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A Learning-Based Approach to Caching in Heterogenous Small Cell
Networks

B. N. Bharath, K. G. Nagananda and H. Vincent Poor,Fellow, IEEE∗

Abstract—A heterogenous network with base stations (BSs),
small base stations (SBSs) and users distributed accordingto
independent Poisson point processes is considered. SBS nodes
are assumed to possess high storage capacity and to form a
distributed caching network. Popular files are stored in local
caches of SBSs, so that a user can download the desired files from
one of the SBSs in its vicinity. The offloading-loss is captured via
a cost function that depends on the random caching strategy
proposed here. The popularity profile of cached content is
unknown and estimated using instantaneous demands from users
within a specified time interval. An estimate of the cost function
is obtained from which an optimal random caching strategy is
devised. The training time to achieve anǫ > 0 difference between
the achieved and optimal costs is finite provided the user density
is greater than a predefined threshold, and scales asN2, where
N is the support of the popularity profile. A transfer learning-
based approach to improve this estimate is proposed. The training
time is reduced when the popularity profile is modeled using a
parametric family of distributions; the delay is independent of
N and scales linearly with the dimension of the distribution
parameter.

Index Terms—Caching; small cell networks; popularity profile;
transfer learning.

I. I NTRODUCTION

The advent of multimedia-capable devices at economical
costs has triggered the growth of wireless data traffic at an
unprecedented rate. This trend is likely to continue, requiring
wireless service providers to reevaluate design strategies for
the next generation wireless infrastructure [1]. A promising
approach to address this problem is to deploy small cells
that can offload a significant amount of data from a macro
base station (BS) [2]. Doing so, it is expected to lead to
cost-effective integration of the existing WiFi and cellular
technologies with improved performance of peak data traffic
steering policies [3]. However, a potential shortcoming ofthe
small cell infrastructure is that, during peak traffic hours, the
backhaul link-capacity requirement to support data trafficis
enormously high [4]. Also, the cost incurred in deploying
a high capacity backbone network for small cells can be
quite high. Therefore, small cell-based solutions alone will not
suffice to efficiently solve the quality of service requirements
associated with peak traffic demands.

A noteworthy development in this direction is to improve
the accessibility of data content to users by storing the most
popular data files in thelocal caches (intermediate servers
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such as gateways, routers,etc.) of small cell BSs, with the
objective of reducing the peak traffic rates. This is commonly
referred to as “caching” and has attracted significant attention
[5] - [8]. In the next subsection we mention a few references,
which although by no means exhaustive, fairly indicate the
scope and trend of research on caching.

A. Literature review on caching

Caching has received considerable attention in the wireless
communications literature. In [9], a two-layer hierarchical
strategy termed New Snoop was proposed to cache the un-
acknowledged packets from mobiles and BSs to significantly
enhance TCP performance. In [10], a technique based on the
concept of content-centric networking was devised for caching
in 5G networks, while in [11] caching of video files was
proposed by exploiting the redundancy of user requests and
storage capacity of mobile devices witha priori knowledge
of the locations of devices. In [12], the effects of cache size
and cached-data popularity on a data access scheme were
studied to mitigate the traffic load over the wireless channel.
In [13], inner and outer bounds were proposed for the joint
routing and caching problem in small cell networks, while
in [14] in-network caching was proposed for an information-
centric networking architecture for faster content distribution
in an energy-efficient manner. In-network caching was em-
ployed in [15] for content-centric networks using a tool called
“contrace” for monitoring and operating the network. The
tradeoff between the performance gain of coded caching and
delivery delay in video streaming was characterized in [16].
A polynomial-time heuristic solution was proposed in [17] to
address the NP-hard optimization problem of maximizing the
caching utility of mobile users.

Caching has also made advances in device-to-device (D2D)
communications. In [18], a practical method was devised for
data caching and content distribution in D2D networks to
enhance assisted communications between proximate nodes.
In [19], the outage-throughput tradeoff was characterized
for D2D nodes, which obtained the desired file from nodes
which had that file in its cache. In [20], the conflict between
collaboration-distance and interference was identified among
D2D nodes to maximize frequency reuse by exploiting dis-
tributed storage of cached content. In [21], coded caching was
shown to achieve multicast gain in a D2D network, where
users had access to linear combinations of packets from cached
files. In [22], the throughput scaling laws of random caching,
where users with pre-cached information made arbitrary re-
quests for cached files, were studied. New caching mechanisms
developed by modeling the network as independent Poisson
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point processes (PPPs) with full knowledge of the popularity
profile can be found in [23] - [26], while the most recent results
on caching in D2D networks and video content delivery are
reported in [27] and [28].

Caching has been addressed from an information-theoretic
viewpoint as well. In [29], it was shown that when cached-
content demand is uniformly distributed, joint optimization of
caching and coded multicast delivery significantly improves
the gains; this setup was extended to the case of nonuniform
distributions on demand and to a decentralized setting in [30]
and [31], respectively. In [32], coded caching was achieved
for content delivery networks with two layers of caches.

B. Main contributions of this paper

In the aforementioned references, the popularity profile of
data files was assumed to be known perfectly. In practice,
such an assumption cannot be reasonably justified; this was
clearly highlighted in [33] - [37], where various learning-
based approaches were employed to estimate the popularity
profile. On the other hand, estimation procedures result in
computational overhead especially in data-intensive realtime
multimedia applications. Therefore, given the increasingde-
mand for improving the quality of service for the end users,
establishing the theoretical underpinnings of learning-based
caching strategies is a topical research problem, and is the
main subject of this paper.

In this work, we relax the assumption ofa priori knowledge
of the popularity profile to devise a caching strategy. We
consider a heterogenous network where the users, BS and
small base stations (SBSs) are assumed to be distributed
according to PPPs. Each SBS is assumed to employ a random
caching strategy with no caching at the user terminal (see
[19]). A protocol model for communications is proposed using
which a cost that captures backhaul link overhead that depends
on the popularity profile is derived. Assuming a Poisson
request model, a centralized approach is presented in which
the BS computes an estimate of the popularity profile based
on the requests observed during the time interval[0, τ ]; this
estimate is then used in the cost function to optimize the
caching probability. Thus, the actual cost incurred differs from
the optimal cost, and this difference depends on the number
of samples used to estimate the popularity profile. Further,
the number of samples collected at the BS depends on the
density of the Poisson arrival process and the training time
during which the samples are collected. A lower bound on this
training time is derived that guarantees a cost that is within
ǫ > 0 of the optimal cost. The results are improved using a
transfer learning (TL)-based approach wherein samples from
other domains, such as those obtained from a social network,
are used to improve the estimation accuracy; the minimum
number of source domain samples required to achieve better
performance is derived. Finally, we model the popularity
profile using a parametric family of distributions (specifically,
the Zipf distribution [38]) to analyze the benefits offered.

The following are the main findings of our study:

(i) The training timeτ is finite, provided the user density is
greater than a predefined threshold.

(ii) τ scales asN2 logN , whereN is the total number of
cached data files in the system.

(iii) Employing the TL-based approach, a finite training time
can be achieved forall user densities. In this case, the
training time is a function of the “distance” between the
probability distribution of the files requested and that of
the source domain samples (the notion of distance will
be made precise in the proof of Theorem 3).

(iv) When the popularity profile is modeled using a para-
metric family of distributions, the bound on the training
time is independent ofN , and scales only linearly with
the dimension of the distribution parameter leading to a
significant improvement in the performance compared to
its nonparametric counterpart.

