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Abstract—In this paper, we investigate secure communications
in uplink transmissions, where there are a base station (BS)
with M receive antennas,K mobile users each with a single
antenna, and an eavesdropper withN receive antennas. The
closed-form expressions of the achievable ergodic secrecysum-
rates (ESSR) for arandom k users selection scheme in the high
and low SNR regimes are presented. It is shown that the scaling
behavior of ESSR with respect to the number of served users
k can be quite different under different system configurations,
determined by the numbers of the BS antennas and that of
the eavesdropper antennas. In order to achieve a multiuser
gain, two low-complexity user selection schemes are proposed
under different assumptions on the eavesdropper’s channelstate
information (CSI). The closed-form expressions of the achievable
ESSRs and the multiuser secrecy gains of the two schemes are
also presented in both low and high SNR regimes. We observe
that, as k increases, the multiuser secrecy gain increases, while
the ESSR may decrease. Therefore, whenN is much larger than
M , serving one user with the strongest channel (TDMA-like) isa
favourable secrecy scheme, where the ESSR scales with

√

2 logK.

Index Terms—Physical layer security, ergodic secrecy rate, user
selection, multiuser secrecy gain, extreme value theory.
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I. I NTRODUCTION

W IRELESS physical layer security has received con-
siderable attention recently, especially in multiple-

input multiple-output (MIMO) communication systems [1]-
[11]. The basic idea of secure MIMO transmissions is to
construct a better equivalent channel by utilizing the spatial
degrees of freedom provided by multiple antennas, such that
the quality of the main channel (from the transmitter to the
legitimate receiver) is better than that of the wiretap channel
(from the transmitter to the eavesdropper). Various signal
processing approaches have been developed to enhance the
security, such as transmit precoding (TR) [2]-[8], and artificial
noise (AN) [6]-[11]. In all the above literature, it is shownthat
the secrecy performance, in term of secrecy rate, or secrecy
outage probability, can be improved via TR or AN schemes.

In cellular systems, multiple antennas can be easily de-
ployed at the base station (BS). Thus in a downlink transmis-
sion, the BS can facilitate secure transmissions by using TRor
AN. In contrast, the mobile users in most cases equip with a
single antenna due to the limitations of size and cost. The lack
of spatial degrees of freedom for mobile users makes it difficult
to guarantee security in uplink transmissions. Especiallywhen
the eavesdropper has more antennas than the BS does, secure
transmission is very difficult to be guaranteed. Under such
a scenario, it is natural to exploit multiuser gain to improve
the security. In particular, when there are multiple users in an
uplink transmission,multiuser secrecy gain can be achieved by
serving users with better channels. However, few of existing
works have addressed the issues of user selection and multiuser
gain in secure communications, which motivates our studies.

For aK-user uplink transmission without secrecy consid-
eration, the multiuser gain has been extensively studied. It
is known that the sum-rate scales likelog logK with user
selection/scheduling [12]-[13]. However, this resultcan not
be generalized directly to secure communications, because
secrecy capacity is defined as the maximum rate difference
between the achievable transmission rates of the main channel
and that of the wiretap channel. Hence, it is still not clear how
many users should be scheduled concurrently and what the
exact scaling law of multiuser gain for secure transmissionis.
Therefore, this paper considers an uplink transmission where
multiple users simultaneously send confidential messages to
a multi-antenna BS in the presence of a multi-antenna eaves-
dropper. More specifically, we analyze the secrecy sum-rate
of the uplink transmission and demonstrate the scaling laws
of the multiuser secrecy gains with respect to the number of
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served users,k, and the total number of users,K.

A. Related works

The essence of multiuser diversity was first introduced in
[14], where only the strongest user was served by the single
antenna BS in each time slot. This work was followed by
numerous user selection/scheduling schemes for various sce-
narios. In [15], a downlink model with multiple single-antenna
users and a multiple-antenna BS was considered. The authors
analyzed the throughput of the greedy zero-forcing dirty-paper
(ZF-DP) algorithm and characterized the probability density
function (PDF) of the ordered signal-to-noise ratios (SNRs)
of the users. In [12], the authors considered zero-forcing
beamforming (ZFBF) and proposed an algorithm to schedule
the strongest and almost orthogonal users for a similar model.
It has been shown that the ZFBF can achieve the same
asymptotic sum capacity as that of dirty paper coding. Similar
studies on the uplink transmissions were done in [16]-[17].In
order to analyze multiuser diversity, extreme value theoryhas
been widely used to provide asymptotic results of throughput
[12]-[13], [18].

The multiple users/antennas selection diversity also plays an
important role in improving thesecurity. In [19], the authors
investigated the secrecy performance of multiuser scheduling
on a MISO downlink wiretap channel in the presence of a
passive multiple-antenna eavesdropper. In [20], the authors
developed a joint semidefinite programming (SDP) and suc-
cessive convex approximation (SCA) algorithm to find a fea-
sible subset where legitimate users can satisfy secrecy-outage
requirements. Unlike the system models investigated in [19]
and [20], the authors in [21] considered the use of cooperative
beamforming and user selection for relay network security.
In [22]-[24], the authors exploited the multiuser diversity to
increase the secrecy degrees of freedom or to improve secrecy
rate via jammer selection. As for MIMO systems, transmit
antenna selection can also provide secrecy gains [25]-[26]. For
a secure transmission system assisted by multiple cooperative
relay nodes, the issue of relay selection was addressed in [4],
[27]-[28]. However, none of the existing works has studied the
relationship between theergodic secrecy sum-rate (ESSR) and
the number of the users scheduled concurrently for multiuser
uplink transmissions, and neither the scaling law of secure
uplink transmissions nor the exact expression of the multiuser
secrecy gain has been presented yet.

B. Main contributions

In this paper, we investigate secure transmission in a mul-
tiuser uplink system, where there are a BS withM receive
antennas,K mobile users each with a single antenna, and an
eavesdropper withN receive antennas. Our goal is to char-
acterize the achievable ESSR of the system and to reveal its
scaling behavior and multiuser secrecy gain via user selection.
Compared with the above related works, our key contributions
are summarized as follows:

1) Closed-form expressions of ESSR for arandom k user
selection scheme in both the high and low SNR regimes
are presented. We show that the scaling behavior of

ESSR with respect to (w.r.t.) the number of served users
k is quite different under different system configurations
determined by the numbers of the BS antennas and the
eavesdropper antennas. When the eavesdropper has the
same number of antennas as the BS, the maximum ESSR
is achieved atk =M and it scales with

√
logM in the

high SNR regime. In contrast, the ESSR always grows
with

√
kM in the low SNR regime.

2) Low-complexity user selection schemes are proposed
for two scenarios i) only channel state information
(CSI) of the main channel (from users to the BS) is
available at the BS, referred to asmain CSI, and ii)
both CSIs of the main and wiretap channels are available
at the BS, referred to asfull CSI. Furthermore, closed-
form expressions of the achievable ESSRs and multiuser
secrecy gains of these two schemes are also presented in
both low and high SNR regimes. We show that multiuser
secrecy gain provided by user selection can improve the
secrecy performance significantly.

3) The impact of the number of antennas at eavesdropper
on the ESSR is explored1. We show that, when the
eavesdropper has a more capable receiver than the BS,
serving one user with the strongest channel (TDMA-
like) is a favourable secrecy scheme with a multiuser
secrecy gain scaling like

√
2 logK. Furthermore, we

demonstrate that the ESSRs and multiuser secrecy gain
are deteriorated by channel estimation errors, especially
in the high SNR regime.

C. Organization and notations

The remaining of this paper is organized as follows. In
Section II, we describe the system model. Section III gives
some mathematical preliminaries and Section VI provides
closed-form expressions of the ESSR for the proposed ran-
dom user selection scheme. Section V proposes two greedy
user selection schemes and derives the achievable ESSR of
the schemes. Section VI investigates the effect of channel
estimation errors on the secrecy performance. Finally, we
demonstrate and discuss numerical results in Section VII and
conclude our work in Section VIII.

Notations: Upper case and lower case bold symbols denote
matrices and vectors, respectively. Superscript(.)

