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Rank-Deficient Solutions for Optimal Signaling

over Wiretap MIMO Channels

Sergey Loyka, Charalambos D. Charalambous

Abstract

Capacity-achieving signaling strategies for the Gaussianwiretap MIMO channel are investigated

without the degradedness assumption. In addition to known solutions, a number of new rank-deficient

solutions for the optimal transmit covariance matrix are obtained. The case of a weak eavesdropper is

considered in detail and the optimal covariance is established in an explicit, closed form with no extra

assumptions. This provides lower and upper bounds to the secrecy capacity in the general case with a

bounded gap, which are tight for a weak eavesdropper or/and low SNR. Closed form solutions are also

obtained for isotropic and omnidirectional eavesdroppers, based on which lower and upper bounds to the

secrecy capacity are established in the general case. Sufficient and necessary conditions for optimality

of 3 popular transmission techniques, namely the zero-forcing (ZF), the standard water-filling (WF) over

the channel eigenmodes and the isotropic signaling (IS), are established for the MIMO wiretap channel.

These solutions are appealing due to their lower complexity. In particular, no wiretap codes are needed

for the ZF transmission, and no precoding or feedback is needed for the isotropic signaling.

Index Terms

MIMO, wiretap channel, secrecy capacity, optimal signalling.

I. INTRODUCTION

Widespread use of wireless systems on one hand and their broadcast nature on the other have

initiated significant interest in their security. Information-theoretic studies of the secrecy aspects
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of wireless systems have recently attracted significant interest [1]. Due to the high spectral

efficiency of wireless MIMO systems and their wide adoption by the academia and industry,

the Gaussian MIMO wire-tap channel (WTC) has emerged as a popular model and a number

of results have been obtained for this model, including the proof of optimality of the Gaussian

signaling [1]-[4].

An optimal transmit covariance matrix under the total powerconstraint has been obtained for

some special cases (low/high SNR, MISO channels, full-rankor rank-1 solutions) [2]-[7], but the

general case remains elusive. The main difficulty lies in thefact that, unlike the regular MIMO

channel, the underlying optimization problem for the MIMO-WTC is generally not convex. It

was conjectured in [4] and proved in [3] using an indirect approach (via a degraded channel)

that the optimal signaling is on the positive directions of the difference channel. A direct proof

(based on the necessary Karush-Kuhn-Tucker (KKT) optimality conditions) has been obtained

in [6], while the optimality of signaling on non-negative directions has been established in [7]

via an indirect approach. Closed form solutions for MISO andrank-1 MIMO channels have

been obtained in [2][6]-[8]. The 2-2-1 channel (2 transmit,2 receive, 1 eavesdropper antenna)

has been studied earlier in [5]. The low-SNR regime has been studied in detail in [9]. An exact

full-rank solution for the optimal covariance and several of its properties have been obtained in

[6]. In particular, unlike the regular channel (no eavesdropper), the optimal power allocation does

not converge to the uniform one at high SNR and the latter remains sub-optimal at any finite

SNR. In the case of a weak eavesdropper, the optimal signaling mimics the conventional one

(water-filling over the channel eigenmodes) with an adjustment for the eavesdropper channel.

Finally, while no analytical solution for the optimal covariance is known in the general

case, numerical algorithms have been developed to attack the problem in [10]-[13], which

however suffer from the lack of provable global convergencedue to the non-convex nature

of the optimization problem in the general case. A globally-convergent numerical algorithm for

the general case, which is based on an equivalent min-max reformulation of the original problem,

was proposed in [14] and its convergence was proved, which takes only a moderate or small

number of steps in practice.

The present paper extends the known analytical results for the optimal covariance in several

directions. First, motivated by a scenario where the legitimate receiver (Rx) is closer to the

transmitter (Tx) than the eavesdropper, the case of a weak eavesdropper is studied and its optimal
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covariance is obtained in an explicit closed form without any extra assumptions in Section III.

It provides novel lower and upper bounds to the secrecy capacity in the general case with a

bounded gap, which are tight when the eavesdropper is weak or/and the SNR is low and hence

serve as an approximation to the true capacity. It also captures the capacity saturation effect at

high SNR observed in [3][6]. The range of validity of this model is indicated.

The presence of the eavesdropper channel state information(CSI) at the transmitter is in

question when the eavesdropper does not cooperate (e.g. to hide its presence). To address this

issue, we consider in Section IV an isotropic eavesdropper model, whereby the Tx does not

know the directional properties of the eavesdropper and hence assumes it is isotropic, i.e. the

eavesdropper channel gain is the same in all directions. Thesecrecy capacity as well as an optimal

signaling to achieve it and its properties are established in an explicit closed form. This case is

shown to be the worst-case MIMO wire-tap channel. Based on this, lower and upper capacity

bounds are obtained for the general case, which are achievable by the isotropic eavesdropper.

The properties of the optimal power allocation are pointed out.

The case of isotropic eavesdropper above requires the number of its antennas to be not less

than the number of Tx antennas (which is necessary for a full-rank eavesdropper channel), which

may not be the case in practice. To address this issue, Section V studies an omnidirectional

eavesdropper, which may have a smaller number of antennas (and hence rank-deficient channel)

and which has the same gain in any direction of a given subspace. The secrecy capacity and the

optimal signaling are established in a closed form.

The case of identical right singular vectors of the Rx and eavesdropper channels is investigated

and the optimal covariance is established in a closed from inSection VI. This case is motivated

by a scenario where the legitimate receiver and the eavesdropper are spatially separated so that

each has its own set of local scatterers inducing its own leftsingular vectors (SV), while both

channel are subject to the same set of scatterers around the transmitter (e.g. a base station) and

hence the same right SVs. This is similar to the popular Kronecker MIMO channel correlation

model, see e.g. [15], where the overall channel correlationis a product of the independent Tx

and Rx parts, which are induced by the respective sets of scatterers.

In Section VII, the conditions for optimality of popular zero-forcing (ZF) signaling are

established, whereby the Tx antenna array forms a null in theeavesdropper direction. Under

those conditions, the standard eigenmode signaling and thewater-filling (WF) power allocation
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on what remains of the required channel (after the ZF) are optimal. Furthermore, no wiretap codes

are required as regular coding on the required channel suffices, so that the secrecy requirement

imposes no extra complexity penalty (beyond the standard ZF). In this case, the optimal secure

signaling is decomposed into two parts: part 1 is the ZF (nullforming in the terminology of

antenna array literature [16]), which ensures the secrecy requirement, and part 2 is the standard

signaling (eigenmode transmission, WF power allocation and coding) on the required channel,

which maximizes the rate of required transmission. This is reminiscent of the classical source-

channel coding separation [17].

In Sections VIII and IX, we consider two other popular signaling techniques: the standard

water-filling over the eigenmodes of the legitimate channeland the isotropic signaling (IS,

whereby the covariance matrix is a scaled identity) and establish sufficient and necessary condi-

tions under which they are optimal for the MIMO WTC. These techniques are also appealing due

to a number of reasons. While the standard WF does require wiretap codes, standard solutions

can be used for power allocation and eigenmode transmission(i.e. spatial modulation); the

isotropic signaling is appealing due to its low complexity:no eavesdropper CSI is required at

the transmitter as independent, identically distributed data streams are launched by each antenna.

The set of channels for which the isotropic signaling is optimal is fully characterized in Section

IX. It turns out to be much richer than that of the conventional (no eavesdropper) MIMO channel.

Notations: Lower case bold letters denote vectors while bold capitalsdenote matrices.λi(W)

denotes the eigenvalues of a matrixW in decreasing order unless indicated otherwise;(x)+ =

max{x, 0} for a scalarx; N (W) andR(W) are the null space and the range of a matrixW;

(W)+ denotes the positive eigenmodes of a Hermitian matrixW:

(W)+ =
∑

i:λi(W)>0

λiuiu
†
i (1)

whereui is i-th eigenvector ofW; trW and |W| denote the trace and the determinant ofW;

W† is the Hermitian conjugation ofW.

