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On the Degrees of Freedom of Interference
Broadcast Channels with Topological Interference

Management
Paula Aquilina, Student Member, IEEE, and Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—Topological interference management is the study of
achievable rates within communication networks with no channel
state information at the transmitter (CSIT) beyond knowledge of
the network structure itself. In this work we study the degrees
of freedom (DoF) of a two-cell two-user-per-cell interference
broadcast channel (IBC) with alternating connectivity and global
topological interference management. The topological informa-
tion allows transmitters to track the changing network topology
and exploit the varying connectivity states to achieve a DoF gain.
We derive novel DoF outer bounds for the two-cell two-user-per-
cell IBC with alternating connectivity. This analysis is carried
out for different system configurations, namely, single-input
single-output (SISO), multiple-input single-output (MISO) and
multiple-input multiple-output (MIMO) systems. While global
channel knowledge is always restricted to topological information
only, we introduce a mixed CSIT setting where varying degrees
of local CSIT availability are considered depending on the system
configuration. Additionally, we investigate the achievability of the
derived bounds and propose new transmission schemes based
on joint coding across states. Results show that DoF higher
than those conventionally obtained without global topological
information are achievable, indicating that even such a minimal
level of global CSIT is still highly useful.

Index Terms—Alternating connectivity, degrees of freedom,
interference broadcast channel, topological interference manage-
ment.

I. INTRODUCTION

IN recent years major advances have been made in terms
of understanding the information-theoretic capacity limits

of interference limited networks. Results indicate that the
maximum achievable capacity is higher than what is currently
obtained via the use of conventional techniques, primarily
under the assumption of abundant and accurate channel state
information at the transmitter (CSIT). While this has given rise
to a number of innovative ways on how to exploit different
aspects of CSIT, the theoretical gains have been difficult
to translate into practical ones due to the idealistic CSIT
requirements. Therefore moving on from the initial perfect
CSIT studies [1], [2], the current research direction is to focus
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on more relaxed assumptions in order to reach a compromise
where higher rates can be achieved in realistic CSIT settings.

Within the context of relaxed CSIT, various situations have
been considered in literature. Some works rely on specific
properties of the channel links themselves, for example CSIT
that consists of specific coherence patterns that are either
naturally occurring [3] or enforced [4], and compound chan-
nels [5] where the channel realisations come from a finite
set of possibilities. Other works focus on using the available
CSIT even though it is not perfect. For example [6] and [7]
show that even completely delayed CSIT provides a gain in
achievable degrees of freedom (DoF). Scenarios with both
delayed and imperfect current CSIT are considered in [8] and
[9]. A combined setting where the CSIT alternates between
perfect, delayed and unavailable is analysed in [10]. Literature
mentioned so far assumes all transmitters have an identical
view of the network; however this is not always a pre-
requisite. For example, in [11] transmitters only have perfect
CSIT for a restricted subset of the global channel links, with
this subset being specific to each transmitter. Additionally,
situations where nodes have asymmetric local views of the
global network structure are also considered in [12].

A new but complementary perspective to interference man-
agement was introduced in [13]. Rather than starting with
abundant CSIT and then moving into more relaxed scenarios, it
considers the issue from the opposite end of the spectrum with
no CSIT except for knowledge of the network’s topological
structure. This approach is known as topological interference
management, and provides a unified view of linear wired and
wireless networks. A main advantage is the minimal CSIT
requirement; a single bit per link is enough to indicate whether
the link is present or not. The work in [14] considers a similar
problem but for the case where transmitters cooperate via
message sharing; results show that considerable DoF gains
can be obtained for networks that are not fully connected.

Throughout the studies in [13] and [14] it is assumed that
network topology is fixed for the duration of communication.
In this work, we move beyond this limitation and consider
a scenario where inter-cell connectivity may vary in order
to analyse the DoF gains that can be achieved. The overall
setting is referred to as an alternating connectivity scenario
and was also considered for the two-user single-input single-
output (SISO) interference channel (IC) and the X channel in
[15], and three-user SISO ICs with various restrictions in [16]
and [17]. Here we focus on the more complex interference
broadcast channel (IBC), which has the additional challenge
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of intra-cell interference, and also introduce a mixed CSIT
setting where global topological knowledge is combined with
varying degrees of local CSIT.

The main contribution of this work is in the derivation
of novel DoF outer bounds for the two-cell two-user-per-cell
IBC with alternating connectivity. While our initial focus is
on a SISO system, we also consider multiple-input single-
output (MISO) and multiple-input multiple-output (MIMO)
configurations as a means of resolving intra-cell interference.
Global channel knowledge is restricted to topological infor-
mation only; however local CSIT availability varies depending
on the system configuration itself, leading to a mixed CSIT
setting for the MISO case. The achievability of the derived
bounds is investigated for a variety of contexts. Results show
that DoF higher than those conventionally obtained without
global topological knowledge can be achieved, proving that
even such a minimal level of global CSIT is still very useful.
In particular, for all system configurations we show how
the bounds are tight and achievable when a single state has
a probability of occurrence equal to one. Additionally, we
propose novel transmission schemes based on joint coding
across states that are applicable for arbitrary state probabilities
and analyse their performance, both for the general case and
for situations where all states are equiprobable.

The rest of this paper is organised as follows. Section
II provides the problem setting by introducing the system
model, the alternating connectivity scenario, and the local
CSIT availability. Next, in Section III we present the DoF
outer bound for the SISO system and give an overview of
its derivation, while the MISO and MIMO counterpart is
provided in Section IV. The achievability of the derived DoF
outer bounds is investigated in Section V and Section VI
respectively. Section VII shows how the wireless network DoF
results can be applied as capacity results for the corresponding
wired network instances. Finally, Section VIII provides some
concluding remarks. Additionally, there are three appendices
which provide extra details required to complete the outer
bound derivations.

II. PROBLEM SETTING

We consider the two-cell two-user-per cell IBC. This con-
sists of two adjacent cells in a wireless network, where the
first cell includes base station (BS) A and receivers a1 and
a2, while the second cell has BS B and receivers b1 and b2.
The basic network structure is shown in Fig. 1, where inter-
cell interference links are omitted and the solid lines represent
useful links over which the desired symbols are delivered.

The general input-output relationship is given by,

Y r[n] = Hr,A[n]XA[n] +Hr,B [n]XB [n] + Zr[n] (1)

where at channel use index [n], Y r[n] is the signal observed
at receiver r for r ∈ {a1, a2, b1, b2}, XC [n] is the signal sent
from transmitter C for C ∈ {A,B}, Zr[n] represents unit
variance additive white Gaussian noise (AWGN) at receiver
r and Hr,C [n] is the channel link between transmitter C
and receiver r whose entries are i.i.d. and drawn from a
continuous distribution. Additionally E(‖XC [n]‖2) ≤ P ,

cell A cell B

a1 a2 b1 b2

BA

Fig. 1: Two-cell two-user-per-cell network with omitted inter-cell interference
links.

where P represents the transmit power constraint and is equal
to the signal-to-noise ratio (SNR) for unit power AWGN. Note
that for notational simplicity the channel use index [n] will
be omitted throughout the rest of this work. Also, since all
noise terms are drawn from the same distribution, they are
all statistically equivalent, therefore we will use the general
notation Z throughout.

Within this setting, inter-cell interference can occur be-
tween any of the users and the non-corresponding BS. We
consider an alternating connectivity scenario where inter-
cell connectivity is not fixed throughout the duration of the
whole communication process. Connectivity can easily vary
in wireless networks, where some links may go into deep
fade making them effectively non-existent. Additionally, in
frequency selective environments, frequency hopping or multi-
carrier transmission may also create a variety of inter-cell
connectivity states. For the scenario considered in this work,
a total of 16 different connectivity states may occur, as shown
in Fig. 2 at the top of the following page. Each of these
states is associated with a probability of occurrence λk for
k = 1, . . . , 16, where

∑16
k=1 λk = 1. Note that to ensure the

problem is non-degenerate, desired links are considered to be
always present and able to support a desired rate in the absence
of interference.

For each cell, define M as the number of antennas at the BS
and N as the number of antennas at each of the two receivers.
With an appropriate choice of M and N , spatial multiplexing
can be applied within the cells to resolve intra-cell interference
such that each BS can simultaneously deliver one symbol to
its corresponding two users, thereby achieving 2 DoF per cell
provided no inter-cell interference is present.

