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A Comparison of MIMO Techniques in
Downlink Millimeter Wave Cellular Networks

with Hybrid Beamforming
Mandar N. Kulkarni, Amitava Ghosh and Jeffrey G. Andrews

Abstract—Large antenna arrays will be needed in future
millimeter wave (mmWave) cellular networks, enabling a
large number of different possible antenna architectures
and multiple-input multiple-output (MIMO) techniques. It
is still unclear which MIMO technique is most desirable
as a function of different network parameters. This paper,
therefore, compares the coverage and rate performance
of hybrid beamforming enabled multi-user (MU) MIMO
and single-user spatial multiplexing (SM) with single-user
analog beamforming (SU-BF). A stochastic geometry model
for coverage and rate analysis is proposed for MU-MIMO
mmWave cellular networks, taking into account impor-
tant mmWave-specific hardware constraints for hybrid
analog/digital precoders and combiners, and a blockage-
dependent channel model which is sparse in angular
domain. The analytical results highlight the coverage, rate
and power consumption tradeoffs in multiuser mmWave
networks. With perfect channel state information at the
transmitter and round robin scheduling, MU-MIMO is
usually a better choice than SM or SU-BF in mmWave
cellular networks. This observation, however, neglects any
overhead due to channel acquisition or computational
complexity. Incorporating the impact of such overheads,
our results can be re-interpreted so as to quantify the
minimum allowable efficiency of MU-MIMO to provide
higher rates than SM or SU-BF.

I. INTRODUCTION

A classical question in multi-antenna wireless com-
munications has been to determine which MIMO tech-
nique performs better in different scenarios, for example
based on the channel and interference characteristics.
At mmWave frequencies, several important new factors
must be considered, due to different hardware constraints
on the precoders/combiners and a significantly different
outdoor channel, which is both blockage-dependent and
sparse (low rank) [2]–[4]. In order to compensate for the
large near-field path loss, SU-BF has been the primary
focus of several existing system capacity evaluations
for mmWave cellular networks [2], [5]–[7]. However,
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recently there has been significant work on enabling MU-
MIMO and SM under different antenna architectures that
respect the necessary hardware constraints at mmWave
frequencies. Hybrid analog-digital precoders and com-
biners, receivers with low resolution analog to digital
converters, and continuous aperture phase MIMO with
lens-based beamformers (also called CAP-MIMO) are
prominent antenna architectures being considered [8]–
[10]. Most existing studies on mmWave MIMO, except
for SU-BF, rely on single cell analysis for evaluating
performance of the MIMO techniques and/or system
level simulations for understanding the impact of base
station (BS) deployment scenarios or blockages in the
environment on the coverage and rate performance.
Although analytical models for studying coverage and
rate in SU-BF mmWave networks have been studied [6],
[11], these cannot be directly used for studying other
MIMO techniques like MU-MIMO and SM, as will be
explained in Section I-A.

The goals of this paper are two-fold. First, we propose
a stochastic geometry-based model to study coverage
and per user rate distribution in fully-connected hybrid
beamforming-enabled MU-MIMO mmWave cellular net-
works. Second, we use this analytical model as a tool
for comparing coverage, rate and power consumption for
MU-MIMO, SM and SU-BF mmWave cellular networks.

A. Background and Related Work

Conventionally, BSs are equipped with fully-digital
baseband processing. However, this approach requires
a radio frequency (RF) chain per antenna which is im-
practical for mmWave BSs equipped with large antenna
arrays. Fully analog solutions, on the other hand, require
only a single RF chain for the entire antenna array but
have no capability of digital processing. Hybrid beam-
forming strikes a balance between these two solutions,
wherein the number of RF chains can be designed to
be between 1 (analog beamforming) and the number
of antennas (digital beamforming). In a fully-connected
architecture, each RF chain has phase shifters connected
to all antennas in the array. On the other hand, in
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the array of sub-arrays architecture, the entire array
is divided into sub-arrays and all antennas in a sub-
array are connected via phase shifters to exactly one
RF chain. The fully-connected architecture has higher
beamforming gain than array of sub-arrays, for a fixed
number of antennas. However, the power consumption
and hardware complexity of precoder/combiner is lower
in the latter. With low-complexity yet near optimal
precoding/combining algorithms for MU-MIMO and SM
being proposed with the fully-connected architecture
[4], [12], this approach looks promising for practical
implementation and is the focus of our discussion.

In [12], a joint baseband-RF precoder solution for
MU-MIMO was proposed and proven to be asymp-
totically optimal as the number of antennas become
large. Using this scheme, it was observed that MU-
MIMO can offer higher sum rates than SU-BF. Another
simulation-based work [13] highlighted that per user
rates, including the cell edge rates, can be much higher
with MU-MIMO with appropriate user pairing. It was
observed that exploiting polarization diversity for two
stream transmission to each user further enhances the
gains in using MU-MIMO. This is one particular way
in which SM gains can be obtained in tandem with
MU-MIMO. Another way to get SM gains would be
to rely on the scatterers in the environment [3], [4].
The simulations in [3], [4] showed that SM and SU-
BF could work in tandem to improve capacity. How-
ever, all these works implicitly neglected the aspect of
power consumption at BSs and UEs when comparing the
MIMO techniques. If we were to compare the coverage
and rate performance of SU-BF and MU-MIMO or SM
with fixed power consumption per unit area and fixed
number of antennas per BS, we can deploy a much
denser mmWave network with SU-BF than MU-MIMO
or SM. This significantly affects the comparisons as will
be shown in Section V, since unlike in conventional
cellular networks [14], densifying a mmWave network
boosts the coverage and capacity notably [6], [7].

The above mentioned studies either rely on system-
level simulations or on single cell analysis. There is
no analytical model for MU-MIMO or SM mmWave
networks that incorporates the impact of hybrid pre-
coders and combiners and the channel sparsity. Analysis
for MIMO cellular networks has conventionally been
done by capturing the impact of linear precoding and
combining into the distribution of an effective small
scale fading random variable [15]–[18]. In [15], [16],
it was shown that Gamma distribution can be used
to model the small scale fading gain in MU-MIMO
cellular networks employing ZF precoding. Most succes-
sive analytical studies on MU-MIMO cellular networks
using stochastic geometry have relied on this result,
for example [17], [18]. However, justifying this result

assumes fully digital processing and full rank Rayleigh
fading channels. At mmWave frequencies the channel is
expected to be sparse and blockage-dependent [2], [3],
[19], [20]. Thus, the full rank assumption is far from
reality. A recent work [21] proposes an analytical model
for SINR (signal to interference plus noise ratio) in MU-
MIMO mmWave cellular networks but assumes fully
digital processing. But, as described earlier, fully digital
processing is also not realistic at mmWave. Analysis of
multiuser mmWave cellular networks, thus, demands a
new approach. Also, other existing analytical models for
SU-BF enabled mmWave networks assume an equiv-
alent SISO-like system with directional antenna gains
by abstracting underlying signal level details [6], [11].
Further, the analysis in these papers is done for single
path channels. An analytical framework that can be used
as a tool for comparing with different MIMO techniques
needs to incorporate multipath in the channel, which is
a primary feature enabling SM. The key contributions in
this work are as follows.

B. Contributions
1) Tractable Model for Coverage and Rate in MU-

MIMO mmWave Cellular Networks. The analytical
model captures the following mmWave-specific features:
(i) precoding and combining with hybrid beamforming,
and (ii) sparse blockage-dependent multipath channel
model. For simplicity the channel model is assumed to
be non-selective in both time and frequency to focus only
on the spatial aspects. Using Monte-Carlo simulations,
the model is shown to be reasonably accurate for a large
number of antennas at the BSs and user equipments
(UEs) in noise-limited scenarios. In interference-limited
scenarios, upper and lower bounds to the distribution
of the proposed approximate SINR model are derived
under some assumptions and validated with Monte-
Carlo simulations. The fact that our model incorporates
different channel rank for line-of-sight (LOS) and non-
LOS (NLOS) makes it possible to fairly compare an-
alytical results with Monte-Carlo simulations for SM,
which strongly depend on the rank of the channel.
Numerical results reveal the following insights: (i) In
interference-limited scenarios, SINR coverage has a non-
monotonic trend with BS density. The optimum BS
density for SINR coverage decreases with increasing
degree of multiuser transmission. (ii) Although SINR

coverage decreases with MU-MIMO, the median and
peak per user rate increases due to increasing number of
time slots available per user. However, the cell edge rates
suffer with round robin scheduling, which motivates that
the scheduler must explicitly safeguard the rates of edge
users to use MU-MIMO.