† denotes
conjugate transposition, and the notations|A| and tr(A) denote
the determinant and trace of matrixA, respectively. The
expectation operator and variance operator are denoted by
E(.) andV(.), respectively. The special functions used in this
paper are defined as follows,{x}+ = max(x, 0), erf(x) =
2√
π

∫ x

0
e−t

2

dt is the error function,Q(x) = 1√
2π

∫∞
x
e−

t2

2 dt,

ψ(r) =
∑r−1

j=1
1
j − γ is the digamma function, andγ =

0.5772 · · · is the Euler’s constant. The base-e logarithm is
denoted bylog(.).

1In existing works, a widely used assumption is that the number of the
eavesdropper antenna is less than that of the BS. When the eavesdropper
has more antennas than the BS, it is a more challenging case for secure
transmission, which has been seldom studied.
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II. SYSTEM MODEL

In this work, we consider a wiretap uplink transmission in
which a total ofK users, each equipped with a single antenna,
transmit secrecy signals to a BS equipped withM antennas,
wiretapped by an eavesdropper withN antennas. We assume
that both the BS and the eavesdropper are equipped with a (not
so) large number of antennas2, i.e.,M,N ≥ 10. In addition,
we consider a homogenous scenario where all users to the
BS and the eavesdropper have the same average SNR. This
scenario is widely adopted for multi-user networks, e.g., in
[12], [15] and [18]. Suppose that the served users all transmit
independent Gaussian signals with equal average power, when
k users are scheduled to transmit simultaneously, the received
signals at the BS and at the eavesdropper can be respectively
expressed as,

yb =
√
PHs+ nb, (1)

ye =
√
PGs + ne, (2)

whereH ∈ CM×k represents the channel matrix between the
BS andk served users,G ∈ CN×k represents the channel
matrix between the eavesdropper and thek served users,

√
Ps

is a k × 1 vector of symbols simultaneously transmitted by
the users (the average transmit power of each user isP ), nb
andne are complex Gaussian noise vectors with covariance
matricesδ2bI andδ2eI, respectively. Uncorrelated Rayleigh flat
fading channels are considered, and hence the entries ofH and
G are independent and identically distributed (i.i.d.) complex
Gaussian random variables with zero mean and unit variance.
Without loss of generality, we assume that it holdsδ2b = δ2e =
δ2. For notation convenience, we letρ , P

δ2 .
Given the above configurations, the achievable sum-rate at

the BS and the eavesdropper can be formulated respectively
as [31, pp. 557], [32]

Ckb (H) = log
∣

∣I+ ρH†H
∣

∣ , (3)

Cke (G) = log
∣

∣I+ ρG†G
∣

∣ . (4)

Thus when the BS servesk users simultaneously in each
time slot, an achievable secrecy sum-rate is given by [33]

Cks =
{

Ckb (H)− Cke (G)
}+

=
{

log
∣

∣I+ ρH†H
∣

∣− log
∣

∣I+ ρG†G
∣

∣

}+
. (5)

The goal of this paper is to find a scaling law to demonstrate
the relationship between the secrecy sum-rate and the number
of the served usersk as well as the number of the total users
K. To quantify the scaling law of the scenario described above,
we assume that both the main channels and wiretap channels
are ergodic block-fading [34]. We further assume a scenario
with delay-tolerant traffic, and use ESSR as the performance
metric, which is defined as [35], [36]

Rks = E

[

{

log
∣

∣I+ ρH†H
∣

∣− log
∣

∣I+ ρG†G
∣

∣

}+
]

. (6)

2Under this assumption, we can apply the Gaussian approximation to the
mutual information, and present a closed-form expression for the ESSR, which
has not been obtained yet. It has been verified in [29] and [30]that even for a
small number of antennas, the mutual information can be wellapproximated
by a Gaussian distribution.

Remark 1: A lower bound of (6) can be given as

Rks,low =
{

E
[

log
∣

∣I+ ρH†H
∣

∣− log
∣

∣I+ ρG†G
∣

∣

]}+
, (7)

by applying Jensen’s inequality. In most cases, (7) is math-
ematically more convenient for analyzing than (6) since the
non-linear operator{·}+ is taken after the expectation, and it
is widely adopted alternatively as the performance metric,e.g.,
in [7]-[9], and [34]. However, when the eavesdropper has more
antennas than the BS, it holds thatRks > 0 andRks,low = 0.
Hence, the expression in (7) can not characterize the actual
ESSR in such a case. So far, a closed-form expression of (6)
has not been obtained yet.

III. M ATHEMATICAL PRELIMINARIES

Before proceeding, we provide three lemmas that will be
used in the following analytical derivations.

Lemma 1: Let C(H) , log
∣

∣I+ ρH†H
∣

∣, where H ∈
C
M×k. In the high SNR regime (ρ → ∞), the distribution

of the channel capacityC(H) is approximately given as

C(H) ∼ N
(

µMk, σ
2
Mk

)

, (8)

whereµM,k andσ2
M,k are given as follows

µM,k =



























k log ρ+

k
∑

i=1

ψ(M − i+ 1), k ≤M,

M log ρ+

M
∑

i=1

ψ(k − i+ 1), k > M,

(9)

σ2
M,k =



























k−1
∑

i=1

i

(M − k + i)2
+

k

M
, k ≤M,

M−1
∑

i=1

i

(k −M + i)2
+
M

k
, k > M.

(10)

Proof: Whenk ≤ M andM is sufficiently large, using
Theorem 3 given in [37], we readily have thatC(H) is
approximately a Gaussian random variable with mean and
variance given by, respectively,

µM,k = k log ρ+
k
∑

i=1

ψ(M − i+ 1), (11)

σ2
M,k =

k−1
∑

i=1

i

(M − k + i)2
+ k

(

π2

6
−
M−1
∑

i=1

1

i2

)

. (12)

Resorting to [38, Eqn. 9.521], the following approximation
holds whenM goes large,

π2

6
−
M−1
∑

i=1

1

i2
≈ 1

M
. (13)

Substituting (13) into (12) yields the first expression in (10).
Similarly, we can obtain the result for the casek > M .

It is worth to point out thatC(H) is very well approximated
by a Gaussian random variable even for a small number of
antennasM [29], [30].
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Lemma 2: When Y K(1) is the maximum of a sequence of
K i.i.d. random variables followingN (µ, σ2) distribution, as
K → ∞, it satisfies

lim
K→∞

P

(

Y K(1) ≤ aKt+ bK

)

= e−e
−t

, (14)

where

aK =
σ√

2 logK
, (15)

bK = σ
√

2 logK − σ
log(4π logK)

2
√
2 logK

+ µ. (16)

The mean ofY K(1) approaches

E

[

Y K(1)

]

= σ
√

2 logK − σ
log(4π logK)− 2γ

2
√
2 logK

+ µ. (17)

Proof: Please see Appendix A.
Lemma 3: When Y K(r) is the r-th largest of a sequence of

K i.i.d. random variables followingN (µ, σ2) distribution, as
K → ∞, its mean would approach

E[Y K(r)] = σ
√

2 logK − σ
log(4π logK) + 2ψ(r)

2
√
2 logK

+ µ. (18)

Proof: Please see Appendix B.

IV. ESSR SCALING LAW UNDER

RANDOM USERSELECTION

Let us now study the ESSR scaling law ofrandom user
selection. In a random user selection scheme, the BS randomly
selectsk users to serve in each time slot. In ak-user uplink
transmission without secrecy constraints, it is shown thatthe
sum capacity increases monotonically withk [31, pp. 565].
Especially, in the high SNR regime, the sum capacity only
grows logarithmically w.r.t.k as k increases beyondM [31,
pp. 565]. However, the secrecy sum-rate is the rate difference
between the BS and the eavesdropper, thus the aforementioned
results can not be generalized directly to secrecy communica-
tions. Since the system performance behaves differently inthe
high and low SNR regimes, herein we consider the two special
regimes respectively in the following subsections.

A. High SNR Regime

In the high SNR regime (ρ→ ∞), we provide a closed-form
expression of ESSR in the following theorem.

