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Abstract—In this paper, we present bandwidth efficient
retransmission method employong selective retransmission
approach at modulation layer under orthogonal frequency
division multiplexing (OFDM) signaling. Our proposed
cross-layer design embeds a selective retransmission sub-
layer in physical layer (PHY) that targets retransmission of
information symbols transmitted over poor quality OFDM
sub-carriers. Most of the times, few errors in decoded bit
stream result in packet failure at medium access control
(MAC) layer. The unnecessary retransmission of good qual-
ity information symbols of a failed packet has detrimental
effect on overall throughput of transceiver. We propose a
cross-layer Chase combining with selective retransmission
(CCSR) method by blending Chase combining at MAC
layer and selective retransmission in PHY. The selective
retransmission in PHY targets the poor quality informa-
tion symbols prior to decoding, which results into lower
hybrid automatic repeat reQuest (HARQ) retransmissions
at MAC layer. We also present tight bit-error rate (BER)
upper bound and tight throughput lower bound for CCSR
method. In order to maximize throughput of the proposed
method, we formulate optimization problem with respect
to the amount of information to be retransmitted in se-
lective retransmission. The simulation results demonstrate
significant throughput gain of the proposed CCSR method
as compared to conventional Chase combining method.

Keywords: Hybrid ARQ, LDPC, throughput, OFDM,
retransmission, cross-layer, LTE.

I. I NTRODUCTION

The contemporary wireless communication standards
such as LTE-advanced [1] integrate new technologies to
meet increasing need of high data rate. The current and
future communication systems employ multiple-input
multiple-output (MIMO) technology due to its potential
to achieve higher data rate and diversity. In order to as-
sure error-free communication with high throughput over
dynamic wireless channels, many packet error detection
and correction protocols have evolved over time [2].
The automatic repeat reQuest (ARQ) methods combats
packet loss that occurs due to channel fading of wireless
networks and achieves error-free data transfer using
cyclic redundancy check (CRC) approach. The concept
of HARQ integrates ARQ and forward error correction
(FEC) codes to provide effective means of enhancing

overall throughput of communication systems [2], [3].
In the event of packet failure, an advanced form of
HARQ incorporates joint decoding by combining soft in-
formation from multiple transmissions of a failed packet.
Thus, HARQ is one of the most important technologies
adopted in the latest communication standards such as
high-speed down link packet access (HSDPA), universal
mobile telecommunications system (UMTS) that pervade
3G and 4G wireless networks to ensure data reliability.

In type-I HARQ, the receiver requests retransmission
of an erroneous packet and discards observation of
the failed packet. Type-II HARQ is most commonly
used method and achieves higher throughput. The type-
II HARQ is divided into Chase combining HARQ
(CC-HARQ) and incremental redundancy HARQ (IR-
HARQ). In CC-HARQ, the receiver preserves observa-
tions of the failed packet and requests retransmission of
full packet. The Chase receiver combines [4] observa-
tions of the failed packet and retransmitted packet for
joint decoding. In the event of packet failure under IR-
HARQ, the receiver requests retransmission of additional
parity bits to recover from errors. In response to the
retransmission request, transmitter sends more parity bits
lowering the code rate of FEC code. After receiving
requested parity bits, the receiver combines new parity
bits with buffered observations for FEC joint decoding.

Most of the research conducted on HARQ focuses on
ARQ and FEC [3], [5] without exploring the modulation
layer. Throughput of capacity achieving FEC codes such
as low density parity check (LDPC) codes and turbo
codes is optimized for Rayleigh fading channel in [6]
with ARQ and HARQ protocols. Mutual information
based performance analysis of HARQ over Rayleigh fad-
ing channel is provided in [7]. Optimal power allocation
for Chase combining based HARQ is optimized in [8]–
[12]. Without exploiting channel state information and
frequency diversity of the frequency selective channel,
partial retransmission of the original symbol stream of a
failed packet is addressed in [13]–[15]. These methods
retransmit punctured packet in predetermined fashion
without using channel knowledge. Furthermore, the com-
plexity of joint detection forpartial retransmission is
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not tractable [13], [14], [16]. Partial retransmission of
orthogonal space-time block (OSTB) coded [17] OFDM
signaling is proposed in [15]. In [18], for conventional
ARQ protocol, full packet retransmission at modulation
layer is employed when channel gain is below a thresh-
old value without buffering observations of low signal-
to-noise ratio (SNR) channel realization.

In a typical failed packet, there are small number
of corrupted bits and retransmission of full packet is
not necessary. The receiver can recover from errors by
retransmission of potentially culprit bits. The OFDM
signaling allows to identify poor quality bits correspond-
ing to the sub-carriers that have low SNR. Selective
retransmission at modulation layer of OFDM signal-
ing proposed in [19]–[22] achieves throughput gain as
compared to conventional HARQ methods. However,
throughput optimization of selective retransmission and
performance analysis is not addressed in [19].

In LTE, two-levels packet retransmission achieves sig-
nificant throughput gain and reduction in latency of the
system. In the event of CRC failure, MAC sub-layer of
user plane initiates retransmission request which results
into low latency and higher throughput. The radio link
control (RLC) sub-layer combats residual packet errors
by ARQ retransmission [23], [24]. These retransmission
schemes do not exploit channel state information (CSI).
Most of the contemporary communication standards such
as 3G and 4G network adopt OFDM modulation due
to inherent robustness to combat multi-path effect of
wireless channel and low complexity transceiver design
[25]. In OFDM based systems, information symbols
corresponding to the different coherence bandwidth en-
counter different channel gains. The motivation of se-
lective retransmission owing to the fact that in the event
of failed packet under OFDM signaling at MAC layer,
often receiver can recover from error(s) by retransmitting
partial information corresponding to the poor quality
sub-carriers. An OFDM signaling allows selective re-
transmission of information symbols transmitted over
poor quality sub-carrier at PHY level. After receiving
the copy of information symbols corresponding to the
poor quality sub-carriers, receiver jointly decodes data
in Chase combining fashion. In this work, we propose
a low complexity and bandwidth efficient CCSR cross-
layer design at modulation layer for OFDM signaling.
We also provide BER and throughput analysis in terms
of tight upper BER bound and lower throughput bound,
respectively, for the proposed retransmission scheme.
The amount of information to be retransmitted for each
sub-carrier in the event of failed packet is a function
of signal-to-noise ratio (SNR) of the corresponding
sub-carrier. In order to maximize throughput, we use
norm of channel gain for each sub-carriers as channel
quality measure and optimize thresholdτ on channel

norm for selective retransmission. The simulation results
demonstrate that the proposed method offers substantial
throughput gain as compared to the conventional CC
method in low SNR regime. The results of proposed
method show that there is marginal gap between analyti-
cal bounds and simulation results (Monte Carlo method)
for both BER and throughput. The simulation results
reveal that throughput gain of the proposed scheme also
hold with LDPC FEC code.

We organize this manuscript as follows. First, we
present the system model in Section II and problem
formulation of CCSR method for OFDM system in
Section III. In Section IV, we present BER analysis
of the CCSR method in terms of BER upper bound.
Throughput analysis for the proposed CCSR is presented
in Section V. Throughput optimization is performed in
Section VI. We discuss the results in Section VII. Finally,
we conclude the proposed work in Section VIII.