2) Comparison of MIMO Techniques Considering
Coverage, Rate and Power Consumption Tradeoffs. With
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perfect channel state information at the transmitter and
neglecting channel acquisition and computational com-
plexity overheads, MU-MIMO usually provides higher
per user throughput compared to SM and SU-BF in
mmWave networks for a fixed density of BSs and fixed
number of antennas per BS/UE. Further note that en-
abling MU-MIMO requires only single RF chain at UEs,
whereas enabling SM requires some baseband combining
at UEs with multiple RF chains. We provide a stochastic
ordering argument which highlights that SNR coverage
normalized by the antenna gains is better for MU-MIMO
than SM asymptotically with the number of antennas at
the BSs and users. SM can outperform MU-MIMO in
scenarios when SM can support more streams than the
number of users that can be served with MU-MIMO.
This boils down to having sufficiently low user density
coupled with sufficiently large number of RF chains at
UEs/BSs and multipath in the channel. Instead of fixing
the density of BSs if power consumption per unit area is
fixed, a denser SU-BF network outperforms MU-MIMO
and SM in terms of per user cell edge rates. However,
the sum rate with MU-MIMO is still usually better
than SU-BF and SM. The above results on sum or per
user rates neglect the possibly increased overheads with
MU-MIMO due to channel acquisition or computational
complexity. Incorporating such factors, our results can be
re-interpreted so as to quantify the minimum allowable
efficiency for MU-MIMO to provide higher data rates
than SM or SU-BF. The definition of minimum allowable
efficiency is formally given in Section III-B.

C. Organization and Notation
Section II sets up the system model. The analytical

model for coverage and rate in MU-MIMO mmWave
networks is developed in Section III. Heuristic com-
parison of coverage and rate with SM is discussed in
Section IV. Section V and VI discusses the numerical
results and conclusions.1.

II. SYSTEM MODEL

Consider a downlink mmWave cellular network oper-
ating at carrier frequency fc and with bandwidth B. It
is assumed that BSs and UEs are distributed in R2 as
independent and homogeneous Poisson point processes
(PPPs) ΦBS and ΦUE, with intensities λBS and λUE,
respectively [14]. Each BS and user is assumed to
employ a uniform linear array (ULA) of size NBS and
NUE, respectively. Full buffer traffic is assumed in this
work.

1Variables in italics are scalar random variables. Small and capital
bold letters indicate vectors and matrices, respectively. An exception
are random spatial locations in R2, which are italicized small letters
x, y, u, v or w. The complex conjugate transpose and pseudo inverse of
A is A∗ and A†, respectively. Convergence in distribution is denoted
by d→.

A. Propagation Model

Path loss from BS at x ∈ ΦBS to a user at u ∈ ΦUE

is given in dB by

L(x, u) = β + 10α log10(||x− u||) + Sx,u, (1)

where β = 20 log10

(
4π
λc

)
is the reference distance path

loss at 1 meter, λc is the wavelength in meters, α is the
path loss exponent, Sx,u ∼ N (0, ξ2) denotes Gaussian
distribution with zero mean and standard deviation ξ.
Note that α and ξ are different for LOS and NLOS links.
A subscript ‘L’ and ‘N’ to α and ξ denote the respective
parameters for LOS and NLOS links, respectively. A
probabilistic blockage model proposed and validated in
[11], [22] is used in this work. According to this model,
the probability that a link of length ||x − u|| is LOS is
pLOS if ||x − u|| ≤ D, for some value of D. All links
longer than D are NLOS.

MmWave channels are expected to be sparse with
very few angles of arrival (AOAs) and departure (AODs)
capturing most of the energy [2], [3], [19], [20]. In this
work, we assume a narrowband geometric channel model
[4], [12], where the channel matrix between BS at x and
user u is given by

Hx,u =

√
NBSNUE

L(x, u)ηx,u

ηx,u∑
i=1

γi,x,uaUE(φi,x,u)a∗BS(θi,x,u).

(2)
Here, ηx,u is the number of paths between BS at x and
user at u, γi,x,u is the small scale fading on ith path
(assumed to be complex normal with zero mean and unit
variance for both LOS and NLOS to enhance analytical
tractability), θi,x,u is the virtual AOD and φi,x,u is the
virtual AOA for the ith path. The number of paths ηx,u
equals ηL or ηN depending on whether the link is LOS
or NLOS, respectively2. It is expected that ηN > ηL

[3], [19], [20]. The virtual AOA or AOD are related to
the corresponding physical angles as θ = 2πd sin(ϕ)/λc,
where d is the inter-antenna spacing (chosen to be λc/2),
ϕ is the physical angle and θ is the virtual angle. The
array response vectors for ULAs, aBS and aUE, are of
the form a(θ) = [1 e−jθ . . . e−j(N−1)θ]∗/

√
N, where

N ∈ {NBS,NUE}. We assume that for every BS-UE
link, scatterers in environment are uniformly distributed
in [0, 2π] and thus, the physical angles are also uniformly
distributed in [0, 2π]. We call this the “physical model”,
which will be the basis of our simulation results, whereas

2ηL > 1 indicates more than 1 LOS like paths. In this work,
we either have LOS or NLOS multipaths. A more general channel
model would incorporate scenarios with 1 or more LOS like paths
along with NLOS paths. However, an optimal power allocation would
nearly allocate all power to LOS-like paths, thus, justifying our model.
For simplicity, it is assumed that each scatterer gives rise to a single
dominant path [12], [23], [24]. Extension to a clustered model [4], [23]
is desirable in future.



4

for tractable analysis we leverage the virtual channel
approximation [23] in Section III-B.

B. Fully Connected Hybrid Beamforming Architecture

A fully-connected two layer hybrid beamforming ar-
chitecture with NBS

RF and NUE
RF RF chains at the BS

and UE, respectively, is shown in Figure 1. A BS at x
sends a total of NBS

s streams of data, which may include
data sent to multiple users in the network. The transmit
signals first go through a NBS

RF×NBS
s baseband precoder

matrix FBB
x = [fBB

x,1 . . . f
BB
x,NBS

s
] followed by a NBS×NBS

RF

RF precoder FRF
x = [fRF

x,1 . . . f
RF
x,NBS

RF
]. Note that the RF

precoder is generally implemented using phase-shifters
[4], [12], although there have been attempts trying to
explore alternative methods [25]. Let us denote the RF
combiner at user u by WRF

u and the baseband combiner
by WBB

u = [wBB
u,1, . . . ,w

BB
u,NUE

s
]. Note that SM, MU-

MIMO and SU-BF can all be implemented with this
generic architecture. The problem of jointly optimizing
over FRF

x , FBB
x , WRF

u and WBB
u to maximize sum

rate or per user rate for SM and MU-MIMO is still
an open problem [4], [12]. In the following sections,
we use recently proposed near optimal algorithms for
designing of precoders and combiners in [4] and [12] to
employ SM and MU-MIMO, respectively as baseline for
our simulations and analysis.

III. MULTIUSER MIMO IN MMWAVE CELLULAR
NETWORKS

For MU-MIMO, it is assumed that each BS serves
multiple users with a single stream per user. Thus, analog
beamforming with a single RF chain suffices at each UE.
Let Ux be the set of all users in ΦUE which are scheduled
by the BS at x in the same time slot, and the cardinality
of Ux be Ux. We assume Ux = min(UM, Nx), where
Nx is the total number of users connected to the BS
and UM is the maximum number of users that can be
scheduled in a time slot. A more sophisticated algorithm
for deciding how many and which users to schedule in a
resource block may be implemented as in [13], [26] but
we neglect this aspect here for tractability. We further
assume UM = NRF, and that unless the load on the
BS is less than the number of RF chains, UM users are
served in a time slot. Also, when UM > Ux only Ux
RF chains are used for processing, which means that
FBB
x = [fBB

x,1 . . . f
BB
x,Ux

] is of dimension Ux × Ux and
FRF
x = [fRF

x,1 . . . f
RF
x,Ux

] is of dimension NBS × Ux.
Under the narrowband assumption, the received signal

at user u from BS at x after passing through wu, the RF
combiner at the user, is given by

yu = h
∗
x,uf

BB
x,usu +

∑
v∈Ux,v 6=u

h
∗
x,uf

BB
x,v sv + OCI + noise,

where h
∗
x,u = w∗uHx,uF

RF
x and OCI is the out-of-cell

interference. Here, s(.) are the transmit symbols with
energy P/Ux. Thus, the total transmit power of the BS is
P. In this work, we will follow the precoding/combining
algorithm in [12] and also assume an infinite resolution
codebook at BSs and UEs for tractability. The first step is
to design the RF precoders and combiners that maximize
the received signal power on each of the BS-UE links.
Thus, wu and fRF

x,u are designed such that (wu, f
RF
x,u) =

arg max
w, f

|w∗Hx,uf |.

Lemma 1 (from [24]). The left and right singular
vectors corresponding to non-zero eigenvalues of Hx,u

with ηx,u � min(NBS,NUE) converge in chordal dis-
tance to aUE(φi,x,u) and aBS(θi,x,u), for 1 ≤ i ≤
ηx,u. The corresponding singular values converge to

NBSNUE

L(x,u)ηx,u
|γi,x,u|2.

This lemma indicates that for large number of anten-
nas wu = aUE(φim,x,u) and fRF

x,u = aBS(θim,x,u), where
im = arg max

i
|γi,x,u|. This observation will be crucial

in developing a tractable model for coverage and rate.
Next, the baseband precoder is designed such that the
multiuser interference is cancelled. Using a zero forcing
(ZF) baseband precoder, FBB

x = H
†
xΛ, where Λ is

a diagonal matrix whose entries are chosen such that
||FRF

x fBB
x,u || = 1. Here, Hx = [hx,u1

. . .hx,uUx ]∗ with

Ux = {u1, . . . , uUx}. Note that H
†

= H
∗ (

HH
∗)−1

, if

H is full rank.

