted
(see, e.g., [3]–[5]): centralized (C-MIMO), where antennas
are co-located at both the transmit (Tx) and the receive (Rx)
sides as illustrated in Fig. 1-a (which is essentially equivalent
to conventional MIMO system), and distributed (D-MIMO),
where base station (BS) antennas are deployed at different
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geographical locations while connected together through high-
capacity backhaul links such as fibre-optic cables, as shown
in Fig. 1-b.

From a practical point of view, C-MIMO is more easy
to mathematically analyze and physically deploy, compared
with D-MIMO. In fact, unlike the former, the latter suffers
from different degrees of path losses caused by different
access distances to different distributed antennas, whichmakes
the performance analysis and design more challenging. Also,
since the location of antennas in D-MIMO has a significant
effect on the system performance, optimization of the antenna
locations is crucial [4], [6]. This task may become very
challenging because of the large numbers (massive) of Tx/Rx
antennas. On the other hand, in practice, arbitrary antenna
locations or optimal topology may lead to a prohibitive cost
for the backhaul component, as well as installation cost for
the distributed setting.

D-MIMO technique, however, exhibits several advantages
compared with C-MIMO, such as lower transmit power,
higher multiplexing gain, higher spectral efficiency, enhanced
coverage area and ease of network planning [7], [8]. As such,
both C-MIMO and D-MIMO represent promising choices for
practical implementation of massive MIMO technique, each
depending on potentially preferable criteria mentioned above.

No matter whether the centralized or distributed configura-
tion is concerned, to capture the propagation characteristics
and to understand the system performance and behaviour
in real physical environments, two fundamental tasks are
to i) develop an analytical channel model, where path loss,
shadowing effect and multi-path fading are accounted for; and
to ii) conduct analytical performance evaluation and assess key
factors that determine system performance. In particular,for
D-MIMO systems, different path losses and shadowing effects
w.r.t. different BS antennas are critical to the realization of
Tx/Rx diversity. In addition, antenna correlation is inherent
to the realization of massive MIMO, because of the lack
of sufficient physical space to separate the large number of
antennas in case they are co-located.

In practice, the performance of point-to-point massive
MIMO serves as a benchmark for further performance evalua-
tion in multi-user settings. Also, point-to-point massiveMIMO
finds wide applications, e.g., high-speed wireless backhaul
link between BSs [9]. However, despite the extreme impor-
tance of point-to-point massive MIMO, there is no existing
work that successfully accounts for all the aforementioned
parameters (i.e., path loss, shadowing effect, multi-pathfading
and antenna correlation), while developing channel model and
conducting closed-form performance analysis. In particular,
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Fig. 1. Two configurations of point-to-point massive MIMO systems: (a)
C-MIMO, where antennas are co-located at the BS and the UE sides and, thus,
distances from UE to BS antennas are almost identical; (b) D-MIMO, where
BS antennas are deployed at different geographical locations while connected
together through the backhaul processor unit, implying that the distances from
UE to BS antennas are different.

it was shown in [10] that for MIMO channels, the spectral
efficiency grows linearly with the minimum between the
numbers of Tx and Rx antennas, even if they tend to infinity.
The asymptotic result when the number of antennas at only
one side goes to infinity was reported in [11], [12]. In [10]–
[12], only basic multi-path fading was considered whereas
path loss, shadowing and antenna correlation were ignored.In
[13]–[15], the capacity of correlated multi-antenna channels
was studied, in both regimes of finite numbers of antennas
(in [13]) and large numbers of antennas (in [13]–[15]), where
only the Rayleigh fading and the antenna correlation were
considered. Recently, in [16] and its companion conference
version [17], a comprehensive channel model consisting of
path loss, shadowing, multi-path fading, antenna correlation
and polarization was firstly developed. Then, an upper bound
on the ergodic capacity of point-to-point C-MIMO was de-
rived, by using the Hadamard’s determinant inequality, and
further asymptotically analyzed in the sense of larger number
of Tx and/or Rx antennas.

Compared to our previous work [16], [17], the major
contributions of this paper are summarized as follows.

1) This paper develops a general channel model suitable
for both massive C-MIMO and D-MIMO, where major en-
vironmental parameters and antenna physical parameters are
accounted for. As apposed to the Kronecker correlation model
used in [17], this paper uses the Weichselberger model which
is more accurate than the former (as detailed later in Section
II-B). Moreover, although various parameters needed in chan-
nel modeling have been partially considered to some extent
in the open literature, key channel parameters, namely, path
loss, shadowing, multi-path fading and antenna correlation, are
concurrently taken into account and their effects on spectral
efficiency are investigated in this paper.

2) The asymptotic behavior of the spectral efficiency of
C-MIMO and D-MIMO is analyzed, in the sense of large
number of Rx antennas. More specifically:

a) We first extend the law of large numbers for very long
random vectors with independent but not necessarily
identically distributed (i.n.i.d.) entries, to the more gen-
eral case of very long random vectors withweighted
i.n.i.d. entries, where a condition is imposed onto the

weights to guarantee the convergence in probability.
b) Then, two target matrices are introduced in the expres-

sions of the spectral efficiency:MC for C-MIMO and
MD for D-MIMO. Afterwards, the above results on
the law of large numbers for very long random vectors
with weightedi.n.i.d. entries are exploited to derive the
asymptotic expressions of the entries ofMC and ofMD,
w.r.t. the number of Rx antennasNR whereNR → ∞.

c) The resulting asymptotic behavior is then applied to
derive the intended spectral efficiency, yielding novel ex-
pressions from which new insights into the system per-
formance can be gained. In particular, our results show
that, i) D-MIMO does not always outperform C-MIMO
in terms of spectral efficiency;ii) D-MIMO exhibits a
higher multiplexing gain than that of C-MIMO, up to
NT×NR whereNT denotes the number of Tx antennas;
andiii) the performance of massive MIMO on the uplink
is mainly determined by the correlation characteristics
at the Tx side instead of the Rx side, given that the
Weichselberger correlation model is applied.

3) A case study is performed by applying the obtained
results in a pertinent scenario where D-MIMO adopts a
circular topology, and several key insights into the system
performance and optimal antenna deployment are gained. In
particular, it is demonstrated that for D-MIMO with circular
topology of cell radiusrc and circular antenna array of radius
ra, the optimal value ofra that maximizes the average spectral
efficiency is given byropta = rc/1.31.

To detail the aforementioned contributions, the following
content of the paper is organized as follows. Section II
develops the channel model suitable for both C-MIMO and
D-MIMO, and Section III derives the associated asymptotic
spectral efficiency. Afterwards, the case study is conducted in
Section IV. Section V presents numerical results pertaining
to the developed analyses, in comparison with Monte Carlo
simulation results. Section VI concludes the paper and, finally,
some detailed derivations are relegated to appendices.

