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Abstract

Capacity-achieving signaling strategies for the Gaussiaetap MIMO channel are investigated
without the degradedness assumption. In addition to knadutisns, a number of new rank-deficient
solutions for the optimal transmit covariance matrix aréaoied. The case of a weak eavesdropper is
considered in detail and the optimal covariance is estaddisn an explicit, closed form with no extra
assumptions. This provides lower and upper bounds to thesecapacity in the general case with a
bounded gap, which are tight for a weak eavesdropper oram&NR. Closed form solutions are also
obtained for isotropic and omnidirectional eavesdropdeased on which lower and upper bounds to the
secrecy capacity are established in the general case.i8unfffand necessary conditions for optimality
of 3 popular transmission techniques, namely the zerargr@F), the standard water-filling (WF) over
the channel eigenmodes and the isotropic signaling (I8)eatablished for the MIMO wiretap channel.
These solutions are appealing due to their lower complekitparticular, no wiretap codes are needed

for the ZF transmission, and no precoding or feedback is ewéar the isotropic signaling.
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I. INTRODUCTION

Widespread use of wireless systems on one hand and thettdastanature on the other have

initiated significant interest in their security. Infornmat-theoretic studies of the secrecy aspects
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of wireless systems have recently attracted significardrést [1]. Due to the high spectral
efficiency of wireless MIMO systems and their wide adoptiontbe academia and industry,
the Gaussian MIMO wire-tap channel (WTC) has emerged as al@omodel and a number
of results have been obtained for this model, including tteofof optimality of the Gaussian
signaling [1]-[4].

An optimal transmit covariance matrix under the total poa@nstraint has been obtained for
some special cases (low/high SNR, MISO channels, full-@mank-1 solutions) [2]F[7], but the
general case remains elusive. The main difficulty lies infw that, unlike the regular MIMO
channel, the underlying optimization problem for the MIM®@FC is generally not convex. It
was conjectured in_[4] and proved inl [3] using an indirectrapgh (via a degraded channel)
that the optimal signaling is on the positive directionstod tlifference channel. A direct proof
(based on the necessary Karush-Kuhn-Tucker (KKT) optimalbnditions) has been obtained
in [6], while the optimality of signaling on non-negativereitions has been established[in [7]
via an indirect approach. Closed form solutions for MISO aadk-1 MIMO channels have
been obtained in [2]|6]-[8]. The 2-2-1 channel (2 transritteceive, 1 eavesdropper antenna)
has been studied earlier inl [5]. The low-SNR regime has baetiesl in detail in[[9]. An exact
full-rank solution for the optimal covariance and severiait® properties have been obtained in
[6]. In particular, unlike the regular channel (no eavepger), the optimal power allocation does
not converge to the uniform one at high SNR and the latter i@snsub-optimal at any finite
SNR. In the case of a weak eavesdropper, the optimal signatimics the conventional one
(water-filling over the channel eigenmodes) with an adjestirfor the eavesdropper channel.

Finally, while no analytical solution for the optimal couwamce is known in the general
case, numerical algorithms have been developed to attazkptbblem in [[10]413], which
however suffer from the lack of provable global convergedoe to the non-convex nature
of the optimization problem in the general case. A globalywergent numerical algorithm for
the general case, which is based on an equivalent min-mastmafation of the original problem,
was proposed in_[14] and its convergence was proved, whiabstanly a moderate or small
number of steps in practice.

The present paper extends the known analytical resultshooptimal covariance in several
directions. First, motivated by a scenario where the legite receiver (Rx) is closer to the

transmitter (Tx) than the eavesdropper, the case of a waeadséapper is studied and its optimal
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covariance is obtained in an explicit closed form withouy axtra assumptions in Section]lll.
It provides novel lower and upper bounds to the secrecy d@gpecthe general case with a
bounded gap, which are tight when the eavesdropper is weéakdthe SNR is low and hence
serve as an approximation to the true capacity. It also captine capacity saturation effect at
high SNR observed ir_[3][6]. The range of validity of this nebds indicated.

The presence of the eavesdropper channel state inform@fit) at the transmitter is in
guestion when the eavesdropper does not cooperate (e.glaat presence). To address this
issue, we consider in Section]lV an isotropic eavesdroppadein whereby the Tx does not
know the directional properties of the eavesdropper anadtd@ssumes it is isotropic, i.e. the
eavesdropper channel gain is the same in all directionss&twecy capacity as well as an optimal
signaling to achieve it and its properties are establisheahi explicit closed form. This case is
shown to be the worst-case MIMO wire-tap channel. Based @ libwer and upper capacity
bounds are obtained for the general case, which are acleelgithe isotropic eavesdropper.
The properties of the optimal power allocation are pointatl o

The case of isotropic eavesdropper above requires the nuohles antennas to be not less
than the number of Tx antennas (which is necessary for adak-eavesdropper channel), which
may not be the case in practice. To address this issue, 8é@¢tistudies an omnidirectional
eavesdropper, which may have a smaller number of antenndshénce rank-deficient channel)
and which has the same gain in any direction of a given sulesfde secrecy capacity and the
optimal signaling are established in a closed form.

The case of identical right singular vectors of the Rx andesdxopper channels is investigated
and the optimal covariance is established in a closed froBeictio'Vl. This case is motivated
by a scenario where the legitimate receiver and the eavegdrare spatially separated so that
each has its own set of local scatterers inducing its ownslefjular vectors (SV), while both
channel are subject to the same set of scatterers arounchtismitter (e.g. a base station) and
hence the same right SVs. This is similar to the popular Kekee MIMO channel correlation
model, see e.gl [15], where the overall channel correlasom product of the independent Tx
and Rx parts, which are induced by the respective sets diesees.

In Section[VIl, the conditions for optimality of popular peforcing (ZF) signaling are
established, whereby the Tx antenna array forms a null inethesdropper direction. Under

those conditions, the standard eigenmode signaling and/aler-filling (WF) power allocation
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on what remains of the required channel (after the ZF) anengihtFurthermore, no wiretap codes
are required as regular coding on the required channel sgffgo that the secrecy requirement
imposes no extra complexity penalty (beyond the standajd IBRhis case, the optimal secure
signaling is decomposed into two parts: part 1 is the ZF (farining in the terminology of
antenna array literaturé [16]), which ensures the secregyirement, and part 2 is the standard
signaling (eigenmode transmission, WF power allocatioth emding) on the required channel,
which maximizes the rate of required transmission. Thieminiscent of the classical source-
channel coding separation [17].

In Sectiond_ VIl and_IX, we consider two other popular signgltechniques: the standard
water-filling over the eigenmodes of the legitimate chanaedl the isotropic signaling (IS,
whereby the covariance matrix is a scaled identity) andoéistasufficient and necessary condi-
tions under which they are optimal for the MIMO WTC. Thesé@ques are also appealing due
to a number of reasons. While the standard WF does requietapircodes, standard solutions
can be used for power allocation and eigenmode transmigs@nspatial modulation); the
isotropic signaling is appealing due to its low complexityy eavesdropper CSI is required at
the transmitter as independent, identically distributathdtreams are launched by each antenna.
The set of channels for which the isotropic signaling is mjliis fully characterized in Section
[X] It turns out to be much richer than that of the conventidna eavesdropper) MIMO channel.

Notations Lower case bold letters denote vectors while bold capdalsote matrices);(W)
denotes the eigenvalues of a matWX in decreasing order unless indicated otherwise; =
max{z, 0} for a scalarr; N (W) andR(W) are the null space and the range of a maivx
(W), denotes the positive eigenmodes of a Hermitian ma#ix

(W)= > Auul 1)
A (W)>0

whereu; is i-th eigenvector oiW; tr W and

W| denote the trace and the determinantVit
W' is the Hermitian conjugation oW.