II. SYSTEM MODEL

The system model under consideration employs three
levels of retransmission as depicted in Figure 1. The
two-layer ARQ approach in LTE achieves low latency
and high throughput [1]. The system model in Figure 1
embeds an additional retransmission sub-layer in PHY
for selective retransmission under OFDM modulation
with Ns sub-carriers over frequency selective channel
of L coefficients. An OFDM signaling converts fre-
quency selective channelh into Ns parallel flat-fading
channels [25]. The elements of a channel gain vector
H =

[
H(1) sH(ℓ) H(Ns)

]T
, where channel vectorH

is generated by applying Fourier transformation matrix
F ∈ CNs×Ns on frequency selective channelh, are
independent and identically distributed (i.i.d.) along time
with distributionN (0, 1) [25]. The matrix model of the
received vectory overNs sub-carriers can be written as

y = diag(H)s +w, (1)

where vectorw ∼ N (0, N0I) is an additive white
Gaussian noise vector. A typical failed packet has few
erroneous bits. If we can identify unreliable bits, then full
packet retransmission is unnecessary to recover failed
packet. In OFDM modulation, information bits transmit-
ted over sub-carriers with small channel norm‖H(ℓ)‖2

are more susceptible to the channel impairments. Thus,
an OFDM signaling allows retransmission of targeted
information symbols corresponding to the poor quality
sub-carriers instead of unnecessary retransmission of full
packet [19]. As shown in Figure 1, transmitter preserves
information symbol vectors = [s(1) . . . s(Ns)]

T and
transmits OFDM modulated signal. The selective re-
transmission module of the receiver requests retransmis-
sion of information transmitted over the poor quality
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Fig. 1. Cross-layer system model for Chase combining with selective
retransmission for OFDM system at PHY layer.

sub-carriers prior to decoding through partial channel
feedback (PCFB). The norm of gain of a sub-carrier
is measure of SNR of the sub-carriers. The receiver
marks information symbols for selective retransmission
corresponding to the sub-carriers, which have norm
of gain below thresholdτ . The thresholdτ controls
amount of information to be retransmitted discussed in
Section IV. In response to the selective retransmission
in PHY, peer selective retransmission module of the
transmitter appends requested information symbols to
the next OFDM symbol vector. Thus, each OFDM
symbol vector consists of new information symbols and
information symbols from the buffer in response to
the selective retransmission request. The receiver then
performs joint detection by combing observation of
the first transmission and subsequent selective retrans-
mission to enhance log-likelihood ratio (LLR) of bits
for FEC decoding. Partial retransmission at modulation
layer by targeting poor quality observations selectively
improves BER and consequently lowers average number
of retransmissions at MAC layer. HARQ layer deliv-
ers successfully decoded data units to the ARQ layer.
When timeout for missing data unit occurs, ARQ layer
request retransmission of corresponding packet from the
peer ARQ layer of the transmitter. We propose CCSR
selective retransmission method that achieves significant
throughput gain as compared to the conventional CC-
HARQ.

Note that retransmission of more information does not
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Fig. 2. (a) Chase combining with selective retransmission under
OFDM signaling for two transmission rounds. (b) Flow graph of CCSR
method forµ transmission rounds.

increase throughput linearly. The threshold parameterτ

on the channel norm‖H(ℓ)‖2 of the ℓ-th sub-carriers
controls amount of information to be retransmitted
in selective retransmission with objective to maximize
throughput of the communication system. We optimize
thresholdτ in order to maximize throughputη of the
transceiver under selective retransmission. Throughput
of selective retransmission is function of probability of
error, which in fact is function ofτ .

III. PROBLEM FORMULATION

Now we present proposed cross-layer CCSR method
for OFDM signaling. Similar to conventional HARQ,
in CCSR method, MAC layer initiates retransmission
in the event of CRC failure. The additional selective
retransmission sub-layer in PHY layer initiates selec-
tive retransmission of information symbols transmitted
over poor quality OFDM sub-carriers prior to decoding.
Note that OFDM signaling allows retransmission of
information symbols transmitted over poor quality sub-
carriers (‖H(ℓ)‖2 < τ ) selectively avoiding overhead
of retransmission of information symbols corresponding
to good quality sub-carriers, whereτ is threshold on
channel norm of a sub-carrier. The receiver feeds back
the partial channel state information (PCSI) when each
coherent time is elapsed. We assume that due to longer
retransmission delay, each retransmission encounters in-
dependent channel. Next, we present CCSR method
under OFDM signaling.

The proposed CCSR method is depicted forµ = 2
transmission rounds in Figure 2(a). Similar to con-
ventional CC-HARQ method, MAC layer initiates full
retransmission in the event of CRC failure. The proposed
CCSR method is different from conventional CC-HARQ
method in the sense that CCSR method employs an ad-
ditional selective retransmission of information symbol
corresponding to the poor quality sub-carriers at PHY
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level for each transmission at MAC layer. For the first
transmission of each MAC packet, proposed selective
retransmission sub-layer initiates retransmission of the
information symbols corresponding to theβ1 many
sub-carriers which have‖H1(ℓ)‖2 < τ , whereH1(ℓ)
represents gain of theℓ-th sub-carrier corresponding to
full transmission of the first round at MAC layer. For
example, upper dotted rectangle of Figure 2(a) shows
that OFDM sub-carriers 4, 8, 12 and 14 (β1 = 4) have
‖H1(ℓ)‖2 < τ and are marked for retransmission, where
ℓ is index to the sub-carrier. Selective retransmission
sub-layer of the transmitter in response to the selec-
tive retransmission through feedback channel appends
requested information symbols to the very next OFDM
symbol. Note that for a very poor channel realizations,
the proposed selective retransmission sub-layer in PHY
may request retransmission of all information symbols
(β1 = Ns). Similarly, for good quality channel re-
alizations, selective retransmission sub-layer can omit
retransmission (β1 = 0). On arrival of requested selective
information, receiver performs joint detection and buffers
β1 +Ns observations of first transmission and selective
retransmission. Note that both transmitter and receiver
keep track of information symbols which has been con-
sidered for selective retransmission in one transmission
round. Each information symbol in one transmission
round is consider only once for selective retransmission.
With maximum transmission roundsµ at MAC layer, an
information symbol can be considered at mostµ times
for selective retransmission at PHY level.

Let H1s(ℓ) be the gain of theℓ-th sub-carrier cor-
responding to the selective retransmission for the first
transmission round, where subscript "s" stands for selec-
tive retransmission. Then the combined channel response
H1(ℓ) =

[
H1(ℓ) H1s(ℓ)

]T
for β1 many sub-carriers is

constructed by stacking channel of the first transmission
and selective retransmission. If there areβ1 many sub-
carriers with ‖H1(ℓ)‖2 < τ , then there will be joint
detection forβ1 sub-carrier for the first round of CCSR
method. The estimate ofNs − β1 information symbols
which have sub-carrier gain‖H1(ℓ)‖2 ≥ τ after equal-
ization is

ŝ(ℓ) = s(ℓ) +
H∗

1 (ℓ)w(ℓ)

‖H1(ℓ)‖2
= s(ℓ) + u(ℓ), (2)

where u(ℓ) is the effective noise with distribution
N (0, ‖H(ℓ)‖−2N0). Also the estimate ofβ1 information
symbols corresponding to the poor quality sub-carriers
from the first full transmission as a result of joint
detection is

ŝ(ℓ) =s(ℓ) + ‖H1(ℓ)‖
−2HH

1 (ℓ)w̃(ℓ)
︸ ︷︷ ︸

ũ(ℓ)

, (3)

where ũ(ℓ) ∼ N (0, ‖H1(ℓ)‖
−2N0I2) and w̃(ℓ) ∼

N (0, N0I2). Note that MAC layer is unaware of se-
lective retransmission sub-layer in PHY. The selective
retransmission followed by joint detection at modulation
layer enhances reliability of the decoded bits resulting
into few CRC failure at MAC layer by selectively
retransmitting poor quality information symbols.