A. SINR and Rate Model

The SINR of the user at u ∈ ΦUE served by a BS at
x ∈ ΦBS connected to Ux total users is given by

SINRx,u =

||h∗x,uf
BB
x,u||

2

Ux

σ2
n

P +
∑
v∈Ux
v 6=u

||h∗x,ufBB
x,v ||2

Ux
+

∑
y∈ΦBS
y 6=x

∑
w∈Uy

||h∗y,ufBB
y,w||2

Uy

.

(3)
The second term in the denominator is zero, owing to the
ZF precoder and the fact that Hx is almost surely full
rank for independently distributed channel gains from
BS at x to users in Ux. The per user rate (in bits per
second or bps) of user u served by BS at x is defined as

Rx,u = ωx
BUx
Nx

log2(1 + SINRx,u), (4)

where ωx < 1 models the efficiency in implementing
MU-MIMO in terms channel acquisition or computa-
tional complexity or cyclic prefix while implementing
OFDM [21], [27]. The above model implies that each
user gets Ux/Nx fraction of resources, which can be
achieved using round robin scheduling. The sum rate is
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Fig. 1: Fully-connected hybrid architecture at the BSs and UEs.

defined as

Rx = ωxB
∑
u∈Ux

log2(1 + SINRx,u), (5)

which is basically the total number of bits per second
(bps) transmitted by the BS, whereas the per user rate is
the rate achieved by a typical user in a scheduling cycle.

In general, the efficiency factors vary for different BSs
and are dependent on UM,NBS,NUE,ηN, ηL and OFDM
cyclic prefix penalty. For simplicity we assume ωx =
ωMU,∀x ∈ ΦBS. One can interpret ωMU = minx ωx
to get a lower bound on the rate. Since we expect the
overhead to increase with Ux, ωMU corresponds to the
efficiency of BSs serving UM users. Note that ωMU for
UM = 1 is the overhead for SU-BF.

B. Coverage and Rate Analysis

Consider a typical UE at origin, wherein the notion of
typicality for stationary point process is defined through
Palm probability [28], and it associates with the BS
at x offering minimum path loss L(x, 0). We call this
the tagged BS. We evaluate the SINR coverage defined
as P (SINRx,0 > τ), which is the SINR distribution of
the typical user at origin. Rate coverage is similarly
defined. The SINR expression in (3), although exact,
is not tractable in terms of finding its distribution. We,
thus, provide an accurate yet tractable approximation that
captures the dependency of the several parameters in the
following analysis.

Definition 1. A random variable Z1 stochastically dom-
inates another random variable Z2, if P(Z1 > z) ≥
P(Z2 > z) for all z ∈ R. We denote this as Z1

st
≥ Z2.

1) Rate Distribution in a Noise-limited Network.
We first focus on finding the rate distribution in a
network with negligible interference effects. Throughout
the discussion, the virtual angles of departure/arrival are

quantized to take values in {θ : θ = −π + 2πi
Na
, 1 ≤ i ≤

Na}.

Lemma 2. If antenna spacing is half wavelength and
the physical AOAs/AODs are uniformly distributed in 0
to 2π, the distribution of the quantized virtual angles is
given by

qa,i =

(
sin−1

(
−1 + 2i+1

Na

)
− sin−1

(
−1 + 2i−1

Na

))
π

,

for a ∈ {UE,BS} and i ∈ {1, . . . ,Na − 1}. Further,
qa,Na = 1−

∑Na−1
j=1 qa,j .

Proof: Note that θ = π sin(ϕ) for half wavelength
antenna spacing. Thus, the required probability can be
computed by using that ϕ is uniformly distributed in 0
to 2π.

Proposition 1. Let Ux = {u1, . . . , uUx
} be the users

served by the BS at x. Assuming ηN � min(NBS,NUE),
UM � min(NBS,NUE) and a dense network deploy-
ment, SNR at user u1 can be modelled as

SNRx,u1
≈ G

ηx,u1
Uxσ2

n

|γim,x,u1
|2L(x, u1)−1pZF, (6)

where G = PNBSNUE, im is the index corresponding to
arg max

i
|γi,x,u1 |, pZF is a random variable that captures

reduction in signal power due to the ZF penalty and has
distribution that stochastically dominates pMU, which is
a Bernoulli random variable with success probability
ζ(ηx,u1

, Ux), where

ζ(ηx,u1
, Ux) =

NBS∑
j=1

qBS,jBj(ηx,u1
, Ux) (pLOSAj(ηL)

+(1− pLOS)Aj(ηN))
Ux−1

,

Aj(η) = C(η) + (1− qBS,j)
η−1 − (1− qBS,j)

η−1C(η),
Bj(η, , Ux) = C(η)(1 − qBS,j)

Ux−1 + Dj(η, Ux) −
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Dj(η, Ux)C(η), C(η) =
∑NUE

i=1 qUE,i(1−qUE,i)
η−1, and

Dj(η, Ux) =

NBS−1∑
i1,...,iη−1=1

η−1∏
n=1

lin,j

1−
∑

unique(i(.))

lin,j

Ux−1

,

where ln,j =
qBS,n

1−qBS,j
if n < j and ln,j =

qBS,n+1

1−qBS,j
if

n ≥ j and unique(i(.)) represents the unique values in
the set {i1, . . . , iη−1}.

Proof: Without loss of generality, im = 1. From
Lemma 1, wu = aUE(φ1,x,u) and fRF

x,u = aBS(θ1,x,u).
Using the orthogonality of the array response vectors
with quantized virtual angles, it can be shown that Hx

takes the form

Hx =

[ √
NBSNUE

L(x,u1)ηx,u1
γ1,x,u1

0

0 P̃x

]
, (7)

with probability at least ζ(ηx,u1 , Ux). See Appendix A
for details. Note that here P̃x is a submatrix of Hx of
dimension Ux − 1× Ux − 1. In this case,

H
†
x =

[ √
L(x,u1)ηx,u1

NBSNUE
γ−1

1,x,u1
0

0 P̃†x

]
.

We know that FBB
x = H

†
xΛ, for diagonal matrix Λ

that helps satisfy the power constraints. Thus, the first
column of the baseband precoder is of the form fBB

x,u1
=

[c 0 . . . 0], for some constant c such that ||FRF
x fBB

x,u1
|| =

1. Thus, fBB
x,u1

= [1 0 . . . 0] since each term in FRF
x is

unit norm. In this case, the received signal power of u1 is
equal to G

ηx,0Ux
|γ1,x,u1

|2L(x, u1)−1, which corresponds
to the case when pMU = 1 in (6). Since the event
that Px is not of this form is of low probability and
results in intractable expressions the signal power is
lower bounded by 0 in this case. Under virtual channel
approximation, (6) is a lower bound on SNR.

Remark 1. If the quantized virtual angles are distributed
uniformly in their range, instead of the distribution in
Lemma 2, Dj(η, Ux) takes a much simplified form given
by D(η, Ux) =

∑η−1
d=1

(
NBS−1
d

)
(NBS − 1− d)Ux−1

×
∑d
i=0(−1)i(d− i)η−1

(
d
i

)
.

Remark 2. To simplify evaluation of Proposition 1, the
following can be used

(1 − qBS,j)
Ux−1

∑NUE

i=1 qUE,i(1 − qUE,i)
η−1 ≤

Bj(η, Ux) ≤ (1− qBS,j)
Ux−1.

Remark 3. It can be shown that
∑NBS

i=1 qBS,i(1 −
qBS,i)

r → 1 as NBS → ∞ for any r ≥ 0, which is
true since maxi qBS,i → 0 as NBS →∞. Similar result
holds for qUE,j with NUE → ∞. All these imply that
ζ → 1 with NBS →∞ and NUE →∞.

To find the SNR coverage, we need to find the distribu-
tion of several random variables in Proposition 1. First

we focus on the finding the probability mass function
(PMF) of the number of multiuser streams of BS at
y ∈ ΦBS given by Uy = min{UM, Ny}. We use an
approximation proposed in [29] to model the distribution
of Ny , which are actually correlated random variables
for y ∈ ΦBS and particularly known to be intractable
since finding the volume of Voronoi association cells is
itself an unsolved problem [30]. With notably different
propagation channels for LOS and NLOS links, the
cell association regions in mmWave networks are not
even Voronoi and more irregular [11]. The PMF of Ny
is denoted by κ(n) is modelled as follows [11]. Let
ρ = λUE/λBS, then if y = x, that is the BS is serving
the typical user, κ(n) is given by

3.53.5

(n− 1)!

Γ(n+ 3.5)

Γ(3.5)
ρn−1 (3.5 + ρ)

−n−3.5
, (8)

for n ≥ 1 and κ(0) = 0. For interfering BSs, κ(n) =

3.53.5

n!