1. WIRE-TAP GAUSSIAN MIMO CHANNEL MODEL

Let us consider the standard wire-tap Gaussian MIMO chamoelel,

yi=Hix+§, y»=Hyx+§&, (2)

October 30, 2018 DRAFT



wherex = [z, o, ...7,,]7 € C™! is the transmitted complex-valued signal vector of dimensi
m x 1, “T” denotes transpositiony, € C", k = 1,2, are the received vectors at the receiver
and eavesdroppeg, and¢, are the circularly-symmetric additive white Gaussian eas the
receiver and eavesdropper (normalized to unit variancea@h @imension)H, € C"™ is the

ng, X m matrix of the complex channel gains between each Tx and esxgive (eavesdropper)
antennan,, n, andm are the numbers of Rx, eavesdropper and Tx antennas resgheclihe
channelsH, are assumed to be quasistatic (i.e., constant for a sutlicieimg period of time
so that the infinite horizon information theory assumptiahdg) and frequency-flat, with full
channel state information (CSI) at the Rx and Tx ends.

For a given transmit covariance matik = £ {xxT}, where £/ {-} is the statistical expecta-
tion, the maximum achievable secrecy rate between the T>XRan@o that the rate between the
Tx and the eavesdropper is zero)[i$ [3][4]

, T+ W R|

I+ W3R|
whereCy,(R) = In [T+ W,R|, k = 1,2, negativeC'(R) is interpreted as zero rat¥y, = H Hy,

CR)=1 =Ci(R) — C2(R) 3)

and the secrecy capacity subject to the total Tx power cainstis

Cs =maxC(R) s.t. trR < Pr (4)

R>0
where Pr is the total transmit power (also the SNR since the noise imatized). It is well-
known that the problem iri14) is not convex in general andiek@olutions for the optimal Tx
covariance are not known for the general case, but only foresspecial cases (e.g. low/high
SNR, MISO channels, full-rank or rank-1 case [2]-[6]).

1. WEAK EAVESDROPPER ANDCAPACITY BOUNDS

In this section, we obtain novel lower and upper bounds tes#wecy capacity in the general
case and show that the bounds are tight when the eavesdisppesk or if the SNR is low. The
weak eavesdropper case is motivated by a scenario wherevikesdropper is located far away
from the Tx so that its propagation path loss is large, seeFegg 2. This is the case when the
presence of the eavesdropper does not result in a largeitafuss so that the physical-layer
secrecy approach is feasible (while in the case of a stromgsdeopper, the capacity loss is

large and other approaches may be preferable, e.g. crgmiogr. There is no requirement here
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for the channel to be degraded or for the optimal covariaadgetof full rank or rank 1, so that
these results extend the known closed form solutions.
To this end, let

Cw(R) =In|I+ W, R| — tr(W2R)
Cy = max Cuw(R) (5)
R* =arg max C(R), R} =arg max Cw(R)

all subject toR > 0,trR < Pr, i.e. R* is the optimal covariance arld; maximizesC,,(R).
UsingIn(1 + z) ~ x when0 < z < 1, it can been seen thdt,(R) is a weak eavesdropper

approximation ofC'(R):
CR) = Cyu(R)if i(WoR) < 1 (6)

so thatC,, is the weak eavesdropper secrecy capacity. The followirepiidm establishes novel

secrecy capacity bounds based @g.

Theorem 1. The secrecy capacity’; in (4) for the general Gaussian MIMO-WTC i) is
bounded as follows:
P2

Cw < C(R;) < Oy < Cu+ - AH(W)) (7)

where
R}, = Q"/*(I-W;"),Q"* (8)
W, = Q'/*W,Q"? 9)

and Q is the (Moore-Penrose) pseudo-inverseVef, = \XI + W; A > 0 is found from the total

power constraint:
trR,, = Pr if Pr < Py (20)
and A = 0 otherwise; the threshold power

Pi = tr Wy ' (I =W, W 'W, %), (11)
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if W5 is non-singular. WheW, is singular, P; = oo if N(W3) ¢ N (W;); otherwise, W,
and W,, are projected orthogonally tdv'(W5) and the projected matrices are used(ld). The
weak eavesdropper secrecy capacity can be expressed as
Co= > Inky —tr Wy(I— Wil), (12)
i >1

where\,; = Ai(V/\\h), W, = Q/2W,Q'/2.
Proof: See the Appendix. [ |

Remark 1. It may appear thaf(8) requir@l and thusW; to be positive definite, i.e. singular
case is not allowed. This is not so sinG¢, operator eliminates singular eigenmodes\/ﬁfl
so that(I — V/\\7;1)+ is well-defined even ifW; is singular: one can usﬁ\flg = V/\\fl +6I >0
instead of W,, where§ > 0, evaluate(I — W;51)+ and take the limity — 0 to see that the

singular modes oW, are eliminated so that

I-WihH, =U,DU. (13)

whereU , is a semi-unitary matrix whose columns are the eigenveubii\fl corresponding to
its positive eigenvalued) is ar xr diagonal matrix whoséth diagonal entry i$1—)\;1(V/\71))+,

i = 1...r, wherer is the rank ofW,. The same observation also applies[id (11).

Remark 2. The 1st inequality in[(7) bounds the sub-optimality gap dhgR, for which an
achievable rate i§’(R)), instead of the true optimal covarianBe:

|Cs = C(R},)| < M(W)Pr/2 (14)
so thatC'(R}) — Cs as A\ (Wy)Pr — 0.

Using Theorem 1, we can now approximate the secrecy capaeitits weak eavesdropper

counterpart.

Corollary 1. The secrecy capacity of the general Gaussian MIMO-WTC caexpesssed as

follows:

C,=C,+ AC (15)
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where AC is the inaccuracy of the weak eavesdropper approximatidnghvis bounded as
0 < AC < X3(W,)P2/2 (16)
so thatAC' — 0 and C,/C,, — 1 as Pr — 0 or/land A\;(W3) — 0.

Proof: (I5) and [(16) follow from the bounds iml(7), which also impliaC — 0 as
PrX\{(Ws,) — 0. To show thatC;/C,, — 1 as Pr — 0 observe that

CS = PT)\1<W1 — Wg) + O(PT) = Cw + O(PT)

from which the desired result follows (here, we implicitlgsame that\;(W; — Wy) > 0;
otherwise,Cs; = 0 and there is nothing to prove). When(W,) — 0, note that bothC'(R)
and C,(R) converge toln |I + W;R| so that takingmaxg results inC,/C,, — 1 (since the
objectives are continuous and the feasible set is compact). [ |

Using this Corollary, the secrecy capacity can be approteéthas
Oy~ Cy 17)

and the approximation is accurate for a weak eavesdropp@ndiow SNR:\(W,)Pr < 1,
when the bounds iri{7) are also tight, see Fig. 1.