For a mixed CSIT1 setting, where in addition to global
topological CSIT perfect current local CSIT is also available,
in the absence of inter-cell interference, achievable DoF per
cell are given by min{M,KN} [19], where K represents the
number of users in each cell. This paper considers a scenario
where each cell has two users, thus any M ×1 system (where
for MISO M ≥ 2 by definition) achieves the required 2 DoF
per cell. This is possible via zero-forcing (ZF) precoding.
Consider a general cell C having users c1 and c2, where BS C
transmits a combined symbol, XC , consisting of sc1 intended
for user c1 and sc2 intended for user c2. Given the availability
of local CSIT, sc1 can be precoded such that it is orthogonal
to the channel from BS C to user c2 and sc2 can be precoded
such that it is orthogonal to the channel from BS C to user c1.
This allows users to extract their desired symbol from a single

1Throughout this work the term mixed CSIT is used to refer to a mixture of
global topological information and perfect current local CSIT. This is different
to prior usage of the term in [8] and [18], where it is used to refer to a mixture
of perfect delayed CSIT and imperfect current CSIT.
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(13)    

(2)    
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(3)    

(7)    

(11)    

(15)    

(4)    

(8)    

(12)    

(16)    

Fig. 2: Set of all possible inter-cell connectivity states for the two-cell two-user-per-cell IBC. Cell A transmitters and receivers are on the left in green, while
cell B elements are on the right in blue. The dashed red lines represent the interference links.

observation of XC , thereby achieving 2 DOF within that cell
if no inter-cell interference is present.

On the other hand, if local CSIT is not available, in the
absence of inter-cell interference achievable DoF per cell are
equal to min{M,N} [20]. Therefore any M×2 MIMO system
(where by definition for MIMO M ≥ 2), can achieve the
required 2 DoF per cell. The same DoF can also be achieved
by any 2 × N MIMO system (where N ≥ 2 by definition).
Consider a general cell C having users c1 and c2, where the
BS transmits a combined symbol, XC , consisting of sc1 and
sc2, and the antenna configuration is either M × 2 or 2×N .
Due to the multiple antenna setting, each user can obtain two
independent equations for the two unknown symbols and can
therefore decode for the desired one. This results in achievable
DoF of 2 per cell if no inter-cell interference is present.

Note that for the SISO scenario spatial multiplexing is not
an option, since by definition M = N = 1; thereby only 1
DoF per cell can be achieved.

Regardless of the system configuration, if no feedback
is available with respect to the alternating global network
topology, both transmitters have to assume full inter-cell
connectivity throughout, i.e. State 1 in Fig. 2. This only allows
for one possible transmission strategy, where BS A and BS B
are provided with non-overlapping transmission opportunities
and leads to a sum DoF across the two cells of 1 for the SISO
configuration and 2 for the MISO system with local CSIT or
the MIMO one without local CSIT. Considering all the states
in Fig. 2, it is clear that assuming full connectivity throughout
is wasteful in terms of network resource use. States 2 to
16 have a smaller amount of inter-cell interference and may
potentially achieve higher sum DoF than the fully connected
scenario in state 1.

Our interest lies in exploiting this opportunity whilst keep-
ing the global CSIT requirement to a minimum. Therefore
while varying degrees of local CSIT are considered, global
CSIT is always restricted to topological information only. This

requires just 1 bit of CSIT per inter-cell interference link, used
to indicate whether interference may be experienced over that
link or not. Similar to the setup in [13], power received over
an undesired link is compared to a pre-established threshold
value equal to the noise floor. If received power is below the
threshold, then the link is considered weak and effectively
non-existent, and a zero is assigned to the corresponding bit.
On the other hand, a one is assigned to links for which the
received power is above the noise floor; this indicates a strong
link over which significant interference is experienced.

While the setting described so far is sufficient to analyse
the MISO and MIMO IBC systems presented in this section,
within this work we also consider a SISO scenario which
requires further reformulation. For SISO systems maximum
achievable DoF per cell equal to 1 can be achieved simply by
avoiding intra-cell interference and serving only one user at
a time. Hence, from a DoF outer bound perspective, we can
consider the case where for every instant each BS selects one
user to be its designated user to serve, according to what is
most advantageous in terms of achievable sum rate. Define U
as the cell A designated user i.e. U ∈ {a1, a2} and V as the
cell B designated user i.e. V ∈ {b1, b2}. For any given U and
V , the original network in Fig. 1 can be represented by the
equivalent one in Fig. 3, where only four (U, V ) combinations
may occur, i.e.

(U, V ) ∈ { (a1, b1), (a2, b1), (a1, b2), (a2, b2) } . (2)

Having defined an equivalent network for the SISO scenario,
the set of 16 alternating states from Fig. 2 can be mapped
to a reduced set of only 4 possible states, as in Fig. 4 on
the following page. For any given (U, V ) combination it only
matters whether inter-cell interference affects the designated
users. For example, when (U, V ) = (a1, b1) in state 9 from
Fig. 2, a1 is free from inter-cell interference while b1 receives
interference from BS A; thus from the perspective of this
particular (U, V ) combination, state 9 corresponds to state
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cell A

A

U

cell B

B

V

Fig. 3: Equivalent network for SISO scenario, where U represents the cell A
designated user and V represents the cell B designated user.

(Q) 

A B

U V

(R) 

A B

U V

(S) 

A B

U V

(T) 

A B

U V

Fig. 4: Reduced set of states used to replace original ones from Fig. 2 when
considering the equivalent network for the SISO scenario in Fig. 3.

S in Fig. 4. Next, consider state 9 from the perspective of
(U, V ) = (a1, b2). In this case both a1 and b2 are free
from inter-cell interference, hence state 9 is mapped to the
no interference state T in Fig. 4. Similar arguments can be
made for all (U, V ) combinations listed in (2) and all the states
depicted in Fig. 2. The mapping of the original set of states
to the reduced one for each (U, V ) combination is provided
in Table I.

TABLE I: Mapping of original states from Fig. 2 to the equivalent reduced
set in Fig. 4 for each possible (U, V ) combination.

(U,V) Q R S T
(a1, b1) 1, 10, 13, 16 6, 8, 12, 14 3, 4, 9, 15 2, 5, 7, 11
(a2, b1) 1, 9, 13, 15 6, 7, 11, 14 3, 4, 10, 16 2, 5, 8, 12
(a1, b2) 1, 12, 14, 16 6, 8, 10, 13 3, 5, 11, 15 2, 4, 7, 9
(a2, b2) 1, 11, 14, 15 6, 7, 9, 13 3, 5, 12, 16 2, 4, 8, 10

III. DOF OUTER BOUND FOR SISO IBC

In this section we present a DoF outer bound for the two-
cell two-user-per-cell SISO IBC with alternating connectivity.

Theorem 1: For the two-cell two-user-per-cell SISO IBC
with alternating connectivity, the sum DoF, dΣ,S , can be
characterised as

dΣ,S ≤ 2−Θ
where

Θ = max

 λ3 + λ6

λ1 + λ6 + λ13 + λ14

λ1 + λ3 + λ15 + λ16 .
(3)

Proof:
The overall outer bound consists of merging together bounds

originating from different sources; one comes from the sum-
mation of the achievable rates per cell and an additional pair
arises from genie aided bounds for each cell. In this section
we present an abbreviated version of the proof showing how
the cell A expressions are obtained, details for their cell B
counterparts are provided in Appendix A.

A. Sum bound

For the sum bound, first we obtain separate expressions for
the achievable rate within each cell, these are then combined

to give an overall outer bound for the sum DoF across the two
cells. Starting with the cell A achievable rate, we have

nRA ≤ I(WA;Y U1 , . . . , Y U16) + nε (4)

where WA is the message set from BS A and Y Uk is the signal
received by the cell A designated user U during state k. (4)
can be further expressed as

nRA ≤ h(Y U1 , . . . , Y U16)− h(Y U1 , . . . , Y U16 |WA) + nε
(a)
= h(Y U1 , . . . , Y U16)− h(Y UQ , Y

U
R , Y

U
S , Y

U
T |WA) + nε

= h(Y U1 , . . . , Y U16)− h(Y UR , Y
U
S , Y

U
T |WA)

− h(Y UQ |WA, Y UR , Y
U
S , Y

U
T )︸ ︷︷ ︸

≥h(Y U
Q |WA,Y U

R ,Y U
S ,Y U

T ,WB)=no(logP )

+ nε

(b)
≤ h(Y U1 , . . . , Y U16)

− h(Y UR , Y
U
S , Y

U
T |WA) + no(logP ) + nε (5)

where (a) follows since the original set of 16 states are all
contained within states Q, R, S and T for the equivalent SISO
scenario, and (b) follows since conditioning reduces entropy
and the effect of noise disappears at high SNR. Note that
o(·) comes from the standard Landau notation, where f(x) =
o(g(x)) implies limx→∞ f(x)/g(x) = 0.