Notation: In the paper, scalars are represented by lowercase
letters likeh, whereas vectors and matrices are represented
by bold lowercase and uppercase letters, likeh and H,
respectively. The row vectorh with size n is written as
h = [h1, h2, · · · , hn] and the(i, j)th entry of H is denoted
by [H]i,j . The subscriptn ×m in An×m means the size of
A, i.e.,A ∈ Cn×m. 1n refers to then×1 column vector with
all entries being unity, andIn denotes the identity matrix of
size n × n. Operators(.)T, (.)H, det(.) and ⊙ refer to the
transpose, Hermitian transpose, determinant and Hadamard
product, respectively.Pr(.), E{.} andVar{.} stand for math-
ematical probability, expectation and variance, respectively.

II. M ASSIVE MIMO SYSTEM AND CHANNEL MODELING

A. System Models of C-MIMO and D-MIMO

We consider the uplink of a multi-user massive MIMO
system, where the BS is equipped withNR Rx antennas
while each user equipment (UE) is equipped withNT Tx
antennas. In the centralized setting as illustrated in Fig.1-
a, theNR antennas of the BS are co-located, whereas in the
distributed scheme shown in Fig. 1-b, theNR antennas of the
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BS are separately distributed in geography. In both settings,
it is assumed that the number of antennas at the BS is large,
i.e., the value ofNR is on the order of tens or even hundreds,
and thatNR > NT since the number of Tx antennas at UE
is usually not large due to the physical size limitations. Since
this paper focuses on a comprehensive channel model used for
the system performance analysis, it is assumed that there isno
hardware imperfections at the BS antenna array.1 Further, it is
assumed that in the D-MIMO scheme, high-capacity backhaul
links such as fibre-optic cables connect the BS antennas, which
cooperate perfectly with each other [4], [5].

B. Channel Models

In both C-MIMO and D-MIMO systems, the physical
channel between both ends of any communication link is
assumed to be subject to path loss, shadowing and multi-path
fading. In the centralized scheme, the path-loss components on
the radio link between the UE antennas and the BS antennas
are independent and identically distributed (i.i.d.), since in this
setting, antennas at either end (transmitter or receiver) are at
the same location. In the distributed scheme, on the other
hand, since different BS antennas are deployed at different
geographical locations, the path-loss components of radiolinks
between the UE and the antennas of the BS are i.n.i.d.. With
the system model described above, a channel model applicable
to both C-MIMO and D-MIMO systems,H ∈ CNR×NT , can
be explicitly given by

H = D
1

2H0, (1)

whereH0 ∈ CNR×NT models multi-path fading whileD ∈
RNR×NR represents path loss and shadowing effect. With the
observations right before (1), it is readily shown thatD in (1)
is a diagonal matrix given by

D =

{
d−νϕ INR

, C-MIMO; (2)

diag
{
d−ν
i ϕi

}NR

i=1
, D-MIMO, (3)

where in (2),d andϕ denote the Euclidean distance and the
shadowing effect pertaining to the link between the UE and
the BS of a C-MIMO system, respectively; and where in (3),
di andϕi refer to the Euclidean distance and the shadowing
effect pertaining to the link between the UE and theith BS
antenna of a D-MIMO system, for alli ∈ {1, 2, . . . , NR}. In
(2) and (3),ν > 2 is the path-loss exponent. By using a similar
methodology as detailed in [17, Sec. II.A],ϕ shown in (2) can
be well described by a Gamma distribution. Accordingly, the
probability density function (PDF) ofϕ can be written as

fϕ(x) =
1

Γ(α)

(α
Ω

)α
xα−1 exp

(
−
α

Ω
x
)
, (4)

whereΓ(x) =
∫ x

0
tx−1e−t dt denotes the Gamma function,

α > 0.5 inversely reflects the shadowing severity andΩ is the
average power of the shadowing effect. For the sake of brevity,
the Gamma distribution in the form of (4) is shortly denoted
G(α,Ω/α), with α andΩ/α being the shape parameter and

1For the reader interested in hardware imperfections of antenna array, please
refer to, e.g., [3].

the scaling factor, respectively. Accordingly,ϕi shown in (3)
is distributed according to

fϕi
(y) = G

(
αi,

Ω

αi

)
, (5)

where αi denotes the shadowing parameter pertaining to
the link between the UE and theith BS antenna, for all
i ∈ {1, 2, . . . , NR}.

If antenna correlation at the Tx and Rx sides is considered
and modelled by the well-known Kronecker model, namely,

H0 , Θ
1

2

R Ĥ
(
Θ

1

2

T

)H
, (6)

where ΘT ∈ CNT×NT and ΘR ∈ CNR×NR refer to the
correlation matrices at the transmitter and the receiver, re-
spectively; and where the(i, j)th entry of matrix Ĥ, for
all i ∈ {1, 2, . . . , NR} and j ∈ {1, 2, . . . , NT }, follows a
circularly symmetric complex Gaussian (CSCG) distribution:

[Ĥ]i,j ∼ CN (0, 1), (7)

then, substituting (2), (3) and (6) into (1) yields the channel
model

H =





d−
ν
2 ϕ

1

2 Θ
1

2

R Ĥ
(
Θ

1

2

T

)H
, C-MIMO;(8)

diag
{
d
− ν

2

i ϕ
1

2

i

}NR

i=1
Ĥ
(
Θ

1

2

T

)H
, D-MIMO.(9)

It is noted thatΘR in (8) denotes the correlation matrix at the
Rx antennas in the C-MIMO scheme. As far as D-MIMO is
concerned, however, Rx antennas at BS are well separated in
geography and, thus, correlation between them is negligible.
Accordingly,ΘR in (8) reduces to an identity matrix in the
D-MIMO scheme, as implied by (9).

By recalling the exponential correlation model widely used
between antenna elements [18], [19], the entries ofΘR and
ΘT in the model above can be explicitly given by

[ΘI ]k,l = θ
|k−l|
I , ∀k, l ∈ {1, 2, · · · , NI} , (10)

whereI ∈ {T,R} andθI = e−LI/∆I , with LI being the sub-
array spacing at the UE ifI = T and at the BS ifI = R,
and∆I denoting characteristic distances proportional to the
spatial coherence distance at each side [18].