II. W IRE-TAP GAUSSIAN MIMO CHANNEL MODEL

Let us consider the standard wire-tap Gaussian MIMO channelmodel,

y1 = H1x+ ξ1, y2 = H2x+ ξ2 (2)
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wherex = [x1, x2, ...xm]
T ∈ Cm,1 is the transmitted complex-valued signal vector of dimension

m × 1, “T” denotes transposition,yk ∈ Cnk , k = 1, 2, are the received vectors at the receiver

and eavesdropper,ξ1 andξ2 are the circularly-symmetric additive white Gaussian noise at the

receiver and eavesdropper (normalized to unit variance in each dimension),Hk ∈ Cnk,m is the

nk ×m matrix of the complex channel gains between each Tx and each receive (eavesdropper)

antenna,n1, n2 andm are the numbers of Rx, eavesdropper and Tx antennas respectively. The

channelsHk are assumed to be quasistatic (i.e., constant for a sufficiently long period of time

so that the infinite horizon information theory assumption holds) and frequency-flat, with full

channel state information (CSI) at the Rx and Tx ends.

For a given transmit covariance matrixR = E
{
xx†
}

, whereE {·} is the statistical expecta-

tion, the maximum achievable secrecy rate between the Tx andRx (so that the rate between the

Tx and the eavesdropper is zero) is [3][4]

C(R) = ln
|I+W1R|
|I+W2R| = C1(R)− C2(R) (3)

whereCk(R) = ln |I+WkR|, k = 1, 2, negativeC(R) is interpreted as zero rate,Wk = H
†
kHk,

and the secrecy capacity subject to the total Tx power constraint is

Cs = max
R≥0

C(R) s.t. trR ≤ PT (4)

wherePT is the total transmit power (also the SNR since the noise is normalized). It is well-

known that the problem in (4) is not convex in general and explicit solutions for the optimal Tx

covariance are not known for the general case, but only for some special cases (e.g. low/high

SNR, MISO channels, full-rank or rank-1 case [2]-[6]).

III. W EAK EAVESDROPPER ANDCAPACITY BOUNDS

In this section, we obtain novel lower and upper bounds to thesecrecy capacity in the general

case and show that the bounds are tight when the eavesdropperis weak or if the SNR is low. The

weak eavesdropper case is motivated by a scenario where the eavesdropper is located far away

from the Tx so that its propagation path loss is large, see e.g. Fig. 2. This is the case when the

presence of the eavesdropper does not result in a large capacity loss so that the physical-layer

secrecy approach is feasible (while in the case of a strong eavesdropper, the capacity loss is

large and other approaches may be preferable, e.g. cryptography). There is no requirement here
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for the channel to be degraded or for the optimal covariance to be of full rank or rank 1, so that

these results extend the known closed form solutions.

To this end, let

Cw(R) = ln |I+W1R| − tr(W2R)

Cw = max
R

Cw(R) (5)

R∗ = argmax
R

C(R), R∗
w = argmax

R

Cw(R)

all subject toR ≥ 0, trR ≤ PT , i.e. R∗ is the optimal covariance andR∗
w maximizesCw(R).

Using ln(1 + x) ≈ x when 0 ≤ x ≪ 1, it can been seen thatCw(R) is a weak eavesdropper

approximation ofC(R):

C(R) ≈ Cw(R) if λ1(W2R) ≪ 1 (6)

so thatCw is the weak eavesdropper secrecy capacity. The following Theorem establishes novel

secrecy capacity bounds based onCw.

Theorem 1. The secrecy capacityCs in (4) for the general Gaussian MIMO-WTC in(2) is

bounded as follows:

Cw ≤ C(R∗
w) ≤ Cs ≤ Cw +

P 2
T

2
λ2
1(W2) (7)

where

R∗
w = Q1/2(I− Ŵ−1

1 )+Q
1/2 (8)

Ŵ1 = Q1/2W1Q
1/2 (9)

andQ is the (Moore-Penrose) pseudo-inverse ofWλ = λI+W2; λ ≥ 0 is found from the total

power constraint:

trR∗
w = PT if PT < P ∗

T (10)

and λ = 0 otherwise; the threshold power

P ∗
T = trW−1

2 (I−W
1/2
2 W−1

1 W
1/2
2 )+ (11)
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if W2 is non-singular. WhenW2 is singular,P ∗
T = ∞ if N (W2) * N (W1); otherwise,W1

andW2 are projected orthogonally toN (W2) and the projected matrices are used in(11). The

weak eavesdropper secrecy capacity can be expressed as

Cw =
∑

i:λ̂1i>1

ln λ̂1i − trŴ2(I− Ŵ−1
1 )+ (12)

whereλ̂1i = λi(Ŵ1), Ŵ2 = Q1/2W2Q
1/2.

Proof: See the Appendix.

Remark 1. It may appear that (8) requireŝW1 and thusW1 to be positive definite, i.e. singular

case is not allowed. This is not so since(·)+ operator eliminates singular eigenmodes ofŴ1

so that(I − Ŵ−1
1 )+ is well-defined even ifW1 is singular: one can usêW1δ = Ŵ1 + δI > 0

instead ofŴ1, whereδ > 0, evaluate(I − Ŵ−1
1δ )+ and take the limitδ → 0 to see that the

singular modes of̂W1 are eliminated so that

(I− Ŵ−1
1 )+ = U+DU

†
+ (13)

whereU+ is a semi-unitary matrix whose columns are the eigenvectorsof Ŵ1 corresponding to

its positive eigenvalues,D is ar×r diagonal matrix whosei-th diagonal entry is(1−λ−1
i (Ŵ1))+,

i = 1...r, wherer is the rank ofŴ1. The same observation also applies to (11).

Remark 2. The 1st inequality in (7) bounds the sub-optimality gap of using R∗
w, for which an

achievable rate isC(R∗
w), instead of the true optimal covarianceR∗:

|Cs − C(R∗
w)| ≤ λ2

1(W2)P
2
T/2 (14)

so thatC(R∗
w) → Cs asλ1(W2)PT → 0.

Using Theorem 1, we can now approximate the secrecy capacityvia its weak eavesdropper

counterpart.

Corollary 1. The secrecy capacity of the general Gaussian MIMO-WTC can beexpressed as

follows:

Cs = Cw +∆C (15)
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where∆C is the inaccuracy of the weak eavesdropper approximation, which is bounded as

0 ≤ ∆C ≤ λ2
1(W2)P

2
T/2 (16)

so that∆C → 0 andCs/Cw → 1 asPT → 0 or/andλ1(W2) → 0.

Proof: (15) and (16) follow from the bounds in (7), which also implies ∆C → 0 as

PTλ1(W2) → 0. To show thatCs/Cw → 1 asPT → 0 observe that

Cs = PTλ1(W1 −W2) + o(PT ) = Cw + o(PT )

from which the desired result follows (here, we implicitly assume thatλ1(W1 − W2) > 0;

otherwise,Cs = 0 and there is nothing to prove). Whenλ1(W2) → 0, note that bothC(R)

andCw(R) converge toln |I + W1R| so that takingmaxR results inCs/Cw → 1 (since the

objectives are continuous and the feasible set is compact).

Using this Corollary, the secrecy capacity can be approximated as

Cs ≈ Cw (17)

and the approximation is accurate for a weak eavesdropper or/and low SNR:λ1(W2)PT ≪ 1,

when the bounds in (7) are also tight, see Fig. 1.

Remark 3. Since λ1(W2R) ≤ λ1(W2)λ1(R) ≤ PTλ1(W2), one way to ensure that the

eavesdropper is weak, i.e.λ1(W2R) ≪ 1 so that ln |I + W2R| ≈ trW2R, is to require

λ1(W2) ≪ 1/PT from which it follows that this holds as long as the power (or SNR) is not too

large, i.e.PT ≪ 1/λ1(W2); see also Fig. 1. It should be noted, however, that the approximation

in (17) extends well beyond the low-SNR regime provided thatthe eavesdropper propagation

path loss is sufficiently large (i.e.λ1(W2) is small). For the scenario in Fig. 1, it works well up

to about10 dB and this can extend to larger SNR for smaller path loss factor α.