Considering (5) and the state configurations in Fig. 4, it can
be noticed that the received signal for the cell A designated
user U in states S and T consists only of an XA component
and noise. The XA component has no effect on entropy since it
is solely a function of WA, while the effect of noise disappears
as P → ∞ and can be integrated into the no(logP ) term,
resulting in

nRA ≤ h(Y U1 , . . . , Y
U
16)− h(Y UR |WA)+ no(logP )+ nε. (6)

For all states corresponding to R, the cell A received signal
is combination of XA, XB and noise. The XA component
is negligible with respect to entropy. The XB and noise
components are independent of WA. Additionally, since HU,B

and HV,B are independently drawn from the same distribu-
tion, they are statistically equivalent and interchangeable [20].
Therefore the XB and noise terms can be represented by the
signal received at the cell B designated user V , provided that
V itself has no inter-cell interference. Comparing the list of all
R states from Table I, it can be noticed that this substitution is
guaranteed as being always possible regardless of the current
(U, V ) combination only for state 6. Using this information,
the cell A rate outer bound from (6) can be expressed as

nRA ≤ h(Y U1 , . . . , Y U16) + no(logP ) + nε

− h(HU,AX
A
6 +HU,BX

B
6 + Z |WA)

= h(Y U1 , . . . , Y U16)− h(HV,BX
B
6 + Z) + no(logP ) + nε

= h(Y U1 , . . . , Y U16)− h(Y V6 ) + no(logP ) + nε

≤ h(Y U1 ) + · · ·+ h(Y U16)− h(Y V6 ) + no(logP ) + nε . (7)

Following a similar process from the perspective of cell B,
we obtain the cell B rate outer bound as (8) below. Additional
details on how to derive this expression are provided in
Appendix A-I.

nRB ≤ h(Y V1 )+· · ·+ h(Y V16)− h(Y U3 )+ no(logP )+ nε. (8)
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nRΣ(SB) ≤ h(Y U1 )+h(Y U2 )+h(Y U4 )+ · · ·+h(Y U16)+h(Y V1 )+ · · ·+h(Y V5 )+h(Y V7 )+ · · ·+h(Y V16 )+ no(logP ) + nε
(a)
≤ n (λ1 + λ2 + λ4 + · · ·+ λ16 + λ1 + · · ·+ λ5 + λ7 + · · ·+ λ16 )(logP ) + no(logP ) + nε (9)

nRΣ(GA) ≤ h(Y U1 , . . . , Y U16 , G
A)− h(Y U1 , . . . , Y U16 , G

A |WA,WB)︸ ︷︷ ︸
=no(logP )

+nε

≤ h(Y U1 )+· · ·+h(Y U16)+h(Y V2 )+· · ·+h(Y V5 )+h(Y V7 ) +· · ·+ h(Y V12 ) + h(Y V15 ) + h(Y V16 ) + no(logP ) + nε
(a)
≤ n ( 1 + λ2 + · · ·+ λ5 + λ7 + · · ·+ λ12 + λ15 + λ16 )(logP ) + no(logP ) + nε
(b)
= n ( 2− λ1 − λ6 − λ13 − λ14 )(logP ) + no(logP ) + nε (12)

The separate expressions in (7) and (8) are combined
together as nRΣ(SB) = nRA+nRB to obtain an outer bound
for the achievable rate across the whole network as in (9), at
the top of this page, where λk represents the probability of
occurrence of the corresponding state k and reflects the effect
of alternating connectivity, and (a) follows from the fact that
Gaussian distribution maximises differential entropy. Applying∑16
k=1 λk = 1 to (9), we obtain

nRΣ(SB) ≤ n(2− λ3 − λ6)(logP ) + no(logP ) + nε .

Normalising by n(logP ) and letting P →∞, results in

dΣ(SB) ≤ 2− λ3 − λ6 . (10)

B. Genie aided bounds

Genie aided bounds are obtained by finding an outer bound
on the rate achievable at a single cell after providing it with
enough extra information, i.e. ‘genies’, such that the data
required across the two cells can be decoded within that cell.

Starting with the genie aided bound for cell A, we have

nRΣ(GA) ≤ I(WA,WB ;Y U1 , . . . , Y U16 , G
A) + nε (11)

where GA represents the genie set required by cell A. Genies
are necessary in cases where no cell B data is received at
cell A, thus GA consists of all the original states from Fig. 2
that correspond to states S and T in Fig. 4. Considering the
corresponding entries from Table I, we obtain

GA = {Y V2 , . . . , Y V5 , Y
V
7 , . . . , Y

V
12 , Y

V
15 , Y

V
16}.

Having defined GA, the initial expression in (11) can be
represented as (12) at the top of this page, where (a) follows
from the fact that Gaussian distribution maximises differential
entropy and (b) follows from the fact that

∑16
k=1 λk = 1.

Normalising by n(logP ) and letting P →∞, we have

dΣ(GA) ≤ 2− λ1 − λ6 − λ13 − λ14 . (13)

Following a similar process for cell B, details for which
can be found in Appendix A-II, we obtain the cell B genie
aided outer bound as in (14) below.

dΣ(GB) ≤ 2− λ1 − λ3 − λ15 − λ16 (14)

Finally the result for dΣ,S in Theorem 1 is obtained by
combining the separate bounds from (10), (13) and (14).

IV. DOF OUTER BOUND FOR MISO AND MIMO IBC
As outlined in Section II, a MISO system with local CSIT

and M ≥ 2 transmit antennas achieves 2 DoF per cell provided
there is no inter-cell interference. Similarly a MIMO system
with no local CSIT having either M = 2 and N ≥ 2 or
M ≥ 2 and N = 2 can also achieve 2 DoF per cell. This
makes the two settings equivalent from an achievable DoF
perspective, since both apply spatial multiplexing to resolve
intra-cell interference. Based on this equivalence, it follows
that the same outer bound applies to both cases. Therefore in
this section we present a DoF outer bound for two-cell two-
user-per-cell MISO/MIMO IBC systems which handle intra-
cell interference via spatial multiplexing.

Theorem 2: For the two-cell two-user-per-cell MISO/
MIMO IBC with alternating connectivity, where intra-cell
interference is handled via spatial multiplexing, the sum DoF,
dΣ,M , can be characterised as

dΣ,M ≤ 2 + 2λ2 + λ4 + λ5 + λ7 + λ8 + Φ

where

Φ = min

 2λ1

2λ3+λ4+λ5+λ9+· · ·+λ12+λ15+λ16

2λ6+λ7+· · ·+λ14 .
(15)

Proof:
To obtain the overall outer bound, bounds originating from

different sources are merged together; one comes from the
summation of outer bounds for the achievable rate at each
user and another two arise from genie aided bounds obtained
on a per cell basis. Due to the length of the proof itself, we
only present an abbreviated version in this section; additional
details are provided in Appendix B.

A. Sum bound
To obtain the sum DoF outer bound, we require separate

expressions for the achievable rate at each user, which are
then combined together. Starting with the achievable rate at
user a1, we have

nRa1 ≤ I(WA;Y a1
1 , . . . , Y a1

16 ) + nε

where WA is the message set from BS A and Y a1
k is the

signal received by user a1 during state k. This can be further
represented as

nRa1 ≤ h(Y a1
1 , . . . , Y a1

16 )− h(Y a1
1 , . . . , Y a1

16 |WA) + nε
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nRa1 ≤ h(Y a1
1 , . . . , Y a1

16 )− h(Y a1
∆ |WA)− Ea1 + no(logP ) + nε

(a)
= h(Y a1

1 , . . . , Y a1
16 )− h(Ha1,AX

A
6 +Ha1,BX

B
6 + Z, . . . ,Ha1,AX

A
14 +Ha1,BX

B
14 + Z |WA)− Ea1 + no(logP ) + nε

(b)
= h(Y a1

1 , . . . , Y a1
16 )− h(Ha1,BX

B
6 + Z,Ha1,BX

B
8 + Z,Ha1,BX

B
10 + Z,Ha1,BX

B
12 + Z,Ha1,BX

B
13 + Z,Ha1,BX

B
14 + Z)