Though the Kronecker model shown in (6) is by far the
most popular correlation model used in conventional MIMO
systems, mainly due to its simplicity and analytical tractability
[20], the accuracy of this model suffers from some limitations
(cf. [21]–[24] and references therein), especially in massive
MIMO systems. For instance, it may underestimate the chan-
nel capacity. As an alternative to the Kronecker model, and
inspired by the latter, the Weichselberger model was proposed
[21], [25],2 which is a reformulation of the Kronecker model
and has been shown to be more accurate. The Weichselberger
correlation model is derived as follows. By first applying the
eigenvalue decomposition in matrix theory toΘT and ΘR

shown in (6), similarly as in [17, Eq. (12)], while recalling
that ΘR reduces to the identity matrixINR

in the D-MIMO

2It is noteworthy that the “Weichselberger model” is called by different
names in the MIMO literature, e.g., non-separable correlation model, UIU
model, virtual representation, etc. For more details, see,e.g., [13]–[15], [24].
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scheme as discussed right after (9); then by exploiting the
Weichselberger reformulation of the Kronecker model shown
in (6), we obtain the so-called unitary-independent-unitary
(UIU) formulation [25, Ch. 6.4.3]. Accordingly, (6) can be
rewritten as

H0 =





U
1

2

R(GC ⊙ Ĥ)
(
U

1

2

T

)H
, C-MIMO; (11)

(GD ⊙ Ĥ)
(
U

1

2

T

)H
, D-MIMO, (12)

where UT ∈ CNT×NT and UR ∈ CNR×NR are unitary
matrices, and whereGC andGD are defined as

GJ = λ
1

2

R

(
λ

1

2

T

)T
, ∀J ∈ {C,D} (13)

with the vectors

λT ,
[
λT,1 λT,2 . . . λT,NT

]T
, (14)

λR ,
[
λR,1 λR,2 . . . λR,NR

]T
, (15)

consisting of the eigenvalues of the matricesΘT and ΘR,
respectively.

Finally, by virtue of the new expression ofH0 shown in
(11) and (12), Eqs. (8) and (9) can be rewritten, yielding a
general and unified channel model suitable for C-MIMO and
D-MIMO systems given by

H=





d−
ν
2 ϕ

1

2 U
1

2

R(GC ⊙ Ĥ)
(
U

1

2

T

)H
, C-MIMO; (16)

diag
{
d
− ν

2

i ϕ
1

2

i

}NR

i=1
(G⊙ Ĥ)

(
U

1

2

T

)H
,D-MIMO . (17)

As mentioned in the Introduction, for ease of mathemat-
ical tractability, various analytical models were developed
by accounting for only partial key parameters needed in
MIMO channel modeling in the open literature, whereas major
channel parameters including path loss, shadowing, multi-path
fading and antenna correlation are all involved in (16)–(17).

III. SPECTRAL EFFICIENCY ANALYSIS

In this section, we derive the asymptotic spectral efficiency
of C-MIMO and D-MIMO mathematically described by (16)
and (17), respectively.3 To this end, two target matrices are first
introduced in the expression of the spectral efficiency:MC

for C-MIMO and MD for D-MIMO. Then, the asymptotic
expressions of the entries ofMC and ofMD are explicitly
derived, w.r.t.NR whereNR → ∞. Afterwards, the resulting
asymptotic behavior is applied to derive the intended spectral
efficiency, which yields novel expressions from where several
new insights into the system performance are gained.

3It is noteworthy that the expression “spectral efficiency” is, in general, a
rather abused term in the MIMO literature. In the context of low-SNR analysis,
spectral efficiency stands for capacity-per-unit-energy type arguments, while
in the context of high-SNR analysis, it stands for the rate. In this paper,
“spectral efficiency” is used in the context of rate/throughput.

A. Instantaneous Spectral Efficiency of MIMO Channel

It is assumed that the BS perfectly knows the channel state
information (CSI) whereas no CSI is available at the UE.4

Accordingly, the total Tx power,P , is uniformly allocated
across the Tx antennas of the UE. Then, by recalling that
NT < NR, the instantaneous spectral efficiency of the MIMO
channel in the unit of bit/s/Hz is readily given by

C = log2

[
det

(
INT

+
ρ

NT
HHH

)]
, (18)

whereρ denotes the average Tx signal-to-noise ratio (SNR).
Let CC and CD denote the spectral efficiency pertaining

to C-MIMO and D-MIMO, respectively. By substituting (16)
into (18) for C-MIMO while (17) into (18) for D-MIMO,
and using the identitydet(In + An×mBm×n) = det(Im +
Bm×nAn×m), after performing some algebraic manipulations
we obtain

CC = log2

[
det

(
INT

+
ρ

NT
MC

)]
, (19)

CD = log2

[
det

(
INT

+
ρ

NT
MD

)]
, (20)

where

MC , d−ν ϕ
(
GC ⊙ Ĥ

)H (
GC ⊙ Ĥ

)
, (21)

MD ,

(
GD ⊙ Ĥ

)H
D
(
GD ⊙ Ĥ

)
. (22)

Next, we analyze the asymptotic behavior ofMC andMD.

B. Asymptotic Analysis

We first extend the law of large numbers for very long
random vectors with i.n.i.d. entries, to the more general case
of very long random vectors withweighted i.n.i.d. entries,
where a condition is imposed onto the weights to guarantee
the convergence, as summarized in the following lemma.

Lemma 1. Let p ,

[
a

1

2

1 p1, a
1

2

2 p2, . . . , a
1

2

n pn

]T
and q ,

[
b

1

2

1 q1, b
1

2

2 q2, . . . , b
1

2

n qn

]T
be n × 1 vectors, whereai, bi ∈

R are constant coefficients whereaspi and qi are i.n.i.d.
zero-mean random variables (RVs), withE

{
|pi|2

}
= µp,i,

E
{
|qi|2

}
= µq,i, Var

{
|pi|2

}
= σ2

p,i < ∞, Var
{
|qi|2

}
=

σ2
q,i < ∞, for all i ∈ {1, 2, · · · , n}. If there exists a constant

z < ∞ such that

|ai|
2 ≤ z, ∀ i ∈ {1, 2, · · · , n} , (23)

then, we have

lim
n→∞

1

n
pHp

p.
−→

1

n

n∑

k=1

ak µp,k (24)

4In the context of massive MIMO systems, channel reciprocityis widely
exploited to estimate the channel response on the uplink andthen use the
acquired CSI for both uplink Rx combining and downlink Tx precoding
of payload data, provided that the system operates in TDD mode [26]. If
the system operates in FDD mode, the uplink and downlink use different
frequency bands and channel reciprocity cannot be harnessed. In such a case,
the CSI acquisition becomes much more challenging. For moreinformation,
the interested reader is referred to the survey [26].
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and

lim
n→∞

1

n
pHq

p.
−→ 0, (25)

where
p.
−→ denotes the convergence in probability.

Proof: See Appendix A.
In particular, Lemma 1 generalizes the results shown in Eqs.

(4) and (5) of [27] and those in (6) and (7) of [28]. The
results of [27] apply only to very long random vectors with
i.i.d. elements while those of [28] adapt to very long random
vectors with i.n.i.d. entries. The above Lemma 1, on the other
hand, is suitable for very long random vectors withweighted
i.n.i.d. elements, where the weights must be subject to (23).
It is noted that Eqs. (6) and (7) of [28] were removed from
its final version [29].