In the event of CRC failure, MAC layer initiates
next round of HARQ retransmission by sending NACK
signal to the peer MAC layer for the full retransmission
of failed data as shown in the lower dotted rectangle
of the Figure 2(a). In response to NACK from MAC
layer, transmitter retransmits failed full packet similarto
conventional CC-HARQ as shown in Figure 2(a). Similar
to the first transmission, selective retransmission sub-
layer initiates selective retransmission of poor quality
symbols of retransmitted full packet from MAC layer. As
a result of selective retransmission, transmitter appends
β2 many (β2 = 3 in Figure 2(a) ) information symbols
to the next immediate OFDM symbol. When selective
retransmission is employed in PHY, Chase combining
processes2Ns + β1 + β2 observations instead of2Ns

observations for joint detection. Note thatE [β1] =
E [β2] = NsP (‖H1(ℓ)‖2 < τ) = NsP (‖H1s(ℓ)‖2 <

τ) = Nsm, whereH1s(ℓ) is channel gain of theℓ-th
sub-carrier during selective retransmission.

Let µ be the maximum number of allowed retransmis-
sion of a MAC packet andJ be the round counter for the
transmission of thek-th MAC packet of a HARQ process
for CCSR method. At the end of theJ-th round, where
J = 1, . . . , µ, receiver combines buffered observations
of full transmissions and selective retransmissions ofJ

rounds for joint detection. If CRC fails afterµ rounds of
MAC layer, receiver clears observations from the buffer
and sends signal to the ARQ layer. In response to the
packet failure, ARQ layer initiates new retransmission
round by initiating retransmission request to the peer
ARQ layer. The flow graph of CCSR protocol for
the k-th MAC packet is presented in Figure 2(b) and
described in Algorithm 1. If CRC failure occurs after
µ MAC retransmissions, retransmission of failed packet
is initiated from ARQ layer. The algorithm of CCSR
method is described as follows:

IV. PERFORMANCEANALYSIS

In this section, we present tight upper bounds on BER
of joint detection after signal combining and prior to
channel decoding for cross-layer CCSR method. One
round of transmission of CCSR method includes one
full transmission of MAC packet followed by selective
retransmission of information symbols corresponding to
the sub-carriers which have‖H(ℓ)‖2 < τ , whereH(ℓ) is
gain ofℓ-th sub-carrier. We assume that full transmission
by MAC layer and subsequent selective retransmission
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Algorithm 1 CCSR protocol
1: J = 1 corresponds to the first transmission of the

k-th MAC packet
2: Selective retransmission ofβJ sub-carriers and

buffering ofNs observations
3: Joint decoding fromJNs +

∑J

i=1 βi observations
and CRC check

4: if CRC satisfiesthen k = k+1, discard observations
and go to 1

5: if J ≥ µ then declare packet loss, discard observa-
tion, ARQ sub-layer initiates NACK for retransmis-
sion of packet and go to 1

6: J = J + 1 and go to 2

by PHY layer encounter independent channel realiza-
tions. In this analysis, we consider maximum ofµ trans-
mission rounds at MAC layer. Similar to conventional
Chase combining, joint detection for theJ-th round
combines observations buffered up toJ rounds. Thus,
probability of errorPeJ of the joint detection of theJ-th
round is lower than that ofJ−1-th round (PeJ < PeJ−1

),
where J ≤ µ ∈ I+. In order to evaluate throughput
of the proposed CCSR method in Section V, we derive
closed form expression for the upper bound on BER of
joint detection ofJ-th round under maximum number
of µ transmission rounds of a MAC packet. Now we
evaluatePeJ for the J-th round.

A. BER analysis of the first round of CCSR

Let H1 and H1s be the complex gain vectors of
length Ns corresponding to the full transmission by
MAC layer and subsequent selective retransmission from
PHY layer, respectively. Each elementH1(ℓ) andH1s(ℓ)
of the complex channel gain vectors of OFDM sub-
carriers follows Gaussian distribution with zero-mean
and unit variance [25]. One MAC data unit is mapped
to Ns information symbols using M-QAM modulation,
whereNs is the number of sub-carriers of an OFDM
symbol. Prior to decoding, selective retransmission sub-
layer initiates selective retransmission ofβ1 poor quality
information symbols as shown in upper dotted rectangle
of Figure 2(a). We denote the outcomes‖H1(ℓ)‖2 ≥ τ

and ‖H1(ℓ)‖2 < τ of the first full transmission by the
eventsξ andξc, respectively. The probabilities of events
ξ and ξc areP (ξc) = P (‖H1(ℓ)‖

2 < τ) andP (ξ) =
P (‖H1(ℓ)‖2 ≥ τ), respectively, where random variable
χ1 = ‖H1(ℓ)‖2 has chi-square distribution of degree
2 [26] and P (ξc) = 1 − P (ξ) = P (χ1 < τ) . For
Rayleigh fading channel, real and imaginary components
of complex channel coefficient of a sub-carrier have
zero-mean and varianceσ2 = 1

2 . When eventξ occurs,
selective retransmission sub-layer omits retransmission

of that particular sub-carriers.
When eventξc occurs forℓ-th sub-carrier, selective

retransmission sub-layer request retransmission of that
very information symbols(ℓ) and receiver performs joint
detection by combining observation of the full trans-
mission and subsequent selective retransmission. Note
that the random variable‖H1(ℓ)‖2 in (3) also has chi-
square distribution of degree4. Also that ‖H1(ℓ)‖2 =
χ1 + χ2, where chi-square random variablesχ1 and
χ2 = ‖H1s(ℓ)‖

2 are i.i.d. of degree2 each. The bit-error
probability of joint detection for selective retransmission
over Rayleigh fading channel is

Pe1 = EH

[

P (ξ) Pe|ξ + P (ξc) Pe|ξc

]

, (4)

wherePe|ξ andPe|ξc are the conditional bit-error prob-
abilities of detection from single observation and joint
detection, respectively.

The probability of error for joint detection of first
round of CCSR is

Pe1 = P (ξ)cEH|ξ

[

Q

(√

g
χ1

N0

)]

+ P (ξc)cEH|ξc

[

Q

(√

g
χ1 + χ2

N0

)]

, (5)

where EH|ξc and EH|ξ are conditional expectations.
Also, c andg are modulation constants [25]. The condi-
tional probability density functionfχ1|ξc(x1) of fχ1

(x1)

whenχ1 ≥ τ is fχ1|ξc(x1) =
fχ1

(x1)

P (ξc)
. In order to solve

first term of (5), we have [27]

EH|ξ

[

Q

(√

g
χ1

N0

)]

=

∫ ∞

τ

Q

(√

g
x1

N0

)
fχ1

(x1)

P (ξ)
dx1

(6)

Similarly,

EH|ξc

[

Q

(√

g
χ1 + χ2

N0

)]

=

∫ τ

x1=0

∫ ∞

x2=0

Q

(√

g
x1 + x2

N0

)

fχ1
(x1)fχ2

(x2)

P (ξc)
dx2dx1 (7)

The upper bound onPe1 in (5) using approximation of
Q-function [28], (6) and (7) can be written as [22], [27]

Pe1 ≤
c

12

∫ ∞

τ

exp(−g
x1

2N0
)fχ1

(x1)dx1 +
c

4

∫ ∞

τ

exp(−g
4x1

3.2N0
)fχ1

(x1)dx1 +
c

12

∫ τ

0

exp(−g
x1

2N0
)fχ1

(x1)

dx1

∫ ∞

0

exp(−g
x2

2N0
)fχ2

(x2)dx2 +
c

4

∫ τ

0

exp(−g
4x1

3.2N0
)

fχ1
(x1)dx1

∫ ∞

0

exp(−g
4x2

3.2N0
)fχ2

(x2)dx2, (8)

Note thatρ =
√

σ2No

gσ2+No
, ρ1 =

√
σ2No

g1σ2+No
andg1 =

4g
3 . For 4-QAM constellationg = 2 and c = 2

log
2
M

. By
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simplifying (8), we have upper bound on probability of
error of the joint detection of the first round as follows
[26]

Pe1 ≤
c

12

( ρ

σ

)2

exp

(

−
τ

2ρ2

)

+
c

4

(ρ1

σ

)2

exp

(

−
τ

2ρ21

)

+
c

12

( ρ

σ

)4
(

1− exp

(

−
τ

2ρ2

))

+

c

4

(ρ1

σ

)4
(

1− exp

(

−
τ

2ρ21

))

. (9)

Now we evaluate BER upper bound of joint detection
for second round under CCSR method.