Γ(n+ 3.5)

Γ(3.5)
ρn (3.5 + ρ)

−n−3.5
, (9)

for n ≥ 0.
Assuming Ny to be independently and identically

distributed, we model the PMF of Uy by

P (Uy = n) = 1{0≤n≤UM−1}κ(n)

+

(
1−

UM−1∑
i=1

κ(n)

)
1{n=UM} (10)

We first model the point process ΦBS to be superpo-
sition of the point processes ΦL and ΦN with intensi-
ties λBSpLOS1{||x||≤D} and λBS(1− pLOS)1{||x||≤D}+
λBS1{||x||>D}, respectively. These two point processes
correspond to LOS and NLOS BSs. The correspond-
ing propagation processes [31] are given as NL =
{||y||αL/Sy,L : y ∈ ΦL}, and NN = {||y||αN/Sy,N :
y ∈ ΦN}.

Lemma 3. NL is a non-homogeneous PPP with intensity
ΛL([0, t)) = λBSML(t), where ML(t) is given by (11).
Here, m = −0.1β ln 10, σL = 0.1ξL ln 10, Υj(t) =
ln( D

αj

t )−m
σj

for j ∈ {L,N}and Q(.) is the Q-function
(Standard Gaussian CCDF).

Proof: Special case of Appendix A of [11] and is
therefore skipped for brevity.

Lemma 4. NN is a non-homogeneous PPP with inten-
sity ΛN([0, t)) = λBSMN(t), where MN(t) is given by
(12).

Proof: Proceeds very similarly to Lemma 3 and thus
is omitted.

Note that here ΛL([0,∞)) = λBSπpLOSD2. The
probability that there is no point in the interval [0,∞)
is equal to exp

(
−λBSπpLOSD2

)
. This is exactly the
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ML(t) = πpLOS

[
D2Q (ΥL(t)) + t

2
αL exp

(
2σ2

L

α2
L

+
2m

αL

)
Q

(
2σ2

L

αLσL
−ΥL(t)

)]
. (11)

MN(t) = −πpLOSD2Q (ΥN(t)) + πt
2
αN exp

(
2σ2

N

α2
N

+
2m

αN

)[
1− pLOSQ

(
2σ2

N

αNσN
−ΥN(t)

)]
. (12)

probability that there is no point in ΦL. Let us call the
probability that there is at least one point in NL to be
BL .The event that number of points in ΦN is zero is
empty and thus, BN = 1.

Corollary 1. Let N be the point process of propagation
losses corresponding to ΦBS. This point process is a
PPP with intensity Λ((0, t]) = λBS(ML(t) + MN(t)) =
λBSM(t).

Proof: Follows directly from the Superposition
property of PPPs [28, Proposition 1.3.3].

Lemma 5. Given that NL and NN are not empty,
the probability density function (PDF) of the distance
to the point nearest to origin in these point processes
is given by fL(t) = λBS exp (−λBSML(t)) M

′

L(t)/BL

and fN(t) = λBS exp (−λBSMN(t)) M
′

N(t)/BN, where
M
′

L(t) and M
′

N(t) are given in (13) and (14), respec-
tively.

Proof: If l∗ is the point nearest to origin in the point
process NL,

P
(
l∗ > t

∣∣NL([0,∞)) > 0
)

= P
(
NL([0, t)) = 0

∣∣NL([0,∞)) > 0
)

=
P (NL([0, t)) = 0 ∩NL([0,∞)) > 0)

P (NL([0,∞)) > 0)

= P (NL([0, t)) = 0 ∩NL([t,∞)) > 0) /BL

= P (NL([0, t)) = 0)P (NL([t,∞)) > 0) /BL

= exp (−ΛL([0, t)]) (1− exp (−ΛL([t,∞)])) /BL

= (exp (−ΛL([0, t)])− exp (−ΛL([0,∞)])) /BL.

Thus, taking the negative derivative of the above
expression we get the PDF fL(t). Similarly, we can
derive the PDF for the NLOS case.

Theorem 1. The SNR coverage of a typical user in the
network is given by

S(τ) , P(SNRx,0 > τ) = EUx [S(τ, Ux)], where
(15)

S(τ,U) ≈
∑

j∈{L,N}

Bjζ(ηj ,U)

ηj∑
n=1

(−1)n+1

(
ηj
n

)

×
∞∫

0

exp

(
−ηjτnUlσ2

n

G
− λBSMj(l)

)
fj(l)dl,

where G = PNBSNUE, j = L if j = N and vice
versa. The terms ζ(.), Mj(.) and f(.) are derived in
Proposition 1, Lemma 3, Lemma 4 and Lemma 5.

Proof: See Appendix B

Corollary 2. Assuming that user density is much larger
than BS density, the SNR coverage can be approximated
by S(τ,UM).

Theorem 2. In a noise-limited network, the per user
rate distribution (or rate coverage) of a typical user at
origin served by a BS at x is given by

R(τr) , P (Rx,0 > τr)

=
∑
n≥1

κ(n)S
(

2
τrn

ωMUBmin(n,UM) − 1,min (n,UM)
)
,

where S(.) was defined in Theorem 1 and κ(n) is given
in (8).

Proof: Follows by re-arranging (4) and using SNR =
SINR.

Although the above expression is an infinite summa-
tion, as verified earlier in [11], [29], it can be accurately
represented as a finite summation. For the results in
this work, considering the first b12λUE/λBSc terms is
sufficient. The following definition will be useful when
comparing the rate coverage of MU-MIMO with SM and
SU-BF.

Definition 2. The minimum allowable efficiency of
scheme A such that it is guaranteed to outperform
scheme B in terms of per user rate for p percentile
users (that is users with rate coverage p), is given by
OA,B(p) =

R−1
B (p)

R−1
A (p)

, where R−1
A and R−1

B are inverse
of the rate coverage at p (that is rate thresholds τ
corresponding to R(τ) = p) for schemes A and B after
setting ωA = ωB = 1, where ω(.) are the efficiency
factors for the respective MIMO techniques as defined
in (4). The per user rate of A cannot stochastically
dominate that of B, unless the efficiency of A is at least
minpOA,B(p).

Note that MU-MIMO implementations with different
UM are considered as separate MIMO schemes in the
above definition since they have different efficiency fac-
tors. It is clear that OA,B(p)

ωA
is an upper bound on the ratio

R−1
B (p) and R−1

A (p) for non-unity efficiency for scheme
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M
′

L(t) = πpLOS

{
exp

(
2σ2

L

α2
L

+
2m

αL

)
t

2
αL
−1

[
2

αL
Q

(
2σ2

L

αLσL
−ΥL(t)

)

− 1√
2πσ2

L

exp

−(√2σL

αL
− ΥL(t)√

2

)2
+

D2

√
2πtσL

exp

(
−Υ2

L(t)

2

)}
. (13)

M
′

N(t) = πpLOS

{
exp

(
2σ2

N

α2
N

+
2m

αN

)
t

2
αN
−1

[
2

pLOSαN
− 2

αN
Q

(
2σ2

N

αNσN
−ΥN(t)

)

+
1√

2πσ2
N

exp

−(√2σN

αN
− ΥN(t)√

2

)2
− D2

√
2πtσN

exp

(
−Υ2

N(t)

2

)}
. (14)

A and ωB = 1, since ωA is the minimum efficiency
over all BSs in the network. Note that from (4), setting
ωB = 1 gives upper bound on rate for scheme B. For
scheme A to outperform scheme B for p percentile users,
we need OA,B(p)

ωA
≤ 1 with equality giving minimum

allowable ωA. If the network is such that all BSs see
the same overheads ωA or ωB, then OA,B(p) is the
minimum allowable relative efficiency (that is ωA/ωB)
of scheme A over scheme B. This gives tighter estimates
for allowable ωA especially when comparing MU-MIMO
for different UM or SM for different number of streams.

2) Rate Distribution in an Interference-limited Net-
work. Until now, our analysis focused on noise-limited
mmWave cellular networks. In this section, we will
discuss how to model interference in these networks.

From (3), the OCI power at user u served by a BS at
x is modelled as

Iu = P
∑
y∈ΦBS
y 6=x

∑
w∈Uy

||h∗y,ufBB
y,w||2

Uy

= P
∑
y∈ΦBS
y 6=x

∑
w∈Uy

||w∗uHy,uF
RF
y fBB

y,w||2

Uy
.

Here, wu = aUE(φx,u), Hy,u =√
NBSNUE

L(y,u)ηy,u

∑ηy,u
i=1 γi,y,uaUE(φi,y,u)a∗BS(θi,y,u), FRF

y

has columns equal to aBS(θy,w) for all w ∈ Uy , and fBB
y,w

is designed so as to cancel the multiuser interference
of the BS at y. All the AOAs and AODs in the above
expression are independent of each other. Leveraging
the virtual channel approximation for large number of
antennas at the BS and UE, interference due to the link
between BS at y and user at w on the user u is non-zero
if and only if φx,u is equal to at least one of the
AOA of Hy,u and θy,w equals the corresponding AOD.
Note that since multiuser interference was cancelled

by the ZF precoder, the virtual approximation with an
ON/OFF model for inner product of two beam steering
vectors gave us a tractable and accurate tool to study
SNR distribution in the previous section. However, this
model may not be accurate when OCI is incorporated.