− Ea1 + no(logP ) + nε

(c)
= h(Y a1

1 , . . . , Y a1
16 )− h(Hb2,BX

B
6 + Z,Hb1,BX

B
8 + Z,Hb2,BX

B
10 + Z,Hb1,BX

B
12 + Z,Hb2,BX

B
13 + Z,Hb1,BX

B
14 + Z)

− Ea1 + no(logP ) + nε

(d)
= h(Y a1

1 , . . . , Y a1
16 )− h(Y b26 , Y b18 , Y b210 , Y

b1
12 , Y

b2
13 , Y

b1
14 )− Ea1 + no(logP ) + nε (17)

nRa1 ≤ h(Y a1
1 ) + · · ·+ h(Y a1

16 )− h(Y b26 )− h(Y b18 )− h(Y b210 )− h(Y b112 )− h(Y b213 )− h(Y b114 )− Ea1 + no(logP ) + nε (18)

nRa2 ≤ h(Y a2
1 ) + · · ·+ h(Y a2

16 )− h(Y b16 )− h(Y b27 )− h(Y b29 )− h(Y b111 )− h(Y b213 )− h(Y b114 )− Ea2 + no(logP ) + nε (19)

nRb1 ≤ h(Y b11 ) + · · ·+ h(Y b116 )− h(Y a1
3 )− h(Y a1

4 )− h(Y a1
9 )− h(Y a2

10 )− h(Y a1
15 )− h(Y a2

16 )− Eb1 + no(logP ) + nε (20)

nRb2 ≤ h(Y b21 ) + · · ·+ h(Y b216 )− h(Y a2
3 )− h(Y a2

5 )− h(Y a1
11 )− h(Y a2

12 )− h(Y a1
15 )− h(Y a2

16 )− Eb2 + no(logP ) + nε (21)

nRΣ(SB) ≤ h(Y a1
1 ) + h(Y a1

2 ) + h(Y a1
5 ) + · · ·+ h(Y a1

8 ) + h(Y a1
10 ) + h(Y a1

12 ) + h(Y a1
13 ) + h(Y a1

14 ) + h(Y a1
16 ) + h(Y a2

1 )

+ h(Y a2
2 ) + h(Y a2

4 ) + h(Y a2
6 ) + · · ·+ h(Y a2

9 ) + h(Y a2
11 ) + h(Y a2

13 ) + h(Y a2
14 ) + h(Y a2

15 ) + h(Y b17 ) + h(Y b19 )

+ h(Y b11 ) + · · ·+ h(Y b15 ) + h(Y b110 ) + h(Y b113 ) + h(Y b115 ) + h(Y b116 ) + h(Y b21 ) + · · ·+ h(Y b25 ) + h(Y b28 ) + h(Y b211 )

+ h(Y b212 ) + h(Y b214 ) + h(Y b215 ) + h(Y b216 )− h(Y a1
15 )− h(Y a2

16 )− h(Y b114 )− h(Y b213 )− Ea1 − Ea2 − Eb1 − Eb2
+ no(logP ) + nε (22)

= h(Y a1
1 , . . . , Y a1

16 )− h(Y a1
2 , . . . , Y a1

15 |WA)

− h(Y a1
1 , Y a1

16 |WA, Y a1
2 , . . . , Y a1

15 )︸ ︷︷ ︸
=Ea1

+ nε . (16)

Next it can be observed that Y a1
2 , . . . , Y a1

15 can be divided into
two sets, as follows

∆′ = {2, 3, 4, 5, 7, 9, 11, 15} and ∆ = {6, 8, 10, 12, 13, 14}
where for the ∆′ set signals received at a1 consist only of
an XA component, which has no effect on entropy, and noise,
whose contribution can be represented as no(logP ). For the ∆
set, data received at a1 is a combination of XA, XB and noise.
Using this information (16) can be expressed as (17) at the
top of this page, where (a) follows by expressing the received
signals for the ∆ set in terms of their original components; (b)
follows by removing the XA parts since they have no effect on
entropy and also removing the conditioning since XB

k and Z
are independent of WA; (c) is obtained by replacing channel
coefficients from BS B to user a1 with ones to cell B users,
due to their statistical equivalence, and lastly (d) is obtained
by representing the XB and noise components in terms of
the signals received at the corresponding inter-cell interference
free cell B users. Finally considering all the components of
the first negative entropy term in (17) to be independent of
each other, we obtain a rate expression for a1 in terms of the
separate entropy contributions of the received signals and Ea1

as in (18). Following a similar process for users a2, b1 and b2
separately we obtain outer bounds on their achievable rates as
in (19), (20) and (21). Further details on how to obtain these
expressions are provided in Appendices B-I, B-II and B-III
respectively.

Combining expressions (18) to (21) as nRΣ(SB) =

nRa1 + nRa2 + nRb1 + nRb2, the achievable sum
rate across the whole network is bounded as in (22)
above. Next, we consider the remaining negative terms
in (22) and pair one of {Ea1, Ea2, Eb1, Eb2} with one
of {h(Y a1

15 ), h(Y a2
16 ), h(Y b114 ), h(Y b213 )} to find a joint lower

bound. Starting with Ea1, we can express it as

Ea1 = h(Y a1
1 , Y a1

16 |WA, Y a1
2 , . . . , Y a1

15 )

= h(Y a1
16 |WA, Y a1

2 , . . . , Y a1
15 ) + h(Y a1

1 |WA, Y a1
2 , . . . , Y a1

16 )

(a)
= h(Ha1,AX

A
16 +Ha1,BX

B
16 + Z |WA)

+ h(Y a1
1 |WA, Y a1

2 , . . . , Y a1
16 )︸ ︷︷ ︸

≥h(Y a1
1 |WA,Y a1

2 ,...,Y a1
16 ,W

B)=no(logP )
(b)

≥ h(Ha1,BX
B
16 + Z) + no(logP )

where (a) follows by expressing Y a1
16 in terms of the orig-

inal components and considering it to be independent of
Y a1

2 , . . . , Y a1
15 , and (b) follows by neglecting the XA com-

ponent since its effect is negligible with respect to entropy
and removing the conditioning since the remaining terms are
independent of WA. Pairing Ea1 with h(Y a2

16 ), we obtain

h(Y a2
16 ) + Ea1

(a)

≥ h(Ha2,AX
A
16 + Z) + h(Ha1,BX

B
16 + Z) + no(logP )

(b)
= h(Ha1,AX

A
16) + h(Ha1,BX

B
16) + no(logP ) (23)

where (a) follows by representing Y a2
16 in terms of its original

components, and (b) follows by applying the fact that Ha2,A

and Ha1,A are statistically equivalent, and also by removing
the noise components since their effect disappears with high
SNR and can therefore be integrated in the no(logP ) term.
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nRΣ(SB) ≤ h(Y a1
1 ) + h(Y a1

2 ) + h(Y a1
5 ) + · · ·+ h(Y a1

8 ) + h(Y a1
10 ) + h(Y a1

12 ) + h(Y a1
13 ) + h(Y a1

14 ) + h(Y a2
1 ) + h(Y a2

2 )

+ h(Y a2
4 ) + h(Y a2

6 ) + · · ·+ h(Y a2
9 ) + h(Y a2

11 ) + h(Y a2
13 ) + h(Y a2

14 ) + h(Y b11 ) + · · ·+ h(Y b15 ) + h(Y b17 )

+ h(Y b19 ) + h(Y b110 ) + h(Y b115 ) + h(Y b116 ) + h(Y b21 ) + · · ·+ h(Y b25 ) + h(Y b28 ) + h(Y b211 ) + h(Y b212 ) + h(Y b215 )

+ h(Y b216 ) + no(logP ) + nε
(a)

≤ n ( 2 + 2λ1 + 2λ2 + λ4 + λ5 + λ7 + λ8 )(logP ) + no(logP ) + nε (29)

nRΣ(GA) ≤ h(Y a1
1 , . . . , Y a1

16 , Y
a2
1 , . . . , Y a2

16 , G
A)− h(Y a1

1 , . . . , Y a1
16 , Y

a2
1 , . . . , Y a2

16 , G
A |WA,WB)︸ ︷︷ ︸

=no(logP )

+nε

≤ h(Y a1
1 ) + · · ·+ h(Y a1

16 ) + h(Y a2
1 ) + · · ·+ h(Y a2

16 ) + 2h(Y B2 ) + 2h(Y B3 ) + 2h(Y B4 ) + 2h(Y B5 )

+ h(Y B7 ) + · · ·+ h(Y B12) + h(Y B15) + h(Y B16) + no(logP ) + nε
(a)