The problem of periodic caching without the knowledge of
the popularity profile, but with access to the demand history,
was addressed in [33] and [34]; however, the model and
objective function considered in our work are different from
those presented therein. Learning-based approaches to estimate
the popularity profile for devising caching mechanisms have
also been reported in [35] - [37]; while caching in femtocell
networks without prior knowledge of the popularity distribu-
tion was considered in [39], where it was shown that dis-
tributed caching was NP-hard and approximation algorithms
were proposed for video content delivery. We would like
to emphasize that the central focus of this paper is not on
deriving new caching mechanisms. Our main contribution is
the theoretical analysis of the implications of learning the
popularity profile on the training time to achieve an offloading
loss which is ǫ > 0 close to the optimal policy. To the
best of our knowledge, this is the first instance where an
analytical treatment of training time and its relation to the
probability distribution function of source domain samples has
been reported in the literature on caching. Some preliminary
aspects of this work can be found in [40].

In Section II, we present the system model followed by the
main problem addressed in the paper. The two methods for
estimating the popularity profile and its corresponding training
time analysis are developed in Section III. The training time
analysis when the popularity profile is modeled as a parametric
family of distributions is presented in Section IV. Numerical
results are reported in Section V. Concluding remarks are
provided in Section VI. The proofs of the theorems are
relegated to appendices.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we present the system model followed by
the main problem addressed in the paper. The notation used
in the rest of the paper is as follows:Φu, Φs and Φb (λu,
λs andλb) denote the points (densities) corresponding to the
user, SBSs and BS, respectively;kx denotes the number of
requests in[0, τ ] by the user atx; X(l)

x denotes thelth request
of the userx; λr is the average number of requests per unit
time. A heterogenous cellular network is considered where the
setΦu ⊆ R

2 of users, the setΦb ⊆ R
2 of BSs, and the set

Φs ⊆ R
2 of SBSs are distributed according to independent

PPPs with densityλu, λb and λs, respectively, in the two-
dimensional space [41]. Each user independently requests a



data-file of sizeB bits from the setF , {f1, f2, . . . , fN};
the popularity of data files is specified by the distribution
P , {p1, . . . , pN}, where

∑N
i=1 pi = 1 and is assumed to

be stationary across time. In a typical heterogenous cellular
network, the BS fetches a file using its backhaul link to
serve a user. During peak data traffic hours, this results in an
information-bottleneck both at the BS as well as in its backhaul
link. To alleviate this problem, caching the most popular files
(either at the user nodes or at SBSs) is proposed. The requested
file will be served directly by one of the neighboring SBSs
depending on the availability of the file in its local cache. The
performance of caching depends on the density of SBS nodes,
cache size, users’ request rate, and the caching strategy. It is as-
sumed that the SBS can cache up toM files, each of lengthB
bits. Each SBS inΦs caches its content in an independent and
identically distributed (i.i.d.) fashion by generatingM indices
distributed according toΠ , {πi : fi ∈ F, i = 1, 2, . . . , N},
∑N

i=1 πi = 1 (see [19]). One way of generating this is to
roll an N sided dieM times in an i.i.d. fashion, where the
outcomes correspond to the index of the file to be cached.
Although this approach is suboptimal, it is mathematically
tractable and the corresponding time complexity serves as a
lower bound, albeit pessimistic, for optimal strategies.

We now present a simple communications protocol to
determine the set of neighboring SBS nodes for any user inΦu.
Essentially, we let each SBS at locationy ∈ Φs communicate
with a user at locationx ∈ Φu if ‖y − x‖ < γ, (γ > 0);
this condition determines the communication radius. In this
protocol, we have ignored the interference constraint. Theset
of neighbors of the user at locationx is denoted

Nx , {y ∈ Φs : ‖y − x‖ < γ}. (1)

A. The main problem addressed in this paper

The user located atx ∈ Φu requests a data-file from the
setF, with the popularity profile chosen from the probability
distribution functionP. The requested file will be served
directly by a neighboring SBS at locationy ∈ Φs depending
on the availability of the file in its local cache, and following
the protocol described in the previous paragraph. The problem
of caching involves minimizing the time overhead incurred
due to the unavailability of the requested file. Without loss
of generality and for ease of analysis, we focus on the
performance of a typical user located at the origin, denoted
by o ∈ Φu. The unavailability of the requested file from a
user located ato is given by

T(Π,P) ,
B

R0
E

N
∑

i=1

[1{fi /∈ No}]1{fi requested}, (2)

whereNo is as defined in (1),R0 is the rate supported by
the BS to the user, andBR0

is the time overhead incurred in
transmitting the file from the BS to the user. Further, we use
fi /∈ No to denote the event that the filefi is not stored in
any of the SBSs inNo. The expectation is with respect toΦu,
Φs andP. The indicator function1{A} is equal to one if the
eventA occurs, and zero otherwise. We refer toT(Π,P) as

the “offloading loss”, which we seek to minimize:

min
Π�0

T(Π,P) (3)

subject to
N
∑

i=1

πi = 1,

whereπi ≥ 0, for i = 1, . . . , N . To solve the optimization
problem (3), we need an analytical expression forT(Π,P)
which is provided in the following theorem.

Theorem1: For the caching strategy proposed in this paper,
the average offloading loss is given by

T(Π,P) =
B

R0

[

N
∑

i=1

exp{−λsπγ
2
[

1− (1− πi)
M
]

}pi

]

. (4)

Proof: See Appendix A.
We note that, solving the optimization problem posed in

(3) is not the main focus of this paper. We assume that
there exists a method to solve the problem posed in (3), and
instead focus on analyzing the training time required to obtain
a good estimate of the popularity profile that results in an
offloading loss that is withinǫ of the optimal offloading loss.
Interestingly, although the problem in (3) is non-convex, since
it is separable a bound on the duality gap can be obtained with
respect to the solution derived using the Karush-Kuhn-Tucker
conditions.

In practice, the popularity profileP is generally unknown
and has to be estimated. Denoting the estimated popularity
profile byP̂ , {p̂1, . . . , p̂N}, and the corresponding offloading
loss byT(Π, P̂), (3) becomes

min
Π�0

T(Π, P̂) (5)

subject to
N
∑

i=1

πi = 1,

with πi ≥ 0, for i = 1, . . . , N . Naturally, the solution to
(5) differs from that of the original problem (3). LetΠ∗ and
Π̂∗ denote the optimal solutions to the problems in (3) and
(5), respectively, and let the throughput achieved usingΠ̂∗ be
denotedT̂∗ , T(Π̂∗, P̂). The central theme of this paper
is the analysis of the offloading loss difference,i.e., T̂∗ −
T
∗, where T

∗ , T(Π∗,P) is the minimum offloading loss
incurred with perfect knowledge of the popularity profile
P. Theorems 2 - 5 are devoted to this analysis.

III. E STIMATING THE POPULARITY PROFILE

In this section, we present two methods for estimating the
popularity profile and provide the corresponding training time
analyses. The efficiency of the estimateP̂ of the popularity
profile depends on the number of available data samples,
which in turn is related to the number of requests made by
the users. We first obtain an expression for the estimate of
the popularity profile. We then study, in Section III-A, the
minimum training time in obtaining the samples to achieve a
desired estimation accuracyǫ > 0. Finally, in Section III-B,
we employ the TL-based approach to improve the bound on
the training time. We begin with the definition of the request
model.



Definition 1: (Request Model) Each user requests a file
f ∈ F at a random timet ∈ [0,∞] following an independent
Poisson arrival process with densityλr > 0.