Remark 3. Since \;(W:2R) < A\ (Wo)M(R) < PrA;(Ws), one way to ensure that the
eavesdropper is weak, i.8,(WyR) <« 1 so thatln|I + W3R| =~ tr W3R, is to require
A (Wy) < 1/Pr from which it follows that this holds as long as the power (&R is not too
large, i.e.Pr < 1/A(W3); see also Fig. 1. It should be noted, however, that the appsdion
in (I17) extends well beyond the low-SNR regime provided that eavesdropper propagation
path loss is sufficiently large (i.8.,(W,) is small). For the scenario in Fig. 1, it works well up

to about10 dB and this can extend to larger SNR for smaller path los®fact

To illustrate Theorem 1 and Corrolary 1 and also to see howrate the approximation is,
Fig. 1 shows the secrecy capacity obtained from the appmtiam in [17) for

(2 0) (2 1)
le ,W2:a ) (18)
0 1 11

also, its exact values (without the weak eavesdropper appation) obtained by brute force

Monte-Carlo (MC) based approach (where a large number dadr@we matrices are randomly
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— — — - Approx. in (17)
51 ° Approx. via MC
Exact via MC
4+
N
z
w
= 3
£
(@)
2 L
l L
0 ‘ i i i i
-20 -10 0 10 20 30 40

SNR [dB]

Fig. 1. Weak eavesdropper approximation[inl (17) and exawesg capacity (via MC) versus SNRV; and W are as in
@8), « = 0.1, \(W2) = 0.25. The approximation is accurate if SNR 10 dB. Note the capacity saturation effect at high
SNR in both cases.

generated, subject to the total power constraint, and tisé dree is selected) are shown for

comparison. To validate the analytical solution fgf, in Theorem 1, the weak eavesdropper
case has also been solved by the MC-based approach. It igltdédhe approximatiod’; ~ C,

is accurate for the channel in{18) provided that SNR0 dB. Also note the capacity saturation

effect, for both the approximate and exact values. Thigaatin effect has been already observed

in [3][6] and, in the case oW; > W, > 0, the saturation capacity is
C? =In|Wq| — In|W,| (19)

which follows directly from [(B) by neglectind. In the weak eavesdropper approximation, the
saturation effect is due to the fact that the 2nd termlin (S)nisar in Pr while the 1st one

is only logarithmic, so that using the full available powsrnot optimal when it is sufficiently
high. Roughly, the approximation is accurate before it lneacthe saturation point, i.e. for
Pr < Pj. The respective saturation capacity is obtained friom (323diting\ = 0. In the case

of W; > W, > 0, it is given by

Cp=In|W| —In|Wy| — tr(I - WoW ) (20)

By comparing [(IB) and(20), one concludes that the threshatd close to each other when
tr WoW 1t =~ m.
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To obtain further insight in the weak eavesdropper regimieyu$ consider the case wh&¥,
and W, have the same eigenvectors. This is a broader case than itinstagppear as it requires
H; and H, to have the same right singular vectors while leaving leanconstrained (see
Sectior V] for more details on this scenario). In this cake,results in Theorem 1 and Corollary

1 simplify as follows.

Corollary 2. Under the weak eavesdropper conditiopn( W) < 1/Pr and whenW; and W,

have the same eigenvectors, the optimal covariance is
R* ~ R} = UA*UT (21)

where U is found from the eigenvalue decompositio®s = UA,U' so that the eigenvectors
of R} are the same as those ¥, and W,. The diagonal matrixA* collects the eigenvalues
of R :

1 1
N(RE) = . 22
R = (5150 A) (22)
where \;; is i-th eigenvalue oW,.
Proof: Using W, = UA,UT in (8) results in[(211) and(22). [

Note that the power allocation if_(22) resembles that of taadard water filling, except for

the \,; term. In particular, only sufficiently strong eigenmodes active:

As Pr increases\ decreases so that more eigenmodes become active; thenkggitchannel
eigenmodes are active provided that they are strongerhbaetof the eavesdroppexi; > ;.

Only the strongest eigenmode (for which the differenge- \,; is largest) is active at low SNR.

IV. | SOTROPICEAVESDROPPER ANDCAPACITY BOUNDS

The model in Sectiof lll requires the full eavesdropper CSha transmitter. This becomes
guestionable if the eavesdropper does not cooperate (dwgn \it is hidden in order not to
compromise its eavesdropping ability). One approach toesddthis issue is via a compound

channel model [23]-[25]. An alternative approach is coasd here, where the eavesdropper is
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characterized by its channel gain identical in all direxsiowhich we term "isotropic eavesdrop-
per”. This minimizes the amount of CSI available at the traiti®r (one scalar parameter and
no directional properties).

A further physical justification for this model comes fromassumption that the eavesdropper
cannot approach the transmitter too closely due to e.g. soimenum protection distance, see
Fig. 2. This ensures that the gain of the eavesdropper chdoas not exceed a certain threshold
in any transmit direction due to the minimum propagatiorhdass (induced by the minimum
distance constraint). Since the channel power gain in tnérdirectionu is u'Wyu = |Hyu/?
(assuming|u| = 1) and sincemaxy|—1 u'Wyu = ¢, (from the variational characterization
of eigenvalues[[21]), where, is the largest eigenvalue dV,, W, < ¢ I ensures that the
eavesdropper channel power gain does not exegéd any direction.

In combination with matrix monotonicity of the log-det furan, the latter inequality ensures
thate, I is the worst possibl@V, that results in the smallest capacity (the lower boundin))(27
i.e. the isotropic eavesdropper with the maximum channiel igahe worst possible one among
all eavesdroppers with a bounded spectral norm. Referorigd. 2, the eavesdropper channel

matrix H, can be presented in the following form:
H2 = OéRz_Vﬁg (24)

where aR;” represents the average propagation path I&ssis the eavesdropper-transmitter
distance,v is the path loss exponent (which depends on the propagatwiroement),« is a
constant independent of distance (but dependent on freguamtenna height, etcl) [27], aibd,
is a properly normalized channel matrix (includes locattecang/multipath effects but excludes

the average path loss) so thafflH, < n,m [28]. With this in mind, one obtains:

o~~~ O i anam
W, = HH, = ?HQHQ < —HIH, < I (25)
2 2 min 2 min
so that one can take = anymR, . in this scenario, wher&s;, is the minimum transmitter-

eavesdropper distance. Note that the model captures thactnop the number of transmit and
eavesdropper antennas, in addition to the minimum distancepropagation environment. In
our view, the isotropic eavesdropper model is more prdctian the full Tx CSI model.

The isotropic eavesdropper model is closely related to #nellel channel setting in [19][20]:
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T« fence

c

Fig. 2. Physical scenario for a secret communication sysbase station BS (the transmitter) is located on the rooffoa
secure buildingB, legitimate uselU (the receiver) is inside the building, and eavesdroppef is beyond the fence so that
R2 2 R2 min-

even though the original channel is not parallel, it can laaegformed into a parallel chanll-!l,el
for which independent signaling is known to be optimall [P8]l This shows that signaling on
the eigenvectors oW, is optimal in this case while an optimal power allocation iedent
from the standard water filling [20]. These properties in bamation with the bounds if_(26)
are exploited below.

While it is a challenging analytical task to evaluate therseg capacity in the general case,
one can use the isotropic eavesdropper model above to gonistver and upper capacity bounds

for the general case using the standard matrix inequalities
EmI S W2 S €1I (26)

wheree; = \;(W,) denotes-th largest eigenvalue d¥V,, and the equalities are achieved when

€1 = €, I.€. by the isotropic eavesdropper. This is formalizedwel

Proposition 1. The secrecy capacity of the general MIMO-WTQh is bounded as follows:

C*(e)) < Cy < C*(em) 27)

lvia an information-preserving transformation: using aanyi transmit pre-coding with the unitary matrix whose cohs are
the eigenvectors oW; and unitary post-codings at the receiver and eavesdropiperuwitary matrices whose columns are the

left singular vectors oH; and H, respectively.
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where C*(¢) is the secrecy capacity if the eavesdropper were isotrogcunderW, = eI,

max |I+W1R| Zl L+ giA;
R>0, t'R<Pr |I+ ¢R| 1+ e

C*(e) = (28)

g = Mi(Wyp), and Af = \;(R*) are the eigenvalues of the optimal transmit covariaie =

UlA*UJ{ under the isotropic eavesdropper,

€+ 7 deg; gi — €
= 1+ -1 -1 29
" 2ey; (\/ (e +gi)? ( A )+ > (29)

and A > 0 is found from the total power constraidt, \f = Pr.