The virtual channel approximation quantized the angu-
lar space into N sectors, where N is the number of anten-
nas. If two angles lie on either sides of a sector boundary,
the inner product of beam steering vectors is zero, which
can be a main cause of underestimated interference. In
order to alleviate this problem, we introduce the notion
of sidelobe gain which was also used in [6], [11]. We
still assume that the virtual angle space is quantized into
N sectors with the angle bisector being a representative
of each sector, but the inner product between two beam
steering vectors is defined as:

a∗BS(θ1)aBS(θ2) ,

{
1 if θ1 = θ2

ρBS otherwise,
(16)

where ρBS < 1 introduces a sidelobe gain into the model.
Similarly, we model the inner product for beam steering
vectors at UEs with parameter ρUE. Note that setting
ρBS = ρUE = 0 reverts back to the virtual channel
approximation.

To characterize the interference distribution, we ne-
glect the effect of ZF on interfering links and dependence
in pMU and Iu through {wu} for tractability and show
that for a fairly large number of antennas this is a reason-
able approximation. First we deal with the ηL = ηN = 1
case.

Proposition 2. Assuming the inner product of any two
beam steering vectors at BS or UE follow the law given
by (16), ηL = ηN = 1 and propagation loss on the
service link is l, the OCI power at the typical user can be
modelled as I0 =

∑
y∈ΦBS,y 6=x

G|γy,0|2L(y, 0)−1χy/Uy,

where γy,0 is complex normal random variable with unit
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variance and zero mean, Uy are i.i.d random variables
with distribution given in (10) and χy is defined as

χy =


k + (Uy − k)ρ2

BS w.p. (
∑NUE

i=1 q2
UE,i)×(

Uy
k

)∑NBS

j=1 q
k+1
BS,j(1− qBS,j)

Uy−k

ρ2
UE(k + (Ut − k)ρ2

BS) w.p. (1−
∑NUE

i=1 q2
UE,i)×(

Uy
k

)∑NBS

j=1 q
k+1
BS,j(1− qBS,j)

Uy−k,

for k = 1, 2, . . . , Uy .

Proof: For single path channel, the out-of-cell in-
terference is given by

I0 =
∑

y∈ΦBS,y 6=x

G|γy|2L(y, u)−1

Uy
×∑

w∈Uy

||a∗UE(φx,u)aUE(φy,u)a∗BS(θy,u)aBS(θy,w)||2.

Now using the inner product rule in (16) and the fact
that all the virtual angles in the above equation are
independent and distributed according to Lemma 2, the
proposition can be proved.

Lemma 6. The Laplace functional of the interference
power in Proposition 2 conditioned on path loss to the
typical user at origin from serving BS is L(x, u) = l, is
given by

LI0,l(s) , E [exp (−sI0) |L(x, 0) = l]

= exp

(
−λBS

UM∑
n=0

p̃(n)

n∑
k=0

(
n

k

)NBS∑
i=1

qk+1
BS,i(1− qBS,i)

n−k

{(
NUE∑
i=1

q2
UE,i

)∫
t≥l

M
′
(t)dt

1 + tn
sG(k+(n−k)ρ2BS)

+

(
1−

NUE∑
i=1

q2
UE,i

)∫
t≥l

M
′
(t)dt

1 + tn
sGρ2UE(k+(n−k)ρ2BS)

})
.

where p̃(.) is the distribution of Uy for interfering BSs
given in (10).

Proof: Appendix C.

Theorem 3. The SINR coverage of the typical user is
given by (15) with an extra term LI0,l

(
ηjτnUl

G

)
inside

the integral over dl.

Proof: Exactly on same lines as Theorem 1. The
Laplace functional LI0,l(.) has been derived in Lemma 6
for single path channel. Upper and lower bounds on
LI0,l(.) for a general number of paths can be found in
Appendix D.

From this expression of SINR coverage, the rate
coverage can be found similar to Theorem 2. We will
validate these analytical results in Section V. In the next
section, we will take a brief look into the coverage
and rate for SM enabled mmWave cellular networks.

Before that though, we provide a brief discussion on
how to choose ρUE and ρBS. Recall that NBSρ

2
BS and

NUEρ
2
UE are the sidelobe gains for beam pattern at BSs

and UEs, respectively. An obvious question is whether
these parameters depend on the number of antennas and
if yes, how should their dependence be modelled?

If ρ(.) were to be a constant, the sidelobe gain will also
scale up with an increasing number of antennas. This will
violate Lemma 1. Since virtual channel approximation
asymptotically tracks physical channel model, ρBS and
ρUE should decrease and eventually vanish with increas-
ing NBS and NUE, respectively. For a uniform linear
array with N antennas, the ratio of the gain of the ith side-
lobe to the main lobe is equal to | sin(0.5π(2i+1))

N sin(0.5π(2i+1)/N) |
2

[32], for i = 1, 2, . . . , bN
2 − 1c. For i� N, this ratio is

independent of N using the small angle approximation
sin θ ≈ θ. For i on the order of N, this ratio decreases
approximately as square of N. The regime in which the
ratio is independent of N has about fixed beamwidth,
which corresponds to the beamwidth in which the small
angle approximation of sin θ ≈ θ is accurate with p
percent relative error. For p = 1, θ ≈ 0.244 radians.
Since the majority of the angular space corresponds to
the regime in which the above ratio varies inversely with
the square of N, we model ρ(.) to linearly decrease
with N. We choose ρBS = 1/(sin(0.244)NBS) and
ρUE = 1/(sin(0.244)NUE), however in future it is
desirable to re-investigate the scaling factor to get a
better fit.

IV. SINGLE USER SPATIAL MULTIPLEXING IN
MMWAVE CELLULAR NETWORKS

For spatial multiplexing (SM), we consider a scenario
in which every BS transmits more than one stream of
data to a single user per resource block. Thus, NUE

s =
NBS
s = Ns, where Ns is the multiplexing gain. In this

section, we will focus mainly on the multipath diversity
approach for SM [3], [4] and not on the polarization
approach [3], [7].

A. Spatial Multiplexing: UHF versus mmWave

We begin with a brief recap of the theoretically opti-
mal implementation of closed-loop SM in conventional
cellular networks, which motivates the main challenges
in precoding/combining for SM in mmWave networks.
Under unitary power constraint, given the singular value
decomposition of the channel matrix H = UΣV∗, the
transmitter pre-multiplies the input symbols with matrix
V and the receiver combines the received signal on all
its antennas with matrix U∗, to effectively achieve Ns

parallel channels, where Ns is the multiplexing gain.
Since the channel matrix is either full row rank or
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full column rank with high probability for sub 6 GHz
frequency bands, Ns = min{NBS,NUE}.

At mmWave frequencies, however, the first challenge
is that it is not practically feasible to implement a
fully digital precoder and combiner. Using the popular
hybrid beamforming approach for mmWave networks
[8], the precoder is of the form FRF

x FBB
x , wherein

FRF
x is generally implemented using phase shifters and

thus has constant magnitude entries. Similarly, we have
a constraint for the combiner. Another challenge for
implementing SM at mmWave is that the channel is
sparse [3], [19] and thus obtaining multiplexing gain on
the order of number of antennas is nearly impossible.

We now look at a typical implementation of SM using
the hybrid beamforming architecture in Fig. 1. Assuming
perfect channel estimation, and using the system model
from Section II, the received signal at user u from BS
x is given by

yu = Hx,uF
RF
x FBB

x su + n + OCI,

where su are transmit symbols of dimension Ns×1 with
energy per symbol equal to P/Ns, n is the noise power
(complex Gaussian with zero mean and variance σ2

n). We
assume equal power allocation to all streams. After RF
and baseband combining at the receiver, the processed
signal is of the form WBB

u
∗
WRF

u
∗
yu. When Gaussian

symbols are transmitted over the mmWave channel, the
spectral efficiency can be at most [4]

r = log2

∣∣∣∣INs +
P

Ns
R−1

n HeffH
∗
eff

∣∣∣∣,
where Heff = WBB

u
∗
WRF

u
∗
Hx,uF

RF
x FBB

x , INs is an
identity matrix of rank Ns and

Rn = σ2
nWBB

u

∗
WRF

u

∗
WRF

u WBB
u .

We use the near optimal precoding-combining algorithm
proposed in [4] for our simulations. Assuming that
an equal fraction of resource is allocated to each UE
connected to a BS, the per user rate is defined as
Rx,u = ωSMBr/Nx, where ωSM is the efficiency factor
for SM and recalling that Nx is the total number of users
associated with the BS at x. Note that similar to the MU
case, ωSM is dependent on several network parameters
like number of antennas, the channel parameters, number
of streams, etc. but we drop this in the notation for
convenience. Sum rate is defined as the total bits per
second transmitted by a BS in Section III. Based on this
definition, we define the sum rate for the SM enabled
mmWave network to be Rx = ωSMBr.

B. Heuristic Comparison of Coverage and Rate for MU-
MIMO and SM

In this section, we denote the SNR with a superscript
SM and MU to identify spatial multiplexing and MU-
MIMO. Round robin scheduling and ωMU = ωSM = 1

will be assumed in this section. Recall from Lemma 1
that for a large number of antennas the eigenvalues of
the channel matrix Hx,u converge to NBSNUE|γi,x,u|2

L(x,u)−1 .