By virtue of Lemma 1 and after performing some lengthy
algebraic manipulations, the asymptotic behavior ofMC and
MD, defined respectively in (21) and (22), are attained and
summarized in the following theorem.

Theorem 1. If NR → ∞, MC andMD defined respectively in
(21) and (22) become diagonal matrices, and their asymptotic
behavior is uniformly given by

MJ
p.
−→ diag

{
NR∑

k=1

d−ν
k λT,1Ω,

NR∑

k=1

d−ν
k λT,2Ω,

. . . ,

NR∑

k=1

d−ν
k λT,NT

Ω

}
, (26)

whereJ ∈ {C,D}, anddk ≡ d, ∀k ∈ {1, 2, . . . , NR}, in case
of J = C.

Proof: See Appendix B.
Now, by virtue of Theorem 1, we can analyze the asymp-

totic behavior of the spectral efficiencies of both C-MIMO and
D-MIMO, as summarized in the following theorem.

Theorem 2. Denote the spectral efficiency of C-MIMO asCC

and of D-MIMO asCD. Their asymptotic behaviors are given
by

CC
p.
−→

NT∑

i=1

log2
(
1 +AiNRd

−ν
)

(27)

and

CD
p.
−→

NT∑

i=1

log2

(
1 +Ai

NR∑

k=1

d−ν
k

)
, (28)

respectively, whereAi ,
ρ

NT
λT,iΩ, ∀i ∈ {1, 2, . . . , NT }.

Proof: By recalling that the asymptotic forms ofMC

andMD are diagonal matrices explicitly shown in (26), and
by inserting (26) into (19) for C-MIMO (withdk ≡ d, for all
k ∈ {1, 2, . . . , NR}) and into (20) for D-MIMO, the intended
(27) and (28) can be readily obtained, respectively.

Based on (27) and (28), several illuminating insights into
the system performance can be immediately gained as follows.

1) To begin with, (27) and (28) disclose that, in terms of
the spectral efficiency of massive MIMO, the D-MIMO
scheme does not always outperform C-MIMO. To
demonstrate this, letδ ,

∑NR

k=1 d
−ν
k . Then, CD

in (28) can be concisely rewritten asCD
p.
−→∑NT

i=1 log2 (1 +Aiδ). Thus, it is evident that

• If NRd
−ν < δ, we haveCC < CD;

• If NRd
−ν = δ, thenCC = CD, and

• If NRd
−ν > δ, CC > CD.

Although D-MIMO does not always outperform
C-MIMO in terms of spectral efficiency as illustrated
above, D-MIMO exhibits higher diversity and multiplex-
ing gains. This can be observed from (28) which shows
that in the distributed setting, the different path losses
over different links between the BS antennas and the
UE, offer additional macro-diversity to the D-MIMO.
Subsequently, the D-MIMO multiplexing gain is up to
NRNT as shown by (28) whereas that of C-MIMO
is only min(NT , NR). By recalling thatNR → ∞
in massive MIMO context, this result shows that the
multiplexing gain is very large in the distributed set-
ting. Consequently, D-MIMO is a better choice over
C-MIMO, to increase the diversity and the multiplexing
gains of massive MIMO in practice. In particular, with
a single-antenna UE, i.e., whenNT = 1, there is neither
diversity nor multiplexing gain in case C-MIMO is
concerned as shown by (27), whereas in the D-MIMO
setting the multiplexing gain isNR. Therefore, path-loss
factors are crucial to realize diversity and multiplexing
gains in distributed schemes.

2) As already known in the classical C-MIMO systems, due
to insufficient antenna spacing, antenna correlation can
significantly degrade the performance of massive MIMO
systems and has been a subject of practical measurement
campaigns (see e.g., [30] and references therein). More
specifically, by assuming that there is no correlation at
the BS side under the D-MIMO setting, Eqs. (27) and
(28) reveal that the asymptotic behavior of C-MIMO
and D-MIMO are related to the eigenvalues at the UE
side, i.e.,λT,i, which shows that the uplink performance
of massive MIMO in either the centralized setting or
the distributed one is determined by the correlation at
the UE side, given that the Weichselberger correlation
model is applied. In particular, as implied by Eqs.
(27) and (28), good channels (i.e. the channels with
lower correlation and then larger asymptotic spectral
efficiency) are characterized by higher values ofλT,i, for
all i ∈ [1, NT ], whereas bad channels are characterized
by lower values ofλT,i, for all i ∈ [1, NT ].

3) By settingdk = d for all k ∈ {1, 2, . . . , NR} in (28),
the macro-diversity gain of D-MIMO is degraded and
(28) reduces to (27). Also, from (27) and (28), it is
clear that the spectral efficiency increases with better
shadowing conditions (i.e., larger values ofΩ in (27) and
(28)), as expected. The same conclusion can be drawn
regarding the path loss where, a decrease in the path-loss
exponentν in (27) and (28) (respectively a decreasing
in the distanced in (27) and/or the distancesdk in (28)),
benefits improving the spectral efficiency.

In the next subsection, by considering the range of the
medium-to-high SNR segment (i.e.,ρ ≫ 0 and evenρ → ∞),
(27) and (28) can be further simplified so as to gain more
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penetrating insights into the spectral efficiency for both the
centralized and the distributed schemes.

C. Analysis with Respect to Medium-to-High SNR

In the medium-to-high SNR regime, by recalling thatNR →
∞, (27) and (28) can be further simplified, as summarized in
the following corollary.

Corollary 1. In the medium-to-high SNR regime, the asymp-
totic behavior of the spectral efficiency of the C-MIMO shown
in (27), and of the D-MIMO shown in(28), are given by

CC, SNR↑
p.
−→

NT∑

i=1

log2 λT,i +NT log2

(
ρΩNR

NT
d−ν

)
(29)

and

CD, SNR↑
p.
−→

NT∑

i=1

log2 λT,i +NT log2

(
ρΩ

NT

NR∑

k=1

d−ν
k

)
.

(30)
respectively.

Proof: By applying the identitylog2(1 + x) ≈ log2(x)
if x → ∞ to (27) and (28), Eqs. (29) and (30) can be readily
obtained.

From (29) and (30), it is evident that:

1) The asymptotic spectral efficiency increaseslogarithmi-
cally with the average SNR (ρ), the average power of the
shadowing effect (Ω), and the number of Rx antennas
(NR), in the medium-to-high SNR regime;

2) The asymptotic spectral efficiency decreases exponen-
tially with the distance (d) and the path-loss exponent
(ν), and increases with both the number of Tx (NT ) and
the number of Rx (NR) antennas.