The gap in the bounds q7) is upper bounded as follows:

—1 +ealr/my <miln—
1+ emPT/m+ - €m

wherem . is the number of eigenmodes such that- ¢,,. Both bounds are tight at high SNR

AC = C*(e) — C*(e1) <myIn (30)

if gy > €.

Proof: See the Appendix.

Thus, the optimal signaling for the isotropic eavesdropyaese is on the eigenvectors W,
(or right singular vectors oH,), identically to the regular MIMO channel, with the optimal
power allocation somewhat similar (but not identical) t@ ttonventional water filling. The
latter is further elaborated below for the high and low SNBimes. Unlike the general case
(of non-isotropic eavesdropper), the secrecy capacith@igotropic eavesdropper case does not
depend on the eigenvectors W, (but the optimal signaling does), only on its eigenvalues, s
that the optimal signaling problem here separates into 2gaddent parts: (i) optimal signaling
directions are selected as the eigenvectorévaf and (ii) optimal power allocation is done based
on the eigenvalues oW, and the eavesdropper channel gairt is the lack of this separation
that makes the optimal signaling problem so difficult in treneral case.

The bounds in[(27) coincide when = ¢,, thus giving the secrecy capacity of the isotropic
eavesdropper. Furthermore, as follows frém (30), they Ergedo each other when the condition
numbere, /¢, of W, is not too large, thus providing a reasonable estimate ot#macity, see

Fig. 3. Referring to Fig. 2, one can also set= anymR,". and proceed with a conservative

2 min
system design to achieve the secrecy r@tée ). Note that this design requires only the knowl-
edge ofn, and R, ,,;, at the transmitter, not full CSIW;) and hence is more realistic. This

signaling strategy does not incur significant penalty (carag to the full CSI case) provided that
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the condition numbet; /¢, is not large, as follows fromi.(30). It can be further showrt th&(e, )
is the compound channel capacity for the class of eavesdrsppith bounded spectral norm
(maximum channel gain)\V, < ¢1I, and that signaling on the worst-case chaniWl, (= ¢;1)
achieves the capacity for the whole class of channels Wth< I [25].

We note that the power allocation in_{29) has propertieslaimid those of the conventional

water-filling, which follow from Propositiof]1.

Proposition 2. Properties of the optimum power allocation(@g) for the isotropic eavesdropper:

1. \! is an increasing function of; (strictly increasing unless = 0 or Pr) , i.e. stronger
eigenmodes get more power (as in the standard WF).

2. A} is an increasing function of; (strictly increasing unless\y = 0). A\ = 0 for ¢ > 1
and \; = Pr as Pr — 0 if g; > g9, i.e. only the strongest eigenmode is active at low SNR, and
Af > 01if g; > e as Pr — oo, i.e. all sufficiently strong eigenmodes are active at hij{RS

3.\ > 0only if g; > ¢, i.e. only the eigenmodes stronger than the eavesdroppes ocan be
active.

4. )\ is a strictly decreasing function aPr and0 < A < g; —¢; A — 0 as Pr — oo and
A— gy —easPr— 0.

5. There arem . active eigenmodes if the following inequalities hold:
Pm+<PT§Pm++1 (31)

where P, is a threshold power (to have at least, active eigenmodes):

m+—1
€+ g degi  Gi — Gm,
P, = 1+ —1], my=2.m, (32)
" Z 2¢€g; (\/ (e + g;)? (9m+ —€)y ) N

1=1

and P, = 0, so thatm_ increases withPr.

It follows from Propositio R that there is only one activgg@imode, i.e. beamforming is

€+ 0 degr g1 — 92
Pr < 1+ —1 33
! 2eq (\/ (€+g1)* ga—¢ ) (33)

e.g. in the low SNR regime (note however that the single-nredane extends well beyond low

optimal, if g, > ¢ and

SNR if ¢ — g, andg; > ¢»), or at any SNR ifg; > ¢ and g, < e.
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While it is difficult to evaluate\ analytically from the power constraint, Property 4 ensures
that any suitable numerical algorithm (e.g. Newton-Raphs@thod) will do so efficiently.

As a side benefit of Propositidd 2, one can uUsé (31) as a conditir havingm, active
eigenmodes under the regular eigenmode transmission yesarapper) with the standard water-
filling by taking e — 0 in (32):

my—1
P, = Z (

=1

—- =) 34)
gm+ 9i

and [34) approximates (82) when the eavesdropper is weak, g,,.. To the best of our
knowledge, expressioh (34) for the threshold powers of tlvedard water-filling has not appeared

in the literature before.

A. High SNR regime

Let us now consider the isotropic eavesdropper model whenStHR grows large, so that

giAi > 1,e\r > 1. In this case,[(28) simplifies to

=Y m% (35)

where the summation is over active eigenmodes only, so beaicapacity is independent of
the SNR (saturation effect) and the impact of the eaves@mojgpthe multiplicative SNR loss,
which is never negligible. To obtain a threshold valugifat which the saturation takes place,

observe that\ — 0 as Pr — oo so that [2B) becomes
N =PryJet =g /B(1+0(1)) (36)
fori:g; >e¢ whereg =3, _ e ' —g " andVv = BP;'(1+0(1)) from the total power

constraint. Using[(36), the capacity becomes

co=Ym (L (37)
. € PT PT
1:g;>€
which is a refinement of (35). The saturation takes place whersecond term is much smaller
than the first one, so that

Pr> /Y In% (38)

1:gi>€
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andC*(e) ~ C% under this condition. This effect in illustrated in Fig. 3ot that, from[(36), the
optimal power allocation behaves almost like water-fillingthis case, due to thm
term.

Using (35), the gap\C”, between the lower and upper bounds[inl (27) becomes

ACL = C(en) = C(a)

m2
= myln :—1 + Z In Eg—l (39)
m i=mi+1 m

wherem; andm, are the numbers of active eigenmodes whkea ¢; ande = ¢,,. Note that

this gap is SNR-independent andnif, = my, = m_, which is the case if,,. > €, then

ACY, =m,InL (40)

€m

i.e. also independent of the eigenmode gains of the legitimagser and is determined solely by
the condition number of the eavesdropper channel and théeuof active eigenmodes. Note

that, in this case, the upper bounds(in/(30) are tight.

C'(e) P '

6

€=0. ___
4 IPURDIUIPRRpR
€=0.2
o+ |
high SNR
| | ! 1
-10 0 10 20 30

SNR [dB]

Fig. 3. Secrecy capacity for the isotropic eavesdroppertla@dapacity of the regular MIMO channel (no eavesdropper,0)
vs. the SNR £ Pr since the noise variance is unity)i = 2, g2 = 1. Note the saturation effect at high SNR , where the
capacity strongly depends anbut not the SNR, and the negligible impact of the eavesdmopptow SNR.