Theorem 1: For a givenk, the achievable ESSR of random
k user selection in the high SNR regime is approximated as

Rk ran
s ≈ σk√

2π
e
− µ2

k

2σ2
k +

µk
2

(

1 + erf

(

µk√
2σk

))

, (19)

where

µk = µM,k − µN,k, (20)

σ2
k = σ2

M,k + σ2
N,k, (21)

with µM,k, µN,k, σM,k, andσN,k given in Lemma 1.
Proof: From the results given in Lemma 1, we have

Ckb (H) ∼ N
(

µM,k, σ
2
M,k

)

andCke (G) ∼ N
(

µN,k, σ
2
N,k

)

in the high SNR regime. LetZ = Ckb (H) − Cke (G), which

obviously obeysZ ∼ N
(

µk, σ
2
k

)

. Recalling to (6), the ESSR
of randomk user selection can be calculated as

Rk ran
s = E {Z}+

≈
∫ ∞

0

z
√

2πσ2
k

e
− (z−µk)2

2σ2
k dz

=
σk√
2π
e
− µ2

k

2σ2
k +

µk
2

(

1 + erf

(

µk√
2σk

))

.

The proof is completed.
Remark 2: Although Theorem 1 considers thek-user uplink

scenario, it can be applied directly to a point-to-point MIMO
wiretap channel withk transmit antennas,M receive antennas
and an eavesdropper withN antennas.

Using Theorem 1, the scaling law of ESSR w.r.t. the number
of the served usersk can be investigated in more details. Note
thatM < N implies that the eavesdropper has a more capable
receiver than the BS, and vice versa. We will show that the
scaling laws are different for the cases with a more capable
eavesdropper or a less capable eavesdropper. Therefore, the
relationship between the ESSR andk for the casesM > N ,
M = N and M < N is explored in the following three
corollaries, respectively.

Corollary 1. For the caseM > N , Rk ran
s does not rely on

ρ ask ≤ N . While for k > N , it holds thatRk ran
s ≈ µk.

Proof: WhenM > N , µk in (20) can be rewritten as

µk =























∑k
i=1

[

ψ(M − i+ 1)− ψ(N − i+ 1)
]

, k ≤ N,
∑k

i=1 ψ(M − i+ 1)−∑N
i=1 ψ(k − i+ 1)

+(k −N) log ρ, N < k ≤M,
∑M

i=N+1 ψ(k − i+ 1) + (M −N) log ρ, k > M.

We see that whenk ≤ N , neitherµk nor σ2
k is a function

of ρ, henceRk ran
s in (19) does not rely onρ.

Whenk > N , it holds that µk√
2σk

→ ∞ as ρ → ∞. For a
sufficient largex, error functionerf(x) can be approximated

by erf(x) ≈ 1− e−x2

√
πx

. Therefore, we have

Rk ran
s ≈ σk√

2π
e
− µ2

k

2σ2
k +

µk
2

(

1 + erf

(

µk√
2σk

))

≈
σk√
2π
e
− µ2

k

2σ2
k +

µk
2

(

2−
√
2σk√
πµk

e
− µ2

k

2σ2
k

)

= µk. (22)

The proof is completed.
Corollary 1 tells that whenM > N > k, increasing the

transmit power will not improve the ESSR. Whenk > N ,
the ESSR is solely determined byµk, which leads to two
interesting observations:

1) WhenN < k ≤ M , the first two terms inµk grow
sub-linearly withk, thusµk can be rewritten asµk =
k log ρ+o(k)−N log ρ, which implies the ESSR grows
linearly with log ρ ask increases.

2) However, ask > M , it holds thatµk ≤ (M − N −
1) log(k −N − 1) + (M −N) log ρ [39], thusµk will
not grow faster thanlog(k−N − 1) w.r.t. k. Therefore,
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Fig. 1. Comparisons among the theoretical, simulation, andapproximation
results in the high SNR regime.

increasingk does not improve the ESSR as fast as that
of the caseN < k ≤M .

We can see that the scaling behavior of the ESSR differs
significantly from the case without secrecy constraints. These
two observations will be illustrated clearly later in Fig. 1.

Corollary 2. For the caseM = N , the maximum ESSR is
achieved atk =M , which can be well approximated by

RM ran
s ≈

√

1

π

(

log(M − 1) + γ + 1
)

. (23)

Proof: Please see Appendix C.
Corollary 2 indicates that, if the eavesdropper has an equal

number of antennas as the BS, the maximum ESSR is achieved
when the BS servesM users simultaneously. It is shown that
RM ran
s scales with

√
logM , while the sum-capacity grows

linearly with M in conventional systems without secrecy
constraints.

Corollary 3. For the caseM < N , it holds that

Rk ran
s ≤ σk√

2π
e
− µ2

k

2σ2
k . (24)

Proof: From (20), we know thatµk < 0 asM < N .
Meanwhile, whenx < 0, it holds that1 + erf(x) = 1 −
erf(|x|) > 0. Therefore, the second term in (19) is always
negative, then we can obtain the result in (24).

Corollary 3 provides an upper bound for the ESSR. When
M < k < N , we haveµM,k+1 − µM,k = ψ(k + 1) −
ψ(k + 1 −M) andµN,k+1 − µN,k = log ρ + ψ(N − k). As
can be seen, increasingk does not significantly improve the
sum-rate for the BS. This is because serving one more user
would not only increase the sum-rate at the BS but also bring
interference to other users. In contrast, the sum-rate achieved
at the eavesdropper has a great increment ask increases. Since
the secrecy rate is the rate difference between the rate of the
main channel and that of the wiretap channel,Rk ran

s would
decrease ask > M . Moreover,µk scales with− log ρ as
k > M , µ2

k becomes sufficiently large and henceRk ran
s would

quickly converge to zero. Besides, we can find that the upper
bound would converge to zero asN is much greater thanM ,
and thus a positive ESSR can not be achieved.

Theorem 1 and the Corollaries 1-3 demonstrate the scaling
behaviors of the ESSR w.r.t. the number of random selected

userk in the high SNR regime. We can see that the scaling
behavior depends heavily on the relationship between the
number of antennas at the BS and the eavesdropper.

To verify these analytical results, we perform Monte Carlo
experiments each with 10000 independent trials to obtain the
numerical results of (6) at a desired SNRρ = 30 dB. The
results are plotted in Fig. 1. It is shown that the theoretical
results are consistent with the numerical results even with
moderate numbers of antennas at the eavesdropper and the
BS. When the BS has one more antenna than the eavesdropper
(M = N + 1), Rk ran

s is well approximated byµk ask > N
and a significant improvement of ESSR happens ask = N+1.
In contrast, adding one more antenna to the eavesdropper
(M = N − 1), the ESSR becomes much lower than those
of the casesM = N andM = N + 1. As Corollary 3 has
stated, the ESSR quickly converges to zero whenk > M .
The figure also validates that the maximum ESSR is achieved
at k = M when the eavesdropper has an equal number of
antennas as the BS (M = N ).

B. Low SNR Regime

In the low SNR regime (ρ→ 0), we have

Ckb = log
∣

∣I+ ρH†H
∣

∣ =
k
∑

i=1

log(1 + ρλbi)

= ρ

k
∑

i=1

λbi + o(ρ2) ≈ ρ tr(H†H), (25)

where λbi, i = 1, · · · , k, are thek non-zero eigenvalues
of (H†H). Since the entries ofH are complex Gaussian
variables, it holds thattr(H†H) ∼ χ2

2Mk [40, pp. 742].
Then after some manipulations, we can obtain a closed-form
approximation of the ESSR in the low SNR regime. However,
it can not offer insights into the relationship between the ESSR
and the number of the served users. Therefore, we use the
Gaussian approximation of the Chi-square to provide a more
insightful expression.

Let Z = hi
†hi, wherehi is the i-th column ofH. It holds

Z ∼ χ2
2M [40, pp. 742], and both the mean and variance of

Z areM . Using the central limit theorem, the CDF of the
variableZ can be approximated as

lim
M→∞

P (Z ≥ t) = Q

(

t−M√
M

)

. (26)

It has been proved in [41] that the error resulting from
the approximation of (26) is bounded by 1√

9πM/2
. Supposing

thatM = 20, the error is about0.06, which is fairly small.
Therefore the PDF ofZ can be approximated by a normal
distribution N (M,M) even whenM is not very large. We
present the following theorem to approximate the ESSR in
the low SNR regime.