To illustrate Theorem 1 and Corrolary 1 and also to see how accurate the approximation is,

Fig. 1 shows the secrecy capacity obtained from the approximation in (17) for

W1 =


 2 0

0 1


 , W2 = α


 2 1

1 1


 , (18)

also, its exact values (without the weak eavesdropper approximation) obtained by brute force

Monte-Carlo (MC) based approach (where a large number of covariance matrices are randomly
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Fig. 1. Weak eavesdropper approximation in (17) and exact secrecy capacity (via MC) versus SNR.W1 andW2 are as in

(18), α = 0.1, λ1(W2) ≈ 0.25. The approximation is accurate if SNR< 10 dB. Note the capacity saturation effect at high

SNR in both cases.

generated, subject to the total power constraint, and the best one is selected) are shown for

comparison. To validate the analytical solution forCw in Theorem 1, the weak eavesdropper

case has also been solved by the MC-based approach. It is clear that the approximationCs ≈ Cw

is accurate for the channel in (18) provided that SNR< 10 dB. Also note the capacity saturation

effect, for both the approximate and exact values. This saturation effect has been already observed

in [3][6] and, in the case ofW1 > W2 > 0, the saturation capacity is

C∗
s = ln |W1| − ln |W2| (19)

which follows directly from (3) by neglectingI. In the weak eavesdropper approximation, the

saturation effect is due to the fact that the 2nd term in (5) islinear in PT while the 1st one

is only logarithmic, so that using the full available power is not optimal when it is sufficiently

high. Roughly, the approximation is accurate before it reaches the saturation point, i.e. for

PT < P ∗
T . The respective saturation capacity is obtained from (12) by settingλ = 0. In the case

of W1 > W2 > 0, it is given by

Cw = ln |W1| − ln |W2| − tr(I−W2W
−1
1 ) (20)

By comparing (19) and (20), one concludes that the thresholds are close to each other when

trW2W
−1
1 ≈ m.
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To obtain further insight in the weak eavesdropper regime, let us consider the case whenW1

andW2 have the same eigenvectors. This is a broader case than it mayfirst appear as it requires

H1 andH2 to have the same right singular vectors while leaving left ones unconstrained (see

Section VI for more details on this scenario). In this case, the results in Theorem 1 and Corollary

1 simplify as follows.

Corollary 2. Under the weak eavesdropper conditionλ1(W2) ≪ 1/PT and whenW1 andW2

have the same eigenvectors, the optimal covariance is

R∗ ≈ R∗
w = UΛ∗U† (21)

whereU is found from the eigenvalue decompositionsWi = UΛiU
† so that the eigenvectors

of R∗
w are the same as those ofW1 andW2. The diagonal matrixΛ∗ collects the eigenvalues

of R∗
w:

λi(R
∗
w) =

(
1

λ+ λ2i
− 1

λ1i

)

+

(22)

whereλki is i-th eigenvalue ofWk.

Proof: UsingWi = UΛiU
† in (8) results in (21) and (22).

Note that the power allocation in (22) resembles that of the standard water filling, except for

the λ2i term. In particular, only sufficiently strong eigenmodes are active:

λi(R
∗
w) > 0 iff λ1i > λ+ λ2i (23)

As PT increases,λ decreases so that more eigenmodes become active; the legitimate channel

eigenmodes are active provided that they are stronger that those of the eavesdropper:λ1i > λ2i.

Only the strongest eigenmode (for which the differenceλ1i−λ2i is largest) is active at low SNR.

IV. I SOTROPICEAVESDROPPER ANDCAPACITY BOUNDS

The model in Section III requires the full eavesdropper CSI at the transmitter. This becomes

questionable if the eavesdropper does not cooperate (e.g. when it is hidden in order not to

compromise its eavesdropping ability). One approach to address this issue is via a compound

channel model [23]-[25]. An alternative approach is considered here, where the eavesdropper is
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characterized by its channel gain identical in all directions, which we term ”isotropic eavesdrop-

per”. This minimizes the amount of CSI available at the transmitter (one scalar parameter and

no directional properties).

A further physical justification for this model comes from anassumption that the eavesdropper

cannot approach the transmitter too closely due to e.g. someminimum protection distance, see

Fig. 2. This ensures that the gain of the eavesdropper channel does not exceed a certain threshold

in any transmit direction due to the minimum propagation path loss (induced by the minimum

distance constraint). Since the channel power gain in transmit directionu is u†W2u = |H2u|2

(assuming|u| = 1) and sincemax|u|=1 u
†W2u = ǫ1 (from the variational characterization

of eigenvalues [21]), whereǫ1 is the largest eigenvalue ofW2, W2 ≤ ǫ1I ensures that the

eavesdropper channel power gain does not exceedǫ1 in any direction.

In combination with matrix monotonicity of the log-det function, the latter inequality ensures

that ǫ1I is the worst possibleW2 that results in the smallest capacity (the lower bound in (27)),

i.e. the isotropic eavesdropper with the maximum channel gain is the worst possible one among

all eavesdroppers with a bounded spectral norm. Referring to Fig. 2, the eavesdropper channel

matrix H2 can be presented in the following form:

H2 =
√

αR−ν
2 H̃2 (24)

whereαR−ν
2 represents the average propagation path loss,R2 is the eavesdropper-transmitter

distance,ν is the path loss exponent (which depends on the propagation environment),α is a

constant independent of distance (but dependent on frequency, antenna height, etc.) [27] , and̃H2

is a properly normalized channel matrix (includes local scattering/multipath effects but excludes

the average path loss) so thattr H̃†
2H̃2 ≤ n2m [28]. With this in mind, one obtains:

W2 = H
†
2H2 =

α

Rν
2

H̃
†
2H̃2 ≤

α

Rν
2min

H̃
†
2H̃2 ≤

αn2m

Rν
2min

I (25)

so that one can takeǫ1 = αn2mR−ν
2min in this scenario, whereR2min is the minimum transmitter-

eavesdropper distance. Note that the model captures the impact of the number of transmit and

eavesdropper antennas, in addition to the minimum distanceand propagation environment. In

our view, the isotropic eavesdropper model is more practical than the full Tx CSI model.

The isotropic eavesdropper model is closely related to the parallel channel setting in [19][20]:
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2minR

B

BS
U

E

�����

Fig. 2. Physical scenario for a secret communication system: base station BS (the transmitter) is located on the rooftopof a

secure buildingB, legitimate userU (the receiver) is inside the buildingB, and eavesdropperE is beyond the fence so that

R2 ≥ R2min.

even though the original channel is not parallel, it can be transformed into a parallel channel1,

for which independent signaling is known to be optimal [19][20]. This shows that signaling on

the eigenvectors ofW1 is optimal in this case while an optimal power allocation is different

from the standard water filling [20]. These properties in combination with the bounds in (26)

are exploited below.

While it is a challenging analytical task to evaluate the secrecy capacity in the general case,

one can use the isotropic eavesdropper model above to construct lower and upper capacity bounds

for the general case using the standard matrix inequalities,

ǫmI ≤ W2 ≤ ǫ1I (26)

whereǫi = λi(W2) denotesi-th largest eigenvalue ofW2, and the equalities are achieved when

ǫ1 = ǫm, i.e. by the isotropic eavesdropper. This is formalized below.

Proposition 1. The secrecy capacity of the general MIMO-WTC in(4) is bounded as follows:

C∗(ǫ1) ≤ Cs ≤ C∗(ǫm) (27)

1via an information-preserving transformation: using a unitary transmit pre-coding with the unitary matrix whose columns are

the eigenvectors ofW1 and unitary post-codings at the receiver and eavesdropper with unitary matrices whose columns are the

left singular vectors ofH1 andH2 respectively.
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whereC∗(ǫ) is the secrecy capacity if the eavesdropper were isotropic,i.e. underW2 = ǫI,

C∗(ǫ) = max
R≥0, trR≤PT

ln
|I+W1R|
|I+ ǫR| =

∑

i

ln
1 + giλ

∗
i

1 + ǫλ∗
i

(28)

gi = λi(W1), and λ∗
i = λi(R

∗) are the eigenvalues of the optimal transmit covarianceR∗ =

U1Λ
∗U

†
1 under the isotropic eavesdropper,

λ∗
i =

ǫ+ gi
2ǫgi

(√
1 +

4ǫgi
(ǫ+ gi)2

(
gi − ǫ

λ
− 1

)

+

− 1

)
(29)

and λ > 0 is found from the total power constraint
∑

i λ
∗
i = PT .

The gap in the bounds of(27) is upper bounded as follows:

∆C = C∗(ǫm)− C∗(ǫ1) ≤ m+ ln
1 + ǫ1PT/m+

1 + ǫmPT/m+
≤ m+ ln

ǫ1
ǫm

(30)

wherem+ is the number of eigenmodes such thatgi > ǫm. Both bounds are tight at high SNR

if gm+ > ǫ1.

Proof: See the Appendix.