≤ n( 2 + 2λ2 + 2λ3 + 2λ4 + 2λ5 + λ7 + λ8 + λ9 + λ10 + λ11 + λ12 + λ15 + λ16 )(logP ) + no(logP ) + nε (32)

Additionally, considering h(Y a1
16 ) and the fact that Y a1

16 =
Ha1,AX

A
16+Ha1,BX

B
16+Z, applying Lemma 1 from Appendix

C results in

h(Y a1
16 ) ≤ h(Ha1,AX

A
16) + h(Ha1,BX

B
16) + no(logP ). (24)

Subtracting (23) from (24), we obtain

h(Y a1
16 )− h(Y a2

16 )− Ea1 ≤ no(logP ) . (25)

Applying a similar process to different pairings we can also
establish the following inequalities

h(Y a2
15 )− h(Y a1

15 )− Ea2 ≤ no(logP ), (26)

h(Y b113 )− h(Y b213 )− Eb1 ≤ no(logP ), (27)

h(Y b214 )− h(Y b114 )− Eb2 ≤ no(logP ). (28)

Using (25) to (28) in the total rate expression (22) we obtain
(29) at the top of this page, where (a) follows by using the
fact that Gaussian distribution maximises differential entropy
and applying

∑16
k=1 λk = 1. Finally, normalising by n(logP )

and letting P →∞, we obtain the desired DoF sum bound as

dΣ(SB) ≤ 2 + 2λ1 + 2λ2 + λ4 + λ5 + λ7 + λ8 . (30)

B. Genie aided bounds

The genie aided bounds for the MISO/MIMO scenario are
obtained in a similar way to the SISO ones from Section III-B.
However, in this case the number of genies provided must
ensure that 2 symbols from the other cell can be retrieved.
Starting with the cell A genie aided DoF bound, we have

nRΣ(GA)≤I(WA,WB;Y a1
1 , . . . , Y a1

16 , Y
a2
1 , . . . , Y a2

16 , G
A)+nε

(31)

where GA represents the additional set of genies required such
that cell B data may be reconstructed within cell A. The
amount of genies required is either one or two, depending on
the number of signals containing cell B information reaching
cell A. Looking at all the possible topologies in Fig. 2, this
corresponds to

GA = {2× [Y B2 , Y B3 , Y B4 , Y B5 ], Y B7 , . . . , Y B12 , Y
B
15 , Y

B
16}

where B represents either b1 or b2. Having defined GA, this
can be integrated into (31) to obtain (32) above where (a)

follows by using the fact that Gaussian distribution maximises
differential entropy and applying

∑16
k=1 λk = 1. Normalising

by n(logP ) and letting P →∞, results in

dΣ(GA) ≤ 2 + 2λ2 + 2λ3 + 2λ4 + 2λ5 + λ7 + λ8

+ λ9 + λ10 + λ11 + λ12 + λ15 + λ16 . (33)

Following a similar process for cell B, details for which are
provided in Appendix B-IV, we obtain

dΣ(GB) ≤ 2 + 2λ2 + λ4 + λ5 + 2λ6 + 2λ7 + 2λ8

+ λ9 + λ10 + λ11 + λ12 + λ13 + λ14 . (34)

Finally, the result for dΣ,M in Theorem 2 is obtained by
combining the separate bounds from (30), (33) and (34).

Remark 1: Some similarities can be observed between the
IBC outer bounds in Theorems 1 and 2 and the one for the
two-user SISO IC from [15]. This is expected since the IC is
essentially a subset of the IBC having only one user per cell.
Before drawing any similarities, we first need to express the
outer bound from Theorem 1 in an alternative way as

dΣ,S ≤ 1 + λ2 + λ4 + λ5 + λ7 + · · ·+ λ12 + Ψ (35)

where

Ψ = min{λ1+λ13+· · ·+λ16, λ3+λ15+λ16, λ6+λ13+λ14}.

This reformulated version of Theorem 1, alongside with the
outer bound in Theorem 2 and the SISO IC result in [15] can
collectively be summarised as dΣ ≤ dc + λη + κ, where dc
is the achievable DoF per cell when no inter-cell interference
is present. This is equal to 1 for the two-user SISO IC and
the two-cell two-user-per-cell SISO IBC, and corresponds to
2 for the MISO/MIMO IBC counterpart. For all scenarios
λη consists exclusively of the probability of occurrence of
all the states that directly obtain higher DoF than the fully
connected one; its fixed presence in the outer bound reflects the
corresponding DoF gain. Finally κ depends on which bound is
the most restrictive, but is always a function of the probability
of occurrence of the states which inherently obtain less DoF
than the inter-cell interference free one.
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V. ACHIEVABLE DOF FOR SISO IBC

Without knowledge of the network’s topological structure,
a fully connected scenario has to be assumed at all times,
achieving a sum DoF of 1 across all states for the SISO system.
However, if global topological CSIT is provided, the BSs
can adapt their transmission strategies to exploit the partially
connected states and obtain a DoF gain.

A. Single state has probability of occurrence equal to one

This is an extreme case for the scenario considered in this
work, with λi = 1 and λj = 0 for j = 1, . . . , 16, j 6= i. It
essentially implies connectivity is fixed in state i throughout
the whole transmission process.

For i ∈ {2, 4, 5, 7, . . . , 12} there is at least one user per cell
that is free from inter-cell interference. These states represent
the best case scenario from an achievable DoF perspective,
with the outer bound in Theorem 1 corresponding to dΣ,S ≤ 2.
Having knowledge of the network’s structure, both BSs can
operate simultaneously and serve one inter-cell interference
free user per cell, achieving 2 DoF across the whole network.
This is equal to the outer bound itself and corresponds to a
two-fold increase over the no global topological CSIT case.

For the remaining states, i ∈ {1, 3, 6, 13, . . . , 16}, at least
one of the two cells has both users experiencing inter-cell
interference and the outer bound from Theorem 1 corresponds
to dΣ,S ≤ 1. Sum DoF of 1 can be achieved simply by
operating one BS at a time and serving one user within the
corresponding cell.

B. Arbitrary state probabilities

As mentioned earlier without global topological CSIT, only
1 DoF can be achieved regardless of the current connectivity
state; however if this information is available, the BSs can
use it to adapt their transmission strategy accordingly. Both
BSs operate simultaneously for states where there is at least
one inter-cell interference free user in each cell, delivering
a symbol each to two users from different cells. For the
remaining states, only one BS needs to be operated, delivering
one symbol across the whole network. Therefore, considering
all the states in Fig. 2 it is possible to obtain

DoF =

{
1 for states 1, 3, 6, 13, 14, 15, 16
2 for states 2, 4, 5, 7, 8, 9, 10, 11, 12 .

= 1 + λ2 + λ4 + λ5 + λ7 + · · ·+ λ12 (36)

Higher DoF can be achieved via joint coding across states.
This was first applied to the two-user IC in [15] where the
authors propose a scheme based on this principle to deliver 2
symbols across 3 states. Within our setting, joint coding can be
used across a variety of different state combinations to deliver
a total of 4 symbols over 3 states.

Considering the alternating connectivity states in Fig. 2, it
can be noticed that the same interference links appear twice
over states {3, 13, 14}. Thus the three states in this set can be
combined together to resolve inter-cell interference. Defining
sr as the symbol intended for user r, then for scheme S1

which performs joint coding across states {3, 13, 14}, BSs

transmit according to Table II. User b2 obtains sb2 directly
from the signal received in state 13, while the combination of
received signals at the remaining users allows for interference
cancellation decoding. For users a1 and a2, received signals
are functions of sa1, sa2 and sb2. Having three independent
equations in terms of three different symbols, then the desired
data can be obtained at the respective users. For user b1, all
received signals are functions of (sa1 + sa2), sb1 and sb2.
Considering (sa1 + sa2) as a single symbol, we have three
independent equations for three unknowns and can solve for
sb1. Therefore 1 symbol each is transmitted to all 4 users in
3 channel uses, leading to an average of 4

3 DoF per state.
Joint coding can also be applied across other sets of states.

In particular, states {6, 15, 16} can be combined together using
scheme S2 in Table III and states {1, 3, 6} can be combined
via scheme S3 in Table IV. In each case 4

3 DoF per state are
achieved. Additionally for quasi-static fading channels, where
the value of the channel links does not change across the
states involved in the scheme, it is also possible to code across
states {13, 15, 16} using scheme S4 in Table V or across states
{14, 15, 16} via scheme S5 in Table VI.

TABLE II: Transmission strategy for scheme S1.