Theorem 2: For a givenk, the ESSR of randomk user
selection in the low SNR regime can be approximated as

Rk ran
s ≈ βkρ√

2π
e
− α2

k

2β2
k +

αkρ

2

(

1 + erf

(

αk√
2βk

))

, (27)

whereαk = k(M −N) andβ2
k = k(M +N).
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Fig. 2. Comparisons between the theoretical and numerical results in the
low SNR regime.

Proof: In the low SNR regime, asρ → 0, we have
Cks ≈ ρ

{

tr(H†H)− tr(G†G)
}+

. Let X = tr(H†H) and
Y = tr(G†G). It holds thatX ∼ χ2

2Mk andY ∼ χ2
2Nk. As

we have discussed previously, a Chi-square random variable
can be approximated by a Gaussian one. Therefore,X − Y
is distributed according toN (αk, β

2
k). Similar to the proof of

Theorem 1, we can readily obtain the result in (27).
Theorem 2 shows that the ESSR always increases withρ

in the low SNR regime. The relationship between the ESSR
and the number of the BS antennas as well as the number of
the eavesdropper antennas for the casesM > N andM < N
can be analyzed similarly as that in the high SNR regime. An
interesting and insightful result for the special caseM = N
is presented in the following Corollary.

Corollary 4. For a givenk, asM = N , the ESSR of random
k user selection in the low SNR regime is approximated as

Rk ran
s ≈ ρ

√

kM

π
. (28)

Different from Corollary 2, the ESSR always grows with
the number of served users. Ask =M , the ESSR scales with
M in the low SNR regime while scales with

√
logM in the

high SNR regime. With this observation, we know that the
increase of the BS antennas can offer more secrecy benefits in
the low SNR regime. Besides, we should note that the ESSR
monotonically increases withρ in the low SNR regime as the
conventional systems without secrecy constraints.

Fig. 2 depicts the results given in Theorem 2 and Corollary
4. The numerical results of (6) are also obtained by performing
Monte Carlo experiments. We can see that the theoretical
results agree well with the behavior of numerical results when
ρ = −30 dB. Fig. 2 also verifies that the ESSR grows withρ
in the low SNR regime.

C. Large Scale Analysis for Random User Selection

MIMO systems with very large antenna arrays at the BS,
so called massive MIMO systems, is one of the key technolo-
gies to improve spectral-energy efficiency for future wireless
communications. Recently, there has been a great deal of
interest in multiuser massive MIMO systems [42]. In order
to demonstrate the potential of massive MIMO to enhance

security, we give a large scale analysis of the ESSR for random
user selection.

Theorem 3: In a large scale system, for a fixedk, the ESSR
of the random user selection is approximately given by

Rk ran
s,lar ≈

{

k log
1 +Mρ

1 +Nρ

}+

. (29)

Proof: Using the results of [37, Theorem 1] and Theorem
2, we can easily complete the proof.

In a large scale multiple antenna system, as the number of
antennas grows, the channel quickly “hardens”, in the sense
that the mutual information converges to its mean. The phe-
nomenon of channel hardening makes communications secure
only when the BS has more antennas than the eavesdropper,
which can be seen from Theorem 3.

V. GREEDY USERSELECTION AND

MULTIUSER SECRECY GAIN

In Section IV, we consider a random user selection in secure
communications and show that the ESSR would decrease
significantly even when the eavesdropper has only one more
antenna than the BS. Obviously, the eavesdropper has much
more antennas than the BS is a challenging scenario for a
secure transmission. Fortunately, in an uplink transmission
with a large number of users, the BS can enhance security
by selecting the best set of users to communicate with in
each time slot, resulting in the multiuser secrecy gain. In
order to highlight the secrecy improvement achieved by user
selection, we focus on the caseN ≥M in this section, i.e., the
eavesdropper is a more capable receiver than the BS. As shown
in Section III, ask > M , increasingk results in decrease of
ESSR whenN ≥ M . Hence, the casek ≤ M is of our
interest.

Note that the user selection scheme is different for vari-
ous CSI assumptions, i.e.,main CSI case orfull CSI case.
Typically the instantaneous CSI of the eavesdropper is not
available. Here, we consider the full CSI case to investigate
the secrecy gain obtained from the prior knowledge of the
eavesdropper’s CSI, which can be taken as a benchmark or
a secrecy performance upper bound to evaluate the multiuser
gain achieved by user selection.

The optimal user selection formain CSI and full CSI are
formulated in the following, respectively.

Let U = {1, 2, · · · ,K} denote the set of allK users, and
let Sk = {s1, s2, · · · , sk} denote the set ofk selected/served
users. For themain CSI case, the user selection problem is
formulated as follows: GivenH ∈ CM×K , select a set of
channelsH(Sk) = [hs1 ,hs2 , · · · ,hsk ] such that the sum-rate
achieved at the BS is maximized, i.e.,

CMk opt
s =

{[

max
Sk

Ckb (H(Sk))
]

− Cke (G(Sk))
}+

=
{[

max
Sk

log
∣

∣Ik + ρH(Sk)
†H(Sk)

∣

∣

]

− log
∣

∣Ik + ρG(Sk)
†G(Sk)

∣

∣

}+

. (30)

For the full CSI case, the user selection problem is for-
mulated as follows: GivenH ∈ CM×K and G ∈ CN×K ,
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select a set of users with the corresponding channelsH(Sk) =
[hs1 ,hs2 , · · · ,hsk ] and G(Sk) = [gs1 ,gs2 , · · · ,gsk ] such
that the secrecy sum-rate achieved is maximized, i.e.,

CFk opt
s =

{

max
Sk

[

Cb (H(Sk))− Ce(G(Sk))
]}+

=

{

max
Sk

log

∣

∣Ik + ρH(Sk)
†H(Sk)

∣

∣

|Ik + ρG(Sk)†G(Sk)|

}+

. (31)

The problems given in (30) and (31) can be solved
by exhaustive search. For a givenk, traverse all possible
k−tuples Sk and select a set to maximizeCb (H(Sk)) or
CFk
s (H(Sk),G(Sk)). However, such an exhausted search has

a prohibitive complexity, which is not practical for a large-
scale network. In the following, we present two greedy user
selection algorithms with low complexity, in the high and low
SNR regimes, respectively3. Furthermore, we provide com-
prehensive ESSR analysis for both algorithms. To characterize
the impact of user selection on secrecy, we define the multiuser
secrecy gain as

∆k opt
s ,E

[

Ck opt
b (H)− Ck opt

e (G)
]

− E

[

Ck ran
b (H)− Ck ran

e (G)
]

. (32)

As can be seen, the multiuser secrecy gain is defined as the
ESSR difference between the optimal user selection and the
random user selection. Therefore, it indicates the benefit from
multiuser gain for secure communications.

A. High SNR Regime

In the high SNR regime, the sum-rate achieved at the BS
can be calculated as [15]

Ckb (H(Sk))

= log
∣

∣Ik + ρH(Sk)
†H(Sk)

∣

∣

(a)
= log

∣

∣H(Sk)
†H(Sk)

∣

∣+ k log ρ+ o(1/ρ)

≈ log
∣

∣[H(Sk−1) hsk ]
†[H(Sk−1) hsk ]

∣

∣+ k log ρ

= log

∣

∣

∣

∣

H(Sk−1)
†H(Sk−1) H(Sk−1)

†hsk
h†
skH(Sk−1) h†

skhsk

∣

∣

∣

∣

+ k log ρ

(b)
= log

{∣

∣H(Sk−1)
†H(Sk−1)

∣

∣

∣

∣h†
sk
A⊥
k−1hsk

∣

∣

}

+ k log ρ

= log
∣

∣H(Sk−1)
†H(Sk−1)

∣

∣+ log
∣

∣h†
skA

⊥
k−1hsk

∣

∣+ k log ρ

=

k
∑

l=1

log
∣

∣h†
sl
A⊥
l−1hsl

∣

∣+ k log ρ, (33)

where step(a) follows Eqn. (67) in [37], step(b) follows
Eqn. (6.2.1) in [43],H(Sl) = [hs1 , · · · ,hsl−1

], andA⊥
l−1 =

IM −H(Sl−1)
(

H(Sl−1)
† H(Sl−1))

−1
H(Sl−1)

†. Obviously,

3It is to be pointed out that we consider homogeneous channel conditions in
this work. Although our proposed algorithms schedule the optimal set of users
to maximize secrecy sum-rate at each time slot, it is fair foreach user, since all
users have the same distribution of SNR. The fairness for heterogeneous case
in which different users have different average SNR values will be investigated
in future study.