B. BER analysis of second round of CCSR

Let H2(ℓ) be the gain of theℓ-th sub-carrier corre-
sponding to the full retransmission initiated from the
MAC layer as a result of CRC failure of MAC packet
of the first round andH2s(ℓ) be the channel gain for
selective retransmission. In a similar fashion to the first
round, the receiver marks data symbol of the second
round transmitted overℓ-th sub-carrier for selective
retransmission for the second round if‖H2‖2 < τ . The
channel gainsH1(ℓ) andH2(ℓ) of the full transmission
of the first and second round, respectively, of theℓ-
th sub-carrier are independent, which results into four
possible joint channel vectors for joint detection. We
denote each possible outcome of joint channel vector
by an event. The probability of error of joint detection
of the second round is

Pe2 =EH

[
P (ξ1)Pe|ξ1 + P (ξ2)Pe|ξ2 + P (ξ3)Pe|ξ3+

P (ξ4)Pe|ξ4

]
, (10)

where eventsξ1, ξ2, ξ3 and ξ4 correspond to the four
joint channel vectors defined as follows:

1) Event ξ1 occurs when ‖H1(ℓ)‖2 ≥ τ and
‖H2(ℓ)‖2 ≥ τ for the first and second full trans-
missions, respectively. The resulting joint chan-
nel for joint detection of CCSR isH1(ℓ) =
[H1(ℓ) H2(ℓ)]

T , whereH1(ℓ) andH2(ℓ) are i.i.d.
channel realizations with Gaussian distribution of
zero-mean and unit variance. The channel norm
‖H1(ℓ)‖2 = ‖H1(ℓ)‖2 + ‖H2(ℓ)‖2 has chi-square
distribution.

2) Event ξ2 occurs when ‖H1(ℓ)‖2 <

τ and‖H2(ℓ)‖2 ≥ τ . The resulting joint
channel response for joint detection of CCSR
is H2(ℓ) = [H1(ℓ) H1s(ℓ) H2(ℓ)]

T .
3) Event ξ3 occurs when ‖H1(ℓ)‖2 ≥

τ and‖H2(ℓ)‖2 < τ . The resulting joint
channel response for joint detection of CCSR
is H3(ℓ) = [H1(ℓ) H2(ℓ) H2s(ℓ)]

T , where
H2s(ℓ) is channel gain of theℓ-th sub-carrier
selected for retransmission during selective

retransmission of the second round of packet at
MAC layer.

4) Event ξ4 occurs when ‖H1(ℓ)‖2 < τ and
‖H2(ℓ)‖

2 < τ . The resulting joint chan-
nel for joint detection of CCSR isH4(ℓ) =
[H1(ℓ) H1s(ℓ) H2(ℓ) H2s(ℓ)]

T , whereH1s(ℓ)
andH2s(ℓ) are the channels corresponding to the
selective retransmissions of the first round and sec-
ond round, respectively. Note that random variables
‖H1s(ℓ)‖2 and ‖H2s(ℓ)‖2 are also i.i.d. with chi-
square distribution of degree2 each.

The second and third terms in (10) are equivalent
due to the fact thatP (ξ2) = P (ξ3) and random
variables ‖H2(ℓ)‖ and ‖H3(ℓ)‖ are i.i.d. Therefore,

EH

[

P (ξ2)Pe|ξ2 + P (ξ3)Pe|ξ3

]

= 2EH

[

P (ξ2)Pe|ξ2

]

.
Note that all channel realizations of theℓ-th sub-carrier
of an OFDM system are i.i.d. with Gaussian distribution
of zero-mean and unit variance. In order to achieve upper
bound on BER for joint detection of CCSR method, we
rewrite (10) as follows:

Pe2 = cEH

[

P (ξ1)Q





√

g‖ H1(ℓ)‖2

N0



+ 2P (ξ2)

Q





√

g‖ H2(ℓ)‖2

N0



+P (ξ4)Q





√

g‖ H4(ℓ)‖2

N0





]

. (11)

Note that‖H1(ℓ)‖2 = χ1 + χ2 in the first term of (11)
is sum if two i.i.d. chi-square random variables , where
χ1 ≥ τ andχ2 ≥ τ . Using approximation of Q-function
in [28] and, following (6) and (7), we have

EH [P (ξ1)Pe|ξ1]=cEH



P (ξ1)Q





√

g‖H1(ℓ)‖2
∣
∣ξ1

N0









≤
c

12

∫ ∞

τ

exp(−g
x1

2N0
)fχ1

(x1)dx1

∫ ∞

τ

exp(−g
x2

2N0
)

fχ2
(x2)dx2 +

c

4

∫ ∞

τ

exp(−g
4x1

3.2N0
)fχ1

(x1)dx1

∫ ∞

τ

exp(−g
4x2

3.2N0
)fχ2

(x2)dx2

=
c

12

( ρ

σ

)4
(

exp

(

−
τ

2ρ2

))2

+
c

4

(ρ1

σ

)4
(

exp

(

−
τ

2ρ21

))2

.

(12)
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Similarly,

EH [P (ξ2)Pe|ξ2]=cEH



P (ξ2)Q





√

g‖H2(ℓ)‖2
∣
∣ξ2

N0









≤
c

12

∫ τ

0

exp(−g
x1

2N0
)fχ1

(x1)dx1

∫ ∞

0

exp(−g
x1s

2N0
)

fχ1s
(x1s)dx1s

∫ ∞

τ

exp(−g
x2

2N0
)fχ2

(x2)dx2+

c

4

∫ τ

0

exp(−g
4x1

3.2N0
)fχ1

(x1)dx1

∫ ∞

0

exp(−g
4x1s

3.2N0
)

fχ1s
(x1s)dx1s

∫ ∞

τ

exp(−g
4x2

3.2N0
)fχ2

(x2)dx2, (13)

whereχ1 < τ , χ1s ∈ R andχ2 ≥ τ . Simplifying (13),
we have

EH [P (ξ2)Pe|ξ2] ≤
c

12

( ρ

σ

)6
(

1− exp

(

−
τ

2ρ2

))

(

exp

(

−
τ

2ρ2

))

+
c

4

(ρ1

σ

)6
(

1− exp

(

−
τ

2ρ21

))

(

exp

(

−
τ

2ρ21

))

. (14)

Also, it can be shown that

EH [P (ξ4)Pe|ξ4] = cEH



P (ξ4)Q





√

g‖H4(ℓ)‖2
∣
∣ξ4

N0









≤
c

12

( ρ

σ

)8
(

1− exp
(

−
τ

2ρ2

)
)2

+
c

4

(ρ1

σ

)8

(

1− exp
(

−
τ

2ρ21

)
)2

, (15)

whereχ1 < τ , χ1s ∈ R, χ2 < τ andχ2s ∈ R. Now
using (12), (14) and (15) in (11), we have