Transmitted symbols State 3 State 13 State 14

XA (sa1 + sa2) (sa1 + sa2) sa1
XB sb1 sb2 sb2

TABLE III: Transmission strategy for scheme S2.

Transmitted symbols State 6 State 15 State 16

XA sa2 sa1 sa1
XB (sb1 + sb2) (sb1 + sb2) sb1

TABLE IV: Transmission strategy for scheme S3.

Transmitted symbols State 1 State 3 State 6

XA (sa1 + sa2) (sa1 + sa2) sa1
XB (sb1 + sb2) sb1 (sb1 + sb2)

TABLE V: Transmission strategy for scheme S4.

Transmitted symbols State 13 State 15 State 16

XA (sa1 + sa2) sa1 sa2
XB sb2 sb1 sb2

TABLE VI: Transmission strategy for scheme S5.

Transmitted symbols State 14 State 15 State 16

XA (sa1 + sa2) sa1 sa2
XB sb1 sb1 sb2

Due to the repetition of the states involved in schemes
S1 to S5, no more than two can be combined together. The
possible combinations are: S1 and S2, S3 and S4 or S3 and
S5. With arbitrary state probabilities, achievable DoF for each
combination can be characterised as follows.
(i) Schemes S1 and S2

dΣ,S−S1,S2 = 1 + λ2 + λ4 + λ5 + λ7 + · · ·+ λ12 + α1 + β1

where α1 = min{λ3, λ13, λ14} and β1 = min{λ6, λ15, λ16}.
(ii) Schemes S3 and S4

dΣ,S−S3,S4 = 1 + λ2 + λ4 + λ5 + λ7 + · · ·+ λ12 + α2 + β2

where α2 = min{λ1, λ3, λ6} and β2 = min{λ13, λ15, λ16}.
(iii) Schemes S3 and S5

dΣ,S−S3,S5 = 1 + λ2 + λ4 + λ5 + λ7 + · · ·+ λ12 + α2 + β3
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where α2 is as defined earlier and β3 = min{λ14, λ15, λ16}.
Combining dΣ,S−S1,S2 , dΣ,S−S3,S4 and dΣ,S−S3,S5 into a

single expression for the maximum achievable DoF, we obtain
the following

dΣ,S−Ach = 1 + λ2 + λ4 + λ5 + λ7 + · · ·+ λ12 + ω (37)

where ω = max{α1 + β1, α2 + β2, α2 + β3} for quasi-static
fading channels and ω = α1 +β1 for the fast-fading scenario.

Note that the only difference between the outer bound in
Theorem 1 (see the reformulated expression in (35)) and the
achievable DoF expression in (37) is the final term. In fact for
any state probabilities such that ω = Ψ, the two are equal,
resulting in an outer bound which is achievable. For example
this happens for λ1 = λ3 = λ6 = λ13 = · · · = λ16 = 0 and
general values of λi where i ∈ I = {2, 4, 5, 7, . . . , 12} and∑
i∈I λi = 1.

C. Equal state probabilities

When all states are equiprobable, i.e. λ1 = · · · = λ16 = 1
16 ,

using the result of Theorem 1 we can establish the following
corollary.

Corollary 1: For the two-cell two-user-per-cell SISO IBC
with alternating connectivity and equiprobable states, dΣ,S ≤
1 3

4 .
Without global topological CSIT, only a sum DoF of 1 can

be achieved. However if topological CSIT is available the DoF
in (36) can be obtained; with equiprobable states this implies
25 symbols are transmitted in 16 channel uses on average,
equivalent to 1 9

16 DoF. While this is an improvement of 9
16

over the no global topological CSIT case, it is still 3
16 DoF

away from the outer bound in Corollary 1. Applying joint
coding across states the DoF in (37) can be achieved. With
equiprobable states this is equal to 1 11

16 and corresponds to a
gain of 11

16 DoF over the no global topological CSIT setting.
While it does not correspond to the outer bound in Corollary
1, there is only a difference of 1

16 between the two, i.e. 96.4%
of the outer bound is achieved.

VI. ACHIEVABLE DOF FOR MISO AND MIMO IBC
In this section we investigate the achievability of the outer

bound in Theorem 2. Without global topological CSIT, a fully
connected network has to be assumed at all times. This allows
only for one possible strategy where the BSs are given unique
transmission opportunities, thereby achieving 2 DoF across all
states. However, if global topological information is provided,
the BSs can adapt their transmission strategies in order to
exploit the partially connected states and achieve higher DoF.

A. Single state has probability of occurrence equal to one

This represents an extreme case for the scenario considered
in this work, where connectivity is fixed in a single state
throughout the whole transmission process, i.e. λi = 1 and
λj = 0 for j = 1, . . . , 16, j 6= i.

For i = 2, Theorem 2 can be represented as dΣ,M ≤ 4.
From an achievable DoF perspective, this situation corre-
sponds to the best case scenario since all users are inter-
cell interference free. Having knowledge of the network’s

topology, both BSs can operate simultaneously and deliver a
symbol each to their respective users, thereby achieving 4 DoF
across the whole network. This is equal to the outer bound
itself and corresponds to a two-fold increase in achievable
DoF over the no global topological CSIT case.

For i ∈ {4, 5, 7, 8}, three out of the four users are free
from inter-cell interference and the outer bound in Theorem 2
corresponds to dΣ,M ≤ 3. Since network topology is known,
both BSs can operate simultaneously to serve the three inter-
cell interference free users, while the fourth user is not served
due to inter-cell interference. This achieves 3 DoF over the
whole network, which is equal to the derived outer bound
and provides a gain of 1 DoF over the case where global
topological CSIT is not provided.

For the remaining states, i ∈ {1, 3, 6, 9, . . . , 16}, the outer
bound from Theorem 1 is dΣ,M ≤ 2. Sum DoF of 2 can be
achieved simply by operating one BS at a time and delivering
one symbol each to the two users in the corresponding cell.

B. Arbitrary state probabilities

Without global topological CSIT, only 2 DoF can be
achieved regardless of the current connectivity state; however
if this information is provided, the BSs can adapt their
transmission strategies to exploit the partially connected states.
Considering the set of states in Fig. 2, it is possible to achieve

DoF =

 2 for states 1, 3, 6, 9, 10, 11, 12, 13, 14, 15, 16
3 for states 4, 5, 7, 8
4 for state 2.

= 2 + 2λ2 + λ4 + λ5 + λ7 + λ8 (38)

Higher DoF can be obtained via scheme S6 which applies
joint coding across states. Looking at the states in Fig. 2, it
can be noticed that the interference links present in states 3
and 6 are contained within state 1; therefore state 1 can be
used to resolve them. The transmission strategy for scheme
S6 is outlined in Table VII.

TABLE VII: Transmission strategy for scheme S6.

Transmitted symbols State 3 State 6 State 1

XA SA SA SA

XB SB SB SB

For the MISO case, we define the signals transmitted from
BS A as SA = (Va1sa1 + Va2sa2) and SA = (

¯
Va1

¯
sa1 +

¯
Va2

¯
sa2), where Vi and

¯
Vi are M × 1 ZF precoders. These

are constructed using local CSIT knowledge, according to the
orthogonality principles explained earlier in Section II and
ensure that each user can extract the desired symbol from
the combined signal transmitted by the corresponding BS.
The symbols transmitted by BS B are defined in a similar
manner. By following the transmission strategy in Table VII,
signals received over the three states at users a1 and a2 consist
only of SA, SA and SB , thus both users can decode for SA
and SA. Additionally due to the ZF precoding, users only
see the desired part of the combined signal, thus a1 obtains
{sa1,

¯
sa1}, while a2 obtains {sa2,

¯
sa2}. A similar decoding

process is carried out at users b1 and b2 to obtain {sb1,
¯
sb1}

and {sb2,
¯
sb2} respectively. Therefore across the 3 states a total

of 8 new symbols are delivered, 2 for each user.
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Fig. 5: Examples of wired network equivalents for the wireless scenarios considered in this work. Sources are in black, destinations are in white and intermediate
nodes are in grey. For wired networks connectivity can change due to variations in the linear network coding coefficients. Both figures represent the fully
connected state, i.e. state 1 in Fig. 2. The presence of the dotted red lines is variable depending on the value of the corresponding network coding coefficients
and reflects the alternating connectivity.