For notational convenience, the same density is assumed
across all the users. The following centralized scheme is
used where the BS collects the requests from all the users
in its coverage area in a time interval[0, τ ] to estimate the
popularity profile of the requested files: Let the number of
users in the coverage area of BSz ∈ Φb of radiusR > 0
be nR, which is distributed according to a PPP with density
λu. Let the number of requests made by the user at the
location x ∈ {Φu

⋂

B(0, R)} in the time interval[0, τ ] be
kx, where B(0, R) is a two-dimensional ball of radiusR
centered at0. We assume that requests across the users are
known at the BS. The requests from the userx is denoted
Xx , {X

(1)
x , . . . , X

(kx)
x }, whereX(l)

x ∈ {1, . . . , N} denotes
the indices of the files inF, l = 0, . . . , kx. After receiving
Xx, x ∈ {Φu

⋂

B(0, R)}, in the time interval[0, τ ], the BS
computes an estimate of the popularity profile as follows:

p̂i =
1

∑

x∈{B(0,R)
⋂

Φu}
kx

∑

x∈{B(0,R)
⋂

Φu}

kx
∑

l=0

1{X(l)
x = i}, (6)

i = 1, . . . , N . Given the numbernR of users in the coverage
area of the BS, the sum

∑

x∈{B(0,R)
⋂

Φu}
kx is a PPP with

density nRλr. Also, E {p̂i| |{Φu

⋂

B(0, R)}| = nR} = pi,
which leads us to conclude thatp̂i is an unbiased estimator.
The estimated popularity profilêpi given by (6) is shared with
every SBS in the coverage area of the BS, and is then used in
(5) to find the optimal caching probability.

The proposed estimator can be improved by using samples
from other related domains, for example, a social network.
The term “target domain” is used when samples are obtained
only from users in the coverage area of the BS. In the
next subsection we derive the minimum training timeτ ,
corresponding to the estimator in (6), required to achieve the
desired estimation accuracyǫ > 0.

A. A lower bound on the training time τ

Theorem2: For any ǫ > 0, with a probability of at least
1− δ, a throughput of̂T∗ ≤ T∗ + ǫ can be achieved using the
estimate in (6) provided

τ ≥







{

1
λrg∗ log

(

1
1− 1

λuπR2 log 2N
δ

)}+

if λu > L,

∞ otherwise,
(7)

where {x}+ , max{x, 0}, g∗ , (1 − exp{−2ǭ2}), L ,
1

πR2 log
(

2N
δ

)

and

ǭ ,
R0ǫ

2B supΠ
∑N

i=1 g(πi)
, (8)

with g(πi) , exp{−λsπγ
2
[

1− (1− πi)
M
]

}.
Proof: See Appendix B.

To achieve a finite training time that results in an estimation
accuracyǫ > 0, the user densityλu has to be greater than a
threshold. Further insights into (7) are obtained by making
the following approximation:1− x ≤ e−x for all x ≥ 0. This

is combined withsupΠ:Π�0,1TΠ=1

∑N
i=1 g(πi) ≤ N yielding

the following lower bound on the training timeτ :

τ ≥
2B2

πR2λuλrR2
0ǫ

2
N2 log

(

2N

δ

)

. (9)

The lower bound (9) enables us to make the following obser-
vations:

(i) The training time τ to achieve anǫ-offloading loss
difference scales asN2,

(ii) τ is inversely proportional to (λu, λr), and
(iii) as the coverage radius increases, the delay decreasesas

1/R2, and
(iv) as the data-file sizeB increases, the training time scales

asB2.

The bound in (9) is a lower bound on the training time per
request per user, since the offloading loss is derived for a given
request per user. There are on an averageλr requests per unit
time per user. Thus, to obtain the training time per user, the
offloading loss has to be multiplied byλr. This amounts to
replacingǫ by ǫ/λr. Therefore, (9) becomes

τ ≥
2B2λr

πR2λuR2
0ǫ

2
N2 log

(

2N

δ

)

. (10)

It is seen that the training time scales linearly withλr.
Although the training time per user per request tends to zero
as λr → ∞, the training time per user tends to∞. This
is because the number of requests per unit time approaches
∞, and thus, a small fraction of errors results in an infinite
difference in offloading loss leading to an infinite training
time. With the increasing demand to provide higher quality of
service for the end user, the question of whether it is possible
to improve (i.e. decrease) the training timeτ to achieve the
desired estimation accuracyǫ deserves attention. In the next
subsection we show that the lower bound on the training time
can indeed be improved by employing a TL-based approach.

B. Transfer learning to improve the training time

In practice, the minimum training time required to achieve
an estimation accuracyǫ > 0 can be expected to be very
large. An approach to overcome this drawback is to utilize
the knowledge obtained from users’ interactions with a social
community (termed the “source domain”). Specifically, by
cleverly combining samples from the source domain and users’
request pattern (target domain), one can potentially reduce the
training time. In fact, the estimation accuracy is indicative of
the dependence between the source and target domains. These
techniques are commonly referred to as TL-based approaches,
and have implications on the training time to achieve a given
estimation accuracy. TL-based approaches were also employed
in [36] and [37] to negotiate over-fitting problems in estimating
the content popularity profile matrix. However, unlike in [36]
and [37], in this paper we are interested in deriving the
minimum training time to achieve a desired performance
accuracy. Furthermore, the model we consider is quite different
from those considered in [36] and [37].

The TL-based approach considered here comprises two
sources, namely, the source domain and target domain, from



which the samples are acquired. An estimate of the popularity
profile is obtained in a stepwise manner as follows:

(i) Using target domain samples, the following parameter is
computed at the BS:

Ŝ
(tar)
i ,

∑

x∈B(0,R)
⋂

Φu

kx
∑

l=0

1{X(l)
x = i}, i = 1, . . . , N. (11)

Recall thatkx is the number of requests made by the
user at the locationx. The correspondinglth request by
the user at the locationx in the time interval[0, τ ] is
denotedX(l)

x , l = 1, 2, . . . , kx.
(ii) The source domain samplesXs , {Xs

1 , . . . , X
s
m} are

drawn i.i.d. from a distributionQ, whereXs
l = i (i =

1, . . . , N ) denotes that the user corresponding to the
lth sample has requested the filefi. The nature of the
distribution will be made precise in Proposition 1. Using
this, the BS computes

Ŝs
i ,

m
∑

k=1

1{Xs
k = i}, i = 1, 2, . . . , N. (12)

(iii) The BS uses (11) and (12) to compute an estimate of
p̂
(tl)
i (the superscripttl indicates transfer learning) given

by

p̂
(tl)
i =

Ŝ
(tar)
i + Ŝs

i
∑

x∈{B(0,R)
⋂

Φu}
kx +m

. (13)

Using the estimate given by (13), a lower bound on the training
time is obtained as stated in the next theorem.

Theorem3: Let g(πi) , exp{−λsπγ
2
[

1− (1− πi)
M
]

}.
Then, for any accuracy

ǫ >
2B supΠ

{

∑N
i=1 g(πi)

}

R0
‖P− Q‖∞, (14)

with a probability of at least1−δ, a throughput of̂T∗ ≤ T∗+ǫ
can be achieved using the estimate in (13) provided the training
time τ satisfies the following condition:

τ ≥







{

1

λr(1−e
−2ǫ2pq )

log
(

1
1−Λ

)

}+

, if λu > ρ,

∞, otherwise,
(15)

where ρ , 1
πR2

(

log 2N
δ − 2ǫ2pqm

)

, ǫpq , ǭ − ‖P − Q‖∞,
Λ , 1

λuπR2

(

log 2N
δ − 2ǫ2pqm

)

, andǭ , R0ǫ

2B supΠ{
∑

N
i=1 g(πi)}

.