The results obtained in the above can be applied to
C-MIMO and D-MIMO where the cells are designed with
arbitrary topology, for instance, hexagonal topology, circular
topology, line topology and grid topology. In the next section,
a case study is performed by applying the obtained results into
circular topology, which is widely used in the open literature
for performance evaluation of various wireless systems [4]–
[6]. In particular, circular topology is an excellent setting
for performance analysis of massive MIMO where, by taking
D-MIMO for instance, the optimization of antennas’ locations
becomes very challenging due to the large number of antennas
and the complex system parameters involved.

IV. A PPLICATION TO CIRCULAR NETWORK

In this part, a case study where the network adopts circular
topology is investigated. After detailing the system model, the
asymptotic spectral efficiency for both C-MIMO and D-MIMO
schemes is derived. Then, the average spectral efficiency for a
user is attained, by assuming a uniform user distribution and
a typical urban propagation environment. Finally, the optimal
antenna deployment pertaining to D-MIMO is studied.

(b) D-MIMO  (a) C-MIMO  

O 
!"#$%&'()

*#$+&,()

!-#$%&,-())

$%)

,-)
,)

.-))

O 

*)
$+/.)

$0)

BS Antenna 

Fig. 2. C-MIMO and D-MIMO systems with circular topology. Coverage
areas are of circular shape with radiusrc, and the antennas of D-MIMO are
uniformly distributed along a circle with radiusra.

A. System Model for the Circular Topology

As depicted in Fig. 2, we consider a point-to-point uplink
MIMO system, where the BS is assumed to be centered at
the origin (0, 0) and its circular coverage area is of radius
rc. In the C-MIMO setting shown in Fig. 2-a, the receive
antennas are all co-located at the BS, whereas in the D-MIMO
system shown in Fig. 2-b, the BS antennas are uniformly
deployed along a circle of radiusra, which is concentric with
the circular cell of radiusrc. In the latter configuration, for the
kth BS antenna,k ∈ {1, 2, . . . , NR}, its location is denoted
asLk, specifying its polar coordinates relative to the center of
the coverage area denoted by(ra, φk), whereφk ∈ [0, 2π). In
both MIMO schemes, the location of the user is denoted asU .
Moreover, in the centralized setting the distance between the
UE and the BS is given byd, while in the distributed scheme
the polar coordinates of the user are denoted as(ru, φ), with
ru being the distance between the UE and the cell center, and
with φ ∈ [0, 2π). Without loss of generality, theNR BS Rx
antennas are assumed to form a uniform circular antenna array
with φ1 = 0 andφk = 2π(k − 1)/NR, for all k ∈ [2, NR],
as shown in Fig. 2-b. On the other hand, to keep consistent
with the parameters used in the previous sections, the distance
between the UE and thekth antenna of the BS pertaining to
D-MIMO is given by dk, for all k ∈ {1, 2, . . . , NR}. With
these settings in mind, in the next subsection we derive the
asymptotic spectral efficiency.

B. Asymptotic Spectral Efficiency in Circular Topology

Since the BS antennas are co-located in the C-MIMO
scheme, the spectral efficiency is similar to (27), whered
is replaced byru. In the D-MIMO setting, however, the
asymptotic spectral efficiency is derived by exploiting thelaw
of cosines, and the ensuing results are summarized in the
following theorem.

Theorem 3. For a UE located at distanceru from the cell
center of the massive C-MIMO and D-MIMO systems of
circular topology, as illustrated in Fig. 2, the asymptotic
spectral efficiencies are given by

CC, circ
p.
−→

NT∑

i=1

log2
(
1 + βi r

−ν
u

)
(31)
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and

CD, circ
p.
−→

NT∑

i=1

log2

[
1 + βi

∣∣r2u − r2a
∣∣ ν2 P ν

2
−1

(
r2u + r2a
|r2u − r2a |

)]
,

(32)
respectively, whereβi , NRAi and Pc(x) refers to the
Legendre function of the first kind [31, Eq. (8.820)].

Proof: Equation (31) is immediately available by replac-
ing d in (27) with ru. On the other hand, the proof of (32) is
provided in Appendix C.

From (31) and (32), similar insights to those presented
after Theorem 2 can be gained. Also, by following similar
procedure as in Section III-C, similar results to those in
Section III-C can be obtained. More importantly, (31) and
(32) can be numerically computed and serve as performance
benchmark in various propagation environments. In the next
subsection, we consider a typical urban environment and
random values ofru, and derive asymptotic expression of the
average spectral efficiency (w.r.t.NR) for a typical user in the
cell, which reflects the achievable data rate over a normalized
spectral bandwidth.

C. Average Asymptotic Spectral Efficiency in Urban Area

Assuming transmission in an urban area with path-loss
exponentν = 4, for a randomly deployed UE, i.e., the value
of ru is random, we derive the average asymptotic spectral
efficiency of such a typical user in the cell, in both centralized
and distributed settings. We assume thatru is uniformly
distributed in(0, rc]. Then, the PDF ofru is given by

fru(x) =

{ 2
r2
c

x, if 0 < x ≤ rc;
0, otherwise.

(33)

In case ofν = 4, the asymptotic behaviors of C-MIMO
shown in (31) and that of D-MIMO given by (32), reduce to

CC, circ
p.
−→

NT∑

i=1

log2

(
1 +

βi

r4u

)
(34)

and

CD, circ
p.
−→

NT∑

i=1

log2

[
1 + βi

r2u + r2a
|r2u − r2a |

3

]
, (35)

respectively.
From (34) and (35), it is evident that, by settingra → 0,

(35) reduces to (34). Therefore, in the following we de-
rive only the average asymptotic spectral efficiency in the
D-MIMO setting w.r.t.ru. That of the C-MIMO scheme can be
readily attained by settingra → 0. The results are summarized
in the following theorem.

Theorem 4. The average asymptotic spectral efficiencies of
the C-MIMO and D-MIMO systems in an urban area w.r.t. a
uniformly distributed user in the coverage area, are given by

C
avg

C, circ
p.
−→ 2NT log2

e

r2c
+

NT∑

i=1

log2 βi (36)

and

C
avg

D, circ
p.
−→ 2NT log2 e− 4NT

r2a
r2c

log2 r
2
a

−3NT

(
1−

r2a
r2c

)
log2

(
r2c − r2a

)

+NT

(
1 +

r2a
r2c

)
log2

(
r2c + r2a

)

+

NT∑

i=1

log2 βi, (37)

respectively.

Proof: The proof of (37) is provided in Appendix D.
Equation (36) can be easily derived by settingra → 0 in (37).

From (37), it is clear that the average spectral efficiency
varies with the radius of antenna array,ra, given that the
coverage radiusrc is fixed. Therefore, in the next subsection,
we derive the optimal value ofra that maximizes the average
spectral efficiency given by (37).