Pe2 ≤
c

12

( ρ

σ

)4
(

exp
(

−
τ

2ρ2

)
)2

+
c

4

(ρ1

σ

)4

(

exp
(

−
τ

2ρ21

)
)2

+
c

6

( ρ

σ

)6
(

exp
(

−
τ

2ρ2

)
)

(

1− exp
(

−
τ

2ρ2

)
)

+
c

2

(ρ1

σ

)6
(

exp
(

−
τ

2ρ21

)
)

(

1− exp
(

−
τ

2ρ21

)
)

+
c

12

( ρ

σ

)8
(

1− exp
(

−
τ

2ρ2

)
)2

+
c

4

(ρ1

σ

)8
(

1− exp
(

−
τ

2ρ21

)
)2

. (16)

The following proposition generalizes BER upper bound
on joint detection forJ transmission rounds:

Proposition 1. The upper bound on BER for joint
decoding ofJ transmission rounds under selective re-
transmissions is

PeJ =

J∑

i=0

{(
J

i

)
c

12

( ρ

σ

)2(J+i)
(

exp

(

−
τ

2ρ2

))(J−i)

(

1− exp

(

−
τ

2ρ2

))i

+

(
J

i

)
c

4

(ρ1

σ

)2(J+i)

(

exp

(

−
τ

2ρ21

))(J−i)(

1− exp

(

−
τ

2ρ21

))i}

. (17)

Proof: For J transmission rounds, there are2J

possible joint detection channel vectors and we define
J +1 events. The eventξi consists of

(
J
i

)
joint channel

vectors. Each joint vector includes channel gains from
the full transmissions and selective retransmissions. Note
that when channel gain of theℓ-th sub-carrier of the
full transmission of each round has‖Hj‖2 ≥ τ , where
j = 1, . . . , J , the size of joint channel vector isJ . The
event ξi occurs wheni sub-carrier realizations out of
J realizations of theℓ-th sub-carriers corresponding to
the full transmissions have‖Hj(ℓ)‖2 < τ in any order.
Thus, there are

(
J
i

)
joint channel vector realizations out

of 2J possible outcomes which havei sub-carrier gains
below thresholdτ in any order for the joint detection
of the J-th round. For example, for joint detection of 4
round of CCSR (J = 4) and i = 2, there are2 channel
gains out of 4 for which channel-norm is lower thanτ
in any order. The possible

(
4
2

)
= 6 many joint channel

gain vectors belong to the eventξ2 are

ξ2={[H1(ℓ) H1s(ℓ) H2(ℓ) H2s(ℓ) H3(ℓ) H4(ℓ)]
T
,

[H1(ℓ) H1s(ℓ) H2(ℓ) H3(ℓ) H3s(ℓ) H4(ℓ)]
T
,

[H1(ℓ) H1s(ℓ) H2(ℓ) H3(ℓ) H4(ℓ) H4s(ℓ)]
T
,

[H1(ℓ) H2(ℓ) H2s(ℓ) H3(ℓ) H3s(ℓ) H4(ℓ)]
T
,

[H1(ℓ) H2(ℓ) H2s(ℓ) H3(ℓ) H4(ℓ) H4s(ℓ)]
T
,

[H1(ℓ) H2(ℓ) H3(ℓ) H3s(ℓ) H4(ℓ) H4s(ℓ)]
T }.

The elements of joint sub-carrier gain vectors are in-
dependent with Gaussian distribution of zero-mean and
varianceσ2 = 1

2 . All the 6 joint channel vectors have
equal impact on BER and are equivalent. Therefore,
without loss of generality, all 6 channel gain vectors of
event ξ2 can be represented by a single joint channel
vector

H2 = [H1(ℓ) H2(ℓ) H3(ℓ) H4(ℓ) H1s(ℓ) H2s(ℓ) ]
T
.
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The joint gain vector, which represents all joint channels
of the eventξi of the J-th round can be written as

Hi =

[

H1(ℓ) . . . Hi(ℓ)
︸ ︷︷ ︸

‖Hj(ℓ)‖2<τ

Hi+1(ℓ) . . . HJ (ℓ)
︸ ︷︷ ︸

‖Hj(ℓ)‖2≥τ

H1s(ℓ) . . . His(ℓ)

]T

,

and probability of occurring eventξi is P (ξi) =

p
(J−i)
1 pi2

(
J
i

)
, whereP (‖Hj(ℓ)‖2 ≥ τ) = P (ξ) = p1

and P (‖Hj(ℓ)‖
2 < τ) = P (ξc) = p2. Note that i

gains ofHi have‖Hj‖2 < τ , wherej = 1, . . . , i and
J − i gains of joint channelHi have‖Hj‖2 ≥ τ , where
j = i + 1, . . . , J . The eventξ0 has all channel gains
with ‖Hj‖2 ≥ τ and eventξJ has all channel gains
with ‖Hj‖2 < τ . Furthermore, all elements of vectorHi

have chi-square distribution of order 2. The probability
of error of joint detection of theJ-th round is

PeJ =EH

[ J∑

i=0

P (ξi)Pe|ξi

]

=

J∑

i=0

EH

[
P (ξi)Pe|ξi

]
.

(18)

Now we evaluateEH

[

P (ξi)Pe|ξi

]

as follows:

EH [P (ξi)PeJ |ξi] = cEH



P (ξi)Q





√

g‖Hi(ℓ)‖2
∣
∣ξi

N0









≤

(
J

i

)
c

12

J−i∏

k=1

∫ ∞

τ

exp(−g
xk

2N0
)fχk

(xk)dxk

J∏

k=J−i+1

∫ τ

0

exp(−g
xk

2N0
)fχk

(xk)dxk

i∏

k=1

∫ ∞

0

exp(−g
xks

2N0
)

fχks
(xks)dxks +

(
J

i

)
c

4

J−i∏

k=1

∫ ∞

τ

exp(−g
4xk

3.2N0
)

fχk
(xk)dxk

J∏

k=J−i+1

∫ τ

0

exp(−g
4xk

3.2N0
)fχk

(xk)dxk

i∏

k=1

∫ ∞

0

exp(−g
4xks

3.2N0
)fχks

(xks)dxks

=
c

12

(
J

i

)( ρ

σ

)2(J+i)
(

exp

(

−
τ

2ρ2

))(J−i)

(

1− exp

(

−
τ

2ρ2

))i

+
c

4

(
J

i

)(ρ1

σ

)2(J+i)

(

exp

(

−
τ

2ρ21

))(J−i)(

1− exp

(

−
τ

2ρ21

))i

.

(19)

Now by substitutingEH

[
P (ξi)Pe|ξi

]
in (18), we have

PeJ =
J∑

i=0

(
J

i

)
c

12

( ρ

σ

)2(J+i)
(

exp

(

−
τ

2ρ2

))(J−i)

(

1− exp

(

−
τ

2ρ2

))i

+

(
J

i

)
c

4

(ρ1

σ

)2(J+i)

(

exp

(

−
τ

2ρ21

))(J−i)(

1− exp

(

−
τ

2ρ21

))i

. (20)

In order to compute probability for error of the pro-
posed CCSR method withµ (maximum allowed MAC
retransmissions), we consider (20) with highest possible
J = µ, whereJ = 1, 2, . . . , µ.

In next section, we present throughput analysis and
optimization with respect parameterτ for CCSR forµ
MAC retransmissions (rounds).