Proof: See Appendix C.
From Theorem 3, we see that under suitable conditions the

TL-based approach performs better than the source domain
sample-based agnostic approach. The following inferencesare
drawn:

(1) The minimum user density to achieve a finite delay is
reduced by a positive offset2ǫ2pqm. In fact, for m >

log ( 2N
δ )

2(ǭ−‖P−Q‖∞)2 , a finite delay can be achieved for all user
densities which provides a significant advantage.

(2) The finite delay achieved is smaller compared to the source
domain sample-based agnostic approach for large enough
numbers of source samples, and the distributions are

“close.” This is made precise in the following proposition,
and a detailed discussion is provided in Section V.
Proposition1: For any ǫ > 0 and δ ∈ [0, 1], the TL-
based approach performs better than the source sample-
based agnostic approach provided the numberm of source
samples satisfiesm ≥ 1

2ǫ2pq

[

log
(

2N
δ

)

− F
]+

, and the
distributions satisfy the following condition:

‖P− Q‖∞ <
ǫR0

2Bλuπγ2N
, (16)

whereF , λuπR
2

(

1− exp

{

1−e
−2ǫ2pq

1−e−2ǭ2
log (1− L)

})

andL , 1
λuπR2 log

(

2N
δ

)

.
In fact, (16) provides the guiding principle to decide if
the samples drawn from the distributionQ should be used
to estimate the distributionP. In general, the distance
between the distributions has to be estimated from the
available samples (relative to the distribution onP).

An estimate of the popularity profile can also be obtained
by linearly combining its estimates obtained from the source
domain and target domain samples. In particular, we have

p̂i = αp̂
(s)
i + (1 − α)p̂

(t)
i , (17)

wherep̂(s)i and p̂(t)i are the estimates of the popularity profile
obtained from the source domain samples and the target
domain samples, respectively. The estimates are given by

p̂
(t)
i =

Ŝ
(tar)
i

∑

u∈{B(0,R)
⋂

Φu}
ku

, (18)

p̂
(s)
i =

Ŝs
i

m
. (19)

Note that, in this case the coefficients are independent of
the realization of the network. For the estimate proposed in
(17), we have the following result:

Theorem4: For any accuracy

ǫ >
2B supΠ

{

∑N
i=1 g(πi)

}

R0
‖P− Q‖∞, (20)

with a probability of at least1−δ, a throughput of̂T∗ ≤ T
∗+ǫ

can be achieved using the estimate in (17) provided the training
time τ satisfies the condition specified by (21) at the top of
the next page, where

ρthresh,
1

πR2

(

log

(

2N

δ

)

+ log

{

1

1−
(

2N
δ

)

exp{−2ω̄2m}

})

,

ǭ , R0ǫ

2B supΠ{
∑

N
i=1 g(πi)}

, g∗t ,
(

1− exp
{

−2η2
})

, g(πi) ,

exp{−λsπγ
2
[

1− (1− πi)
M
]

} andω ,
ǭ−(1−α)η

α > 0. This
is valid for all 0 < α < min

{

ǭ
G , 1

}

and 0 ≤ η < ǭ−αG
1−α ,

whereG , ‖P− Q‖∞ +
√

1
2m log 2N

δ .
Proof: See Appendix D.
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1
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δ ) exp{−2ω̄2m}
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, if λu > ρthres,

∞, otherwise,

(21)

IV. PARAMETRIZED FAMILY OF POPULARITY PROFILE

In the previous sections, no structure was imposed on the
popularity profile. In practice, the popularity profile is modeled
using a parametric family of distributions such as the Zipf
distribution [38], which, with a one-dimensional parameter
Θ ∈ R, is specified bypΘ,i =

1/iΘ
∑

N
j=1 1/jΘ

, i = 1, 2, . . . , N . To

obtain an estimate of the Zipf distribution it suffices to find
the parameterΘ; estimating a single parameter requires fewer
samples which can potentially reduce the training time. We
now derive bounds on the training time when the popularity
profile belongs to a parametric family of distributions. We
begin with the following assumption:
Assumption 1: Let the family of parametrized popularity
distributions be defined byP = {PΘ : Θ ⊆ [a, b]d, a < b}.
Further, for allΘ ⊆ [a, b]d, PΘ satisfies

∑N
i=1 ‖∂ΘpΘ,i‖2 <

C, whereC < ∞ is independent ofN , and ∂ΘpΘ,i ∈ R
d

denotes the sub-differential ofpΘ,i. For example, the Zipf
distribution pθ,i = 1/iα

∑

N
j=1 1/jα

, i = 1, 2, . . . , N satisfies this
property.

Let the true underlying parameter beΘ := {Θ1, . . . ,Θd}.
Note that Θj ∈ [a, b] for all j = 1, 2, . . . , d. Let
the BS observenp (number of requests) i.i.d samples
(Xt,1, Xt,2, . . . , Xt,np

) ∈ X
np

t drawn from the distribution

PΘ. Also, let Θ̂(i)
np :=

(

Θ̂np,i,1, Θ̂np,i,2, . . . , Θ̂np,i,d

)

∈ R
d,

i = 1, 2, . . . , np denote the estimate ofΘ, based on a single
observation, i.e.,Θ̂(i)

np = f(Xt,i), i = 1, 2, . . . , np, where
f : Xt → [a, b]d is an unbiased estimator ofΘ. In the
above,np denotes the number of requests made by the users
corresponding to the BSz in a time interval of[0, τ ]. Since

f(·) is an unbiased estimator ofΘ, we haveE
{

Θ̂
(i)
np |Θ

}

= Θ

for all i = 1, 2, . . . , np. The estimate ofΘ usingnp samples
is obtained as follows:

Θ̂np
=

1

np

np
∑

j=1

Θ̂(j)
np

. (22)

Note thatΘ̂np
:= (Θ̂np,1, Θ̂np,2, . . . , Θ̂np,d), is also an unbi-

ased estimator ofΘ, i.e.,E
{

Θ̂np
|Θ, np

}

= Θ. The following
theorem provides a bound on the time complexity for a family
of parameterized popularity profile satisfyingAssumption 1.

Theorem5: For the familyPΘ satisfyingAssumption 1,
and given the estimator̂Θnp

, T̂∗ ≤ T∗ + ǫ for every ǫ > 0
with probability at least1− δ if

τ >
1

λr(1− e−σ2)
log

(

1

1− 1
λuπR2 log

2d
δ

)

, (23)

for λu > 1
πR2 log

2d
δ , otherwise τ = ∞, where σ2 ,

2Ω2

dC2(b−a)2 andΩ , R0ǫ
2B .

Proof: See Appendix E.
From (23), we see that the bound on the training time is

independent ofN , and from a scaling perspective, the training
time scales withd, λr andλu. This amounts to a significant
improvement compared to the nonparametric model studied in
the previous sections of this paper, where the training timeis
shown to scale asN2 logN . A natural extension is to utilize
the knowledge obtained from users’ interactions with a social
community, namely, the source domain samples. In the next
subsection, we analyze the time complexity bound employing
the TL-based approach for popularity profiles modeled using
a parametric family of distributions.