Algorithm 1 Greedy user selection for themain CSI case.
Step 1) Initialization:

- Set l = 1.
- Select a user such thats1 = argmax

j∈U
|h†
jhj |.

- SetS1 = s1.

Step 2) Whilel ≤ k, select thelth user as follows:

- Increasel by 1.
- Select a usersl such thatsl = argmax

j∈U
|h†
jA

⊥
l−1hj |.

- SetSl = Sl−1 ∪ sl.

Algorithm 2 Greedy user selection for thefull CSI case.
Step 1) Initialization:

- Set l = 1.
- Select a user such thats1 = argmax

j∈U
|h†

jhj |
|g†

jgj |
.

- SetS1 = s1.

Step 2) Whilel ≤ k, select thelth user as follows:

- Increasel by 1.

- Select a usersl such thatsl = argmax
j∈U

|h†
jA

⊥
l−1hj |

|g†
jB

⊥
l−1gj |

.

- SetSl = Sl−1 ∪ sl.

it holds thatH(S0) = 0. Similar to (33), the instantaneous
secrecy sum-rate for the full CSI case can be approximated as

CFk
s =







log

∣

∣

∣
I+ ρH(Sk)

†H(Sk)
∣

∣

∣

∣

∣

∣
I+ ρG(Sk)†G(Sk)

∣

∣

∣







+

≈







k
∑

l=1

log

∣

∣

∣
h†
slA

⊥
l−1hsl

∣

∣

∣

∣

∣

∣
g
†
slB

⊥
l−1gsl

∣

∣

∣







+

, (34)

where G(Sl) = [gs1 , · · · ,gsl ], and B⊥
l−1 = IN −

G(Sl−1)
(

G(Sl−1)
†G(Sl−1)

)−1
G(Sl−1)

†.
Observing (33) and (34), we propose two low-complexity

algorithms of user selection to maximizeCb (H(Sk)) and
CFk
s (H(Sk),G(Sk)) , which are given at the top of this page,

respectively. They are greedy-like algorithms where in each
selection step the current best user is selected.

In the following, we provide a comprehensive analysis
on the asymptotic ESSR of Algorithm 1 and Algorithm 2,
which quantifies the multiuser secrecy gains, and reveals the
achievable scaling laws of the two proposed algorithms. With
the extreme value theory, we have the following theorem.

Theorem 4: Let Ml , M − l − 1, Nl , N − l − 1 and
Kl , K − l+1. For a givenk, asK → ∞, the ESSR of the
proposed greedy algorithms for the two CSI cases in the high
SNR regime can be characterized by

RMk gre
s ≈

{

k
∑

l=1

[

Ψl + σMlG
l
K

]

}+

, (35)

RFk gre
s ≈

{

k
∑

l=1

[

Ψl +
√

σ2
Ml + σ2

NlG
l
K

]

}+

, (36)
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where Ψl = ψ(Ml) − ψ(Nl), GlK =
√
2 logKl −

log(4π logKl)

2
√
2 logKl

− ψ(l)√
2 logKl

, σ2
Ml =

π2

6 −∑Ml−1
i=1

1
i2 , andσ2

Nl =
π2

6 −∑Nl−1
i=1

1
i2 .

Proof: Please see Appendix E.
Remark 3: As shown in Appendix E, for the main CSI

case, when the greedy user selection is adopted, the ergodic
sum-rate achieved by the BS isE

[

Ck opt
b (H)

]

= k log ρ +
∑k

l=1

(

ψ(Ml) + σMlG
l
K

)

. In contrast, the ergodic sum-rate
achieved at the BS isE

[

Ck ran
b (H)

]

= k log ρ+
∑k
l=1 ψ(Ml)

for the random user selection. On the other hand, it holds
E
[

Ck opt
e (H)

]

= E
[

Ck ran
e (H)

]

for main CSI case. Hence,
the multiuser secrecy gain for main CSI case is∆Mk gre

s =
∑k

l=1 σMlG
l
K . Similarly, the multiuser secrecy gain for the

full CSI case is∆Fk gre
s =

∑k
l=1

√

σ2
Ml + σ2

NlG
l
K . We can

observe that the multiuser secrecy gains for the both cases de-
pend on not only the number of total users and selected/served
users but also the number of antennas at the BS and the
eavesdropper. It is shown in Lemma 1, whenk ≤ M ≤ N ,
both variancesσMl and σNl are increasing functions ofk,
while they are decreasing functions ofM and/orN . That
is, increasingM and/orN results in a decreasing multiuser
secrecy gain, while serving more users simultaneously in
each time slot can bring a larger multiuser secrecy gain to
secure communications. Besides, we can note that the full
CSI achieves a larger multiuser secrecy gain than the main
CSI does. For the special caseM = N , RFk opt

s would grow√
2 times as fast asRMk opt

s .
Remark 4: Note that, in general, each user can have individ-

ual secrecy rate requirements. LetRls denote the achievable
secrecy rate for thel-th selected user. We assume that the
receiver architectures of the BS use a combination of minimum
mean square estimation (MMSE) and successive interference
cancellation (SIC). It is shown that the MMSE-SIC receiver
achieves the capacity of the fading MIMO channel [31, pp.
394]. From Algorithm 1, we can see that the individual secrecy
rate of each selected user depends on the chosen ordering, and
thus the BS can use the reverse ordering of algorithm 1 for
detection. However, we generally do not know the behavior
of the eavesdropper, thus it is reasonable to consider a worst-
case scenario where the eavesdropper can cancel multiuser
interferences. Then with Lemma 1,Rls is lower bounded by
{

ψ(Ml) + σMlG
l
K − ψ(N)

}+
.

Fig. 3 shows the asymptotic results given in Theorem 4,
and the corresponding numerical results. We set the number
of total users asK = 400 and letρ = 30 dB. It can be seen
that the asymptotic results are consistent with the numerical
ones even for a moderate value ofK.

As N > M , since it holds that
∑k+1

l=1 Ψl −
∑k
l=1 Ψl =

−∑N−k
i=M−k+1

1
i , the first terms in (35) and (36) decrease

as k increases. Although the multiuser secrecy gains (the
second terms) are increasing functions withk, the ESSRs may
decrease withk whenN is much larger thanM . Therefore,
an interesting observation is that serving only one user may
be a favourable scheme when the eavesdropper is a more
capable receiver than the BS. In such a TDMA-like scheme,
the BS serves the strongest user in each time slot to maximize
Cb(H, i) or Cs(H,G, i). We have the following corollary.
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Fig. 3. ESSR of the greedy user selection versus the number ofthe served
users in the high SNR regime.

Corollary 5. In the high SNR regime, fork = 1, the ESSRs
of the proposed greedy algorithms for the two CSI cases can
be given respectively by

RM1 gre
s ≈

{

ψ(M)− ψ(N) +
√

2 logK/M
}+

, (37)

RF1 gre
s ≈

{

ψ(M)− ψ(N) +
√

2 logK (1/M + 1/N)
}+

.

(38)

Proof: Resorting to Theorem 4 and [37, Lemma 1], we
can easily complete the proof.

Corollary 5 shows that, when only the strongest user is
served in each time slot, the multiuser secrecy gains scale with√
logK for the both CSI cases. Besides, we further observe

that the multiuser secrecy gains decrease as the number of
antennas at the BS and/or the eavesdropper increase.

B. Low SNR Regime

As ρ→ 0, with the same equation in (25), the instantaneous
secrecy sum-rates with optimalk user selection for the main
CSI case and full CSI case can be given by

CMk gre
s =

{

[

max
Sk

Ckb (H(Sk))
]

− Cke (G(Sk))

}+

≈ ρ

{

[

max
Sk

X(H(Sk))
]

− Y (G(Sk))

}+

, (39)

CFk gre
s =

{

max
Sk

[

Ckb (H(Sk))− Cke (G(Sk))
]}+

≈ ρ

{

max
Sk

[

X(H(Sk))− Y (G(Sk))
]

}+

, (40)

whereX(H(Sk)) = tr(H(Sk)
†H(Sk)) and Y (G(Sk)) =

tr(G(Sk)
†G(Sk)).