Thus, the optimal signaling for the isotropic eavesdroppercase is on the eigenvectors ofW1

(or right singular vectors ofH1), identically to the regular MIMO channel, with the optimal

power allocation somewhat similar (but not identical) to the conventional water filling. The

latter is further elaborated below for the high and low SNR regimes. Unlike the general case

(of non-isotropic eavesdropper), the secrecy capacity of the isotropic eavesdropper case does not

depend on the eigenvectors ofW1 (but the optimal signaling does), only on its eigenvalues, so

that the optimal signaling problem here separates into 2 independent parts: (i) optimal signaling

directions are selected as the eigenvectors ofW1, and (ii) optimal power allocation is done based

on the eigenvalues ofW1 and the eavesdropper channel gainǫ. It is the lack of this separation

that makes the optimal signaling problem so difficult in the general case.

The bounds in (27) coincide whenǫ1 = ǫm thus giving the secrecy capacity of the isotropic

eavesdropper. Furthermore, as follows from (30), they are close to each other when the condition

numberǫ1/ǫm of W2 is not too large, thus providing a reasonable estimate of thecapacity, see

Fig. 3. Referring to Fig. 2, one can also setǫ1 = αn2mR−ν
2min and proceed with a conservative

system design to achieve the secrecy rateC∗(ǫ1). Note that this design requires only the knowl-

edge ofn2 andR2min at the transmitter, not full CSI (W2) and hence is more realistic. This

signaling strategy does not incur significant penalty (compared to the full CSI case) provided that
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the condition numberǫ1/ǫm is not large, as follows from (30). It can be further shown that C∗(ǫ1)

is the compound channel capacity for the class of eavesdroppers with bounded spectral norm

(maximum channel gain),W2 ≤ ǫ1I, and that signaling on the worst-case channel (W2 = ǫ1I)

achieves the capacity for the whole class of channels withW2 ≤ εI [25].

We note that the power allocation in (29) has properties similar to those of the conventional

water-filling, which follow from Proposition 1.

Proposition 2. Properties of the optimum power allocation in(29) for the isotropic eavesdropper:

1. λ∗
i is an increasing function ofgi (strictly increasing unlessλ∗

i = 0 or PT ) , i.e. stronger

eigenmodes get more power (as in the standard WF).

2. λ∗
i is an increasing function ofPT (strictly increasing unlessλ∗

i = 0). λ∗
i = 0 for i > 1

andλ∗
1 = PT asPT → 0 if g1 > g2, i.e. only the strongest eigenmode is active at low SNR, and

λ∗
i > 0 if gi > ǫ asPT → ∞, i.e. all sufficiently strong eigenmodes are active at high SNR.

3. λ∗
i > 0 only if gi > ǫ, i.e. only the eigenmodes stronger than the eavesdropper ones can be

active.

4. λ is a strictly decreasing function ofPT and 0 < λ < g1 − ǫ; λ → 0 as PT → ∞ and

λ → g1 − ǫ asPT → 0.

5. There arem+ active eigenmodes if the following inequalities hold:

Pm+
< PT ≤ Pm++1 (31)

wherePm+
is a threshold power (to have at leastm+ active eigenmodes):

Pm+
=

m+−1∑

i=1

ǫ+ gi
2ǫgi

(√
1 +

4ǫgi
(ǫ+ gi)2

gi − gm+

(gm+
− ǫ)+

− 1

)
, m+ = 2...m, (32)

andP1 = 0, so thatm+ increases withPT .

It follows from Proposition 2 that there is only one active eigenmode, i.e. beamforming is

optimal, if g2 > ǫ and

PT ≤ ǫ+ g1
2ǫg1

(√
1 +

4ǫg1
(ǫ+ g1)2

g1 − g2
g2 − ǫ

− 1

)
(33)

e.g. in the low SNR regime (note however that the single-moderegime extends well beyond low

SNR if ǫ → g2 andg1 > g2), or at any SNR ifg1 > ǫ andg2 ≤ ǫ.
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While it is difficult to evaluateλ analytically from the power constraint, Property 4 ensures

that any suitable numerical algorithm (e.g. Newton-Raphson method) will do so efficiently.

As a side benefit of Proposition 2, one can use (31) as a condition for havingm+ active

eigenmodes under the regular eigenmode transmission (no eavesdropper) with the standard water-

filling by taking ǫ → 0 in (32):

Pm+
=

m+−1∑

i=1

(
1

gm+

− 1

gi

)
(34)

and (34) approximates (32) when the eavesdropper is weak,ǫ ≪ gm+. To the best of our

knowledge, expression (34) for the threshold powers of the standard water-filling has not appeared

in the literature before.

A. High SNR regime

Let us now consider the isotropic eavesdropper model when the SNR grows large, so that

giλ
∗
i ≫ 1, ǫλ∗

i ≫ 1. In this case, (28) simplifies to

C∗
∞ =

∑

i:gi>ǫ

ln
gi
ǫ

(35)

where the summation is over active eigenmodes only, so that the capacity is independent of

the SNR (saturation effect) and the impact of the eavesdropper is the multiplicative SNR loss,

which is never negligible. To obtain a threshold value ofPT at which the saturation takes place,

observe thatλ → 0 asPT → ∞ so that (29) becomes

λ∗
i = PT

√
ǫ−1 − g−1

i /β(1 + o(1)) (36)

for i : gi > ǫ, whereβ =
∑

i:gi>ǫ

√
ǫ−1 − g−1

i and
√
λ = βP−1

T (1 + o(1)) from the total power

constraint. Using (36), the capacity becomes

C∗(ǫ) =
∑

i:gi>ǫ

ln
gi
ǫ
− β2

PT
+ o

(
1

PT

)
(37)

which is a refinement of (35). The saturation takes place whenthe second term is much smaller

than the first one, so that

PT ≫ β2/
∑

i:gi>ǫ

ln
gi
ǫ

(38)

October 30, 2018 DRAFT



16

andC∗(ǫ) ≈ C∗
∞ under this condition. This effect in illustrated in Fig. 3. Note that, from (36), the

optimal power allocation behaves almost like water-fillingin this case, due to the
√

ǫ−1 − g−1
i

term.

Using (35), the gap∆C∗
∞ between the lower and upper bounds in (27) becomes

∆C∗
∞ = C∗

∞(ǫm)− C∗
∞(ǫ1)

= m1 ln
ǫ1
ǫm

+

m2∑

i=m1+1

ln
gi
ǫm

(39)

wherem1 andm2 are the numbers of active eigenmodes whenǫ = ǫ1 and ǫ = ǫm. Note that

this gap is SNR-independent and ifm1 = m2 = m+, which is the case ifgm+ > ǫ1, then

∆C∗
∞ = m+ ln

ǫ1
ǫm

(40)

i.e. also independent of the eigenmode gains of the legitimate user and is determined solely by

the condition number of the eavesdropper channel and the number of active eigenmodes. Note

that, in this case, the upper bounds in (30) are tight.

10− 0 10 20 30
0

2

4

6

8

0ε =

0.2ε =

0.1ε =

SNR [dB]

* ( )C ε

high SNR

low SNR

Fig. 3. Secrecy capacity for the isotropic eavesdropper andthe capacity of the regular MIMO channel (no eavesdropper,ǫ = 0)

vs. the SNR (= PT since the noise variance is unity);g1 = 2, g2 = 1. Note the saturation effect at high SNR , where the

capacity strongly depends onǫ but not the SNR, and the negligible impact of the eavesdropper at low SNR.

B. When is the eavesdropper’s impact negligible?

It is clear from (28) that under fixed{gi} and PT , the secrecy capacity converges to the

conventional oneC∗(0) as ǫ → 0. However, no fixedǫ (does not matter how small) can ensure
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by itself that the eavesdropper’s impact on the capacity is negligible since one can always select

sufficiently highPT to make the saturation effect important (see Fig. 3). To answer the question

in the section’s title, we use (28) to obtain:

C∗(ǫ) = max
{λi}

∑

i

ln

(
1 +

1 + (gi − ǫ)λi

1 + ǫλi

)
s.t. λi ≥ 0,

∑

i

λi = PT

(a)≈max
{λi}

∑

i

ln(1 + (gi − ǫ)λi) (41)

(b)≈max
{λi}

∑

i

ln(1 + giλi) = C∗(0)

where (a) holds if

PT ≪ 1/ǫ (42)

(sinceλi ≤ PT ), i.e. if the SNR is not too large, and (b) holds if

ǫ ≪ gi (43)

for all active eigenmodes, i.e. if the eavesdropper is much weaker than the legitimate active

eigenmodes. It is the combination of (42) and (43) that ensures that the eavesdropper’s impact

is negligible. Neither condition alone is able to do so. Fig.3 illustrates this point. Eq. (41)

also indicates that the impact of the eavesdropper is the per-eigenmode gain loss ofǫ. Unlike

the high-SNR regime in (35) where the loss is multiplicative(i.e. very significant and never

negligible), here it is additive (mild or negligible in manycases).