A. Transfer Learning for Parametric Models

In this subsection, we derive a lower bound on the training
time when the BS has access to the source domain samples
along with the target domain samples. Let the source domain
samples(Xs,1, Xs,2, . . . , Xs,m) ∈ Xm

s drawn i.i.d. fromPΘs
,

whereΘs ∈ R
d. Further, as before, we assume that∃ f :

Xs → R
d, an unbiased estimate ofΘs. As before, let the BS

observenp i.i.d. target domain samples fromXnp

t drawn from
PΘ. An estimate ofΘ based on the available source and target
domain samples is obtained as follows:

(i) Using the source domain samples an estimate ofΘs,
denoted̂Θs, is obtained in manner similar to that of target
domain parameterΘ as explained earlier in this section.

(ii) Using the target domain samples, an estimate ofΘ
denotedΘ̂t is obtained as in (22).

(iii) The two estimates are fused to get an estimate ofΘ as
Θ̂tl , λΘ̂t+(1−λ)Θ̂s, whereλ ∈ [0, 1] will be described
shortly.

Theorem6: For the family PΘ′ satisfying Assumption
1, and given the estimator̂Θtl , λΘ̂t + (1 − λ)Θ̂s,
we have T̂∗ ≤ T∗ + ǫ for every ǫ > 0 with a prob-
ability of at least 1 − δ if the condition specified by
(24) at the top of the next page is satisfied, forλu >

1
πR2

(

log 2d
δ + log 1

1− 2d
δ

exp
{

−
2m(Ω̄−‖Θ−Θs‖2)2

(b−a)2

}

)

. This holds

for all Dt < Ω
C − λḠ and 0 < λ < min

{

Ω
CḠ

, 1
}

. Here,

Ω̄ , 1
λ

(

Ω
C −Dt

)

, σ2
t ,

2D2
t

d(1−λ)2(b−a)2 , Ω , ǫ̃
supi g(πi)

,

ǫ̃ , R0ǫ
2B , andḠ := ‖Θ−Θs‖2 + (b− a)

√

1
2m log 2d

δ .

Proof: See Appendix F.
It is important to note that the aformentioned bound is inde-
pendent ofN . In the following section, we provide numerical
results to get further insights into the expressions derived in
the paper.
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Fig. 1: Training duration versusN , corresponding to Theorems
2 and 3.

V. NUMERICAL RESULTS

In this section, we provide numerical results and de-
rive insights into the analyses carried out in the previ-
ous sections. The parameter values used in our calculations
are as follows:B = 107 bits, R0 = 106 bits/s, γ =
100m, λu = 0.001 nodes/m2, λr = 1/360 requests/s,
λs = 10−5 nodes/m2, δ = 0.02, R = 2 Km, m =
105 samples,βe = 0.6 and βl = 0.2. ǫ is chosen as
a fraction of a lower bound on the offloading loss,i.e.,
T(Π,P) ≥ B

R0
exp{−λsπγ

2}. In particular,ǫ = fraction×
B
R0

exp{−λsπγ
2}. Further,‖P − Q‖∞ = 0.1

(

ǫR0

2BN

)

which
for the above parameters is of the order of10/N .

Fig. 1 shows a plot of the lower bounds on the training
duration obtained in Theorems 2 and 3 as functions of the
supportN . It is seen that, forN ≤ 70 the TL-based approach
provides significant performance improvement. However, for
N > 70, the performance of the TL-based approach de-
grades compared to the approach that uses only the source
domain samples (and, hence, can be called agnostic). This
suggests that for larger values ofN , the estimate of the
popularity profile obtained using (17) performs poorly due to
incorrect fusion of the estimates obtained from source and
target domains. Fig. 2 shows the plots of the lower bound
in Theorem 4 corresponding to the estimate obtained by a
fixed linear combination of the source and target estimates
(see (17)). As seen in the figure, this does not bring any
performance improvement and in fact sometimes performs
poorly compared to the source domain agnostic approach.
This is because the fixed linear combination does not have
the flexibility to adapt to different realizations of the network,
proving the sub-optimality of the estimate in (17) compared
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Fig. 2: Training duration versusN , corresponding to Theo-
rem 4.
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Fig. 3: Training duration versusm for a fixedN(= 10).

to that in (13). It is also seen that the coefficients used in the
estimate that adapts to the varying realizations of the network
as in (17) is beneficial.

Fig. 3 shows a plot similar to that in Fig. 1 but with
N = 10 and varyingm. It can be seen that the TL-based
approach performs better for allm ≥ 1000 demonstrating its
applicability in practice. As seen, the performance is better
for higher values of the fraction which corroborates intuition.
Fig. 4 also shows a plot of time duration versusm for a fixed
N = 10. It can be seen that the estimate in (17) outperforms
the agnostic approach; however, this is observed at very high
values of source domain samples (m = 10500 andm = 16000
for fraction = 0.5 and fraction= 0.4, respectively). Thus,
although the TL-based approach using the estimate (17) has
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some benefits, it is not desirable for practical applications.
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is modeled using a parametric family of distributions.C =
2, fraction= 0.6, ‖Θ−Θs‖2 = 0.1, (b − a) = 0.5.

The main benefits of the TL-based approach are shown in
Fig. 5 for the parametric family of popularity profiles. It can be
seen that the TL-based approach performs significantly better
than the source domain agnostic approach for values ofm as
low as 10. This is because the number of parameters to be
estimated scales with the dimension ofΘ rather than with the
support. In particular, asd increases the training duration also
increases, which is quite expected. However, the delay scales
only linearly ind as compared to quadratic scaling experienced
with the nonparametric method.

VI. CONCLUDING REMARKS

The popularity profile for caching in distributed heteroge-
nous cellular networks was estimated at BS using the available
instantaneous demands from users in a time interval[0, τ ]. We
showed that a training timeτ to achieve anǫ > 0 difference
between the achieved cost and the optimal cost was finite,
provided the user density was greater than a threshold;τ was

shown to scale as square of the support of the popularity
profile. A TL-based approach was proposed to estimate the
popularity profile, and a condition was derived under which
it performed better than the target domain sample only based
approach. Although TL-based approach performs better, the
error that is achieved in (20) depends on‖P−Q‖∞, suggesting
that lower the distance between the two distributions better
the TL scheme performs. From Proposition 1, the benefits of
using target domain samples can only be realized with the
knowledge of the distance‖P−Q‖∞. The main benefit of the
TL-based approach is recognized when the popularity profile
is modeled using a parametric family of distributions. In this
case, the delay is independent ofN and scales only linearly
with the dimension of the distribution parameter. In practice,
caching depends on several factors such as the scheduling
scheme used, which in turn depends on the channel conditions,
QoS requirements,etc. An important assumption that we make
is that if the requested file is present in one (or more) of
the neighboring SBSs, the transmissions are scheduled within
a tolerable time frame. In the case of caching, this time
duration could be slightly relaxed, and can be thought of as an
abstraction of the scheduling scheme employed. If the file is
not present, regardless of the scheduling policy, the file cannot
be served locally. Hence, the approach that we have leads to
a lower bound, albeit pessimistic, on the training time. Thus,
even under pessimistic situations, the training time scales as
N2 logN for achieving an offloading loss that isǫ > 0 away
from the optimal offloading loss.

ACKNOWLEDGEMENT

K. G. Nagananda would like to thank Chandra R. Murthy,
at the Indian Institute of Science, for providing the lab space
during the course of this work. The work of H. Vincent
Poor was supported in part by the U. S. National Science
Foundation under Grant CNS-1456793. The authors thank the
anonymous referees for their comments and suggestions.

REFERENCES

[1] A. Furuskar, J. Charles, M. Frodigh, S. Jeux, M. Sayed Hassan,
A. Saadani, A. Stidwell, J. Soder, and B. Timus, “Refined statistical
analysis of evolution approaches for wireless networks,”IEEE Trans.
Wireless Commun., vol. 14, no. 5, pp. 2700 – 2710, May 2015.