D. Optimal Location of the Antenna Array in the D-MIMO
Setting

After some lengthy yet straightforward algebraic manipu-
lations, the optimal value ofra that maximizes the average
spectral efficiency is discovered and formalized as follows.

Corollary 2. For a massive D-MIMO system operating in an
urban area, with cell radiusrc, the optimal value of the radius
of the circular antenna array that maximizes the average
spectral efficiency given by(37) is determined by

ropta = rc/1.31. (38)

Proof: See Appendix E.
It is very interesting to see from (38) that the optimal

value of the antenna array size which maximizes the average
spectral efficiency given by (37), is independent ofβi or λT,i,
for all i ∈ {1, 2, . . . , NT }. Thus, the optimal antenna radius
in the D-MIMO setting depends neither upon the shadowing
parameters nor the correlation factors, even if the shadowing
and antenna correlation have severe effects on the performance
of massive MIMO systems. Moreover, (38) implies that the
optimal value of the antenna array size is independent of the
average SNR and of the numbers of Tx/Rx antennas. These
findings shed new light on the design and deployment of
massive D-MIMO systems in practice.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present and discuss ensuing simula-
tions results, compared with numerical ones pertaining to the
analysis developed previously. The simulation experiments,
of Monte Carlo type, are performed in the platform Matlab
R2014a. In the simulation setting, the variance of AWGN at
UE (N0) is set to unity and, unless otherwise stated, the mean
local power of the shadowing effect (Ω) is normalized w.r.t.
N0 and set toΩ = 0 dB. Apart from Fig. 4, the sub-array
spacing is set toLT = 0.25∆T and LR = 0.75∆R. The
spectral efficiency is in the unit of bit/s/Hz and the average
SNR is in the unit of dB w.r.t.N0. Regarding the number of
Rx antennas at the BS,NR, although no standard value has
yet been specified for practical massive MIMO deployments,
in densely populated areas such as stadiums where a BS may
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Fig. 3. The asymptotic spectral efficiency of C-MIMO and D-MIMO (ν =
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Fig. 4. The asymptotic spectral efficiency of C-MIMO w.r.t. the antenna
spacing (d = 0.2 andν = 3.7).

serve thousands of UEs, one can imagine thatNR may be
equal to, or even greater than,100 or 200, whereas for areas
with few UEs,NR may take smaller values such as20. Below,
in different simulation scenarios, the value ofNR ranges
between20 and200. In Figs. 6-8 where circular topology is
adopted, the radius of circular coverage area is set torc = 500
m, which is the typical value for cellular cells in up-to-
date cellular networks. Finally, in all the following simulation
scenarios, distance parameters are normalized w.r.t. a reference
R0 = 500 m. Such normalization is widely adopted in the
related literature, see e.g., [30].

In the following, we first discuss the results pertaining to
the asymptotic spectral efficiency for both centralized and
distributed schemes, developed in Section III.

A. Spectral-Efficiency Comparison Between C-MIMO and
D-MIMO Schemes

Figure 3 compares the spectral efficiency of massive
C-MIMO and D-MIMO systems. By recalling thatδ ,
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Fig. 5. The asymptotic spectral efficiency of C-MIMO and D-MIMO w.r.t.
the medium-to-high SNR (dk = R−1

0 (k+100), for all k ∈ {1, 2, . . . , NR},
d = 0.1, NT = 1, NR = 200 andν = 3.7).
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Fig. 6. The asymptotic spectral efficiency of C-MIMO and D-MIMO with
circular topology (ra = 0.2, ru = 0.5, ν = 3.7, NT = 4 andNR = 100).

∑NR

k=1 d
−ν
k as defined after (28) and by using the normalization

w.r.t. R0, we set, for simulation purpose,dk = R−1
0 (k+100),

for all k ∈ {1, 2, . . . , NR}, ν = 3.7, NR = 100, NT = 4, and
vary the value ofd shown in (27). With this setting, it is easy to
getδ = 154760.3. It is observed from the curves in the middle
of Fig. 3 thatCC = CD in case ofδ = NRd

−ν . The lower
curves of Fig. 3 show thatCC < CD in case ofNRd

−ν < δ,
whereas the upper curves illustrate thatCC > CD in case
of NRd

−ν > δ. These observations corroborate the results
obtained in Section III-B.

B. Impact of Correlation on the Asymptotic Spectral Efficiency

By recalling that in the D-MIMO scheme there is no
correlation among antennas at the BS side, it is disclosed in
Section III-B that the system performance of massive MIMO
in both centralized and distributed settings is determinedby
the correlation at the UE side, in case the Weichselberger cor-
relation model is applied. This is corroborated by observations
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Fig. 7. The average asymptotic spectral efficiency of D-MIMOwith circular
topology (ν = 4, ra = 0.5).

from Fig. 4 where, for sake of clarity, only the curves related to
C-MIMO are plotted. Clearly, Fig. 4 shows that by decreasing
the spacing between antennas (then increasing correlation
impact) at the UE side (the transmitter), the spectral efficiency
of massive MIMO decreases significantly. However, changing
the spacing between antennas at the BS side (the receiver),
does not essentially affect the system performance. This result
corroborates the previous analysis.

C. Special Case: Analysis w.r.t. Medium-to-High SNR

Figure 5 illustrates the asymptotic spectral efficiency of both
massive C-MIMO and D-MIMO schemes in terms of medium-
to-high SNR, as developed in Section III-C. It is observed that
the approximate asymptotic behavior works perfectly for both
antenna settings.

D. A Case Study: Asymptotic Spectral Efficiency for Circu-
larly Topology

Figure 6 presents the asymptotic spectral efficiency of
massive C-MIMO and D-MIMO systems of circular topology.
The cell sizerc is normalized to unity, i.e.,rc = 1, ra = 0.2
andru = 0.5 are used in the simulation setting. It is observed
from Fig. 6 that the simulation results agree perfectly withthe
numerical results computed as per (31) and (32), respectively.

Figure 7 shows the average asymptotic spectral efficiency
for a user in a cell under the D-MIMO (by recalling that the
C-MIMO scheme here is just a particular case of the D-MIMO
by settingra → 0), in an urban area withν = 4. The results
are shown w.r.t. different numbers of Tx/Rx antennas, with
ra = 0.5. It is seen that the simulation results agree well with
the numerical ones computed as per (37).

Figure 8 plots the average asymptotic spectral efficiency of
massive D-MIMO being circular topology w.r.t. the normal-
ized antenna radius, and illustrates the value of the antenna
radius which maximizes the average spectral efficiency of
the system. It is observed that, for different values of SNR,
the maximum value of the average spectral efficiency always
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Fig. 8. Optimal value of the antenna array size that maximizes the average
spectral efficiency of D-MIMO (ν = 4).

appears atra ≈ 0.76, which is consistent with our analytical
result given by (38), i.e.,ropta = rc/1.31 ≈ 0.76.