C. Low SNR regime

Let us now consider the low-SNR regime, which is characteristic for CDMA-type systems

[26]. Traditionally, this regime is defined viaPT → 0. We, however, use a more relaxed definition

requiring thatm+ = 1, which holds under (33). In this regime, assumingg1 > ǫ,

C∗(ǫ) = ln
1 + g1PT

1 + ǫPT
= ln

(
1 +

(g1 − ǫ)PT

1 + ǫPT

)

(a)≈ ln(1 + (g1 − ǫ)PT ) (44)

where (a) holds whenPT ≪ 1/ǫ. It is clear from the last expression that the impact of the

eavesdropper is an additive SNR loss ofǫPT , which is negligible whenǫ ≪ g1. Note a significant
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difference to the high SNR regime in (35), where this impact is never negligible. Fig. 3 illustrates

this difference.

It follows from (44)(a) that the difference between the lower and upper bounds in (27) at

low SNR is the SNR gap of(ǫ1 − ǫm)PT . This difference is negligible ifg1 ≫ ǫ1 − ǫm, which

may be the case even if the condition numberǫ1/ǫm is large (in which case the difference is

significant at high SNR, see (40)). Therefore, we conclude that the impact of the eavesdropper

is more pronounced in the high-SNR regime and is negligible in the low-SNR one if its channel

is weaker than the strongest eigenmode of the legitimate user, g1 ≫ ε1.

Wheng1 − ǫ ≪ 1/PT , (44)(a) givesC∗(ǫ) ≈ (g1 − ǫ)PT , i.e. linear inPT . A similar capacity

scaling at low SNR has been obtained in [29] for i.i.d. block-fading single-input single-output

(SISO) WTC, without however explicitly identifying the capacity but via establishing upper/lower

bounds. Also note that the 1st two equalities in (44) do not requirePT → 0 but only to satisfy

(33).

V. OMNIDIRECTIONAL EAVESDROPPER

In this section, we consider a scenario where the eavesdropper has equal gain in all directions

of a certain subspace. This model accounts for 2 points: (i) when the transmitter has no particular

knowledge about the directional properties of the eavesdropper, which is most likely from the

practical perspective, it is reasonable to assume that its gain is the same in all directions; (ii) on

the other hand, when the eavesdropper has a small number of antennas (less than the number of

transmit antennas), its channel rank, which does not exceedthe number of transmit or receive

antennas, is limited by this number so that the isotropic model of the previous section does not

apply2.

For an omnidirectional eavesdropper, its channel gain is the same in all directions of its active

subspace, i.e.

|H2x|2 = x†W2x = const ∀x ∈ N (W2)
⊥ (45)

where N (W2)
⊥ is the subspace orthogonal to the nullspaceN (W2) of W2, i.e. its active

subspace, whose dimensionality isr2 = rank(W2). In particular, when the eavesdropper is

2This was pointed out by A. Khisti.
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isotropic,N (W2) is empty so thatN (W2)
⊥ is the entire space andr2 = m. The condition in

(45) implies that

W2 = εU2+U
†
2+ (46)

whereU2+ is a semi-unitary matrix whose columns are the active eigenvectors ofW2, and

N (W2)
⊥ = span{U2+}. Note that the model in (46) allowsW2 to be rank-deficient:r2 < m

is allowed.ε can be evaluated from e.g. (25):ε = αn2mR−ν
2min.

Theorem 2. Under the omnidirectional eavesdropper setting in(45), (46) and whenR(W1) ⊆
R(W2), the MIMO-WTC secrecy capacity can be expressed as follows:

Cs = max
trR≤PT

ln
|I+W1R|
|I+W2R| = max

trR≤PT

ln
|I+W1R|
|I+ ǫR| = C∗(ǫ) (47)

i.e. the capacity and optimal signaling to achieve it are thesame as for the isotropic eavesdropper

as in Proposition 1.

Proof: First note that, for the omnidirectional eavesdropper,W2 ≤ εI so that|I+W2R| ≤
|I+ εR| and hence

Cs = max
trR≤PT

ln
|I+W1R|
|I+W2R| ≥ max

trR≤PT

ln
|I+W1R|
|I+ ǫR| = C∗(ǫ) (48)

To prove the reverse inequality, letP2 be a projection matrix onR(W2), i.e.P2 = U2+U
†
2+.

Then,P2WkP2 = Wk, k = 1, 2, so that

C(R) = ln
|I+P2W1P2R|
|I+P2W2P2R| = ln

|I+ W̃1R̃|
|I+ εR̃|

= C̃(R̃) (49)

where R̃ = U
†
2+RU2+ and likewise forW̃k, so thatW̃2 = εI, where we used|I + AB| =

|I+BA|. Further note that

tr R̃ = trU†
2+RU2+ (50)

=
∑

i

λi(R)|u†
2iuRi|2 (51)

≤
∑

i

λi(R) = trR ≤ PT (52)

whereu2i anduRi arei-th eigenvectors ofW2 andR, and we have usedR =
∑

i λi(R)uRiu
†
Ri

and |u†
2iuRi|2 ≤ |u2i|2|uRi|2 = 1. Hence,R̃ satisfies power constraint ifR does and thus

Cs = max
trR≤PT

C(R) ≤ max
tr R̃≤PT

C̃(R̃) = max
λi≥0,

∑
i
λi≤PT

∑

i

ln
1 + g̃iλi

1 + ǫλi
= C̃∗(ε) (53)

October 30, 2018 DRAFT



20

where g̃i = λi(W̃1), and C̃∗(ε) is the secrecy capacity under̃W1 and isotropic eavesdropper

W̃2 = εI. Note that

λi(W̃1) = λi(U
†
2+W1U2+) = λi([U

†
2W1U2]r2×r2) ≤ λi(U

†
2W1U2) = λi(W1) (54)

where [A]k×k denotesk × k principal sub-matrix ofA, r2 = rank(W2), andU2 is a unitary

matrix whose columns are the eigenvectors ofW2. The inequality is due to Cauchy eigenvalue

interlacing theorem [21] and the last equality is due to the fact thatU2W1U
†
2 andW1 have the

same eigenvalues. Based on this, one obtains:

Cs ≤ C̃∗(ε) ≤ max
λi≥0,

∑
i
λi≤PT

∑

i

ln
1 + giλi

1 + ǫλi
= C∗(ε) (55)

thus establishingCs = C∗(ε) under an omnidirectional eavesdropper withR(W1) ⊆ R(W2).

Note that the secrecy capacity as well as the optimal signaling for the omnidirectional eaves-

dropper in Theorem 2 is the same as those for the isotropic one(which is not the case in general,

as can be shown via examples), i.e. the fact that the rank of the eavesdropper channel is low

has no impact provided thatR(W1) ⊆ R(W2) holds.

SinceR(W) collects directions where the channel gain is not zero:

|Hx|2 = x†Wx 6= 0 ∀x ∈ R(W) (56)

the conditionR(W1) ⊆ R(W2) means that|H2x| = 0 implies |H1x| = 0 (but the converse is

not true in general) and hence|H1x| 6= 0 implies |H2x| 6= 0, i.e. the eavesdropper can ”see” in

any direction where the receiver can ”see” (but there is no requirement here for the eavesdropper

to be degraded with respect to the receiver so that the channel is not necessarily degraded).

Further note that the condition in (45) does not requireU2 = U1, i.e. the eigenvectors of the

legitimate channel and of the eavesdropper can be different.

VI. I DENTICAL RIGHT SINGULAR VECTORS

In this section, we consider the case whenH1,2 have the same right singular vectors (SV), so

that their singular value decomposition takes the following form:

Hk = UkΣkV
† (57)
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where the unitary matricesUk,V collect left and right singular vectors respectively and diagonal

matrixΣk collects singular values ofHk. In this model, the left singular vectors can be arbitrary.

This is motivated by the fact that right singular vectors aredetermined by scattering around the

Tx while left ones - by scattering around the Rx and eavesdropper respectively. Therefore,

when the Rx and eavesdropper are spatially separated, theirscattering environments may differ

significantly (and hence different left SVs) while the same scattering environment around the

Tx induces the same right SVs. We make no weak eavesdropper orother assumptions here.