[2] S.-F. Chou, T.-C. Chiu, Y.-J. Yu, and A.-C. Pang, “Mobilesmall cell
deployment for next generation cellular networks,” inProc. IEEE Global
Commun. Conf., Dec. 2014, pp. 4852–4857.

[3] M. Bennis, M. Simsek, A. Czylwik, W. Saad, S. Valentin, and M. Deb-
bah, “When cellular meets WiFi in wireless small cell networks,” IEEE
Commun. Magazine, vol. 51, no. 6, pp. 44–50, Jun. 2013.

[4] J. Kim, C. Jeong, H. Yu, and J. Park, “Areal capacity limiton the growth
of small cell density in heterogeneous networks,” inProc. IEEE Global
Commun. Conf., Dec. 2014, pp. 4263–4268.

[5] Y.-B. Lin, W.-R. Lai, and J.-J. Chen, “Effects of cache mechanism on
wireless data access,”IEEE Trans. Wireless Commun., vol. 2, no. 6, pp.
1247–1258, Nov. 2003.
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APPENDIX A
PROOF OFTHEOREM 1

The first term in (2),E
∑N

i=1 1{fi /∈ No}1{fi requested},
can be written as

Ens

N
∑

i=1

E1{fi requested}Pr{fi /∈ No| |No| = ns}

(a)
= Ens

N
∑

i=1

[Pr{fi /∈ a, for any a ∈ No}]
ns pi

(b)
=

N
∑

i=1

Ens
(1 − πi)

nsMpi

(c)
= E

N
∑

i=1

∞
∑

j=0

(1− πi)
jM e{−λsπγ

2} (λsπγ
2)j

j!

=

N
∑

i=1

exp {−U} pi,

whereU , λsπγ
2
[

1− (1− πi)
M
]

. In the above exposition,
(a) follows from the fact that the proposed random caching
scheme is independent across users,(b) is due to the fixed
cache size (M ), and(c) follows sincens is a PPP with mean
λsπγ

2, wherens is the number of SBSs in a circular area of
radiusγ. This completes the proof of Theorem 1.�

APPENDIX B
PROOF OFTHEOREM 2

For any ǫ > 0, the inequalityPr{T̂∗ ≥ T∗ + ǫ} ≤
Pr
{

2 sup
1�Π�0:1TΠ=1 |∆T| > ǫ}

}

is proved, where∆T ,

T(Π, P̂)−T(Π,P). And, T̂∗−T∗ can be written as (see [42])

T̂
∗ − inf

Π
T(Π,P) ≤ T̂∗ − T̂ + sup

Π

∣

∣

∣T(Π, P̂)− T(Π,P)
∣

∣

∣

≤ 2 sup
Π

∣

∣

∣T(Π, P̂)− T(Π,P)
∣

∣

∣ ,

where T̂ , T(Π, P̂), thus proving the inequality. Sub-
stituting for T(Π, P̂) and T(Π,P) from (4) we get
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Pr
{

supΠ

∣

∣

∣

∑N
i=1 g(πi)(p̂i − pi)

∣

∣

∣
> ǫ̃
}

, which can be upper
bounded as follows:

Pr

{

sup
Π

N
∑

i=1

g(πi)δ̂p,i > ǫ̃

}

≤ Pr

{

max
i=1,2,...,N

δ̂p,i > ǭ

}

≤
N
∑

i=1

Pr
{

δ̂p,i > ǭ
}

≤ 2NE
[

exp
{

−2ǭ2np

}]

,(25)

where δ̂p,i , |p̂i − pi|, ǫ̃ , R0ǫ
2B , ǭ , ǫ̃

supΠ{
∑

N
i=1 g(πi)}

, and

g(πi) , exp{−λsπγ
2
[

1− (1− πi)
M
]

}, and the last inequal-
ity follows by applying Hoeffdings inequality (see [43]) since
the estimator̂P is unbiased andπi, π ∈ [0, 1]. Note that, the
expectation in (25) is with respect tonp. Conditioned on the
numbernR of users in the coverage area of BS,np is a Poisson
distributed random variable with densitynRλrτ . Therefore,
2NE

∑∞
n=0 exp {−ḡ} (λrnRτ)n

n! = 2NEnR
exp{−λrnRτg

∗},
where ḡ ,

(

2ǭ2k + λrnRτ
)

and g∗ ,
(

1− exp
{

−2ǭ2
})

which can further be simplified as

2N

∞
∑

k=0

exp{−λrkτg
∗} exp{−λuπR

2}
(λuπR

2)k

k!

= 2N exp{−λuπR
2 (1− exp {−λrτg

∗}) . (26)

We see thatPr
{

supΠ |∆T| > ǫ
2

}

≤ δ if (26) is upper bounded
by δ, resulting in

τ ≥
1

λrg∗
log

(

1

1− 1
λuπR2 log

2N
δ

)

,

provided λu > 1
πR2 log

2N
δ , otherwise τ = ∞, proving

Theorem 2.�

APPENDIX C
PROOF OFTHEOREM 3

It is easy to see that Pr{T̂∗ ≥ T∗ +

ǫ} ≤ Pr
{

sup1≤i≤N

∣

∣

∣
p̂
(tl)
i − pi

∣

∣

∣
> ǭ
}

, where

ǭ , R0ǫ

2B supΠ{
∑

N
i=1 g(πi)}

and g(πi) ,

exp{−λsπγ
2
[

1− (1 − πi)
M
]

}. Denote by np the total
number of requests in the coverage area of the BS.
Conditioned on the number of usersnR in the coverage area
of the BS,np is a Poisson distributed random variable with

density nRλr. Further,E
{

p̂
(tl)
i |np

}

=
np

np+mpi +
m

np+mqi.
Using this, we can write

Pr

{

sup
1≤i≤N

∣

∣

∣p̂
(tl)
i − Ep̂

(tl)
i + Ep̂

(tl)
i − pi

∣

∣

∣ > ǭ

}

≤ Pr

{

sup
1≤i≤N

∣

∣

∣p̂
(tl)
i − Ep̂

(tl)
i

∣

∣

∣+
∣

∣

∣Ep̂
(tl)
i − pi

∣

∣

∣ > ǭ

}

≤Pr

{

sup
1≤i≤N

∣

∣

∣p̂
(tl)
i − Ep̂

(tl)
i

∣

∣

∣ > ǭ− sup
i∈[1,N ]

∣

∣

∣Ep̂
(tl)
i − pi

∣

∣

∣

}

≤Pr

{

sup
1≤i≤N

∣

∣

∣p̂
(tl)
i − Ep̂

(tl)
i

∣

∣

∣ > ǭ−
m

np +m
‖P− Q‖∞

}

≤ Enp
Pr

{

sup
1≤i≤N

∣

∣

∣
p̂
(tl)
i − Ep̂

(tl)
i

∣

∣

∣
> ǭ− ‖P− Q‖∞ | np

}

≤ NEnp
Pr
{∣

∣

∣
p̂
(tl)
i − Ep̂

(tl)
i

∣

∣

∣
> ǭ− ‖P− Q‖∞ | np

}

,

provided ǭ > ‖P − Q‖∞, where ‖P − Q‖∞ ,

supi∈[1,N ] |qi − pi|. From Hoeffding’s inequality,

2NEnp
exp

{

−2ǫ2pq(np +m)
}

= 2NEnR
exp

{

−(2ǫ2pqm+ λrnRτ)
}

∞
∑

k=0

ak

k!
,

= 2N exp
{

−2ǫ2pqm
}

EnR
exp{−ḡpq}

= 2N exp
{

−2ǫ2pqm
}

exp{−λuπR
2} ×

∞
∑

l=0

exp{−λrlτ(1 − exp{−2ǫ2pq})}
(λuπR

2)l

l!
,(27)

where a , λrnRτ exp
{

−2ǫ2pq
}

, ǫpq , ǭ −

‖P − Q‖∞ and ḡpq , λrnRτ(1 − exp{−2ǫ2pq}).
Therefore, 2NEnp

exp
{

−2ǫ2pq(np +m)
}

=
2 exp

{

−2ǫ2pqm
}

exp{−λuπR
2t}, where

t ,
(

1− exp{−λrτ
(

1− exp{−2ǫ2pq}
)