V. THROUGHPUTANALYSIS

Now we present throughput analysis of the proposed
CCSR method. In throughput analysis, we consider non-
truncated ARQ which has infinite many retransmission
rounds. There areµ retransmissions rounds of a HARQ
process at MAC layer in one ARQ round as depicted in
Figure 2. One retransmission round of HARQ process
consists of a full transmission of HARQ packet fol-
lowed by a selective retransmission in PHY. In practice,
transceiver pair continues retransmission rounds until
error-free packet is received or maximum number of
retransmission rounds are reached. For throughput anal-
ysis, we follow conventional definition of throughputη,
which is the ratio of error-free information bits received
k to the total number of bits transmittedn ( η = k

n
). Note

thatPeJ is the bit-error probability of the joint detection
of the J-th round of MAC transmission given in (20).
Assuming that each bit in the frame is independent, prob-
ability of receiving an error-free packet of lengthLf with
probability of bit-errorPeJ is pcJ = (1 − PeJ )

Lf . The
probability of receiving a bad packet ispǫJ = 1 − pcJ .
As a direct consequence of joint detection, probability
of bit-error Pe1 > Pe2 > . . . > Peµ and probability of
receiving correct packetpc1 < pc2 < . . . < pcµ .

One transmission round of HARQ layer consists of
k information bits of the full transmission andmk

bits of selective retransmission, wherem = p2 =
P (‖H1(ℓ)‖2 < τ). Thus, there areI = k(1 + m) bits
transmitted in one transmission round of MAC layer to
the receiver. As a result of joint detection,PeJ < PeJ−1

,
pcJ > pcJ−1

and pǫJ < pǫJ−1
. The probability that a

packet fails after two transmission ispǫ1pǫ2 . Note that if
CRC failure occurs afterµ transmissions at MAC layer,
receiver discards observations ofµ transmissions and
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ARQ layer initiates a new round of transmission of the
failed packet. Thus probability of CRC failure at the end

of µ transmissions isα =

µ
∏

j=1

pǫj = pǫ1 .pǫ2 . . . pǫµ . The

probability of a packet to fail afterq transmissions with
joint detection ofµ transmissions at MAC layer is

pǫq =
(
pǫ1 .pǫ2 . . . pǫµ

)γ
J∏

j=1

pǫJ−j
= αγ

J∏

j=1

pǫJ−j
(21)

where γ = ⌊ q−1
µ

⌋, J = [(q − 1) mod µ] + 1 and
pǫ0 = 1. Note thatγ = 0, 1, . . . ,∞, J = 1, 2, . . . , µ
represent transmission count at MAC layer. Since there is
joint detection of at mostµ packets and observations are
discarded in the event of successful decoding or failure
of everyµ-th packet, the probability receiving error-free
packet in the event ofµ+ 1-th transmission of a packet
is pc1 . The probability of successful decoding ofq-th
transmission of a failed packet ispcJ .

The number of bits transmitted inq transmissions of
a packet isk(1 +m)q. The average number of bits that
transmitter transmitsnµ for successful decoding of a
packet in given channel condition withµ transmission
rounds at MAC layer in one ARQ round is stated as
follows:

Proposition 2. The expected number of information bits
under maximum number ofµ rounds at MAC layer and
non-truncated retransmissions at ARQ layer is sum ofµ

summation series as

nµ =

µ
∑

J=1

nJ,µ, (22)

where

nJ,µ = JbJ + (J + µ)bJα+ (J + 2µ)bJα
2+

(J + 3µ)bJα
3 + . . . , (23)

α =

µ
∏

j=1

pǫj , bJ = Ipǫ1pǫ2 . . . pǫJ−1
pcJ = k(1 +

m)

J∏

j=1

pǫJ−j
pcJ and pǫ0 = 1.

Proof: The expected number of information bits
transmitted to deliver error-freek information bits for

the proposed CCSR method are [29]

nµ = Ipc1 + 2Ipǫ1pc2 + 3Ipǫ1pǫ2pc3 + . . .+ µIpǫ1pǫ2pǫ3

. . . pǫµ−1
pcµ + (µ+ 1)Ipǫ1pǫ2pǫ3 . . . pǫµpc1 + (µ+ 2)Ip2ǫ1

pǫ2pǫ3 . . . pǫµpc2 + (µ+ 3)Ip2ǫ1p
2
ǫ2
pǫ3 . . . pǫµpc3 + . . .+

(µ+ µ)Ip2ǫ1p
2
ǫ2
p2ǫ3 . . . p

2
ǫµ−1

pcµ + . . .+ (γµ+ 1)Ipγǫ1p
γ
ǫ2

. . . pγǫµpc1 + (γµ+ 2)Ipγǫ1p
γ
ǫ2
. . . pγǫµpǫ1pc2 + (γµ+ 3)

Ipγǫ1p
γ
ǫ2
. . . pγǫµpǫ1pǫ2pc3 + . . .+ (γµ+ µ)Ipγǫ1p

γ
ǫ2
. . . pγǫµ

pǫ1pǫ2 . . . pǫµ−1
pcµ + . . . (24)

By rearranging (24), we have

nµ = Ipc1

(

1 + (µ+ 1)α+ (2µ+ 1)α2 + (3µ+ 1)α3+

. . .
)

+ Ipǫ1pc2

(

2 + (µ+ 2)α+ (2µ+ 2)α2 + (3µ+ 2)

α3 + . . .
)

+ . . .+ Ipǫ1pǫ2 . . . pǫJ−1
pcJ

(

J + (µ+ J)α+

(2µ+ J)α2 + (3µ+ J)α3 + . . .
)

+ . . .+ Ipǫ1pǫ2 . . .

pǫµ−1
pcµ

(

µ+ (µ+ µ)α+ (2µ+ µ)α2 + (3µ+ µ)α3+

. . .
)

(25)

nµ = b1

(

1 + (µ+ 1)α+ (2µ+ 1)α2 + (3µ+ 1)α3+

. . .
)

+ b2

(

2 + (µ+ 2)α+ (2µ+ 2)α2 + (3µ+ 2)α3

+ . . .
)

+ . . .+ bJ

(

J + (µ+ J)α+ (2µ+ J)α2+

(3µ+ J)α3 + . . .
)

+ . . .+ bµ

(

µ+ (µ+ µ)α+

(2µ+ µ)α2 + (3µ+ µ)α3 + . . .
)

(26)

where b1 = Ipc1 , b2 = Ipǫ1pc2 and bJ =

Ipǫ1pǫ2 . . . pǫJ−1
pcJ = k(1+m)

J∏

j=1

pǫJ−j
pcJ . Note that

there areµ summation series in (26) andJ-th summation
series in the above expression is

nJ,µ =JbJ + (J + µ)bJα+ (J + 2µ)bJα
2 + (J + 3µ)

bJα
3 + . . . . (27)

Therefor, expected number of information bits need to
be transmitted to deliverk(1 +m) information bits is

nµ =

µ
∑

J=1

nJ,µ. (28)

Now we are ready to state proposition for throughput
of CCSR method with joint detection ofµ packet at
MAC layer. The following proposition presents through-
put of CCSR method:
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Proposition 3. Throughput of CCSR method under
maximum number ofµ rounds at MAC layer and non-
truncated retransmissions at ARQ layer is

ηµ =
(1− α)2

(1 +m)

µ
∑

J=1

J∏

j=1

pǫJ−j
pcJ
(
J + (µ− J)α

)

, (29)

whereα =

µ
∏

J=1

pǫJ and pǫ0 = 1.