After unitary (and thus information-preserving) transformations, this scenario can be put into

the parallel channel setting of [19][20]. The secrecy capacity and the optimal covariance in this

case can be explicitly characterized as follows.

Proposition 3. Consider the wiretap MIMO channel as in(2), (57). The optimal Tx covariance

for this channel takes the following form:

R∗ = VΛ∗V† (58)

where the diagonal matrixΛ∗ collects its eigenvaluesλ∗
i :

λ∗
i =

λ2i + λ1i

2λ2iλ1i

(√
1 +

4λ2iλ1i

(λ2i + λ1i)2

(
λ1i − λ2i

λ
− 1

)

+

− 1

)
(59)

and whereλki = σ2
ki andσki denotes singular values ofHk; λ > 0 is found from the total power

constraint:
∑

i λ
∗
i = PT .

Proof: Under (57),Wk = VΛkV
†, where diagonal matrixΛk = Σ

†
kΣk collects eigenvalues

of Wk, so that the problem in (4) can be re-formulated as

Cs = max
tr R̃≥0

ln
|I+Λ1R̃|
|I+Λ2R̃|

s.t. tr R̃ ≤ PT (60)

where R̃ = V†RV. However, this is the secrecy capacity of a set of parallel Gaussian wire-

tap channels as in [19][20], for which independent signaling is known to be optimal3, so that

maximizing R̃∗ is diagonal, from which (58) follows. The optimal power allocation in (59) is

essentially the same as for the equivalent parallel channels in [20].

3The authors would like to thank A. Khisti for pointing out this line of argument.
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In fact, Eq. (58) says that optimal signaling is on the right SVs of H1,2 and (59) implies that

only those eigenmodes are active for which

σ2
1i > σ2

2i + λ (61)

If λ2i = 0, then (59) reduces to

λ∗
i =

(
1

λ
− 1

λ1i

)

+

(62)

i.e. as in the standard WF. This implies that whenλ2i = 0 for all active eigenmodes, then the

standard WF power allocation is optimal.

It should be stressed that the original channels in (57) are not parallel (diagonal). They become

equivalent to a set of parallel independent channels after performing information-preserving

transformations. Also, there is no assumption of degradedness here and no requirement for the

optimal covariance to be of full rank or rank-1.

VII. W HEN IS ZF SIGNALING OPTIMAL ?

In this section, we consider the case when ZF signaling is optimal, i.e. when active eigenmodes

of the optimal covarianceR∗ are orthogonal to those ofW2: W2R
∗ = 04. It is clear that this

does not hold in general. However, the importance of this scenario is coming from the fact that

such signaling does not require wiretap codes: since the eavesdropper gets no signal, regular

coding on the required channel suffices. Hence, the system design follows the well-established

standard framework and secrecy requirement imposes no extra complexity penalty but is rather

ensured by the well-established ZF signaling.

Proposition 4. A sufficient condition for Gaussian ZF signaling being optimal for the Gaussian

MIMO-WTC in(2) is thatW1 andW2 have the same eigenvectors or, equivalently,H1 andH2

have the same right singular vectors as in(57), and

λ1i ≤ λ2i + λ if λ2i > 0, (63)

4This simply means that the Tx antenna array puts null in the direction of eavesdropper, which is known as null forming

in antenna array literature [16]. This can also be considered as a special case of interference alignment, so that Proposition 4

establishes its optimality.
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whereλ is found from the total power constraint
∑

i λ
∗
i = PT , and

λ∗
i = λi(R

∗) =

(
1

λ
− 1

λ1i

)

+

if λ2i = 0, (64)

and 0 otherwise. The optimal covariance is as in(58) so that its eigenvectors are those ofW1

andW2.

A necessary condition of ZF optimality is that the active eigenvectors ofR∗ are also the active

eigenvectors ofW1 and the inactive eigenvectors ofW2, and that the power allocation is given

by (64).

Proof: See the Appendix.

Remark 4. The optimal power allocation in (64) is the same as standard water filling. However,

a subtle difference here is the condition for an eigenmode tobe active,λ∗
i > 0: while the standard

WF requiresλ1i > λ, the solution above requires in additionλ2i = 0, so that the set of active

eigenmodes is generally smaller: the larger the set of eavesdropper positive eigenmodes, the

smaller the set of active eigenmodes.

It is gratifying to see that the standard WF over the eigenmodes of the required channel is

optimal if ZF is optimal. In a sense, the optimal transmission strategy in this case is separated

into two independent parts: part 1 ensures that the eavesdropper gets no signal (via the ZF) and

part 2 is the standard eigenmode signaling and WF on what remains of the required channel as

if the eavesdropper were not there. No new wiretap codes needto be designed.

VIII. W HEN IS THE STANDARD WATER FILLING OPTIMAL ?

Motivated by the fact that the transmitter may be unaware about the presence of an eavesdrop-

per and hence uses the standard transmission on the eigenmodes ofW1 with power allocated

via the water-filling (WF) algorithm, we ask the question: isit possible for this strategy to be

optimal for the MIMO-WTC? The affirmative answer and conditions for this to happen are given

below. To this end, letRWF be the optimal Tx covariance matrix for transmission onW1 only,

which is given by the standard water-filling over the eigenmodes ofW1:

RWF = U1Λ
∗U

†
1, λ∗

i =
{
λ−1 − λ−1

1i

}
+

(65)
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whereΛ∗ = diag{λ∗
i} is a diagonal matrix of the eigenvalues ofRWF , andλ is found from the

total power constrain
∑

i λ
∗
i = PT .

Theorem 3. The standard WF Tx covariance matrix in(65) is also optimal for the Gaussian

MIMO-WTC if:

1) the eigenvectors ofW1 andW2 are the same:U1 = U2;

2) for active eigenmodesλ∗
i > 0, their eigenvaluesλ1i and λ2i are related as follows:

λ2i =
λ1i

1 + αλ1i
< λ1i, for someα > 0, (66)

or, equivalently,λ−1
2i = λ−1

1i + α;

3) for inactive eigenmodesλ∗
i = 0, the eigenvaluesλ1i and λ2i are related either as in(66)

or λ1i ≤ λ2i.

Proof: We assume thatW1 andW2 are non-singular; the singular case will be considered

below (using a standard continuity argument). The KKT conditions for the optimal covariance

R = RWF , which are necessary for optimality in (4), can be expressedas:

(W−1
1 +R)−1 − (W−1

2 +R)−1 = λ′I−M (67)

λ′(trR− PT ) = 0, MR = 0 (68)

λ′ ≥ 0, M,R ≥ 0, trR ≤ PT (69)

whereM ≥ 0 is the Lagrange multiplier matrix responsible for the constraintR ≥ 0 while λ′ ≥ 0

is the Lagrange multiplier responsible for the total power constrainttrR ≤ PT . Multiplying both

sides of (67) byU†
1 on the left and byU1 on the right, one obtains:

(Λ−1
1 +Λ∗)−1 − (Λ−1

2 +Λ∗)−1 = λ′I−U
†
1MU1 = λ′I−ΛM (70)

whereΛ1,Λ2,ΛM are diagonal matrices of eigenvalues ofW1,W2,M. The last equality follows

from the fact that all terms butU†
1MU1 are diagonal so that the last term has to be diagonal

too: U†
1MU1 = ΛM , i.e. M has the same eigenvectors asW1,W2,R. The complementary

slackness in (68) implies thatλ∗
iλMi = 0, whereλMi is i-th eigenvalue ofM, i.e. if λ∗

i > 0

(active eigenmode) thenλMi = 0 so that, after some manipulations, (70) can be expressed as

λ∗
i =

1

(λ−1
2i + λ∗

i )
−1 + λ′

− 1

λ1i
= λ−1 − λ−1

1i
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for eachλ∗
i > 0, where the 2nd equality follows from (65). Therefore,λ = (λ−1

2i + λ∗
i )

−1 + λ′

and hence

λ∗
i = (λ− λ′)−1 − λ−1

2i = λ−1 − λ−1
1i (71)

so thatλ−1
2i = λ−1

1i + α with α = (λ− λ′)−1 − λ−1 > 0 satisfies both equalities in (71).