B. When is the eavesdropper’s impact negligible?

It is clear from [28) that under fixedy;} and Pr, the secrecy capacity converges to the

conventional one_*(0) ase — 0. However, no fixed: (does not matter how small) can ensure
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by itself that the eavesdropper’s impact on the capacitedigible since one can always select
sufficiently high Pr to make the saturation effect important (see Fig. 3). To anshe question

in the section’s title, we usé (28) to obtain:

(a)
/ max In(1+(g; — )N 41
pi 2 1+ (g = X (41)

(b)
~ max In(1 + 2)\1 =C"(0
e o1+ ) = € 0)

where (a) holds if
Pr < 1/e (42)
(since\; < Pr), i.e. if the SNR is not too large, and (b) holds if
€L ¢g; (43)

for all active eigenmodes, i.e. if the eavesdropper is muelaker than the legitimate active
eigenmodes. It is the combination 6f[42) and](43) that exsstinat the eavesdropper’s impact
is negligible. Neither condition alone is able to do so. Rgillustrates this point. Eq[(41)
also indicates that the impact of the eavesdropper is the@igenmode gain loss af Unlike
the high-SNR regime in[(35) where the loss is multiplicat{ize. very significant and never

negligible), here it is additive (mild or negligible in mawgases).

C. Low SNR regime

Let us now consider the low-SNR regime, which is charadierier CDMA-type systems
[26]. Traditionally, this regime is defined vigr — 0. We, however, use a more relaxed definition

requiring thatm = 1, which holds under (33). In this regime, assuming> e,

1+ g1 Pr (g1 —€)Pr
* = h———=In(14+————
C(€> nl"‘EPT n( + 1—|—€PT

—

a

L 1+ (g - Py (44)

=

where (a) holds wherPr < 1/e. It is clear from the last expression that the impact of the

eavesdropper is an additive SNR loss 8f, which is negligible wher < ¢;. Note a significant
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difference to the high SNR regime in_(35), where this impagctaver negligible. Fig. 3 illustrates
this difference.

It follows from (44)(a) that the difference between the lovemd upper bounds i (R7) at
low SNR is the SNR gap ofe; — €,,) Pr. This difference is negligible if; > ¢; — ¢,,, which
may be the case even if the condition numbgfe,, is large (in which case the difference is
significant at high SNR, seé _(40)). Therefore, we conclud tie impact of the eavesdropper
is more pronounced in the high-SNR regime and is negligiblhé low-SNR one if its channel
is weaker than the strongest eigenmode of the legitimate yse> <.

Wheng, — e < 1/Pr, (44)(a) givesC*(¢) = (g1 — €) Pr, i.e. linear inPr. A similar capacity
scaling at low SNR has been obtained [in![29] for i.i.d. blda##ing single-input single-output
(SISO) WTC, without however explicitly identifying the cagity but via establishing upper/lower
bounds. Also note that the 1st two equalities[in] (44) do nquire Pr — 0 but only to satisfy

@3).

V. OMNIDIRECTIONAL EAVESDROPPER

In this section, we consider a scenario where the eaveserd@s equal gain in all directions
of a certain subspace. This model accounts for 2 points:{@mthe transmitter has no particular
knowledge about the directional properties of the eavegug which is most likely from the
practical perspective, it is reasonable to assume thagitsig the same in all directions; (ii) on
the other hand, when the eavesdropper has a small numbeteoinas (less than the number of
transmit antennas), its channel rank, which does not extteedumber of transmit or receive
antennas, is limited by this number so that the isotropic ehoflthe previous section does not
appI)H.

For an omnidirectional eavesdropper, its channel gainasttme in all directions of its active

subspace, i.e.
|H,x|? = x'Wyx = const Vx € N (Wy)* (45)

where N (W,)+ is the subspace orthogonal to the nullspa¢éW,) of Wy, i.e. its active

subspace, whose dimensionality 7is = rank(W,). In particular, when the eavesdropper is

2This was pointed out by A. Khisti.

October 30, 2018 DRAFT



19

isotropic, V(W) is empty so that\'(W,)* is the entire space ang = m. The condition in
(@3) implies that

W, =cU, Ul (46)

where Uy, is a semi-unitary matrix whose columns are the active eigeiovs of W5, and
N(Wy)t = span{U,, }. Note that the model i (46) allowsV, to be rank-deficientr, < m

is allowed.c can be evaluated from e.d. (25)= anymR,”

2 min”*

Theorem 2. Under the omnidirectional eavesdropper settingdi), (46) and whenR (W) C
R(Ws), the MIMO-WTC secrecy capacity can be expressed as follows:

I+ W;R|
wR<Pr |4+ W3R| wREP I+ eR| ¢*(e) (47)

i.e. the capacity and optimal signaling to achieve it are shene as for the isotropic eavesdropper

as in Propositiori L.

Proof: First note that, for the omnidirectional eavesdrop¥i, < ¢I so that|I+ WyR| <

I+ <R| and hence

Co— max n LEWIRL e L WiR]
* wr<pr |I4+W3R| T uR<Pr [T+ €R|

= C"(e) (48)
To prove the reverse inequality, IBY, be a projection matrix oR (W), i.e. P, = U2+U§+.
Then,PoaW, Py = W k= 1,2, so that
1+ PyW,PyR| I+ W,R| - -
=In———=C(R 49
I+ PyW,P3R| I+ cR| (R) (49)

whereR = U}, RU,, and likewise forWy, so thatW, = cI, where we usedI + AB| =
I+ BA|. Further note that

C(R)=1In

trR = tr UJ, RU,, (50)
= Z Ai(R)|ud, ug|? (51)
<> MR)=uR<Pr (52)

whereu,; andug, arei-th eigenvectors oW, andR, and we have useR = ), )\,-(R)uRZ-u};i

and |u;.uRi|2 < |ug*|up|® = 1. Hence,R satisfies power constraint R does and thus

1+ g\
1+e\

Oy = max C(R)< max C(R)= max Zln

trR<Pr trR<Pr Ai>0, 32, \i<Pr i

=C*"(e) (53
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where j; = X\;(W,), and C*(¢) is the secrecy capacity und&, and isotropic eavesdropper

W, = <I. Note that
Xi(W1) = Ni(UL, Wi Usy) = A([USW Uyl ) < M(UTWLUL) = \(W) - (54)

where [A];«, denotesk x k principal sub-matrix ofA, r, = rank(W5), and U, is a unitary
matrix whose columns are the eigenvectors¥éf. The inequality is due to Cauchy eigenvalue
interlacing theorem [21] and the last equality is due to tt thatUgwlUg andW; have the

same eigenvalues. Based on this, one obtains:

Cs <C%(e) < Ai2()7131:23;};:\2_3% ; In 11179;;\; =C"(e) (55)
thus establishing’s; = C*(¢) under an omnidirectional eavesdropper WRIW,) C R(W,).
[
Note that the secrecy capacity as well as the optimal siggdtr the omnidirectional eaves-
dropper in Theorerl2 is the same as those for the isotropi¢wamieh is not the case in general,
as can be shown via examples), i.e. the fact that the rankeok#ivesdropper channel is low
has no impact provided th&(W;) C R(W,) holds.

SinceR(W) collects directions where the channel gain is not zero:
IHx|? = x"Wx # 0 Vx € R(W) (56)

the conditionR(W;) C R(W,) means thatH,x| = 0 implies |H;x| = 0 (but the converse is
not true in general) and hen¢H ;x| # 0 implies |[Hyx| # 0, i.e. the eavesdropper can "see” in
any direction where the receiver can "see” (but there is gairement here for the eavesdropper
to be degraded with respect to the receiver so that the ch&net necessarily degraded).