Thus, the ratio
SNRSMi,x,u

G

d→ |γi,x,u|2L(x,u)−1

ηx,uNs
. From Re-

mark 3, the ratio
SNRMU

x,u

G

d→ |γim,x,u|
2L(x,u)−1

ηx,uNs
, where

im = arg maxi γi,x,u. Since γi,x,u
st
≤ maxi γi,x,u, we

can conclude that in the limit as NBS → ∞ and
NUE →∞,

SNRSMi,x,u
G

st
≤ SNRMU

x,u

G for all i ∈ {1, . . . ,Ns}.
The above discussion hints that for many antennas

at BS and UE, the SNR with MU-MIMO stochastically
dominates the SNR on each stream of SM. If the network
were to be noise-limited, the per user and sum rates
with MU-MIMO will be higher than SM for a large
number of antennas and the same number of streams.
Now, let us consider how this result might be affected
by OCI. As the number of antennas become large,
the effect of zero forcing on the interfering streams
is negligible for both MU-MIMO and SM (since the
virtual channel approximation in [23] starts to more
closely model the actual channel). Thus, if the number of
streams transmitted by the BS with SM and MU-MIMO
are the same, the interference statistics with MU-MIMO
and SM would be similar and one would expect that
MU-MIMO still outperforms SM for a large number of
antennas at BSs and UEs.

For a finite number of antennas the ZF penalty may
be non-negligible. It is expected that the ZF penalty with
SM will be less than MU-MIMO since there are more
sidelobes that need to be suppressed with MU-MIMO.
Thus, the above SNR dominance result holds given that
the number of antenna is large enough such that the
effect of the smaller ZF penalty with SM does not reverse
the inequalties. For a finite number of antennas, it is
neither obvious nor analytically tractable to conjecture
as to whether the per user and sum rate of SM would
dominate or whether MU-MIMO would. We, thus, rely
on Monte Carlo simulations for SM while comparing
with our validated analytical model for MU-MIMO and
SU-BF.

V. NUMERICAL RESULTS

In this section, we first validate the SNR, SINR and rate
coverage analysis from Section III. Next, we compare the
per user and sum rate for SU-BF, MU-MIMO and SM
with fixed number of BSs per unit area as well as fixed
power consumption per unit area. The default parameters
used for generating the results are given in Table I.
The efficiency factors ωMU and ωSM are implementation
specific and estimating these is not the focus of this
study. Thus, we set the efficiency parameters to 1 and
use Definition 2 for quantifying the allowable relative
efficiency.
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Fig. 2: Validation of SNR analysis in noise-limited scenario shows a tight match with the physical channel model simulations.
Tradeoff between SINR and rate coverage is also shown with MU-MIMO.

TABLE I: Simulation parameters

Parame-
ter

Value(s) Parame-
ter

Value(s)

fc 73 GHz [7] B 1 GHz [7]
pLOS, D 0.11, 200

m [11]
σ2
n −174 +

10 log10 B+ 10
dBm

α (LOS,
NLOS)

2, 3.3 [7] ξ (LOS,
NLOS)

5.2, 7.6 [7]

λUE 500/km2 λBS 60/km2

NUE 16 [2], [33] NBS 64 [2], [33]
P 30 dBm [5] ηL, ηN 1,3 [2], [12], [20]

A. Coverage and Rate with MU-MIMO: Validation and
Trends

1) Cases Where Interference is Negligible. Fig. 2a
shows the validation of the SNR coverage formula in
Theorem 1. As can be seen from the figure, the analysis
is a tight approximation with the simulations using
the physical channel model even when the virtual an-
gles are equally likely, in which case we have much
simplified analytical expressions as compared to when
the distribution is as given in Lemma 2. Henceforth,
all analysis plots will be with equally likely virtual
angles. As expected, the match loosens as UM ap-
proaches NBS and NUE. With increasing UM, the SINR

coverage decreases since the transmit power is split
amongst the multiple users served by the BS. However,
as seen from Fig. 2b, the median and peak per user
rate increases with MU-MIMO. This is due to the fact
that in round robin scheduling, each user connected
to BS at x now gets min (UM, Nx) times more slots
to transmit. A re-interpretation of the above result can
be made in terms of minimum allowable efficiencies.
For example, O{UM=2},{UM=1}(0.5) = 62.67% and

O{UM=4},{UM=1}(0.5) = 42.73%. This means that if the
efficiency of implementing MU-MIMO with UM = 2 is
at least 62.67% of the efficiency with UM = 1, then it
is beneficial to employ MU-MIMO with UM = 2 over
SU-BF in terms of the median rates.

Since SINR decreases with UM, the trend for cell
edge rates is exactly opposite to peak and median rates.
Note that in [13], it was shown that cell edge rates can
improve with MU-MIMO. However, the main difference
in their model is the user selection and scheduling. In
[13], there is a high priority user scheduled in a time slot
and additional users are served using MU-MIMO only
if the expected sum proportional fair metric does not
increase due to addition of more users. This protects the
rates achieved by cell edge users. The result in Fig. 2b,
thus, highlights the importance of user selection and
scheduling to protect the rates achieved by cell edge
users with multiuser transmission.

2) Cases Where Interference is Not Negligible.
Fig. 3a shows the validation of SINR coverage formula
in Theorem 3 for single path scenario. In order to present
a case where interference effects are not negligible we
consider a network at 28 GHz band with 200 MHz
bandwidth, a less blocked scenario with pLOS = 0.5 for
D = 200m and much higher λUE = 1000/km2. As per
discussion in Section III, ρBS = 1/(NBS sin(0.244)) and
ρUE = 1/(NUE sin(0.244)). Fig. 3a shows that increas-
ing BS density does not necessarily improve coverage.
This trend is similar to that observed in [6] and shows the
presence of an optimal BS density in terms of SINR cov-
erage. Approximate analytical results in Lemma 6 and
Appendix D capture the essential non-monotonic trend
shown with the simulations. Fig. 3b further validates
the analysis in Appendix D for multipath scenario as
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Fig. 3: Validation in interference limited setting for UM = 4 shows that the upper and lower bounds are within ±5 dB of the
actual simulations. SINR coverage has a non-monotonic trend with BS density.
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Fig. 4: Comparison of MIMO techniques with fixed BS density. UM = 4

well as shows a decreasing gap with the physical model
simulations as the number of antennas grows large. Both
these plots build confidence in the analysis and derived
insights. Using analysis, it can be found that optimum
BS density for UM = 1, 2 and 4 decreases as 82, 72
and 63 BSs/km2. Thus, with increasing UM the optimum
BS density reduces due to increasing interference in the
network.

B. Comparing Per User and Sum Rate for SU-BF, MU-
MIMO and SM

The gains with SM and MU-MIMO are fundamentally
driven by distinct network parameters. For example,
having more number of multipaths (or larger ηL and ηN)

increases the rank of the channel and thus enables trans-
mitting more number of streams with single user SM,
given that there are enough RF chains at the transmitter
and the receiver. However, this does not necessarily help
in having more multi-user streams. On the other hand,
having low load reduces the possible gain with MU-
MIMO even if each BS is equipped with a large number
of RF chains due to the fact that there are not many
users to schedule simultaneously per BS. This does not
however affect SM in terms of the number of streams per
user. Thus, sufficiently low load and high multipaths may
cause SM to outperform MU-MIMO given that there are
enough RF chains at the BSs and UEs. This can be seen
in Figures 4a and 4b. The plots for MU-MIMO and SU-
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Fig. 5: Comparison of per user and sum rate with fixed
power consumption. A denser SU-BF network outperforms
MU-MIMO and SM in terms of cell edge per user rates but
MU-MIMO performs the best in terms of sum rates.

BF in Figure 4a are with analysis. The plots for SM
in Figure 4a and the entire Figure 4b is using Monte-
Carlo simulations. Note that our analytical model is valid
for ηL, ηN � NUE and not for ηL, ηN close to NUE,
which is the case in Figure 4b. Figure 4a shows that
for moderate and low user densities (which corresponds
to λUE = 500/km2 and λUE = 100/km2) MU-MIMO
outperforms SM and SU-BF. However, for very low
load (corresponds to 10 UEs/km2) SM outperforms MU-
MIMO. This result is due to the fact that although SM
can offer 2 streams per user but MU-MIMO cannot
provide gains since per km2 there are only 10 users that
can associate with 60 possible BSs and the probability
that a BS connects to more than 1 user is very low. Since
our analytical model slightly loose estimates for low SNR

users, we compare the cell edge rates using simulations
only. The cell edge rates are quite close for the three
schemes, although SM and SU-BF slightly outperform
MU-MIMO. For low loads, SM is slightly better than
SU-BF in terms of cell edge rates. Considering that
overhead with MU-MIMO could be the highest, this
trend will be more exaggerated afte considering these
factors. A better scheduling will be indeed important for
protecting cell edge rates with MU-MIMO.