According to Equations (39) and (40), the optimal user
selection in the low SNR regime is to maximizeX(H(Sk))
or X(H(Sk)) − Y (G(Sk)). The key idea behind this is to
selectk users with the strongest channels, thus the optimal
user selection is equivalent to the greedy one in the low
SNR regime. LetΞ denote the sequence with variablesΞi =
h
†
ihi, i = 1, · · · ,K, then the instantaneous secrecy sum-rate
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TABLE I
THE COMPARISON BETWEEN THE NUMERICAL AND THE ANALYTICAL

RESULTS OFE
[

ΞK

(1)

]

.

Degrees of freedom Numerical Analytical Ref. [12, 17]

M = 10 19.7119 18.0842 18.3498
M = 20 33.0152 31.4328 33.6216
M = 30 45.5815 44.0023 48.8934
M = 40 57.6518 56.1684 64.1652
M = 50 69.5151 68.0768 79.4370

given in (39) can be rewritten as

CMk gre
s ≈ ρ

{

k
∑

r=1

ΞK(r) − tr(G∗
†G∗)

}+

, (41)

whereG∗ is the channel between thek selected users and the
eavesdropper. LetΨ denote the sequence with variablesΨi =
h
†
ihi−g

†
igi, i = 1, · · · ,K, then the instantaneous secrecy rate

given in (40) can be rewritten as

CFk gre
s ≈ ρ

{

k
∑

r=1

ΨK(r)

}+

. (42)

Since the entries ofΞ are χ2
2M variables, conventionally,

the Gumbel distribution can be used to approximate the
asymptotic distribution ofΞK(1) [44]. It holds

lim
K→∞

P

(

ΞK(1) ≤ cKt+ dK

)

= e−e
−t

, (43)

wherecK = 1, dK = logK +(M − 1) log logK − log Γ(M).
The above asymptotic distribution ofΞK(1) has been widely

used in the existing works [12], [13]. However, for i.i.d. Chi-
square random variables, the convergence of its maximum to
the Gumbel distribution with parameterscK anddK is quite
slow [45]. Specially, for a largeM , Γ(M) is an excessively
large number, i.e.,Γ(20) = 1.2165 × 1017, thus dK may
not be positive for a moderate value ofK. Therefore, we
calculate new normalizing constants ofΞK(1) by approximating
Chi-square random variables as Gaussian ones. The reasons
are: i) as shown in Theorem 2 and Fig. 2, a Chi-square random
variable can be well approximated by a Gaussian one [41]; ii)
for i.i.d. Gaussian random variables, the convergence of the
maximum to the Gumbel distribution using the normalizing
constants given in (15) and (16) behaves well even for a
not so largeK [46, pp. 302]. Note that we focus on the
expectation of the maximum, which helps to provide a closed-
form expression for the ESSR. In order to verify the accuracy
of the analytical expectation with Gaussian approximation,
some numerical results are given in Table I, where we let
K = 100. It is shown that the analytical results of Gaussian
approximation are very close to the numerical results for all
the cases, while the analytical results given in [12] and [13]
are not consistent with the numerical ones asM gets large.

Therefore, the entries ofΞ andΨ are treated as Gaussian
random variables. Then with Lemma 3, we can present the
following theorem.

Theorem 5: In the low SNR regime, for a givenk, the
ESSRs of the greedyk users selection in the low SNR regime
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Fig. 4. ESSR of the greedy user selection versus the number ofthe served
users in the low SNR regime.

are given by

RMk gre
s ≈ kρ

{

RMk gre
b −N

}+

, (44)

RFk gre
s ≈ kρ

{

RFk gre
b −N

}+

, (45)

whereRMk gre
b =M+

√
2M logK− log(4π logK)

2
√

2 logK/M
−ρ
√

M
2 logK

(

ψ(k + 1) − 1
)

andRFk gre
b = M +

√

2(M +N) logK −
log(4π logK)

2
√

2 logK/(M+N)

√

M+N
2 logK − (ψ(k + 1)− 1).

Proof: Invoking
∑k
r=1 ψ(r)/k = ψ(k+1)−1, along with

the results given in Lemmas 2 and 3, we can easily complete
the proof.

Remark 5: Differing from the high SNR regime, the mul-
tiuser interference is negligible in the low SNR regime. Hence,
the individual ergodic secrecy rate of thel-th selected users
equals to that of the case with an interference-free eavesdrop-
per in the low SNR regime, which can be approximated as

Rls ≈ ρ
{

RMk gre
b −N

}+

.
In Fig. 4, we employ simulations to verify Theorem 5. We

set K = 400 and let ρ = −30 dB. Again, it can be seen
that the asymptotic results can describe the behaviour of the
numerical results well for the both CSI cases.

Similar to Corollary 5, we present the following corollary to
characterise the multiuser secrecy gain of TDMA-like scheme
in the low SNR regime.

Corollary 6. In the low SNR regime, fork = 1, the ESSRs
of the proposed greedy algorithms for the two CSI cases can
be given respectively by

RM1 gre
s ≈ ρ

{

M −N +
√

2M logK
}+

, (46)

RF1 gre
s ≈ ρ

{

M −N +
√

2(M +N) logK
}+

. (47)

Proof: Resorting to Theorem 5 and [37, Lemma 1], we
can easily obtain the results.

Unlike the high SNR case, the multiuser secrecy gains grow
with M and N for the low SNR case. We can also note
that, asN increases, the achievable rate at the eavesdropper
grows logarithmically withN in the high SNR regime, while
it increases linearly withN in the low SNR regime.
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C. Large Scale Analysis for Greedy User Selection

By using a very large antenna array, the achievable rate
of each user in a multiuser MIMO system is equal to that
of a single-input multiple-output (SIMO) system, without any
inter-user interference [42]. In the following, we use this
potential for user selection, and derive asymptotic results for
the ESSR. The interesting operating regime is when bothM
andN are enough large, and they are much larger thank, i.e.,
k ≪M andk ≪ N . In a large scale multiple antenna system,
according to [37, Theorem 1], the approximated distribution
of the mutual information,Ckb (H), can be given as

Ckb (H) ∼ N
(

k log (1 + ρM) ,
k

M

)

. (48)

Obviously, it holdsC1
b (H) ∼ N

(

log (1 + ρM) , 1
M

)

ask =
1. As M grows large, the varianceskM and 1

M converge to
zero. We can conclude that, with largeM , bothCkb (H) and
C1
b (H) would converge to their mean, and it holdsCkb (H) =

kC1
b (H). This observation further verifies that the inter-user

interference vanishes in the large scale antenna systems.
Since the inter-user interference is negligible, the basicidea

of user selection is same as that in the low SNR regime,
where thek users with the strongest channels are selected
to communication with. Note that this scheme, referred to
as norm based greedy selection, only requires each user to
calculates the squared Frobenius norm of its wireless channel
and can be implemented in a distributed manner [47], it
is especially attractive in large scale systems. We give the
asymptotic results of the ESSR for large scale systems in the
following Theorem.

Theorem 6: In a large scale system, for a fixedk, the ESSRs
of the greedy user selection are approximately given by

RMk gre
s,lar ≈

{

k log
1 + ρM

1 + ρN
+

k
∑

r=1

√

1

M

(

√

2 logK

− log(4π logK) + 2ψ(r)

2
√
2 logK

)

}+

, (49)

RFk gre
s,lar ≈

{

k log
1 + ρM

1 + ρN
+

k
∑

r=1

√

1

M
+

1

N

(

√

2 logK

− log(4π logK) + 2ψ(r)

2
√
2 logK

)

}+

. (50)

Proof: Resorting to Lemma 3 and [37, Theorem 1], we
can easily prove Theorem 6.

In Fig. 5, we depict the numerical and asymptotic results
of the proposed user selection scheme for large scale sys-
tems. The numerical results of the secrecy rate based user
selection scheme are also plotted. We set the parameters as
M = N = 100 and ρ = 10 dB. We can see that, the
norm based greedy selection achieves a ESSR near to that
of the secrecy rate based scheme. This further confirms that
the norm based user selection is a good choice in the large
scale system. As expected, the asymptotic results agree well
on the numerical ones. We can also note that, although channel
hardening happens when the BS and the eavesdropper equip
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Fig. 5. The ESSR of greedy user selection versus the number ofselected
users in large scale systems.

with a large number of antennas, the multiuser gain still brings
a significant secrecy improvement to wireless communications.