Further note that the condition ih_(45) does not reqiiike= U, i.e. the eigenvectors of the
legitimate channel and of the eavesdropper can be different

VI. IDENTICAL RIGHT SINGULAR VECTORS

In this section, we consider the case wién, have the same right singular vectors (SV), so

that their singular value decomposition takes the follaMiorm:

H,=U,2. V! (57)

October 30, 2018 DRAFT



21

where the unitary matricds,,, V collect left and right singular vectors respectively anagdinal
matrix X, collects singular values df,. In this model, the left singular vectors can be arbitrary.
This is motivated by the fact that right singular vectors ée¢ermined by scattering around the
Tx while left ones - by scattering around the Rx and eavesmhopespectively. Therefore,
when the Rx and eavesdropper are spatially separated,sttatering environments may differ
significantly (and hence different left SVs) while the sancattering environment around the
Tx induces the same right SVs. We make no weak eavesdroppether assumptions here.
After unitary (and thus information-preserving) transfations, this scenario can be put into
the parallel channel setting df [19][20]. The secrecy cépamnd the optimal covariance in this

case can be explicitly characterized as follows.

Proposition 3. Consider the wiretap MIMO channel as @), (57). The optimal Tx covariance

for this channel takes the following form:
R* = VA*VI (58)
where the diagonal matriA™ collects its eigenvalues;:

Aoi + A1 Ao Ay Ali — Ao
== 2 14+ —-1) -1 59
! 2X9i A1 (\/ (A2i + A1;)? ( A )+ ) (59)

and where)\;; = o2, andoy; denotes singular values &f;; A > 0 is found from the total power
constraint: >, Ay = Pr.

Proof: Under [57),W, = VA, V', where diagonal matrid, = X! %, collects eigenvalues
of Wy, so that the problem inJ4) can be re-formulated as

I+ AR -
Cs = max In ﬂ st.trR < Pr (60)
wR>0 [T+ AsR|

whereR = VTRV. However, this is the secrecy capacity of a set of parallaissian wire-
tap channels as in_[19][20], for which independent sigrai® known to be optimgl so that
maximizing R* is diagonal, from which[{88) follows. The optimal power ai#tion in [59) is

essentially the same as for the equivalent parallel charindPQ]. [

3The authors would like to thank A. Khisti for pointing out shiine of argument.

October 30, 2018 DRAFT



22

In fact, Eq. [58) says that optimal signaling is on the rights®f H, » and [59) implies that

only those eigenmodes are active for which
o7, > 05+ A (61)

If X\o; = 0, then [59) reduces to

1 1
Y (e 62
: (A A) 62)

i.e. as in the standard WF. This implies that when = 0 for all active eigenmodes, then the
standard WF power allocation is optimal.

It should be stressed that the original channel&ih (57) er@arallel (diagonal). They become
equivalent to a set of parallel independent channels afefopning information-preserving
transformations. Also, there is no assumption of degrageesiihere and no requirement for the

optimal covariance to be of full rank or rank-1.

VII. WHEN ISZF SIGNALING OPTIMAL?

In this section, we consider the case when ZF signaling isnabti.e. when active eigenmodes
of the optimal covarianc®* are orthogonal to those dV,: W,oR* = (. It is clear that this
does not hold in general. However, the importance of thisage is coming from the fact that
such signaling does not require wiretap codes: since thesdawpper gets no signal, regular
coding on the required channel suffices. Hence, the systesmyrdéllows the well-established
standard framework and secrecy requirement imposes na eatnplexity penalty but is rather

ensured by the well-established ZF signaling.

Proposition 4. A sufficient condition for Gaussian ZF signaling being opatirior the Gaussian
MIMO-WTC in(@) is that W, and W, have the same eigenvectors or, equivaledly,and H,

have the same right singular vectors as(G¥), and

Ati < Agi + A iF Ay >0, (63)

“This simply means that the Tx antenna array puts null in thectbn of eavesdropper, which is known as null forming
in antenna array literatur@ [16]. This can also be consitla®a special case of interference alignment, so that Htimpdd]

establishes its optimality.
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where \ is found from the total power constraidt, \; = Pr, and

1 1

A= NRY) = (X — I) if Xy; =0, (64)
i/

and 0 otherwise. The optimal covariance is ag(®d) so that its eigenvectors are those f,;
and W,.

A necessary condition of ZF optimality is that the activeeaigectors oR* are also the active
eigenvectors oW, and the inactive eigenvectors ¥, and that the power allocation is given

by ©4).

Proof: See the Appendix. [ |

Remark 4. The optimal power allocation i _(64) is the same as standatenilling. However,

a subtle difference here is the condition for an eigenmodbetactive \; > 0: while the standard
WF requires)\;; > ), the solution above requires in addition; = 0, so that the set of active
eigenmodes is generally smaller: the larger the set of dawpper positive eigenmodes, the

smaller the set of active eigenmodes.

It is gratifying to see that the standard WF over the eigeresoaf the required channel is
optimal if ZF is optimal. In a sense, the optimal transmissstrategy in this case is separated
into two independent parts: part 1 ensures that the eaygselrgets no signal (via the ZF) and
part 2 is the standard eigenmode signaling and WF on whatimenoé the required channel as

if the eavesdropper were not there. No new wiretap codes teebd designed.

VIIl. WHEN IS THE STANDARD WATER FILLING OPTIMAL?

Motivated by the fact that the transmitter may be unawareibthe presence of an eavesdrop-
per and hence uses the standard transmission on the eigesrabw; with power allocated
via the water-filling (WF) algorithm, we ask the questionitipossible for this strategy to be
optimal for the MIMO-WTC? The affirmative answer and conatiis for this to happen are given
below. To this end, lIeRy » be the optimal Tx covariance matrix for transmissionVaf only,

which is given by the standard water-filling over the eigedesof W :

Rwp=UAUL A = (A =20 (65)
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whereA™ = diag{\;} is a diagonal matrix of the eigenvaluesRfy », and\ is found from the

total power constrairy . \* = Pr.

Theorem 3. The standard WF Tx covariance matrix (B8) is also optimal for the Gaussian
MIMO-WTC if:

1) the eigenvectors oW, and W, are the samelU,; = U,;

2) for active eigenmodes; > 0, their eigenvalues\;; and \,; are related as follows:

Ay
N 1+ Oé)\li

Aoj < \y;, for somea > 0, (66)

or, equivalently\;.! = A\ + a;
3) for inactive eigenmodes; = 0, the eigenvalues,; and \,; are related either as irf{6g)
or A\i; < Ay

Proof: We assume tha¥Ww; and W, are non-singular; the singular case will be considered
below (using a standard continuity argument). The KKT ctiads for the optimal covariance

R = Ry 7, which are necessary for optimality inl (4), can be expressed

(W +R) = (WL R =N -M (67)
N(trR — Pr) =0, MR =0 (68)
N>0, M,R>0, trR < Py (69)

whereM > 0 is the Lagrange multiplier matrix responsible for the caaist R. > 0 while A’ > 0
is the Lagrange multiplier responsible for the total powanstrainttrR < Pr. Multiplying both
sides of [6Y) byU! on the left and byU; on the right, one obtains:

(AT + A7) = (A + A = NT-UIMU, = XT- Ay (70)

whereA, Ay, A, are diagonal matrices of eigenvalueswt,, W,, M. The last equality follows
from the fact that all terms bl]tﬂMUl are diagonal so that the last term has to be diagonal
too: UIMUl = Ay, i.e. M has the same eigenvectors @, W5, R. The complementary
slackness in[(68) implies that;\,;; = 0, where \,; is i-th eigenvalue ofM, i.e. if A} > 0
(active eigenmode) then,;; = 0 so that, after some manipulations,](70) can be expressed as

1 1
A=

e )\—1 o )\—'l
)TN A !
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for each\: > 0, where the 2nd equality follows froni (65). Therefobe= (\5;' + \5)~! + N

and hence
Af=(A— X)‘l - Az‘il =\1t— Al‘il (71)

so that\,,! = A\;;' +a with a = (A — X)~' — A~! > 0 satisfies both equalities G (71).