Figure 4b shows the impact of high multipath on the
comparison insights. As was observed in Figure 4a, MU-
MIMO outperformed SM for λUE = 100/km2 when
multipath was low. For the same network parameters,
that lead to a noise-limited case, increasing the multipath
to ηL = 10 and ηN = 12 gives higher rates with SM for
even 30 percentile users. This is again due to the fact
that since there are 4 RF chains at UEs and BSs, SM
can support 4 streams per user. However, since there
are about 1.7 UEs per BS, BSs can only transmit to

about 2 UEs per time slot on an average with MU-
MIMO. Further the increased multipath leads to higher
ZF penalty for MU-MIMO. Similar trend is observed
in the interference-limited scenario (fc = 28 GHz,B =
100 MHz, pLOS = 0.5). Since a low blockage scenario is
considered, the 4 streams per UE are LOS links with very
high probability. Thus, the gains with SM look slightly
exaggerated in the interference-limited case. Also note
that having a large multipath as considered here could
be a unlikely scenario in outdoor mmWave networks
[2] but it is interesting to consider from an analytical
perspective.

A re-interpretation of the above plots can be made in
terms of minimum allowable efficiency of MU-MIMO
to outperform SM or SU-BF. For example, when λUE =
500/km2 in Figure 4a, MU-MIMO outperforms SM in
terms of median users if its efficiency factor is more
than 58%. Similarly, such numbers can be extracted for
other plots using Definition 2. As mentioned earlier, a
separate study on estimating these efficiency factors is
needed to make a strong claim on comparison of these
MIMO techniques.

The above comparison results were for fixed BS
density and the same number of antennas across different
schemes. However, with an increasing number of RF
chains, the power consumed per BS also increases. In
the hybrid precoding as shown in Fig. 1, each RF chain
is connected to all antennas through phase shifters. Thus,
with increasing number of RF chains the number of
phase shifters grows proportionally with the number
of antennas, and effectively the power consumption is
also increased. Let ν(NRF) denote the ratio of power
consumed at a BS with NRF RF chains to a BS with 1
RF chain. A ballpark value of ν can be found to be 1.38
for NBS = 64 and NRF = UM = 2 based on the power
consumption model in [25] (refer [1] for a discussion
on this). We now scale up the BS density of SU-BF by
exactly a factor of ν. Note that UEs need to use only
single RF chain for SU-BF and MU-MIMO with hybrid
precoding. However, UEs need multiple RF chains for
SM with hybrid precoding architecture. Thus, for fair
comparison considering power consumption model in
[25] we reduce the NUE to 7 for SM. As can be seen
from Fig. 5, the gain in per user data rates with MU-
MIMO and SM diminishes or completely vanishes if
the SU-BF network has 1.38 times denser deployment
on an average. Fig. 5 shows that MU-MIMO still has
significantly higher sum rates than for a denser SU-BF
network. However, per user cell edge rates with a denser
SU-BF network are higher in this case. To quantify the
cell edge gains in per user rates OMU,SU(0.95) = 315%,
which is huge and strengthens our conclusion that a
denser SU-BF network outperforms MU-MIMO in terms
of cell edge rates. Also note that OMU,SU(0.5) = 99%,
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which implies that most likely even the median gains
with SU-BF will be better after incorporating the channel
acquisition overheads. However, in terms of sum rates
OMU,SU(0.5) = 73% which implies that median rates
with MU-MIMO can still be higher as long as the
efficiency is more than 73% of SU-BF efficiency.

VI. CONCLUSIONS AND FUTURE WORK

The analytical model in this work demonstrates the
utility of the virtual channel approximation to incor-
porate different precoder and combiner constraints in
network level analysis of dense MIMO cellular networks
with many antennas. It would be beneficial to get tighter
bounds on the Laplace functional of the out-of-cell
interference. The analytical model can also be extended
to incorporate more realistic cross-polarized uniform
planar arrays instead of ULA. Another important issue
that needs to be addressed is to incorporate the effects
of imperfect channel state information in the analytical
model. Since MU-MIMO requires more channel state
information at the transmitter, imperfect channel knowl-
edge may affect the performance of MU-MIMO more
than SM or SU-BF. It is essential to know whether this
would overshadow the benefits of MU-MIMO over SM
and SU-BF observed in this paper.

APPENDIX

A. Derivation of Zero Forcing Penalty in Proposition 1

For simplicity in notation, let us denote by θij and φij
as the AOD and AOA on the jth path from/to the BS at x
under consideration to/from the ith user, i ∈ {1, . . . ,U},
served by the BS, respectively. Hx,u is equal to (7) when
all of the following events are true.
• E1 : a∗UE(φk1)aUE(φkj )a∗BS(θkj )aBS(θ1

1) = 0 for all
j ∈ {1, . . . , ηk} and k ∈ {2, . . . ,U}.

• E2 : a∗UE(φ1
1)aUE(φ1

j )a
∗
BS(θ1

j )aBS(θk1 ) = 0 for all
j ∈ {1, . . . , η1} and k ∈ {2, . . . ,U}.

• E3 : a∗UE(φ1
1)aUE(φ1

j )a
∗
BS(θ1

j )aBS(θ1
1) = 0 for all

j ∈ {2, . . . , η1}.
Note that probability of pZF = 1 is given by P(E1 ∩
E2 ∩ E3). Using the ON/OFF nature of inner products
of beamsteering vectors with virtual channel approxima-
tion, we can re-write the above conditions as
• E1 = A1 ∩ A2, where A1 =

⋂U
k=2{θ1

1 6= θk1} and
A2 =

⋂U
k=2

⋂ηk
j=2{φk1 6= φkj } ∪ {θkj 6= θ1

1}.
• E2 = A1 ∩ A3, where A3 =

⋂U
k=1

⋂η1
j=2{φ1

1 6=
φ1
j} ∪ {θ1

j 6= θk1}.
Note that P(E1∩E2∩E3) = P(E1∩E2) = P(A1∩A2∩
A3). Conditioning on θ1

1 , A2 is independent of A1 and
A3. Using (a) P(A ∪ B) = P(A) + P(B) − P(A ∩ B),
(b) all distinct AOA or AOD are independently dis-
tributed as per the distribution given in Lemma 2, (c)

⋂U
k=1

⋂η1
j=2{φ1

1 6= φ1
j} ∪

⋂U
k=1

⋂η1
j=2{θ1

j 6= θk1} ⊂⋂U
k=1

⋂η1
j=2{φ1

1 6= φ1
j} ∪ {θ1

j 6= θk1} and (d) for a highly
dense network, the probability that the BS is serving a
LOS UE is pLOS since the association region of a BS is
almost surely covered by the ball of radius D centered
at the BS, the required lower bound on the probability
of pZF = 1 is derived, also given by ζ(.). In order
to get the more simplified expression in Remark 1, the
term Dj(.) in Proposition 1 needs to be simplified. For
equally likely virtual angles, this can be found using the
following Lemma, which we propose.

Lemma 7. Pick U numbers that take values in range
{1, . . . , N}. Repetition of values is allowed and order is
important. The probability that the first U1 numbers are
mutually exclusive from the remaining U2 = U − U1 is
given by P , where

P =

U1∑
d=1

(
N

d

)
(N − d)U2

d∑
i=0

(
d

i

)
(−1)i(d− i)U1 .

The idea is to condition that there are d distinct values
in first U1 numbers, in which case the remaining U2

numbers can take values in (N − d)U2 ways. Further
the number of ways in which first U1 numbers take d
distinct values can be found using inclusion exclusion
principle, which is given by the inner summation.

B. Proof of Theorem 1

Let l∗L and l∗N denote the points closest to origin in NL

and NN, respectively. Using Lemma 5, the probability
of associating with a LOS BS is given by

AL = BL

∫ ∞
0

P (l∗N > t) fL(t)dt

= BL

∫ ∞
0

exp (−λBSMN(t)) fL(t)dt.

Similarly, the probability of associating with NLOS BS
is given by AN = BN

∫∞
0

exp (−λBSML(t)) fN(t)dt.
Similar to Lemma 3 in [6], the PDF of prop-
agation loss to associated BS given that the as-
sociation is of type LOS, is given by f̃L(t) =
BL

AL
fL(t) exp (−λBSMN(t)). Similarly, the PDF of prop-

agation loss given the associated BS is NLOS is
given by f̃N(t) = BN

AN
fN(t) exp (−λBSML(t)). Define

S(τ,U) , P (SNRx,0 > τ |Ux = U). Thus, S(τ) =
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EUx=U [S(τ,U)]. By the law of total probability,

S(τ,U) = ALP
(
SNRx,0 > τ

∣∣∣LOS connection
)

+ ANP
(
SNRx,0 > τ

∣∣∣NLOS connection
)

(a)
≈ AL

∫ ∞
0

P
(
|γim,x,0|2 >

ηLτUtσ2
n

pMUG

)
f̃L(t)dt

+ AN

∫ ∞
0

P
(
|γim,x,0|2 >

ηNτUtσ2
n

pMUG

)
f̃N(t)dt

= BL

∞∫
0

P
(
|γim,x,0|2 >

ηLτUtσ2
n

pMUG

)
e−λBSMN(t)fL(t)dt

+ BN

∞∫
0

P
(
|γim,x,0|2 >

ηNτUtσ2
n

pMUG

)
e−λBSML(t)fN(t)dt,

where (a) is obtained using Proposition 1. Note that
the first integral is the probability that SNR exceeds
the threshold and there is LOS connection, whereas the
second term is for NLOS connection. Let us consider
the probabilities in each of these two terms separately.