VI. CONCLUDING REMARKS

In this paper, the spectral efficiency of massive MIMO
systems in both centralized (C-MIMO) and distributed
(D-MIMO) settings, was analytically investigated, based on
a novel comprehensive analytical channel model where major
natural environmental and antenna physical parameters were
accounted for, including path loss, shadowing, multi-path
fading and antenna correlation. Our results reveal that the
C-MIMO scheme does not always underperform D-MIMO,
although the latter exhibits a higher multiplexing gain. Fur-
ther, the uplink performance of massive MIMO is shown
to be mainly determined by the antenna correlation at the
UE side, given that the Weichselberger correlation model is
applied. For practical purposes, it was demonstrated that for
the D-MIMO scheme with circular topology of radiusrc, the
optimal value of the radius of antenna array that maximizes
the average spectral efficiency is given byropta = rc/1.31.
The proposed channel model, the developed analysis and the
obtained results, thanks to their generality and compactness,
can serve as practical benchmark for designing and analyzing
performances of massive MIMO systems in real physical
propagation environments.

APPENDIX A
PROOF OFLEMMA 1

With the vectorsp and q defined in Lemma 1, we have
pHp =

∑n
k=1 ak|pk|

2 and E
{
pHp

}
=
∑n

k=1 akµp,k. Let
z be a constant which satisfies (23). It is then clear that
Var

{
|a

1

2

i pi|
2
}

= |ai|2σ2
p,i < ∞. Therefore, by applying the

well-known law of large numbers for i.n.i.d. RVs [32, p. 313]

to a
1

2

i pi, the entries ofp, (24) is easily attained.
On the other hand, sincepi andqi are independent, we have

E
{
pHi qi

}
= 0, for all i ∈ {1, 2, · · · , n}. Finally, by following

similar steps as in the proof of (24), (25) can be readily proven.
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MJ =




NR∑

k=1

λT,1λR,kd
−ν
k

ϕk|Ĥk,1|2
NR∑

k=1

λ

1

2
T,1

λ

1

2
T,2

λR,kd
−ν
k

ϕkĤH
k,1

Ĥk,2 · · ·
NR∑

k=1

λ

1

2
T,1

λ

1

2
T,NT

λR,kd
−ν
k

ϕkĤH
k,1

Ĥk,NT

NR∑

k=1

λ

1

2
T,2

λ

1

2
T,1

λR,kd
−ν
k

ϕkĤH
k,2

Ĥk,1

NR∑

k=1

λT,2λR,kd
−ν
k

ϕk|Ĥk,2|2 · · ·
NR∑

k=1

λ

1

2
T,2

λ

1

2
T,NT

λR,kd
−ν
k

ϕkĤH
k,2

Ĥk,NT

.

.

.

.

.

.

.
.
.

.

.

.
NR∑

k=1

λ

1

2
T,NT

λ

1

2
T,1

λR,kd
−ν
k

ϕkĤH
k,NT

Ĥk,1

NR∑

k=1

λ

1

2
T,NT

λ

1

2
T,2

λR,kd
−ν
k

ϕkĤH
k,NT

Ĥk,2 · · ·
NR∑

k=1

λT,NT
λR,kd

−ν
k

ϕk|Ĥk,NT
|2




. (40)

1

NR
gH
i hj

p.
−→

1

NR
E{[MJ]i,j}

p.
−→





0, i 6= j; (45)

1

NR

NR∑

k=1

λT,i d
−ν
k Ω, i = j. (46)

MJ = NR

(
1

NR
MD

)
p.
−→ diag

{
NR∑

k=1

d−ν
k λT,1Ω,

NR∑

k=1

d−ν
k λT,2Ω, . . . ,

NR∑

k=1

d−ν
k λT,NT

Ω

}
. (47)

APPENDIX B
PROOF OFTHEOREM 1

We first derive the explicit expressions of matricesGC
and GD uniformly defined in (13). By substituting (14)
and (15) into (13) and recalling thatλR,k = 1, for all
k ∈ {1, 2, . . . , NR}, if J = D (asΘR reduces toINR

in the
D-MIMO setting),GC andGD can be uniformly expressed
as

GJ =




λ

1

2
R,1

λ

1

2
T,1

λ

1

2
R,1

λ

1
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· · · λ
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· · · λ
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.

.

.

.

λ
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λ

1

2
R,NR

λ

1

2
T,2

· · · λ

1

2
R,NR

λ

1

2
T,NT




, ∀J ∈ {C,D}, (39)

whereλR,k ≡ 1, for all k ∈ {1, 2, . . . , NR}, if J = D. Then,
substituting (39) into the expression ofMC given by (19) if
J = C, or (39) into the expression ofMD shown in (20) if
J = D, and after performing some algebraic manipulations, we
attain (40) shown at the top of this page, whereĤi,j denotes
the (i, j)th entry of Ĥ shown in (6), and wheredk = d and
ϕk = ϕ if J = C whereasλR,k = 1 if J = D, for all
k ∈ {1, 2, . . . , NR}.

In view of (40), it is clear that the(i, j)th entry, for all
i, j ∈ {1, 2, . . . , NT }, of MC andMD, are given by

[MJ]i,j =

NR∑

k=1

λ
1

2

T,iλ
1

2

T,jλR,kd
−ν
k ϕkĤ

H
k,iĤk,j , ∀J ∈ {C,D},

(41)
wheredk ≡ d andϕk ≡ ϕ if J = C whereasλR,k = 1 if
J = D, for all k ∈ {1, 2, . . . , NR}.

In order to apply Lemma 1, we need check the condition
shown in (23). Specifically, for alli, j ∈ {1, 2, . . . , NT }, let

gi ,

[
a

1

2

1,ig1,i, a
1

2

2,ig2,i, · · · , a
1

2

NR,igNR,i

]T
(42)

and

hj ,

[
b

1

2

1,jh1,j, b
1

2

2,jh2,j, · · · , b
1

2

NR,jhNR,j

]T
, (43)

where in the C-MIMO setting,ak,i , λT,iλR,kd
−ν , bk,j ,

λT,jλR,kd
−ν , gk,i , ϕ

1

2 Ĥk,i and hk,j , ϕ
1

2 Ĥk,j , for all
k ∈ {1, 2, . . . , NR}, whereas in the D-MIMO setting,ak,i ,

λT,id
−ν
k , bk,j , λT,jd

−ν
k , gk,i , ϕ

1

2

k Ĥk,i andhk,j , ϕ
1

2

k Ĥk,j ,
for all k ∈ {1, 2, . . . , NR}. With these definitions in mind, it
is clear that[MC]i,j shown in (41) equalsgH

i hj wheregi and
hj are expressed as in the C-MIMO setting, and that[MD]i,j

shown in (41) equalsgH
i hj wheregi and hj are expressed

as in the D-MIMO setting. The correlation matricesΘT and
ΘR shown in (10) are of Toeplitz form [33]. Also, it is well-
known that for large numbers of antennas, the eigenvalues of
Θ (ΘT or ΘR) converge uniformly to [33, p. 38]