For inactive eigenmodes; = 0, it follows from (70) that
Ai— Ao =N = XA <N (72)

Observe that this inequality is satisfied when < \,; (since\’ > 0). To see that it also holds
under [66), observe that

2 2
QA a\

! 2 1"‘0&)\1@_14‘0[)\

N (73)

where the inequality is due td;; < A (which holds for inactive eigenmodes) and the fact that
1;‘_“231 is increasing in\;;. Thus, one can always selekt;; > 0 to satisfy [72) and hence the
KKT conditions in [67)4(69) have a unique solution whichaakatisfies[(65). This proves the

optimality of Ry f.

If W, orfand W, are singular, one can use a standard continuity argumeséred thatC
is a continuous function oW, and W, (which follows from the continuity ofC(R) and the
compactness of the constraint §® : R > 0,tr R < Pr}, which is closed and bounded) and
that the conditions 1-3 of Theorem 3 are also continuous.celenne can considéW,; =
W, + I > 0, whered > 0 andk = 1,2, instead of W, apply Theorem 3 and then take the
limit § — 0 to establish the result for the singular case. [ |

Note that the conditions of Theorelmh 3 do not requWg = aW, for some scalan > 1;
they also allow for the WTC to be non-degraded. However, thredition in (66) implies that
larger \;; corresponds to largeky;, so that, over the active signaling subspace, the channel is
degraded.

The 1st condition in Theorefd 3 implies thHE;, andH, have the same right singular vectors
but imposes no constraints on their left singular vectotss Thay represent a scenario where
the transmitter is a basestation where the legitimate diamd the eavesdropper experience the
same scattering while having their own individual scat®@round their own receivers (which

determine the left singular vectors), as in Secfioh VI.

October 30, 2018 DRAFT



26

IX. WHEN ISISOTROPICSIGNALING OPTIMAL ?

In the regular MIMO channelW, = 0), the isotropic signaling (IS) is optimaR(* = al)
iff W, = 0l, i.,e. W; has identical eigenvalues. Since this transmission glyaite appealing
due to its low complexity (all antennas send independera si@eams, no precoding, no Tx CSI
and thus no feedback is required), we consider the isotrgigitaling over the wire-tap MIMO
channel and characterize the set of channels on which it tisnap It turns out to be much

richer than that of the regular MIMO channel.

Proposition 5. Consider the MIMO wire-tap channel iff)). The isotropic signaling is optimal,
i.e. R* = al in (@), for the set of channel§W, W,} that satisfy all of the following:

1. W; and W, have the same (otherwise arbitrary) eigenvectdss,= Us.

2. W, > W, so that\;(W;) = a; ' > \;(W,) = b, !, where);(W) are ordered eigenvalues
of W.

3. Take any; > 0 anda; < b, and set\ = (a; +a)™t — (by +a)~! > 0,

4. Fori = 2...m, take anyb; such thatb; > \a*(1 — \a)~! > 0, and set

ai=—a+ A+ (b +a)™) >0 (74)

This gives the complete characterization of the set of casnfor which isotropic signaling

is optimal.

Proof: It is straightforward to see that any channel in the givensa#isfies the conditions
of Theorem 2 in[[6] and the corresponding optimal covariaiscesotropic, which proves the
sufficiency. The converse (necessity) follows from Theofeimn [6], which requiresW; > W,,
so that the optimization problem is strictly convex and thas a unique solution. For isotropic
signaling to be optimal, the corresponding KKT conditioasd the proofs of Theorems 1 and

2 in [6]) imply the conditions stated above. [ |

Note that the special case of this Proposition is wNén and W, have identical eigenvalues,
as in the case of the regular MIMO channel, but, unlike theuleegchannel, there is also a
large set of channels with distinct eigenvalues which téstahe isotropic signaling as well.
It is the interplay between the legitimate user and the elepper that is responsible for this
phenomenon, i.e. a non-isotropic nature of the 1st chamnebimpensated for by a carefully-

adjusted non-isotropy of the 2nd one.
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TABLE |

THE CONDITIONS OF OPTIMALITY OF THEZF, THE WF AND THE IS IN THE GAUSSIAN MIMO-WTC

‘ Strategy ‘ Optimality conditions

WF U, = Us; A, A2 @s in Theorem 3
ZF U: = Us; A\i4, A2 as in Proposition 4

IS Ui = Uy; \ii, A2; as in Proposition 5

Table 1 summarizes the conditions for the optimality of tHe the WF and the IS in the
Gaussian MIMO-WTC. Clearly, the requirement f&; and W5 to have the same eigenvectors
is the key condition. It is satisfied when the legitimate reereand the eavesdropper are subject
to the same scattering around the base station (the traegmithile they may have their own

sets of scatterers around their own units.
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APPENDIX
A. Proof of Theorem 1
Applying the inequalities
r—2°/2<In(l+2)<x (75)
which hold for anyx > 0, to
In|T+ WoR| = In(1 + A;(W>R)) (76)
one obtains:
Cu(R) < C(R) < Cu(R) + % Z A2(W,R) (77)

from which the 1st inequality if{7) follows by usidg = R} ; the 2nd inequality follows from
the fact thatC'(R) is maximized byR*: Cs = C(R*) > C'(R})). To obtain the last inequality,

we need the following lemma.
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Lemma 1. Let \; > 0 and ). \; < Pr. Then,
Y a<rpr (78)
Proof: Since\; > 0,
2
Y oN< (Z Az-) < Pf (79)

[
Using this Lemma and observing thaf WyR) < \;(W,)\;(R) (see e.g.[[21]), one obtains:

D N(WaR) < A (W2) Y N (R) < A (W) P? (80)
since) . \i(R) < Pr, so that
Cy = C(RY) < Cy(R*) + A\ (Wy) P7/2 < O, + A} (W2) P7/2 (81)

sinceC,, = C,(R}) > C,(R*), which establishes the last inequality in (7).
To establish the closed form solution fét, in (I2), consider the optimization problem in

(@), for which the Lagrangian is
L=In|I+ W R|—-tr(W3R) — A(trR — Pr) + tr(MR) (82)

where A > 0 is a Lagrange multiplier responsible for the total powerstoaint andM > 0
is a matrix Lagrange multiplier responsible for the conatr&® > 0. The corresponding KKT

conditions (see e.g. [18] for a background on these comdi}iare:

OL/OR = (I+ W R)"'"W; — W, — AT+ M =0 (83)
AtrR— Pr) = 0,MR = 0 (84)
A>0,MR>0 (85)

Since the objective is concave, the corresponding optimizgoroblem is convex, and since
Slater condition holds (e.g. take = Pr1/2 > 0,trR < Pr), the KKT conditions are sufficient
for optimality [18]. After some manipulationd, (83) can artsformed to

A~ —

R-(I-M)'=-W;! (86)

R=W/’RW,” M =W,""MW,"* W, =wW,""w,w, "/’ (87)
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where we implicity assume thd¥,; and W, are non-singular, so th&) = W;l; the singular
case will be considered below. SinddR = 0 (which follows from MR = 0), these matrices
commute and thus have the same eigenvectors, which, frdmi@glies that these eigenvectors
are the same as those ﬁ\Vl. Hence, all three matrices can be simultaneously diagoethli
and thus[(86) can be transformed to diagonal form where thgodial entries are respective

eigenvalues:
M(R) = (1= M(M)) ™ = —A7H (W) (88)

From this and complementary slackn@dR = 0, which implies)\i(ﬁ) =0 if \;(R) > 0 (i.e.
for active eigenmodes),

M(R) = (1= A1 (W), (89)

so thatR = (I- \/7\\71‘1)+ from which [8) follows. Lagrange multipliek is found from the total
power constraintrR < Pr.