For inactive eigenmodesλ∗
i = 0, it follows from (70) that

λ1i − λ2i = λ′ − λMi ≤ λ′ (72)

Observe that this inequality is satisfied whenλ1i ≤ λ2i (sinceλ′ > 0). To see that it also holds

under (66), observe that

λ1i − λ2i =
αλ2

1i

1 + αλ1i
≤ αλ2

1 + αλ
= λ′ (73)

where the inequality is due toλ1i ≤ λ (which holds for inactive eigenmodes) and the fact that
αλ2

1i

1+αλ1i
is increasing inλ1i. Thus, one can always selectλMi ≥ 0 to satisfy (72) and hence the

KKT conditions in (67)-(69) have a unique solution which also satisfies (65). This proves the

optimality of RWF .

If W1 or/andW2 are singular, one can use a standard continuity argument: observe thatCs

is a continuous function ofW1 andW2 (which follows from the continuity ofC(R) and the

compactness of the constraint set{R : R ≥ 0, trR ≤ PT}, which is closed and bounded) and

that the conditions 1-3 of Theorem 3 are also continuous. Hence, one can considerWkδ =

Wk + δI > 0, whereδ > 0 and k = 1, 2, instead ofWk, apply Theorem 3 and then take the

limit δ → 0 to establish the result for the singular case.

Note that the conditions of Theorem 3 do not requireW1 = aW2 for some scalara > 1;

they also allow for the WTC to be non-degraded. However, the condition in (66) implies that

largerλ1i corresponds to largerλ2i, so that, over the active signaling subspace, the channel is

degraded.

The 1st condition in Theorem 3 implies thatH1 andH2 have the same right singular vectors

but imposes no constraints on their left singular vectors. This may represent a scenario where

the transmitter is a basestation where the legitimate channel and the eavesdropper experience the

same scattering while having their own individual scatterers around their own receivers (which

determine the left singular vectors), as in Section VI.
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IX. WHEN IS ISOTROPICSIGNALING OPTIMAL ?

In the regular MIMO channel (W2 = 0), the isotropic signaling (IS) is optimal (R∗ = aI)

iff W1 = bI, i.e. W1 has identical eigenvalues. Since this transmission strategy is appealing

due to its low complexity (all antennas send independent data streams, no precoding, no Tx CSI

and thus no feedback is required), we consider the isotropicsignaling over the wire-tap MIMO

channel and characterize the set of channels on which it is optimal. It turns out to be much

richer than that of the regular MIMO channel.

Proposition 5. Consider the MIMO wire-tap channel in(2). The isotropic signaling is optimal,

i.e. R∗ = aI in (4), for the set of channels{W1,W2} that satisfy all of the following:

1. W1 andW2 have the same (otherwise arbitrary) eigenvectors,U1 = U2.

2. W1 > W2 so thatλi(W1) = a−1
i > λi(W2) = b−1

i , whereλi(W) are ordered eigenvalues

of W.

3. Take anyb1 > 0 and a1 < b1 and setλ = (a1 + a)−1 − (b1 + a)−1 > 0,

4. For i = 2...m, take anybi such thatbi > λa2(1− λa)−1 > 0, and set

ai = −a+ (λ+ (bi + a)−1)−1 > 0 (74)

This gives the complete characterization of the set of channels for which isotropic signaling

is optimal.

Proof: It is straightforward to see that any channel in the given setsatisfies the conditions

of Theorem 2 in [6] and the corresponding optimal covarianceis isotropic, which proves the

sufficiency. The converse (necessity) follows from Theorem1 in [6], which requiresW1 > W2,

so that the optimization problem is strictly convex and thushas a unique solution. For isotropic

signaling to be optimal, the corresponding KKT conditions (see the proofs of Theorems 1 and

2 in [6]) imply the conditions stated above.

Note that the special case of this Proposition is whenW1 andW2 have identical eigenvalues,

as in the case of the regular MIMO channel, but, unlike the regular channel, there is also a

large set of channels with distinct eigenvalues which dictates the isotropic signaling as well.

It is the interplay between the legitimate user and the eavesdropper that is responsible for this

phenomenon, i.e. a non-isotropic nature of the 1st channel is compensated for by a carefully-

adjusted non-isotropy of the 2nd one.
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TABLE I

THE CONDITIONS OF OPTIMALITY OF THEZF, THE WF AND THE IS IN THE GAUSSIAN MIMO-WTC

Strategy Optimality conditions

WF U1 = U2; λ1i, λ2i as in Theorem 3

ZF U1 = U2; λ1i, λ2i as in Proposition 4

IS U1 = U2; λ1i, λ2i as in Proposition 5

Table 1 summarizes the conditions for the optimality of the ZF, the WF and the IS in the

Gaussian MIMO-WTC. Clearly, the requirement forW1 andW2 to have the same eigenvectors

is the key condition. It is satisfied when the legitimate receiver and the eavesdropper are subject

to the same scattering around the base station (the transmitter) while they may have their own

sets of scatterers around their own units.

X. ACKNOWLEDGEMENT

The authors would like to thank M. Urlea and K. Li for running numerical experiments and

generating Fig. 1, and A. Khisti for suggesting the problem formulation in Section V.

APPENDIX

A. Proof of Theorem 1

Applying the inequalities

x− x2/2 ≤ ln(1 + x) ≤ x (75)

which hold for anyx ≥ 0, to

ln |I+W2R| =
∑

i

ln(1 + λi(W2R)) (76)

one obtains:

Cw(R) ≤ C(R) ≤ Cw(R) +
1

2

∑

i

λ2
i (W2R) (77)

from which the 1st inequality in (7) follows by usingR = R∗
w; the 2nd inequality follows from

the fact thatC(R) is maximized byR∗: Cs = C(R∗) ≥ C(R∗
w). To obtain the last inequality,

we need the following lemma.
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Lemma 1. Let λi ≥ 0 and
∑

i λi ≤ PT . Then,

∑

i

λ2
i ≤ P 2

T (78)

Proof: Sinceλi ≥ 0,

∑

i

λ2
i ≤

(∑

i

λi

)2

≤ P 2
T (79)

Using this Lemma and observing thatλi(W2R) ≤ λ1(W2)λi(R) (see e.g. [21]), one obtains:

∑

i

λ2
i (W2R) ≤ λ2

1(W2)
∑

i

λ2
i (R) ≤ λ2

1(W2)P
2
T (80)

since
∑

i λi(R) ≤ PT , so that

Cs = C(R∗) ≤ Cw(R
∗) + λ2

1(W2)P
2
T/2 ≤ Cw + λ2

1(W2)P
2
T/2 (81)

sinceCw = Cw(R
∗
w) ≥ Cw(R

∗), which establishes the last inequality in (7).

To establish the closed form solution forCw in (12), consider the optimization problem in

(5), for which the Lagrangian is

L = ln |I+W1R| − tr(W2R)− λ(trR− PT ) + tr(MR) (82)

whereλ ≥ 0 is a Lagrange multiplier responsible for the total power constraint andM ≥ 0

is a matrix Lagrange multiplier responsible for the constraint R ≥ 0. The corresponding KKT

conditions (see e.g. [18] for a background on these conditions) are:

∂L/∂R = (I+W1R)−1W1 −W2 − λI+M = 0 (83)

λ(trR− PT ) = 0,MR = 0 (84)

λ ≥ 0,M,R ≥ 0 (85)

Since the objective is concave, the corresponding optimization problem is convex, and since

Slater condition holds (e.g. takeR = PT I/2 > 0, trR < PT ), the KKT conditions are sufficient

for optimality [18]. After some manipulations, (83) can be transformed to

R̂− (I− M̂)−1 = −Ŵ−1
1 (86)

R̂ = W
1/2
λ RW

1/2
λ , M̂ = W

−1/2
λ MW

−1/2
λ , Ŵ1 = W

−1/2
λ W1W

−1/2
λ (87)

October 30, 2018 DRAFT



29

where we implicity assume thatW1 andWλ are non-singular, so thatQ = W−1
λ ; the singular

case will be considered below. SincêMR̂ = 0 (which follows fromMR = 0), these matrices

commute and thus have the same eigenvectors, which, from (86), implies that these eigenvectors

are the same as those of̂W1. Hence, all three matrices can be simultaneously diagonalized

and thus (86) can be transformed to diagonal form where the diagonal entries are respective

eigenvalues:

λi(R̂)− (1− λi(M̂))−1 = −λ−1
i (Ŵ1) (88)

From this and complementary slacknesŝMR̂ = 0, which impliesλi(M̂) = 0 if λi(R̂) > 0 (i.e.

for active eigenmodes),

λi(R̂) = (1− λ−1
i (Ŵ1))+ (89)

so thatR̂ = (I− Ŵ−1
1 )+ from which (8) follows. Lagrange multiplierλ is found from the total

power constrainttrR ≤ PT .