VI. EFFECT OFCHANNEL ESTIMATION ERRORS

So far, we assume that the main CSI or full CSI are perfectly
known at the BS. However, the BS can only obtain a noisy
version of the CSIs by channel estimation in practice. In this
section, we investigate the impact of channel estimation errors
on the performance of user selection in secure communica-
tion. Suppose that the BS uses the minimum mean square
error (MMSE) estimator, thei-th user’s channel gain can be
modeled by

hi =
√

1− ξĥi +
√

ξh̃i, (51)

where
√
1− ξĥi is the estimation of thei-th user’s channel

gain,
√
ξh̃i is the estimation error, andξ is the error variance

(ξ ∈ (0, 1)). The channel vector̂hi and h̃i follow with
CN (0, I). Under channel estimation errors, a lower bound for
the achieved sum-rate at the BS is [48]

Ĉkb (H) ≥ Ĉkb,low = log

∣

∣

∣

∣

I+
(1− ξ)ρ

1 + ξρ
Ĥ†Ĥ

∣

∣

∣

∣

, (52)

whereĤ = [ĥ1, · · · , ĥk]. It has been shown that the lower
bound is tight in [48]. Comparing (52) to (3), we observe
that the channel estimation errors result in a SNR loss factor
of at mostη , 1−ξ

1+ξρ . Here, we consider the worst-case that
the eavesdropper has the perfect CSI. Therefore, the secrecy
sum-rate for an uplink transmission is lower bounded by

Ĉks ≥
{

log

∣

∣

∣

∣

I+
(1− ξ)ρ

1 + ξρ
Ĥ†Ĥ

∣

∣

∣

∣

− log
∣

∣I+ ρG†G
∣

∣

}+

.

(53)

Next, we consider the impact of channel estimation errors
on the performance of random user selection and greedy user
selection, respectively.

A. Random User Selection

From [29, Theorem 3], the variablêCkb,low is also approxi-
mately a Gaussian variable with meanE[Ĉkb,low ] and variance
V[Ĉkb,low]. The calculations ofE[Ĉkb,low ] and V[Ĉkb,low ] are
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given in [29, Theorem 3]. Then with Theorem 1, we can obtain
the lower bound forR̂k ran

s under channel estimation errors.
Although a closed-form expression of this lower bound for
all SNR regimes is not trivial, explicit results for the low
SNR case can be given. In the low SNR regime, it holds
η = 1−ξ

1+ξρ ≈ 1− ξ. Therefore, we have

R̂k ran
s ' E

[

{

log
∣

∣

∣
I+ (1− ξ)ρĤ†Ĥ

∣

∣

∣
− log

∣

∣I+ ρG†G
∣

∣

}+
]

≈
β̂kρ√
2π
e
− α̂2

k

2β̂2
k +

α̂kρ

2

(

1 + erf

(

α̂k√
2β̂k

))

, (54)

where α̂k = k ((1 − ξ)M −N), and β̂2
k =

k
(

(1− ξ)2M +N
)

.
Let us consider a special casêαk = 0, it holdsM = N

1−ξ

andR̂k ran
s ' ρ

√

k(2−ξ)N
2π . In contrast, whenM = N , it holds

Rk ran
s ≈ ρ

√

kN
π under perfect channel estimation.

B. Greedy User Selection

For greedy user selection, we only focus on the main
CSI case. Under channel estimation errors, the user selection
problem is to select a set of channel estimationsĤ(Sk) =
[ĥs1 , ĥs2 , · · · , ĥsk ] such thatĈkb,low is maximized. Similar to
the procedure of (33), we have

Ĉkb,low =

k
∑

l=1

log
∣

∣

∣
1 + ξρĥ†

slÂ
⊥
l−1ĥsl

∣

∣

∣
, (55)

where Â⊥
l−1 = IM − ξρĤ(Sl−1)

(

Il−1 + ξρĤ(Sl−1)
†

Ĥ(Sl−1)
)−1

Ĥ(Sl−1)
†. Therefore, the greedy user selection

under channel estimation errors can also be implemented in the
way as Algorithm 1. We do not present the explicit algorithm
here due to space limitations. Similar to the random user
selection, a closed-form lower bound of ESSR under channel
estimation errors in the low SNR regime is given as

R̂Mk gre
s '

{

kρ

(

(1 − ξ)

(

√

2M logK − log(4π logK)

2
√

2 logK/M

+M)−N)−
√

ρ2(1− ξ)2M

2 logK

k
∑

r=1

ψ(r)

}+

. (56)

For a meaningful comparison, let us consider the TDMA-
like scheme, where only one user is served in each time slot.
Through steps of mathematical manipulations, we further have

R̂M1 gre
s ' ρ

{

(1 − ξ)M −N + (1 − ξ)
√

2M logK
}+

.

(57)

Comparing (57) to (46), we can observe that the TDMA-
like scheme under channel estimation errors not only achieves
a lower ESSR, but also has less benefit from user selection,
than that under perfect channel estimation.
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VII. S IMULATION RESULTS

In this section, we further investigate the secrecy perfor-
mance of the proposed schemes numerically. We perform
Monte Carlo experiments each with 10000 independent trials
to obtain the numerical results.

Fig. 6 demonstrates the secrecy gain achieved by the greedy
user selection in Algorithms 1 and 2. As can be seen, the ESSR
of the random user selection scheme almost converges to zero
for all the cases. In contrast, the greedy user selection scheme
provides a much higher ESSR even when the eavesdropper has
five more antennas than the BS. This verifies that the secrecy
gain achieved from user selection is fairly prominent. We also
note that as the number of eavesdropper antennas increases,
the optimal number of served users becomes small, which will
be further studied in Fig. 9.

Similar to the high SNR case, the greedy user selection also
achieves a significant secrecy gain in the low SNR regime,
which is demonstrated in Fig. 7, whereρ = −30 dB,M = 10,
N = 15, and ξ = 0.1. We can note that, when the greedy
user selection is adopted, the ESSR grows withk even if the
eavesdropper has five more antennas than the BS under perfect
CSI. As expected, channel estimation errors result in a large
ESSR loss. However, the greedy user selection under imperfect
CSI still achieves secrecy multiuser gains.

Fig. 8 plots the ESSRs versus the number of total users for
different numbers of served users and antennas. The SNR is
fixed to 30 dB for all curves. We can observe that all the
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ESSRs increase asK increases, because a high multiuser
secrecy gain can be achieved. Let us compare the case
M = N = 10, k = 10 with the oneM = N = 40, k = 10, we
note that the multiuser secrecy gain decreases for largerM and
N . However, the multiuser secrecy gain grows withk. This is
because ask gets large,H†H andG†G do not converge to
a deterministic quantity and thus the tail probability becomes
large. Therefore, a significant multiuser selection gain exists.
The simulations in the low SNR regime look similar as those
in the high SNR case and thus are omitted.

In Fig. 9, we investigate the impact of the number of the
eavesdropper antennas on secrecy performance, whereM =
20 andK = 400. Since the random selection scheme offers no
multiuser secrecy gain, it can not provide a positive ESSR even
when the eavesdropper equips two more antennas than the
BS. Although serving up toM users approaches the maximal
multiplexing gain, the secrecy performance of the greedy user
selection scheme for both main CSI and full CSI deteriorates
quickly as the number of eavesdropper antennas gets large.
Hence, we can conclude that only serving the strongest user
in each time slot is a favorable scheme when there is a more
capable eavesdropper than the BS in the network.

VIII. C ONCLUSION

In this paper, we have investigated the problem of user
selection in a multiuser uplink communication system with
a multiple antennas eavesdropper. Closed-form expressions of
the ESSR for random user selection in the both low and high

SNR regimes have been derived. We have shown that when
the eavesdropper has the same number of antennas with the
BS, the maximum ESSR scales with

√
logM in the high

SNR regime, while scales withM in the low SNR regime.
To achieve the multiuser secrecy gain, we have proposed two
greedy user selection algorithms for main CSI and Full CSI,
respectively. The corresponding closed-form expressionsof the
ESSR have also been presented. We have revealed that the
multiuser secrecy gain not only depends on the number of total
users, but also depends on the number of served users, the BS
and the eavesdropper antennas. Furthermore, the impact of the
number of the eavesdropper antennas and channel estimation
errors on the ESSR performance have been explored.