}
)

, and is at most
δ > 0 if

τ ≥
1

λr(1 − e−2ǫ2pq)
log

(

1

1− 1
λuπR2

(

log 2N
δ − 2ǫ2pqm

)

)

, (28)

providedλu > 1
πR2

(

log 2N
δ − 2ǫ2pqm

)

, otherwiseτ = ∞,
thus proving Theorem 3.�

APPENDIX D
PROOF OFTHEOREM 4

We begin with Pr{T̂∗ ≥ T∗ +

ǫ} ≤ Pr
{

sup1≤i≤N

∣

∣

∣p̂
(tl)
i − pi

∣

∣

∣ > ǭ
}

≤
∑N

i=1 Pr
{∣

∣

∣
p̂
(tl)
i − pi

∣

∣

∣
> ǭ
}

, where ǭ , R0ǫ

2B supΠ{
∑

N
i=1 g(πi)}

and g(πi) , exp{−λsπγ
2
[

1− (1− πi)
M
]

}. Each term in
the summation can be upper bounded as shown in (29) - (32)
at the top of the next page, whereω ,

ǭ−(1−α)η
α > 0.

From (26), we have Pr
{∣

∣

∣
p̂
(t)
i − pi

∣

∣

∣
> η

}

=

2 exp{−λuπR
2 (1− exp {−λrτg

∗
t }), where g∗t ,

(

1− exp
{

−2η2
})

and the second term can be bounded as
follows:

Pr
{∣

∣

∣
p̂
(s)
i − pi

∣

∣

∣
> ω

}

= Pr
{∣

∣

∣
p̂
(s)
i − qi + qi − pi

∣

∣

∣
> ω

}

(a)

≤ Pr
{∣

∣

∣p̂
(s)
i − qi

∣

∣

∣ > ω − ‖P− Q‖∞

}

,

where (a) follows from the triangular inequality and using
‖P − Q‖∞ = supi |pi − qi|. Note that, the inequality (a) is
valid if ω > ‖P − Q‖∞. Using Ep̂i = pi and Hoeffding’s

inequality, we havePr
{∣

∣

∣
p̂
(s)
i − qi

∣

∣

∣
> ω − ‖P− Q‖∞

}

≤

2 exp
{

−2(ω − ‖P− Q‖∞)2m
}

. Therefore,

N
∑

i=1

Pr
{∣

∣

∣p̂
(tl)
i − pi

∣

∣

∣ > ǭ
}

≤ 2N [exp
{

−2ω̄2m
}

+exp{−λuπR
2 (1− exp {−λrτg

∗
t })], (33)



Pr
{∣

∣

∣
p̂
(tl)
i − pi

∣

∣

∣
> ǭ
}

= Pr
{∣

∣

∣
αp̂

(s)
i + (1− α)p̂

(t)
i )− pi

∣

∣

∣
> ǭ
}

(29)

≤ Pr
{

α
∣

∣

∣(p̂
(s)
i − pi)

∣

∣

∣+ (1− α)
∣

∣

∣(p̂
(t)
i − pi)

∣

∣

∣ > ǭ
}

(30)

= Pr
{[

α
∣

∣

∣p̂
(s)
i − pi

∣

∣

∣+ (1− α)
∣

∣

∣p̂
(t)
i − pi

∣

∣

∣ > ǭ
]

⋂

∣

∣

∣p̂
(t)
i − pi

∣

∣

∣ > η
}

(31)

+Pr
{

α
∣

∣

∣p̂
(s)
i − pi

∣

∣

∣+ (1− α)
∣

∣

∣p̂
(t)
i − pi

∣

∣

∣ > ǭ
⋂

∣

∣

∣p̂
(t)
i − pi

∣

∣

∣ ≤ η
}

≤ Pr
{∣

∣

∣p̂
(t)
i − pi

∣

∣

∣ > η
}

+ Pr
{∣

∣

∣p̂
(s)
i − pi

∣

∣

∣ > ω
}

, (32)

where ω̄ = ω − ‖P − Q‖∞ > 0. Finally, it is clear that (33)
can upper bounded byδ provided

τ ≥
1

λrg∗t
log

[

1

1− 1
λuπR2 [log (A1) + log (B1)]

]

, (34)

where A1 = 2N
δ , B1 = 1

1−( 2N
δ ) exp{−2ω̄2m}

, and

λu > 1
πR2

(

log
(

2N
δ

)

+ log

{

1

1−( 2N
δ ) exp{−2ω̄2m}

})

, which

is valid if
(

2N
δ

)

exp{−2ω̄2m} < 1. This along withω−‖P−
Q‖∞ > 0 leads to the constraint stated in Theorem 4.�

APPENDIX E
PROOF OFTHEOREM 5

We begin with

Pr{T̂∗ ≥ T
∗ + ǫ}

≤ Pr

{

sup
0≤π≤1

g(π)

N
∑

i=1

∣

∣

∣pΘ̂np ,i
− pΘ,i

∣

∣

∣ > Ω

}

(a)

≤ Pr

{

N
∑

i=1

∣

∣

∣pΘ̂np ,i
− pΘ,i

∣

∣

∣ > Ω

}

,

where (a) follows from the fact thatsup0≤π≤1 g(π) =

1, pΘ̂np ,i
is the estimate of pΘ,i, Ω , R0ǫ

2B and

g(π) , exp{−λuπγ
2
[

1− (1 − πi)
M
]

}. By using the re-
mainder form of the Taylor series,pΘ̂np ,i

= pΘ,i + (Θ −

Θ̂np
)∂pΘ∗,i

∣

∣

Θ∗∈[Θ,Θ̂np ]
, where [Θ, Θ̂np

] represents the line

joining the pointsΘ and Θ̂np
, leading to (recall that thei-

th component of̂Θnp
is denoted bŷΘnp,i, i = 1, 2, . . . , d)

Pr

{

N
∑

i=1

∣

∣

∣pΘ̂np ,i
− pΘ,i

∣

∣

∣ > Ω

}

(a)

≤ Pr







‖Θ̂np
−Θ‖2 sup

Θ∗∈[Θ,Θ̂np ]

N
∑

i=1

‖∂pΘ∗,i‖2 > Ω







≤ Pr

{

‖Θ̂np
−Θ‖22 >

Ω2

C2

}

(b)

≤ Pr

{

sup
1≤i≤d

∣

∣

∣Θ̂np,i −Θi

∣

∣

∣

2

>
Ω2

dC2

}

≤ dPr

{

∣

∣

∣Θ̂np,i −Θi

∣

∣

∣

2

>
Ω2

dC2

}

, (35)

where (a) follows from the Cauchy-Schwartz inequality
and Assumption 1 in Section IV, and(b) follows from

the fact that ‖Θ̂np
− Θ‖22 =

∑d
i=1

∣

∣

∣Θ̂np,i −Θi

∣

∣

∣

2

≤

d sup1≤i≤d

∣

∣

∣Θ̂np,i −Θi

∣

∣

∣

2

.