Proof: From proposition 2, average number of bits
nµ required to deliver error-free packet to the receiver
consists of summation ofµ terms. That is,

nµ =

µ
∑

J=1

nJ,µ = n1,µ + n2,µ + . . .+ nµ,µ (30)

The J-th summation series is

nJ,µ =bJ

(

J + (µ+ J)α+ (2µ+ J)α2 + (3µ+ J)α3

+ . . .
)

(31)

nJ,µ(α− 1) = bJ

(

− J − µα− µα2 − µα3 − . . .
)

= bJ

(

− J − µα(1 + α+ α2 + α3 + . . .)
)

= bJ

(

− J −
µα

(1 − α)

)

. (32)

Thus,

nJ,µ = bJ
J + (µ− J)α

(1 − α)2
. (33)

SubstitutingbJ in (33), we have

nJ,µ = (1 +m)

J∏

k=1

pǫJ−k
pcJ

J + (µ− J)α

(1− α)2
. (34)

The average numbernµ of transmitted bits required
to deliver single error free bit at receiver underµ
transmission rounds at MAC layer of CCSR method is,

nµ =

µ
∑

J=1

nJ,µ = (1 +m)

µ
∑

J=1

J∏

j=1

pǫJ−j
pcJ

J + (µ− J)α

(1− α)2

(35)

Throughput of CCSR method is

ηµ =
1

nµ

=
(1− α)2

(1 +m)

µ
∑

J=1

J∏

j=1

pǫJ−j
pcJ
(
J + (µ− J)α

)

(36)

Note thatηµ of CCSR is function of parameterτ that
controls the information to be transmitted during selec-
tive retransmission. The parameterτ can be optimize
to maximize throughput under OFDM signaling. Next,
we discuss search for optimalτ for the proposed CCSR
method to enhance throughput of an OFDM transceiver.

VI. T HROUGHPUTOPTIMIZATION

In this section, we optimize throughput of the pro-
posed selective retransmission method at modulation
layer. The amount of information that a receiver requests
to the transmitter in the event of a packet failure has
direct impact on the throughput of the transceiver. Most
of the time, especially in high SNR regime, receiver
can recover from bit errors by receiving little more
information and employing joint detection. In selective
retransmission at modulation level, thresholdτ on chan-
nel norm of a sub-carrier is measure of channel quality.
By choosing proper thresholdτ , receiver can request
minimum information needed to recover from errors for
the failed packet. The thresholdτ is function of SNR
and modulations such as 4-QAM and 16-QAM. It is
clear from (29) that throughput of CCSR method is a
function of frame-error rate (FER). Furthermore, FER is
not a linear or quadratic function of SNR and parameter
τ . Now we write unconstrained optimization problem for
throughputη with respect to parameterτ as follows:

τo = arg max
τ

η = f(τ, SNR). (37)

Since throughputη is non-convex function in parameter
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Fig. 3. Analytical throughput (29) vsτ for SNR operating points of
CCSR method forµ = 2 transmission rounds.

τ , optimal τ that maximizes throughputη for each
SNR can be computed off-line using exhaustive search.
Thus, a table of optimal thresholdτ which maximizes
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throughput for SNR operating points can be generated
using throughput expression in (29) for CCSR method.
Note that throughput of the proposed CCSR method is
function η = f(τ, SNR) given in (29).

In Section VII, we maximizeη = f(τ, SNR) with
respect to parameterτ . Note that parameterτ appears
in probability of frame errorpǫ, which is function of
probability of bit-error presented in (20) Section IV. The
optimal τo can be computed off-line from throughput
lower bound for CCSR using (29). Based on channel
condition, amount of information to be transmitted can
be controlled using vectorτo. Figure 3 shows that
optimal thresholdτo for SNR points which maximizes
throughput CCSR method forµ = 2. In low SNR
regime, throughputη is more sensitive to thresholdτ
as compared to high SNR regime due to the fact that
in high SNR regime, very few errors occur during first
transmission resulting into fewer retransmissions.

VII. S IMULATION

Now we present performance of the proposed CCSR
method in comparison with conventional Chase combin-
ing methods. In throughput performance, we consider
optimized thresholdτo which controls the amount of
information in selective retransmission for OFDM sys-
tems. In simulation setup, we consider 4-QAM constel-
lation and OFDM signaling withNs = 512 sub-carriers
over 10-tap Rayleigh fading frequency selective channel.
Each complex OFDM channel realization has Gaussian
distribution with zero-mean and unit variance (σ2

h = 1).
We assume block fading channel in quasi-static fashion
such that channel remains highly correlated during trans-
mission of one OFDM symbol. First, we present com-
parison of BER upper bound and BER from Monte Carlo
simulation denoted byBERa andBERm, respectively,
for CCSR method. We also provide throughput results
of CCSR method in comparison with conventional Chase
combining method. We denote analytical and simulation
throughput byηa and ηm, respectively. In order to
maximize throughput, thresholdτ on channel norm of
OFDM sub-carriers is optimized for each SNR point of
CCSR protocol. We compute threshold vectorτo off-
line to maximize throughput of CCSR method from the
analytical throughput using (29). We also demonstrate
that our proposed CCSR method holds throughput gain
with FEC. We consider half-rate LDPC code (648, 324)
to evaluate efficacy of CCSR method as compared to
conventional CC-HARQ. We denote CCSR method with
FEC enabled by CCSR-HARQ in simulation results.

First, we present BER and throughput performance
of CCSR method in comparison with conventional CC
for µ = 1, 2 and 4 transmission rounds using optimal
thresholdτo without FEC. Note that each SNR point has
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Fig. 4. Monte Carlo simulation Vs BER upper bound (20) of CCSR
method forµ = 1, 2 and4 transmission rounds with optimal threshold
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vs optimal thresholdτo which maximizes throughput of
CCSR-ARQ method forµ = 1, 2, 3 and 4 transmission rounds.

an associated thresholdτo which maximizes through-
put at that very SNR point. For analytical BER and
throughput performance, we use (20) and (29), respec-
tively. We denote CCSR and conventional CC methods
without FEC by CCSR-ARQ and CC-ARQ, respectively.
Figure 4 provides BER comparison of Monte Carlo
simulation and BER upper bound of CCSR-ARQ method
for µ = 1, 2, and 4. Figure 4 reveals that there is
marginal gap between analytical and simulation bit-error
ratesBERa andBERm, respectively.

In Figure 5, we present optimal thresholdτo as a
function of SNR. As Figure 5 shows, atEb

No
≥ 8dB,

optimal τo for µ = 4 converges to theτo for µ = 3.
Similarly, at Eb

No
≥ 12dB, optimal τo for µ = 3 and
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Fig. 6. Monte Carlo simulations Vs analytical throughput using (29)
of CCSR-ARQ method forµ = 1, 2 and 4 transmission rounds with
optimal thresholdτo.