APPENDIX A
PROOF OFLEMMA 2

When {YK} is a sequence of i.i.d.N (µ, σ2) vari-
ables, Yi−µ

σ is distributed according toN (0, 1) for i ∈
{1, 2, · · · ,K}. If Y K(1) is the maximum of the sequence{YK},
YK
(1)−µ
σ is therefore the maximum of the sequence

{

YK−µ
σ

}

which satisfies [46, pp. 302]

lim
K→∞

P

(

Y K(1) − µ

σ
≤ aK

′t+ bK
′
)

= e−e
−t

, (58)

whereaK ′ = 1√
2 logK

and bK ′ =
√
2 logK − log(4π logK)

2
√
2 logK

.
We further rewritten (58) as

lim
K→∞

P

(

Y K(1) ≤ aKt+ bK

)

= e−e
−t

, (59)

whereaK = σ√
2 logK

, andbK = σ
√
2 logK−σ log(4π logK)

2
√
2 logK

+

µ. SinceG(t) = e−e
−t

is the Gumbel distribution, asK
increases, the mean ofY K(1) approaches

E[Y K(1)]
(a)
= aKγ + bK

= σ
√

2 logK − σ
log(4π logK)− 2γ

2
√
2 logK

+ µ, (60)

where step(a) follows from the result given in [46, pp. 298].
We complete the proof.

APPENDIX B
PROOF OFLEMMA 3

When {YK} is a sequence of i.i.d.N (µ, σ2) variables,
Yi−µ
σ obeysN (0, 1) for i ∈ {1, 2, · · · ,K}. If Y K(r) is the

r-th largest order statistic of the sequence{YK},
Y K
(r)−µ
σ

is therefore ther-th largest order statistic of the sequence
{

YK−µ
σ

}

. Let ZK(r) ,
Y K
(r)−µ
σ , which satisfies [49]

E

[(

ZK(r)

)s

e−ζZ
K
(r)

]

= (−1)s
Γ(s)(r)

Γ(r)
. (61)

The mean ofZK(r) can be given by settingζ = 0 ands = 1
in (61), i.e.,

E

[

ZK(r)

]

=
−Γ(1)(r)

Γ(r)
= −ψ(r), (62)



13

from which we directly obtain the mean ofY K(r), given by

E

[

Y K(r)

]

= bK − aKψ(r). (63)

We complete the proof.

APPENDIX C
PROOF OFCOROLLARY 2

It holds µk = 0 for the caseM = N , we can obtain the
following approximation from Theorem 1,

Rks ≈ σk√
2π
. (64)

Obviously,Rks grows withσk. Since the expressions ofσk
are different for the casesk ≤ M and k > M , Rks can be
rewritten as

Rks ≈































√

√

√

√

1

π

(

k−1
∑

i=1

i

(M − k + i)2
+

k

M

)

, k ≤M,

√

√

√

√

1

π

(

M−1
∑

i=1

i

(k −M + i)2
+
M

k

)

, k > M.

Let ̺(k) =
∑k−1
i=1

i
(M−k+i)2 + k

M and ς(k) =
∑M−1

i=1
i

(k−M+i)2 + M
k . Since it holds that

̺(k + 1)− ̺(k)

=
k

(M − 1)2
+

k−1
∑

i=1

i (2(M − k + i)− 1)

(M − k − 1 + i)2(M − k + i)2
+

1

M

>0,

ς(k + 1)− ς(k)

=

M−1
∑

i=1

[

i

(k + 1−M + i)2
− i

(k −M + i)2

]

− M

k(k + 1)

<0,

Rks is a monotonically increasing function ofk as k ≤ M ,
whereas is a monotonically decreasing function ofk as k ≥
M . The maximum ESSR is clearly achieved atk =M , which
is

RMs ≈
√

1

π
(ψ(M) + γ + 1)

a≈
√

1

π

(

log(M − 1) + γ + 1
)

, (65)

where stepa holds for a largeM [39]. By now, the proof is
completed.

APPENDIX D
PROOF OFTHEOREM 4

Let us first prove (35). For themain CSI case, the BS
selectsk users to maximize the sum-rateCkb (H(Sk)). Let
Xlj = h

†
jA

⊥
l−1hj and Ylj = h

†
jB

⊥
l−1hj . Since A⊥

l−1 is
a complex Wishart distribution withM − l + 1 degrees of

freedom,Xlj obeysχ2
2(M−l+1) [50]. Similarly, the variable

Ylj obeysχ2
2(N−l+1). From (33), we have

maxCb (H(Sk)) ≈
k
∑

l=1

max
1≤j≤K−l+1

logXlj . (66)

Based on Lemma 1, we know that the random
variable logXlj can be approximated by a Gaussian
N
(

ψ(M − l+ 1), σ2
M−l+1

)

. Note that the first user is selected
out of theK users, there might be mild dependence between
the channel of the selected user and that of the remaining users
4. For analytical tractability, we assume that the sequence is
i.i.d., and thus Lemma 3 can be applied, which yields

E

[

max
1≤j≤K−l+1

logXlj

]

= ψ(Ml) + σMlG
l
K , (67)

whereGlK =
√
2 logKl − log(4π logKl)

2
√
2 logKl

− ψ(l)√
2 logKl

, σ2
Ml =

π2

6 −∑Ml−1
i=1

1
i2 , Ml = M − l + 1, andKl = K − l + 1.

Accordingly, the ESSR for main CSI case can be given by

RMk gre
s

(a)
= E

{

maxCkb (H(Sk))− Cke (G(Sk))
}+

(b)

'
{

E
[

maxCkb (H(Sk))
]

− E
[

Cke (G(Sk))
]

}+

≈
{

k
∑

l=1

[

ψ(Ml)− ψ(Nl) + σMlG
l
K

]

}+

, (68)

whereNl = N − l + 1 and the result in(b) is obtained
by applying Jensen’s inequality to(a). As K in (b) goes to
infinity, we obtain the result given in (35).

Next we prove the result given in (36) by starting from the
secrecy sum-rate expression forfull CSI given in (34)

CFk
s ≈







k
∑

l=1

log

∣

∣

∣
ρh†

sl
A⊥
l−1hsl

∣

∣

∣

∣

∣

∣
ρg†

slB
⊥
l−1gsl

∣

∣

∣







+

. (69)

From Algorithm 2, we know that the secrecy rate is max-

imized by choosing thej-th user with the largest
|h†

jA
⊥
l−1hj |

|g†
jB

⊥
l−1gj |

in each step. Therefore, the ESSR for the full CSI is given by

CFk gre
s ≈ E

{

k
∑

l=1

max
1≤j≤K−l+1

log
|h†
jA

⊥
l−1hj |

|g†
jB

⊥
l−1gj |

}+

'

{

k
∑

l=1

E

[

max
1≤j≤K−l+1

log
|Xlj |
|Ylj |

]

}+

. (70)

Let Zlj = log
|Xlj |
|Ylj | . With Lemma 1,Zlj can be also

approximated as a Gaussian variable obeyingN
(

ψ(Ml) −
ψ(Nl), σ

2
Ml

+σ2
Nl

)

, whereσ2
Nl =

π2

6 −∑Nl−1
i=1

1
i2 . Then based

on Lemma 2, we have

E

[

max
1≤j≤K−l+1

Zlj

]

= ψ(Ml)− ψ(Nl) +
√

σ2
Ml + σ2

NlG
l
K .

After some manipulations, the result in (36) is obtained.

4In most works [12], [13] and [18], they ignore the dependencebetween
the channel of the selected users and that of the remain users, and thus the
results therein are actually upper bounds for the exact throughput. Although
the authors in [15] have considered such dependence, the result is also an
upper bound. In [51], the authors have obtained a closed-form expression of
the exact joint PDF, which unfortunately are too intractable to analyze the
multiuser gain.
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