For the MIMO case, we define the signals transmitted from
BS A as SA = (Va1sa1 + Va2sa2) and SA = (

¯
Va1

¯
sa1 +

¯
Va2

¯
sa2). Vi and

¯
Vi are M × 1 precoders which change for

every state involved in scheme S6 and can be considered
as being pseudo-random; they would normally be used to
enforce transmit power constraints, which is inconsequential
from a DoF perspective. The symbols transmitted by BS B are
similarly defined. Considering users a1 and a2, it can be seen
that across the whole set of states, received signals consist only
of sa1, sa2,

¯
sa1,

¯
sa2,

¯
sb1 and

¯
sb2. Due to the multiple antenna

configuration at the transmitters and receivers, both users a1
and a2 are in possession of six independent observations
(two from each state) and can thus decode for their desired
symbols, {sa1,

¯
sa1} and {sa2,

¯
sa2} respectively. A similar

decoding process is carried out at users b1 and b2 to obtain
{sb1,

¯
sb1} and {sb2,

¯
sb2} respectively. Therefore, by applying

this scheme, each user obtains 2 new symbols across 3 states.
Using scheme S6, for arbitrary state probabilities, achiev-

able DoF can be characterised as

dΣ,M−Ach = 2 + 2λ2 + λ4 + λ5 + λ7 + λ8 + γ (39)

where γ = min{2λ1, 2λ3, 2λ6}.
Notice the similarity between the achievable DoF in (39)

and the outer bound in Theorem 2. The only difference is in
the final term, such that for any state probabilities that result
in γ = Φ, the two are equal resulting in a tight outer bound.
For example, this occurs when λ1 ≤ min{λ3, λ6} for arbitrary
values of λk ∀k = 1, . . . , 16.

C. Equal state probabilities

When all states are equiprobable, i.e. λ1 = · · · = λ16 = 1
16 ,

the result in Theorem 2 can be used to establish the following
corollary.

Corollary 2: For the two-cell two-user-per-cell MISO/
MIMO IBC with alternating connectivity and equiprobable
states, where intra-cell interference is handled via spatial
multiplexing, dΣ,M ≤ 2 1

2 .
Without global topological CSIT, only a sum DoF of 2 can

be achieved. However if topological CSIT is available, the
DoF in (38) can be obtained; with equiprobable states this
is equivalent to 2 3

8 DoF, since 38 symbols are transmitted in

16 channel uses on average. While this is an improvement
of 3

8 DoF over the no global topological CSIT case, it is
still 1

8 DoF away from the outer bound value established in
Corollary 2. Applying joint coding across states the DoF in
(39) can be achieved. With equiprobable states this results in
2 1

2 DoF, which corresponds to a gain of 1
2 DoF over the no

global topological CSIT setting and is equal to the outer bound
value from Corollary 2.

VII. APPLICABILITY OF DERIVED BOUNDS TO WIRED
NETWORK EQUIVALENTS

It was recently established in [13] that under the topo-
logical interference management framework, the capacity of
a wireless network and the corresponding wired instance
are equivalent in their normalised forms; where the term
‘corresponding’ implies that the two networks have the same
underlying noiseless linear network structure. For wireless
networks, normalised capacity represents the achievable rate
normalised by log(SNR) as SNR → ∞, i.e. DoF. For wired
networks, normalised capacity refers to the capacity of the
network divided by the capacity of a single link i.e. divided
by log|GF|, where GF represents the finite Galois field.

This equivalence essentially implies that all networks (either
wired or wireless) with the same logical end-to-end topol-
ogy have the same normalised capacity, and requires wired
networks to be SISO ones where each source has only one
outgoing edge and each destination has only one incoming
edge. Both wireless scenarios considered in this work can
be mapped to such wired equivalent networks, an example
of which is shown in Fig. 5, therefore from the results
of Theorems 1 and and 2 we can establish the following
corollaries.

Corollary 3: The normalised sum capacity of a wired net-
work with the same end-to-end topology as the wireless SISO
network considered in this work is upper bounded by 2−Θ,
where Θ is defined as in (3).

Corollary 4: The normalised sum capacity of a wired
network with the same end-to-end topology as the wire-
less MISO/MIMO network considered in this work is upper
bounded by 2 + 2λ2 + λ4 + λ5 + λ7 + λ8 + Φ, where Φ is
defined as in (15).
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The bounds in these corollaries have also been confirmed
by deriving the outer bounds for the wired scenarios, i.e. using
discrete rather than differential entropy and omitting noise
considerations. Details are not provided here, since our main
focus is on the wireless case.

VIII. CONCLUSION

In this work we study the DoF of a two-cell two-user-per-
cell IBC with alternating connectivity and global topological
interference management. Our analysis is first carried out for
SISO systems, and later extended to MISO and MIMO ones.
For each setting, we derive novel DoF outer bounds and in-
vestigate their achievability. We also propose new transmission
schemes based on joint coding across states and show under
what conditions the derived outer bounds are achievable. In
particular, when a single state has a probability of occurrence
equal to one, the bounds are shown to be tight and for the best
case scenario there is a two-fold increase in achievable DoF
over the no global topological CSIT case. Additionally, when
all states are equiprobable, the SISO system obtains a gain of
11
16 DoF and achieves 96.4% of the derived outer bound. For
the corresponding MISO/MIMO scenario, there is a gain of 1

2
DoF and the outer bound itself can be achieved. Our results
clearly show that significant DoF gains can be achieved when
transmitters are provided with global topological information,
indicating that even such a minimal level of global CSIT is
still highly useful.

APPENDIX A
ADDITIONAL DETAILS FOR PROOF OF THEOREM 1

I. Derivation of cell B rate outer bound in (8)

Considering the cell B achievable rate, we have

nRB ≤ I(WB ;Y V1 , . . . , Y V16 ) + nε
(a)
= h(Y V1 , . . . , Y

V
16 )−h(Y VQ , Y

V
R , Y

V
S , Y

V
T |WB) + nε

= h(Y V1 , . . . , Y V16 )− h(Y VR , Y
V
S , Y

V
T |WB)

− h(Y VQ , |WB , Y VR , Y
V
S , Y

V
T )︸ ︷︷ ︸

≥H(Y V
Q ,|WB ,Y V

R ,Y V
S ,Y V

T ,WA)=no(logP )

+ nε

≤ h(Y V1 , . . . , Y V16 )

− h(Y VR , Y
V
S , Y

V
T |WB) + no(logP ) + nε (40)

where (a) follows since the original set of 16 states is contained
in states Q, R, S and T .

Considering (40) and the state configurations in Fig. 4,
it can be noticed that the cell B received signals in states
R and T consists only of an XB component and noise.
The XB component has no effect on entropy and the effect
of noise can be integrated in the no(logP ) term. For all
states corresponding to S, the cell B received signals are
a combination of XA, XB and noise. The XB component
is negligible with respect to entropy. The XA and noise
components are independent of WB and, due to the statistical
equivalence of HV,A and HU,A, can be represented in terms
of the signal received at user U , provided that U is free from
inter-cell interference. Comparing the list of S states from

Table I, this is guaranteed as being always possible regardless
of the current (U, V ) combination only for state 3. Using this
information we can express (40) as

nRB ≤ h(Y V1 , . . . , Y
V
16)− h(HU,AX

A
3 + Z) + no(logP ) + nε

which is equivalent to (8), since Y U3 = HU,AX
A
3 + Z.

II. Derivation of cell B genie aided DoF bound in (14)

The genie aided bound for the cell B achievable rate, is
given by

nRΣ(GB) ≤ I(WA,WB ;Y V1 , . . . , Y V16 , G
B) + nε (41)

where GB represents the genie set required at cell B such that
the data required across the two cells can be decoded within
cell B. Genies are necessary for all original states correspond-
ing to states R and T , resulting in GB = {Y U2 , Y U4 , . . . , Y U14}.
Integrating GB into (41), we obtain

nRΣ(GB) ≤ h(Y V1 , . . . , Y V16 , G
B)

− h(Y V1 , . . . , Y V16 , G
B |WA,WB)︸ ︷︷ ︸

=no(logP )

+nε

≤ h(Y V1 ) + · · ·+ h(Y V16 ) + h(Y U2 )

+ h(Y U4 ) + · · ·+ h(Y U14) + no(logP ) + nε
(a)

≤ n(2−λ1−λ3−λ15−λ16)+no(logP )+nε

where (a) follows from the fact that Gaussian distribution
maximises differential entropy and using

∑16
k=1 λk = 1.

Normalising by n(logP ) and letting P → ∞, we obtain the
cell B genie aided DoF bound in (14).