µ = 4 converge to theτo for µ = 2. At Eb

No
≥ 16dB,

optimalτo for µ = 2, µ = 3 andµ = 4 converge to theτo
for µ = 1. This is due to the fact that asEb

No
increases, the

probability of entering into next round of transmission
(retransmission) at MAC layer decreases. For example,
at Eb

No
≥ 8dB, probability that system reaches 4 rounds

of transmission is very low and joint detection forµ = 4
converges to the joint detection forµ = 3. We observe
similar trend atEb

No
= 12, dB and16dB for µ = 3 and

2, respectively.
Throughput is the key performance metric of a com-

munication system. Now we provide results for tight
lower throughput bound and throughput comparison be-
tween CCSR-ARQ and CC-ARQ methods. For through-
put computation, we use standard definition of through-

put of a communication system [2] as
k

n
. In CCSR-ARQ

method, threshold vectorτo in Figure 5 is computed
offline using (37) to maximize throughputη. Figure
6 presents comparison of analytical throughput using
(29) with Monte Carlo throughput of CCSR-ARQ using
optimal τo for µ = 1, 2 and 4 transmission rounds.
Marginal gap between analytical and simulation through-
put demonstrate that (29) provides tight throughput lower
bound for CCSR-ARQ forµ = 1, 2, 4. Consistent with
Figure 5, atEb

No
≥ 8dB, throughput forµ = 4 converges

to the throughput forµ = 3. Similarly, at Eb

No
≥ 12dB,

throughput forµ = 4 converge to the throughput for
µ = 2. Also, at Eb

No
≥ 16dB, throughput forµ = 2 and

µ = 4 converge to the throughput forµ = 1.
Now we provided throughput comparison between

CCSR-ARQ and CC-ARQ methods for different num-
ber of transmission rounds. Figure 7 demonstrates that
CCSR-ARQ method achieves significant performance
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Fig. 7. Throughput comparison of conventional Chase combining
CC-ARQ µ = 2, 4 transmission rounds and optimal CCSR-ARQ for
µ = 1, 2, 3, 4 transmission rounds using Monte Carlo simulations.

gain over conventional CC-ARQ method forµ = 1,
2, 3 and 4 transmission rounds. Note that throughput
of CC-ARQ for µ = 2 is similar to that of CCSR for
µ = 1 up to Eb

No
= 8dB. This is due to the fact that in

low SNR regime,τo which maximizes throughput of the
system has large value resulting selective retransmission
of first round of CCSR into full packet retransmission.
Thus, amount of information transmitted in first round
of CCSR-ARQ equals amount of information of two
rounds of CC-ARQ. ForEb

No
≥ 8dB underµ = 1 for

CCSR-ARQ,τo decreases as SNR increases and selec-
tive retransmission becomes more effective providing
larger throughput gain over CC-ARQ. Thus, we observe
significant throughput gain of CCSR-ARQ method over
CC-ARQ method in moderate and high SNR regime.
We notice similar trend when we compare CCSR-ARQ
for µ = 2 and CC-ARQ forµ = 4. It is important
to note that in low SNR regime,τo converges to large
values and throughput of CCSR-ARQ converges to that
of CC-ARQ. Figure 7 also reveals that large transmission
rounds are more effective in low SNR regime.

Aforementioned results demonstrate significant
throughput gain of CCSR-ARQ method over CC-ARQ
method (without FEC). Now we present BER and
throughput performance comparison between CCSR
and CC methods with FEC. We denote CCSR and CC
methods with FEC by CCSR-HARQ and CC-HARQ,
respectively. Figure 8 presents simulation results of
BER performance of conventional CC-HARQ and
proposed CCSR-HARQ methods with half-rate LDPC
(648,324) encoder under OFDM signaling. For BER
simulation of CCSR-HARQ method, we use optimal
threshold τo which maximizes throughput of CCSR-
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TABLE I
SNRVS τo FORµ = 1, 2, 3 AND 4

Eb
No

/

µ -8 -6 -5 -3 -2 0 1 2 3 4 5 6 7 8
1 3 3 3 2.2 1 0.595 0.43 0.301 0.16 0.090 0.030 0.006 0 0
2 3 3 2.82 1.274 0.423 0.9 0.5 0.35 0.2 0.11 0.034 0.004 0 0
3 3 1.9 1.741 0.97 0.4 0 0.7 0.407 0.204 0.118 0.002 0 0 0
4 2.4 1.338 0.949 0.072 0.023 0 0.63 0.36 0.235 0.09 0.0038 0.009 0.0005 0
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Fig. 8. BER comparison of CCSR-HARQ and conventional CC-
HARQ methods forµ = 1, 2, 4 using half rate LDPC code (324, 648)
with optimal τo.
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HARQ method forµ = 1, 2, and 4. The threshold
vectors forµ = 1, 2, and4 used in Figure 8 and Figure
7 are given in Table I. Note that CCSR-HARQ and
CC-HARQ methods are same forτ = 0. For very
large value of thresholdτ → ∞, BER performance

of joint detection of CCSR-HARQ forµ transmission
rounds is same as that of CC-HARQ for2µ rounds.
In Figure 8, we use optimal thresholdτo on selective
retransmission in PHY which maximizes throughputη.
In high SNR regime, single roundµ = 1 of CC-HARQ
method achieves low probability of error resulting into
low packet error rate and low probability of enetering
into second round of transmission. In such scenario,
optimal thresholdτo → 0 and CCSR-HARQ method
becomes CC-HARQ method. ForEb

No
> 4dB, τo → 0

and BER curve of CCSR-HARQ forµ = 1 merges
with BER of CC-HARQ method. Similarly, we notice
that underµ = 2 at Eb

No
> −2dB, optimal thresholdτo,

which maximizes throughput, is very small resulting
into merging of BER forµ = 2 and µ = 1. In low
SNR regime, BER and throughput of large transmission
rounds is better than small transmission rounds. As
channel condition improves, the CCSR-HARQ with
large µ behaves similar to CCSR-HARQ method with
smallµ. Furthermore, at a given SNR, there are multiple
values ofτ which achieve similar throughput. The small
threshold on channel normτ has lower retransmission
overhead and results into higher BER. As Figure 8
reveals, BER marginally degrades whenEb

No
improves

from 5 to 8 dB and still provides optimal throughput.

We present throughput of proposed CCSR-HARQ
method in comparison with conventional CC-HARQ
method in Figure 9. We provide Monte Carlo simula-
tion results of throughput for CCSR-HARQ and CC-
HARQ methods forµ = 1, 2, 3, and 4 transmission
rounds using simulation setup of Figure 8. Throughput
of CCSR-HARQ forµ = 1 is significantly higher than
throughput of CC-HARQ forµ = 1, which demonstrates
the efficacy of CCSR method. Also throughput of CCSR-
HARQ for µ = 1 and CC-HARQ forµ = 2 are very
close whenEb

No
≤ 0dB. However, forEb

No
≥ 0dB, CCSR-

HARQ has higher throughput than CC-HARQ. For larger
transmission rounds, CCSR-HARQ is more effective in
low SNR regime as shown in Figure 8. Note that impact
of selective retransmission in CCSR-HARQ method is
not significant forµ = 4 in higher SNR regime due
to the fact that CCSR-HARQ has low probability of
CRC failure. Figure 9 also reveals that CCSR-HARQ
for µ = 4 first converges to CCSR-HARQ forµ = 3 at
Eb

No
≥ −6dB. Both curves continue in overlap fashion
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and converge to CCSR-HARQ forµ = 2 at Eb

No
≥ 0dB

and thenµ = 2, 3, and 4 follows CCSR-HARQ for
µ = 1 at Eb

No
≥ 3dB similar to Figure 7.

VIII. C ONCLUSION

We presented bandwidth efficient cross-layer design
under OFDM modulation using selective retransmis-
sion sub-layer at PHY level. The throughput per-
formance comparison demonstrated that the proposed
CCSR method outperforms conventional Chase combing
method. In performance analysis, we provided tight BER
upper bound and throughput lower bound for the pro-
posed CCSR method. The simulation results suggest that
BER and throughput performances from Monte Carlo
runs have marginal performance gap from that of BER
upper bound and throughput lower bound, respectively.
In order to maximize throughput of the CCSR method,
we optimized thresholdτ which controls amount of
information to be retransmitted by embedded selective
retransmission at PHY level. The simulation results also
demonstrate significant throughput gain of optimized
selective retransmission method over conventional Chase
combining method with and without channel coding.
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