The existence of the threshold powerP ∗
T follows from the fact thattrR∗ is monotonically

decreasing inλ so that its largest value corresponds toλ → 0 and equalsP ∗
T . WhenPT > P ∗

T ,

λ = 0 and trR∗ = P ∗
T < PT , i.e. only partial power is used (see Fig. 1 for illustrationand

discussion). The fact thatP ∗
T = ∞ if W2 is singular andN (W2) * N (W1) can be established

via a limiting transition: considerW2δ = W2 + δI > 0 instead ofW2, whereδ > 0, evaluate

P ∗
T (δ) and take the limitlimδ→0 P

∗
T (δ) (P ∗

T = ∞ corresponds to the fact that one can always

use extra power to transmit on the directions inN (W2) for which there is no leakage to the

eavesdropper but positive rate to the legitimate receiver). If N (W2) ⊆ N (W1), one can project

both matrices orthogonaly to the subspaceN (W2) without affecting the system performance,

and perform the analysis on the projected matrices (of whichthe projectedW2 is non-singular).

If Wλ is singular, it follows from (83) thatλ = 0 (inactive total power constraint) andW1

is singular as well and, furthermore,N (W2) ⊆ N (W1) so that both matrices can be projected,

without affecting the performance, on the subspace orthogonal to N (W2), the analysis can be

carried out for the projected matrices (where the projectedW2 is non-singular), and the resulting

covariance can be transformed back to the original space. This is equivalent to using the (Moore-

Penrose) pseudo-inverseQ of Wλ instead the inverse in (8) and (9). This approach can also be

used to compute the threshold powerP ∗
T if W2 is singular andN (W2) ⊆ N (W1). The case

of singularW1 is also addressed in Remark 1.
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Finally, (12) is obtained by using (8) in (5).

B. Proof of Proposition 1

The 1st equality in (28) follows from (4). The 2nd equality follows from the Hadamard

inequality applied to|I + W1R| in the same way as for the regular MIMO channel, and the

equality is achieved whenR has the same eigenvectors asW1, R∗ = U1Λ
∗U

†
1, which maximizes

the numerator and leaves the denominator unchanged. The remaining part is the optimal power

allocation in (29), which can be formulated as

C∗(ǫ) = max
{λi}

∑

i

ln
1 + giλi

1 + ǫλi
, s.t. λi ≥ 0,

∑

i

λi = PT (90)

This, however, represents an optimal power allocation for parallel channels which can be found

in [20].

The lower/upper bounds follow from the fact that|I + WR| is a matrix-monotone function

of W [21], so that|I+WbR| ≥ |I+WaR| ∀ Wb ≥ Wa ≥ 0.

To establish the gap bound in (30), observe the following:

∆C = C∗(ǫm)− C∗(ǫ1) = max
{λi}

∑

i

ln
1 + giλi

1 + ǫmλi
−max

{λi}

∑

i

ln
1 + giλi

1 + ǫ1λi
(91)

≤ max
{λi}

∑

i:gi>ǫm

ln
1 + ǫ1λi

1 + ǫmλi

(92)

= m+ ln
1 + ǫ1PT/m+

1 + ǫmPT/m+
(93)

≤ m+ ln
ǫ1
ǫm

(94)

where maximization is over the set of positive{λi} satisfying the power constraint
∑

i λi ≤ PT ,

andm+ is the number of active eigenmodes. (92) follows from (easy to verify) fact that

max
x

f(x)−max
x

g(x) ≤ max
x

{f(x)− g(x)} (95)

and the observation that the 1st maximization in (91) requires gi > ǫm for any λi > 0 so

that imposing the same condition on the 2nd maximization results in an upper bound. To show

(93), observe that the sum in (92) is permutation-symmetric, i.e. has the same value forλ =

[λ1, ..., λm+] and any of its permutationπk{λ}, whereπk denotes a permutation. LetF (λ) be
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this sum and observe further that it is concave inλ (since each term is), so that

F (λ) =
1

m+!

∑

k

F (πk{λ}) ≤ F

(
1

m+!

∑

k

πk{λ}
)

≤ F

({
PT

m+

})
(96)

where {PT/m+} is a vector with all entries equal toPT/m+. The 1st equality is due to

permutation symmetry, the 1st inequality is due to the concavity of F (λ), and last inequality is

due to the power constraint and the fact thatF (λ) is increasing in eachλi. Since this holds for

eachλ (including optimal one), (93) follows. (94) follows from the fact that (93) is monotonically

increasing inPT .

C. Proof of Proposition 4

The original problem in (4) is not convex in general. However, since the objective is contin-

uous, the feasible set is compact and Slater condition holds, KKT conditions are necessary for

optimality [22]. They take on the following form (see e.g. [6]):

λW1R = W1 −W2 +M− λI (97)

λ(trR− PT ) = 0, MR = 0 (98)

λ ≥ 0, M,R ≥ 0, trR ≤ PT (99)

whereM ≥ 0 is the Lagrange multiplier matrix responsible for the constraint R ≥ 0 while

λ ≥ 0 is the Lagrange multiplier responsible for the total power constrainttrR ≤ PT , and we

used the orthogonality conditionW2R = 0.

To prove sufficiency, note from Proposition 3 that ifW1,W2 have the same eigenvectors so

is R and henceM and also the KKT conditions are sufficient for optimality (since they have a

unique solution). Hence, (97) can be transformed to a diagonal form:

λλ1iλi = λ1i − λ2i + λMi − λ (100)

whereλi, λMi are the eigenvalues ofR,M. Complementary slackness in (98) givesλiλMi = 0

so thatλi > 0 (active eigenmodes) impliesλMi = 0 and hence

λi =
λ1i − λ2i − λ

λλ1i
=

1

λ
− 1

λ1i
(101)

where the 2nd equality follows from the orthogonality condition λ2iλi = 0. For inactive eigen-

modesλi = 0, one obtainsλMi = λ− λ1i + λ2i ≥ 0 so thatλ1i ≤ λ+ λ2i.
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To prove the necessary part, note that complementary slacknessRM = 0 implies thatRM =

MR and henceR,M have the same eigenvectors so that the eigenvalue decompositions are:

R = UΛU†,M = UΛMU†, where diagonal matricesΛ,ΛM collect respective eigenvalues, and

the columns of unitary matrixU are the eigenvectors. Multiplying (97) byU† from the left and

by U from the right, one obtains, after some manipulations,

λI−ΛM = W̃1(I− λΛ)− W̃2 (102)

whereW̃k = U†WkU. Using the orthogonality conditionRW2 = W2R = 0, which imply

W̃2Λ = 0, and block-partitioned representation ofΛ,W̃2, one obtains:

W̃2Λ =


 A11 A12

A21 A22




︸ ︷︷ ︸
W̃2


 Λr 0

0 0




︸ ︷︷ ︸
Λ

=


 A11Λr 0

A21Λr 0


 = 0 (103)

where diagonal matrixΛr > 0 collects positive eigenvalues ofR, so thatA11 = 0,A21 = A
†
12 =

0 and hencẽW2 is block-diagonal:̃W2 = diag{0,A22}. This proves that active eigenvectors of

R are also inactive eigenvectors ofW2. Complementary slacknessRM = 0 impliesΛΛM = 0

so thatΛM is also block-diagonal:ΛM = diag{0,ΛM(m−r)}. Using these representations in

(102) and block-partitioned representation of̃W1,

W̃1 =


 B11 B12

B21 B22


 (104)

one obtains

λI−ΛM =


 B11 B12

B21 B22




 Ir − λΛr 0

0 Im−r


+


 0 0

0 A22




=


 B11(Ir − λΛr) B12

B21(Ir − λΛr) B22 +A22


 (105)

so thatB12 = B
†
21 = 0 andB11 > 0 is diagonal. This proves that the active eigenvectors ofR

are also active eigenvectors ofW1 (note however thatW1 can have more active eigenvectors

thanR but the converse is not true). No definite statements can be made at this point about

inactive eigenvectors ofW1 and active eigenvectors ofW2, e.g. they do not have to be equal.

The upper left block in (105) implies (64).
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