APPENDIX B
ADDITIONAL DETAILS FOR PROOF OF THEOREM 2

I. Derivation of user a2 achievable rate bound in (19)

For user a2, we have

nRa2 ≤ I(WA;Y a2
1 , . . . , Y a2

16 ) + nε

= h(Y a2
1 , . . . , Y a2

16 )− h(Y a2
1 , . . . , Y a2

16 |WA) + nε

= h(Y a2
1 , . . . , Y a2

16 )− h(Y a2
Ω′ , Y

a2
Ω |WA)

− h(Y a2
1 , Y a2

15 |WA, Y a2
2 , . . . , Y a2

14 , Y
a2
16 )︸ ︷︷ ︸

=Ea2

+nε (42)

where Ω′ = {2,3,4,5,8,10,12,16} and Ω = {6,7,9,11,13,14}.
For the Ω′ set, the a2 received signal consists only of an XA

component, which has no effect on entropy, and noise whose
contribution is no(logP ). For the Ω set, data received at a2 is
a combination of XA, XB and noise. The XA component can
be ignored since it is a function of WA; while the XB and
noise components can be represented using signals received at
inter-cell interference free cell B users, due to their statistical
equivalence. Using this information (42) can be expressed as
(43) at the top of the following page. Finally, by considering
all the components of the first negative term in (43) to be
independent of each other, we obtain (19).
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nRa2 ≤ h(Y a2
1 , . . . , Y a2

16 )− h(Hb1,BX
B
6 + Z,Hb2,BX

B
7 + Z,Hb2,BX

B
9 + Z,Hb1,BX

B
11 + Z,Hb2,BX

B
13 + Z,Hb1,BX

B
14 + Z)

− Ea2 + no(logP ) + nε = h(Y a2
1 , . . . , Y a2

16 )− h(Y b16 , Y b27 , Y b29 , Y b111 , Y
b2
13 , Y

b1
14 )− Ea2 + no(logP ) + nε (43)

nRb1 ≤ h(Y b11 , . . . , Y b116 )− h(Ha1,AX
A
3 + Z,Ha1,AX

A
4 + Z,Ha1,AX

A
9 + Z,Ha2,AX

A
10 + Z,Ha1,AX

A
15 + Z,Ha2,AX

A
16 + Z)

− Eb1 + no(logP ) + nε = h(Y b11 , . . . , Y b116 )− h(Y a1
3 , Y a1

4 , Y a1
9 , Y a2

10 , Y
a1
15 , Y

a2
16 )− Eb1 + no(logP ) + nε (45)

nRb2 ≤ h(Y b21 , . . . , Y b216 )− h(Ha2,AX
A
3 + Z,Ha2,AX

A
5 + Z,Ha1,BX

A
11 + Z,Ha2,BX

A
12 + Z,Ha1,BX

A
15 + Z,Ha2,BX

A
16 + Z)

− Eb2 + no(logP ) + nε = h(Y b21 , . . . , Y b216 )− h(Y a2
3 , Y a2

5 , Y a1
11 , Y

a2
12 , Y

a1
15 , Y

a2
16 )− Eb2 + no(logP ) + nε (47)

nRΣ(GB) ≤ h(Y b116 , . . . , Y
b1
16 , Y

b2
1 , . . . , Y b216 , G

B)− h(Y b116 , Y
b2
1 , . . . , Y b216 , G

B |WA,WB)︸ ︷︷ ︸
=no(logP )

+nε

≤ h(Y b11 ) + · · ·+ h(Y b116 ) + h(Y b21 ) + · · ·+ h(Y b216 ) + 2h(Y A2 ) + h(Y A4 ) + h(Y A5 ) + 2h(Y A6 ) + 2h(Y A7 ) + 2h(Y A8 )

+ h(Y A9 ) + · · ·+ h(Y A14) + no(logP ) + nε
(a)

≤ n ( 2 + 2λ2 + λ4 + λ5 + 2λ6 + 2λ7 + 2λ8 + λ9 + · · ·+ λ14 )(logP ) + no(logP ) + nε (49)

II. Derivation of user b1 achievable rate bound in (20)

For user b1, we have

nRb1 ≤ I(WB ;Y b11 , . . . , Y b116 ) + nε

= h(Y b11 , . . . , Y b116 )− h(Y b11 , . . . , Y b116 |WB) + nε

= h(Y b11 , . . . , Y b116 )− h(Y b1Γ′ , Y
b1
Γ |WB)

− h(Y b11 , Y
b1
13 |WB, Y b12 , . . . , Y

b1
12, Y

b1
14, Y

b1
15, Y

b1
16 )︸ ︷︷ ︸

=Eb1

+nε

(44)

where Γ′ = {2,5,6,7,8,11,12,14} and Γ = {3,4,9,10,15,16}.
For the Γ′ set, the signal received at b1 consists only

of an XB component which has no effect on entropy, and
noise whose contribution is no(logP ). For the Γ set, the
signals received at b1 consist of XA, XB and noise. The XB

component is a function of WB and is therefore negligible
with respect to entropy. The XA and noise components can be
expressed in terms of signals received at inter-cell interference
free cell A users due to their statistical equivalence. This
allows us to express (44) as (45) at the top of this page. Finally,
(20) is obtained by considering all the components of the first
negative term in (45) to be independent of each other.

III. Derivation of user b2 achievable rate bound in (21)

For user b2, we have

nRb2 ≤ I(WB ;Y b21 , . . . , Y b216 ) + nε

= h(Y b21 , . . . , Y b216 )− h(Y b21 , . . . , Y b216 |WB) + nε

= h(Y b21 , . . . , Y b216 )− h(Y b2Υ′ , Y
b2
Υ |WB)

− h(Y b21 , Y b214 |WB , Y b22 , . . . , Y b213 , Y
b2
15 , Y

b2
16 )︸ ︷︷ ︸

=Eb2

+nε

(46)

where Υ′ = {2,4,6,7,8,9,10,13} and Υ = {3,5,11,12,15,16}.
For the Υ′ set, the signal received at b2 consists only of

an XB component which has no effect on entropy, and noise
whose contribution is no(logP ). On the other hand for the Υ
set, the data received at b2 consists of XA, XB and noise. The
XB component can be ignored, since it is solely a function of
WB . The XA and noise components can be expressed in terms

of the signals received at cell A users, due to their statistical
equivalence. This allows us to express (46) as (47) at the top
of this page. Finally, by considering all the components of the
first negative entropy term in (47) to be independent of each
other, we obtain (21).

IV. Derivation of cell B genie aided DoF bound in (34)

The genie aided bound for the cell B achievable rate, is
given by

nRΣ(GB) ≤ I(WA,WB;Y b11 , . . . , Y
b1
16, Y

b2
1 , . . . , Y

b2
16, G

B) + nε
(48)

where GB = {2× [Y A2 , Y A6 , Y A7 , Y A8 ], Y A4 , Y A5 , Y A9 , . . . , Y A14}
and represents the genie set required so that cell B is able to
decode the data across both cells. Having defined GB , this can
be integrated into (48) to obtain (49) at the top of this page,
where (a) follows by using the fact that Gaussian distribution
maximises differential entropy and applying

∑16
k=1 λk = 1.

Normalising by n(logP ) and letting P → ∞, we obtain the
cell B genie aided DoF bound in (34).

APPENDIX C
USEFUL LEMMA

Lemma 1: For independent Hr,AX
A
k , Hr,BX

B
k and Z,

h(Hr,AX
A
k +Hr,BX

B
k +Z) ≤ h(Hr,AX

A
k ) + h(Hr,BX

B
k ) +

no(logP ).
Proof: Starting with the following equality [21], for D

and F independent of each other

h(D) + h(F ) = h(D,F ) = h(D,D + F )

= h(D + F ) + h(F |D + F ) .

Letting D = Hr,AX
A
k and F = Hr,BX

B
k + Z, we have

h(Hr,AX
A
k +Hr,BX

B
k + Z)

= h(Hr,AX
A
k ) + h(Hr,BX

B
k + Z)

− h(Hr,BX
B
k + Z|Hr,AX

A
k +Hr,BX

B
k + Z)︸ ︷︷ ︸

≥h(Hr,BXB
k

+Z|Hr,AXA
k

+Hr,BXB
k

+Z,WB)

=h(Z|Hr,AXA
k

+Hr,BXB
k

+Z,WB)=no(logP )
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(a)

≤ h(Hr,AX
A
k ) + h(Hr,BX

B
k ) + no(logP )

where (a) follows since the effect of noise disappears as P →
∞ and can thus be represented as no(logP ).
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