The existence of the threshold powg} follows from the fact thatr R* is monotonically
decreasing im\ so that its largest value correspondsite+ 0 and equals’;. When Pr > Pj,
A =0andtrR* = Pj < Pr, i.e. only partial power is used (see Fig. 1 for illustratiand
discussion). The fact tha®; = oo if W, is singular andV' (W) ¢ N (W;) can be established
via a limiting transition: consideW,s = W, + 01 > 0 instead ofW,, whereéd > 0, evaluate
P;(0) and take the limitlims_,o P;:(d) (P; = oo corresponds to the fact that one can always
use extra power to transmit on the directionsNi{W,) for which there is no leakage to the
eavesdropper but positive rate to the legitimate receiViery (W,) C A (W,), one can project
both matrices orthogonaly to the subspa¢€W,) without affecting the system performance,
and perform the analysis on the projected matrices (of wthiehprojectedw, is non-singular).

If W, is singular, it follows from[(88) thah = 0 (inactive total power constraint) an@/,
is singular as well and, furthermora/(W,) C N (W,) so that both matrices can be projected,
without affecting the performance, on the subspace orthalgm A (W5), the analysis can be
carried out for the projected matrices (where the proje®i&dis non-singular), and the resulting
covariance can be transformed back to the original spads.ikquivalent to using the (Moore-
Penrose) pseudo-inversg of W, instead the inverse if](8) and (9). This approach can also be
used to compute the threshold powef if W, is singular andV(W,) C N (W;). The case
of singularW, is also addressed in Remark 1.
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Finally, (12) is obtained by using](8) inl(5).

B. Proof of Proposition]1
The 1st equality in[{28) follows from14). The 2nd equalityléws from the Hadamard

inequality applied toI + W;R| in the same way as for the regular MIMO channel, and the
equality is achieved wheR. has the same eigenvectors\ag, R* = UlA*UJ{, which maximizes
the numerator and leaves the denominator unchanged. Ttreemie part is the optimal power

allocation in [29), which can be formulated as

L+ g\
C*(e) =max » In 9

A TR Y _O; ! 40

This, however, represents an optimal power allocation &altel channels which can be found
in [20].

The lower/upper bounds follow from the fact th&t+ WR| is a matrix-monotone function
of W [21], so thatI+ W,R| > [I+ W,R|V W, > W, > 0.

To establish the gap bound in_{30), observe the following:

1 +g’l 7 1 +gl 7
¢=Cem) = Cla) IR\ai(Z nl—l—eml {)\} nl—i—el)\ (1)
< max mM (92)
N} 1+ enhi
1:9; >€m
1 +€1PT/m+
N T e
meIn e Py, (93)
<my lne—1 (94)
€m

where maximization is over the set of positi{®,;} satisfying the power constraift, \; < Pr,

andm_ is the number of active eigenmodds.](92) follows from (easyerify) fact that

max f () —max g(z) < max{f(r) - g(z)} (95)

and the observation that the 1st maximization[in] (91) reguit > ¢, for any \; > 0 so
that imposing the same condition on the 2nd maximizatioaltgsn an upper bound. To show
(©3), observe that the sum ih_(92) is permutation-symmeitéc has the same value for =

[A1, ..., Ama] @nd any of its permutation,{\}, wherer, denotes a permutation. L&t(\) be
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this sum and observe further that it is concave\ilfsince each term is), so that

PN = SR < F (% ;m&) <F ({%}) (96)

where {Pr/m.} is a vector with all entries equal t&r/m,. The 1st equality is due to
permutation symmetry, the 1st inequality is due to the ceitgaf F'(\), and last inequality is
due to the power constraint and the fact thdf\) is increasing in each;. Since this holds for
each (including optimal one)[(93) follows_(94) follows fromeHact that[(9B) is monotonically

increasing inPr.

C. Proof of Proposition 4

The original problem in[{4) is not convex in general. Howewnce the objective is contin-
uous, the feasible set is compact and Slater condition h&K3 conditions are necessary for
optimality [22]. They take on the following form (see e.g])[6

AW R =W, - W, + M — AI (97)
AtrR — Pr) =0, MR =0 (98)
A>0, M\R>0, ttR < P; (99)

whereM > 0 is the Lagrange multiplier matrix responsible for the coaust R > 0 while
A > 0 is the Lagrange multiplier responsible for the total powenstrainttrR < Pr, and we
used the orthogonality conditioWw ;R = 0.

To prove sufficiency, note from Propositibh 3 thatW,, W, have the same eigenvectors so
is R and henceM and also the KKT conditions are sufficient for optimalitynse they have a

unique solution). Hencel_(P7) can be transformed to a dialgfmmm:
AN = A — Ao + Ay — A (100)

where \;, \y; are the eigenvalues &, M. Complementary slackness in [98) gives\,;; = 0
so that); > 0 (active eigenmodes) implies,;; = 0 and hence

A=Ay —A 1 1
A1 DY
where the 2nd equality follows from the orthogonality cdiwi \5; \; = 0. For inactive eigen-

A = (101)

modes\; = 0, one obtains\;;; = A — A\i; + Ag; > 0 so that); < X+ Ao
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To prove the necessary part, note that complementary stasRiM = 0 implies thatRM =
MR and henceR, M have the same eigenvectors so that the eigenvalue decdiopssare:
R = UAU', M = UA,,Uf, where diagonal matrices, A,; collect respective eigenvalues, and
the columns of unitary matriXJ are the eigenvectors. Multiplying (97) By’ from the left and

by U from the right, one obtains, after some manipulations,
AL = Ay =Wi(I—A)— W, (102)

whereWk = U'W,U. Using the orthogonality conditioRW, = W,R = 0, which imply

WQA = 0, and block-partitioned representationmfﬁ/fg, one obtains:

—~ A Ayp A, 0O ApA, 0
WA = = =0 (103)
A21 A22 0 0 A21 AT 0
5 X

where diagonal matri, > 0 collects positive eigenvalues &, so thatA; = 0, Ay = AJ{2 =

0 and hencéWQ is bIock-diagonaIWz = diag{0, A }. This proves that active eigenvectors of
R are also inactive eigenvectors W,. Complementary slackne®M = 0 implies AA,; =0

so thatA,, is also block-diagonalA,, = diag{0, Ay n—r)}. Using these representations in
(@I02) and block-partitioned representationﬁ/’fl,

< Bll B12

W, = (104)
B21 B22
one obtains
B I — MA, 0 0 O
A — Ay = B 12 i
21 B22 m r 0 A22
B I — A\ B
_ 11 ) 12 (105)
By (I, — AA,) Boy + Ay

so thatB, = Bgl = 0 andB;; > 0 is diagonal. This proves that the active eigenvectorfRof
are also active eigenvectors 3, (note however thaW; can have more active eigenvectors
than R but the converse is not true). No definite statements can le rafthis point about
inactive eigenvectors oW; and active eigenvectors 8V,, e.g. they do not have to be equal.
The upper left block in[{105) implie$ (64).
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