First, note that for alli, Θ̂np,i is an unbiased estimate ofΘi.
Further,a ≤ Θj ≤ b for j = 1, 2, . . . , d. Thus, by applying
Hoeffding’s inequality, we have

dPr

{

∣

∣

∣Θ̂np,i −Θi

∣

∣

∣

2

>
Ω2

dC2

}

≤ 2dEnp
exp

{

−npσ
2
}

,

(36)
whereσ2 , 2Ω2

dC2(b−a)2 . Conditioned on the number of users
(denotednR) in a radius ofR around the BS,np is PPP with
densityλrτnR. Using this fact in (36), we can write

dPr

{

∣

∣

∣Θ̂np,i −Θi

∣

∣

∣

2

>
Ω2

dC2

}

≤ 2dEnR

{

Enp

[

exp
{

−npσ
2
}

|np

]}

= 2dEnR

∞
∑

k=0

exp{−kσ2}e−nRλrτ (nRλrτ)
k

k!

= 2dEnR
e−nRλrτ

∞
∑

k=0

(nRλrτe
−σ2

)k

k!

= 2dEnR
exp{−nRλrτ(1 + e−σ2

)}

= 2d

∞
∑

k=0

exp{−kλrτ(1 + e−σ2

)}
(λuπR

2)k

k!
e−λuπR

2

= fσ2(τ), (37)

wherefσ2(τ) , 2d exp
{

−λuπR
2
(

1− exp{−λrτ(1 − e−σ2

)}
)}

is a monotonically decreasing function ofτ for all τ > 0.

Thus, fσ2(τ) ≤ δ if τ > 1
λr(1−e−σ2 )

log

(

1
1− 1

λuπR2 log 2d
δ

)

,

for λu > 1
πR2 log

2d
δ , proving Theorem 5.�
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We begin with

Pr{T̂∗ ≥ T
∗ + ǫ} ≤ Pr

{

sup
0≤π≤1

g(π)

N
∑

i=1

∣

∣

∣pΘ̂tl,i
− pΘ,i

∣

∣

∣ > ǫ̃

}

≤ Pr

{

N
∑

i=1

∣

∣

∣pΘ̂tl,i
− pΘ,i

∣

∣

∣ > Ω

}

,

where pΘ̂tl,i
is the estimate ofpΘ,i using the TL-based

approach described in Section IV-A,Ω , R0ǫ
2B , and g(π) ,

exp{−λuπγ
2
[

1− (1− πi)
M
]

}. Note that,Θ̂tl , λΘ̂s +(1−



Pr{T̂∗ ≥ T
∗ + ǫ} ≤ Pr

{

‖Θ̂tl −Θ‖2 >
Ω

C

}

(38)

(a)

≤ Pr

{

λ‖Θ̂s −Θ‖2 + (1− λ)‖Θ̂t −Θ‖2 >
Ω

C

}

(39)

= Pr

{

λ‖Θ̂s −Θ‖2 + (1− λ)‖Θ̂t −Θ‖2 >
Ω

C

⋂

E

}

+Pr

{

λ‖Θ̂s −Θ‖2 + (1− λ)‖Θ̂t −Θ‖2 >
Ω

C

⋂

E
c

}

(40)

(b)

≤ Pr

{

λ‖Θ̂s −Θ‖2 >
Ω

C
−Dt

}

+ Pr

{

‖Θ̂t −Θ‖2 >
Dt

1− λ

}

, (41)

λ)Θ̂t. Further, from the remainder form of the Taylor series
aroundΘ (true parameter), we getpΘ̂tl,i

= pΘ,i + (Θ̂tl −

Θ)∂pΘ|Θ∈[Θtl,Θ], i = 1, 2, . . . , N , which implies that

N
∑

i=1

∣

∣

∣pΘ̂tl,i
− pΘ,i

∣

∣

∣ =

N
∑

i=1

∣

∣

∣(Θ̂tl −Θ)∂pΘ|Θ∈[Θtl,Θ]

∣

∣

∣

(a)

≤ ‖Θ̂tl −Θ‖2

N
∑

i=1

‖∂pΘ|Θ∈[Θtl,Θ]‖2

(b)

≤ C‖Θ̂tl −Θ‖2,

where(a) follows from Cauchy-Schwartz inequality and(b)
follows from Assumption 1 in Section IV. Therefore we have
(38) - (41) at the top of this page, where(a) follows from using
Θ̂tl = λΘ̂s + (1 − λ)Θ̂t followed by the triangle inequality.
Here,E , {‖Θ̂t − Θ‖2 < Dt

1−λ}, and we letDt < Ω/C. The
first term can be expressed as follows:

Pr

{

‖Θ̂s −Θ‖2 >
1

λ

(

Ω

C
−Dt

)}

≤ Pr
{

‖Θ̂s −Θs‖2 + ‖Θs −Θ‖2 > Ω̄2
}

≤ Pr

{

sup
1≤i≤d

∣

∣

∣Θ̂s,i −Θs,i

∣

∣

∣

2

>
(

Ω̄− ‖Θs −Θ‖2
)2
}

≤ dPr

{

∣

∣

∣Θ̂s,i −Θs,i

∣

∣

∣

2

>
(

Ω̄− ‖Θs −Θ‖2
)2
}

, (42)

whereΩ̄ , 1
λ

(

Ω
C −Dt

)

> ‖Θs−Θ‖2. However,Θ̂s,i ∈ [a, b]
is an unbiased estimator ofΘs,i. Therefore, by Hoeffding’s
inequality, we can write

dPr

{

∣

∣

∣Θ̂s,i −Θs,i

∣

∣

∣

2

>
(

Ω̄− ‖Θs −Θ‖2
)2
}

≤ 2d exp

{

−
2m
(

Ω̄− ‖Θs −Θ‖2
)2

(b− a)2

}

. (43)

Next, we have

Pr
{

‖Θ̂t −Θ‖2 >
Dt

1−λ

}

≤

2d exp
{

−λuπR
2
(

1− exp{−λrτ(1 − e−σ2
t )}
)}

, (44)

whereσ2
t :=

D2
t

2(b−a)2(1−λ)2 , and the inequality follows from

(37) by replacingΩ2/dC2 with D2
t

(1−λ)2 .

Therefore,Pr{T̂∗ ≥ T∗ + ǫ} will be upperbounded by

2d exp

{

−
2m
(

Ω̄− ‖Θs −Θ‖2
)2

(b− a)2

}

+2d exp
{

−λuπR
2
(

1− e{−λrτ(1−e−σ2
t )}
)}

,

which is less than or equal toδ if

τ ≥
1

λr(1 − e−σ2
t )

log

(

1

1− 1
λuπR2

(

log 2d
δ + logC1

)

)

,

for λu > 1
πR2

(

log 2d
δ + log 1

1− 2d
δ

exp
{

−
2m(Ω̄−‖Θ−Θs‖2)2

(b−a)2

}

)

,

where

C1 =
1

1− 2d
δ exp

{

− 2m(Ω̄−‖Θ−Θs‖2)2

(b−a)2

}

These together with the conditions̄Ω > ‖Θs − Θ‖2 and
2d
δ exp

{

− 2m(Ω̄−‖Θ−Θs‖2)
2

(b−a)2

}

< 1 proves Theorem 6.�
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