λΘ(x) = (1− θ2)(1− 2 θ cos(2πx) + θ2)−1, (44)

whereθ = θT (resp.θ = θR) for Θ = ΘT (resp.Θ = ΘR),
with θT andθR defined immediately after (10), and wherex ∈
[0, 1]. According to (44), the maximum eigenvalue ofΘ in the
massive MIMO context is then obtained by settingx = 0 in
the denominator of (44), yieldingλΘ,max = (1+θ)(1−θ)−1,
which is a finite real number, and, therefore, it is clear that
there existsb < ∞ such thata2k,i ≤ b and b2k,j ≤ b, for all
i, j ∈ {1, 2, . . . , NT } and, hence, the condition required by
Lemma 1 is satisfied.

Now, recalling that for alli, j ∈ {1, 2, . . . , NT} and for
all k ∈ {1, 2, . . . , NR}, Ĥk,i, Ĥk,j ∼ CN (0, 1) according
to (7), it is clear thatE{[MC]i,j} = E{[MD]i,j} = 0,
for all i 6= j. On the other hand, ifi = j, by recalling
the Gamma distribution ofϕ and ϕk, k ∈ {1, 2, . . . , NR},
as shown respectively in (4) and (5), and recalling that
Ĥi,j ∼ CN (0, 1) as shown in (7), and with further algebraic
manipulations, the mean of the diagonal entries ofMC

and MD are obtained asE{[MC]i,i} = NRλT,i d
−νΩ and

E{[MD]i,i} = λT,i

∑NR

k=1 d
−ν
k Ω, respectively.

Finally, by recalling that the entries ofgi andhj shown re-
spectively in (42) and (43) depend upon the scheme (C-MIMO
or D-MIMO) as presented right after (43), and noticing that
gi = hj if i = j within each of the schemes, and assuming
NR → ∞, we apply Lemma 1 to the vectorsgi and hj ,
yielding (45) and (46) shown at the top of this page, where
dk ≡ d, for all k ∈ {1, 2, . . . , NR}, if J = C. By virtue of
(45) and (46), we attain (47), shown also at the top of this
page, wheredk ≡ d, for all k ∈ {1, 2, . . . , NR}, if J = C.
This completes the proof.

APPENDIX C
PROOF OFEQ. (32)

In view of Fig. 2-b and by recalling the well-known
law of cosines in geometry, we have, for allk ∈

{1, 2, . . . , NR}, dk =
[
r2u + r2a − 2rura cos(φk − φ)

]1/2
=(

r2u + r2a − 2rura cosωk

)1/2
, whereωk , φk −φ is the angle
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between the segmentsOU andOLk. Let ∆ω , ωk+1 − ωk.
Then, by recalling thatφ1 = 0 and thatφk = 2π(k− 1)/NR,
for all k ∈ [2, NR] (cf. Section IV-A), we have∆ω = 2π/NR.
Therefore, ifNR → ∞, we have

1

NR

NR∑

k=1

d−ν
k =

1

NR ∆ω

NR∑

k=1

(
r2u + r2a − 2rura cosωk

)−ν/2
∆ω

(48)

NR→∞
−−−−−→

1

2π

∫ 2π

0

(
r2u + r2a − 2rura cosω

)−ν/2
dω

(49)

=
1

2π

∫ π

−π

(
r2u + r2a − 2rura cosω

)−ν/2
dω,

(50)

where the identity
∫ 2π

0
cosω dω =

∫ π

−π cosω dω was exploited
to derive (50). Finally, applying [34, Eq. (2.5.16.38)] to (50)
and performing some algebraic manipulations yields (32).

APPENDIX D
PROOF OFTHEOREM 4

In the D-MIMO scheme, to obtain simple yet meaningful
expression of the average asymptotic spectral efficiency ofthe
system, we consider the range of medium-to-high SNR, where
βi = ρΩNRλT,iN

−1
T

NR→∞
−→ ∞, for all i ∈ {1, 2, . . . , NT}.

The average asymptotic spectral efficiency of the system in
this case is then derived as

C
avg

D, circ =

∫ rc

0

fru(x)CD, circ(ru) dru (51)

p.
−→

2

r2c ln 2

NT∑

i=1

∫ rc

0

ru ln

[
1 + βi

r2u + r2a
|r2u − r2a |

3

]
dru

(52)

≈
1

r2c ln 2

NT∑

i=1

∫ r2
c

0

ln

[
βi

y + r2a
|y − r2a |

3

]
dy (53)

=
1

r2c ln 2

NT∑

i=1

{∫ r2
c

0

lnβi dy+

∫ r2
c

0

ln(y + r2a) dy

−3

∫ r2
a

0

ln(r2a − y) dy − 3

∫ r2
c

r2
a

ln(y − r2a) dy

}
, (54)

where the approximationln(1 + x) ≈ lnx if x → ∞ was
used along with the change of variabley = r2a , to obtain (53).
Finally, solving the integrals involved in (54) and performing
further algebraic manipulations, leads to the intended (37).

APPENDIX E
PROOF OFCOROLLARY 2

The first-order derivative of the average asymptotic spectral
efficiency, i.e.,C

avg

D, circ given by (37), w.r.t. the antenna array
sizera, is given by

d

dra
C

avg

D, circ = 6NT
ra
r2c

log2(χ− 2) + 2NT
ra
r2c

log2 χ, (55)

whereχ , r2c/r
2
a + 1. Then, by setting d

dra
C

avg

D, circ = 0 and
performing some algebraic manipulations, we get the equation
(r2c − r2a)

3(r2c + r2a)− r8a = 0, which can be reformulated as

χ(χ− 2)3 − 1 = 0 ⇐⇒ χ
4

3 − 2χ
1

3 − 1 = 0. (56)

After performing some algebraic manipulations, the solution
to (56), denotedχ0, can be readily shown asχ0 = 2.7167.
Finally, by using the definition ofχ right after (55), we attain
(38).

On the other hand, by multiplying both sides of (55) by
1/ra, it is clear that the function1

ra
d

dra
C

avg

D, circ is decreas-
ing with ra, then 1

ra
d

dra
C

avg

D, circ < 0 if ra < ropta , and
1
ra

d
dra

C
avg

D, circ > 0 if ra > ropta . Since ra > 0, we have
d

dra
C

avg

D, circ < 0 if ra < ropta , and d
dra

C
avg

D, circ > 0 if ra > ropta ,
which concludes thatropta is the maximum of the average
asymptotic spectral efficiency.
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