P
(
|γim,x,0|2 >

ηLτUtσ2
n

pMUG

)
= P (pMU = 1)P

(
|γim,x,0|2 >

ηLτUtσ2
n

pMUG

∣∣∣pMU = 1

)
(b)
= ζ(ηL,U)P

(
|γim,x,0|2 >

ηLτUtσ2
n

G

)
,

where (b) is obtained from distribution of pMU in Propo-
sition 1.

Further, using the distribution of maximum of ηL

exponential random variables for |γim,x,0|2,

P
(
|γim,x,0|2 >

ηLτUtσ2
n

G

)
=

ηL∑
n=1

(−1)n+1

(
ηL

n

)
exp

(
−ηLτnUtσ2

n/G
)
.

Similarly, we can find the NLOS probability term, which
completes the proof.

C. Proof of Lemma 6

The Laplace functional of the out-of-cell interference
to a user at origin, given the path loss to the serving BS,
is defined as LI0,l(s) , E [exp (−sI0) |L(x, 0) = l].

LI0,l(s) = E

exp

−s ∑
y∈ΦBS,y 6=x

G|γy,0|2χy
L(y, 0)Uy

∣∣∣∣∣L(x, 0) = l


(a)
= E

exp

−s ∑
t∈N ,t≥l

G|γt|2t−1χt
Ut


(b)
= E

 ∏
t∈N ,t≥l

exp

(
−sG|γt|

2t−1χt
Ut

)
=E

 ∏
t∈N ,t≥l

E|γt|2
[
exp

(
−sG|γt|

2t−1χt
Ut

)]
(c)
= E

 ∏
t∈N ,t≥l

1

1 + ψt


(d)
= exp

(
−
∫ ∞
l

(
1− Eψt

[
1

1 + ψt

])
Λ(dt)

)
= exp

(
−
∫ ∞
l

(
Eψt

[
1

1 + ψ−1
t

])
Λ(dt)

)
,

where (a) is obtained by displacing each point y ∈
ΦBS, y 6= x to L(y, 0) = t ∈ N , t ≥ l. Note that
γy,0, Uy and χy are independent marks of y ∈ ΦBS,
whose distributions are themselves independent of the
location y. After one to one mapping of each point
y ∈ R2 to t ∈ R+ and each mark to itself, we associate
each feasible point t ∈ N with independent marks γt, Ut
and χt, with same distribution as the corresponding
earlier marks. Here, (b) is obtained using independence
of the marks of the displaced PPP and (c) since γt
are exponentially distributed random variables with unit
mean and ψt = sGt−1χt

Ut
. Using the PGFL (probability

generating functional) [28] we obtain (d). Using the
distribution of Uy and χt, we get the required result.

D. Laplace Functional of Out-of-cell Interference for
General Number of Paths

The out-of-cell interference from a BS at y to user at
origin, served by BS at x is given by

Iy,0 =
GL(y, 0)−1

ηy,uUy

∑
w∈Uy

||
ηy,u∑
j=1

γja
∗
UE(φx,u)aUE(φj,y,u)×

a∗BS(θj,y,u)aBS(θy,w)||2,

Thus,

Iy,0 =
GL(y, 0)−1

ηy,uUy

∑
w∈Uy

||
ηy,u∑
j=1

γjχj,w||2,
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where χj,w is given by,

χj,w =


1 if φx,u = φj,y,u and θy,w = θj,y,u

ρBS if φx,u = φj,y,u and θy,w 6= θj,y,u

ρUE if φx,u 6= φj,y,u and θy,w = θj,y,u

ρBSρUE otherwise.

Now let us look at the Laplace functional of this inter-
ference power.

LI0(s) = E

exp

−s ∑
y∈ΦBS,y 6=x

Iy,0


= E

exp

−s ∑
y∈ΦBS,y 6=x

GL(y, 0)−1

ηy,0Uy

×
∑
w∈Uy

||
ηy,0∑
j=1

γjχj,w||2


(a)
= E

 ∏
y∈ΦBS,y 6=x

Eχ(.,.),γ(.)

[
exp

(
−sGL(y, 0)−1

ηy,0Uy

×
∑
w∈Uy

||
ηy,0∑
j=1

γjχj,w||2
 .

where (a) follows since χ and γ have distributions inde-
pendent of location y. Finding the exact distribution from
this expression is intractable. The main bottleneck is that
the small scale fading random variables γj , are together
clubbed in a single norm expression and thus, although
these random variables are assumed to be independent,
the distribution of the norm squared for different users
in Uy are correlated exponential random variables. We,
thus, find upper and lower bounds in this work.

1) Upper Bound on the Laplace Functional. In order
to find an upper bound, we use the fact that χj,w ≥
ρBSρUE. Thus,

LI0(s) ≤ E

 ∏
y∈ΦBS,y 6=x

Eχ(.,.),γ(.)

[
exp

(
− sGρ2

BSρ
2
UE

L(y, 0)ηy,0Uy

×
∑
w∈Uy

||
ηy,0∑
j=1

γj ||2


(a)
= E

 ∏
y∈ΦBS,y 6=x

EΞ

[
exp

(
−sGρ2

BSρ
2
UEΞ

L(y, 0)ηy,0

)]
= E

 ∏
y∈ΦBS,y 6=x

1

1 + sGL(y, 0)−1ρ2
BSρ

2
UE

,
where Ξ is an exponential random variable with mean
ηy,0 in (a). In order to find the SINR distribution, we are
interested in Laplace functional conditioned on path loss

to serving BS. Thus, conditioning on L(x, 0) = l and
displacing the points in Φ to N , similar to Appendix C
we get,

LI0,l(s) ≤ E

 ∏
t∈N ,t≥l

1

1 + sGt−1ρ2
BSρ

2
UE


= exp

(
−
∫ ∞
l

Λ(dt)

1 + 1
sGt−1ρ2BSρ

2
UE

)
.

2) Lower Bound on the Laplace Functional. One
obvious lower bound can be obtained using χj,w = 1.
The Laplace functional in this case is the same as for the
upper bound with ρ2

BSρ
2
UE replaced by 1. However, with

the narrow beamwidth for a large number of antennas,
this approximation is clearly very pessimistic. We can
get a tighter lower bound using the Cauchy-Schwarz
inequality as follows.

LI0(s) ≥ E

 ∏
y∈Φ,y 6=x

Eχ(.,.),γ(.)

[
exp

(
−sGL(y, 0)−1

ηy,0Uy

×

ηy,0∑
j=1

||γj ||2
 ∑
w∈Uy

ηy,0∑
j=1

χ2
j,w


= E

 ∏
y∈Φ,y 6=x

Eχ(.,.)

[(
1 +

sGL(y, 0)−1

ηy,0Uy

×
∑
w∈Uy

ηy,0∑
j=1

χ2
j,w

−ηy,0 .
Simplifying the term

Ψy = Eηy,0

1 +
sGL(y, 0)−1

ηy,0Uy

∑
w∈Uy

ηy,0∑
j=1

χ2
j,w

−ηy,0,
we get

Ψy =

NBS∑
i=1

ηy,0∑
m=0

(
ηy,0
m

)
qm+1
UE,i (1− qUE,i)

ηy,0−m

×
NBS∑

k1,...,kUy=1

ηy,0∑
j1,...,jUy=0

Uy∏
n=1

(
ηy,0
jn

)
qjn+1
BS,kn

(1−qBS,kn)ηy,0−jn

×

1 +
sGL(y, 0)−1

ηy,0Uy

ηy,0∑
j=1

 Uy∑
n=1

(
ρ2

BS

+1(j ≤ jn))(1− ρ2
BS

)) (
ρ2

UE + 1(j ≤ m)(1− ρ2
UE)
))−ηy,0

.

The above expression boils down to Lemma 6, for
a single path channel. This expression can be further
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simplified assuming equiprobable virtual angles,

Ψy =

ηy,0∑
m=0

(
ηy,0
m

)(
1

NUE

)m(
1− 1

NUE

)ηy,0−m

×
ηy,0∑

j1,...,jUy=0

Uy∏
n=1

(
ηy,0
jn

)(
1

NBS

)jn (
1− 1

NBS

)ηy,0−jn

×

1 +
sGL(y, 0)−1

ηy,0Uy

ηy,0∑
j=1

 Uy∑
n=1

(
ρ2

BS + 1(j ≤ jn))

×(1− ρ2
BS

)) (
ρ2

UE + 1(j ≤ m)(1− ρ2
UE)
))−ηy,0

.

Now seperating the LOS and NLOS terms and using
the Displacement theorem as for the upper bound, the
Laplace functional can be given as

LI0,l(s) ≥ exp

(
−
∫ ∞
l

(1− E [Ψt,L])ΛL(dt)

)
× exp

(
−
∫ ∞
l

(1− E [Ψt,N])ΛN(dt)

)
.

where Ψt,j is same as Ψy with y replaced by t and ηy,0
replaced by ηj, for j ∈ {L,N}.
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