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An Analysis on Secure Communication
in Millimeter/Micro-Wave Hybrid Networks

Satyanarayana Vuppala, Member, IEEE, Sudip Biswas, Student Member, IEEE
and Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—The secrecy outage of millimeter wave (mmWave)
overlaid micro wave (µWave) networks under the impact of
blockages is analyzed, and closed form as well as integral
expressions are provided. Specifically, using a network model that
accounts for uncertainties both in node locations and blockages,
we characterize the conditional connection outage probability
and the secrecy outage probability of hybrid networks with
multiple eavesdroppers under basic factors such as density of
eavesdropping nodes, antenna gain and blockage density. Upper
and lower bounds of the conditional secrecy outage probability
for both line-of-sight and non line-of-sight links are derived. As
a desirable side effect, certain factors such as blockages and
reduced antenna gain can decrease the secrecy outage probability
in mmWave networks. This can be considered as a tradeoff
between outage capacity and secrecy outage capacity with respect
to blockages. Hence, blockages which have been proved to be
detrimental for achieving higher data rates in mmWave systems,
can be helpful for systems with secrecy constraints. Finally, we
have shown the co-existence of mmWave and µWave networks
from a secrecy perspective.

Index Terms—Secrecy outage, random networks, blockages,
millimeter wave

I. INTRODUCTION

In recent years, the explosive growth of mobile data traffic
has led to an ever-growing demand for much higher capacity
and lower latency in wireless networks. It has culminated
in the development of the fifth generation (5G) wireless
communication systems, expected to be deployed by the year
2020, with key goals of data rates in the range of Gbps, billions
of connected devices, lower latency, improved coverage and
reliability, and low-cost, energy efficient and environment-
friendly operation. To meet the ever-increasing demands, and
keeping in mind that the current wireless spectrum is almost
saturated, it is imperative to shift the paradigm of cellular
spectrum to a new range of frequencies. In this regard,
millimeter wave (mmWave) bands with significant amounts
of unused or lightly used bandwidths appear to be a viable
way to move forward. With bands of 20-100 GHz available
for communication, mmWave can be the cornerstone in the
design of 5G networks.

MmWave bands are weak and cannot penetrate through
obstacles like buildings, concrete walls, vehicles, trees etc.
Due to these limitations, such bands were not considered
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suitable for cellular transmission for a long time. However,
recent studies and measurements [1], [2] have revealed that
the significant increase in omnidirectional path loss can be
compensated by the proportional increase in overall antenna
gain with appropriate beamforming. It was stated in [3] that
blockages cause substantial differences in the LOS and NLOS
path loss characteristics. Hence, it is important to appropriately
model the LOS and NLOS links in mmWave networks. The
measurements for path loss were carried out for 73 GHz
frequency in [4] and [5] where the first omnidirectional large-
scale path loss model was created for backhaul and mobile
access in New York City (Urban Environment).

The performance of mmWave cellular systems was analyzed
in [6] using real time propagation channel measurements. In
[7] a blockage model for mmWave was used to analyze the
rate and coverage area of such systems, a distance dependent
path loss model along with antenna gain parameters were
considered in [8] to characterize the propagation environment
in mmWave systems. While, recent literature [2], [6]–[8]
focuses on the coverage probability and transmission capacity,
physical layer security in mmWave communication has not yet
been properly explored.

The implementation of physical layer security in mmWave
communication systems is a very promising domain. Some
factors have been listed in [9] to leverage mmWave char-
acteristics for exploiting the physical layer security. On one
hand, the favorable factors of mmWave systems such as larger
bandwidth, directionality, large antenna arrays and short range
transmissions can be exploited to provide stronger physi-
cal layer security while on the other hand, the propagation
characteristics at mmWave frequencies needs to be modeled
precisely.

For example, the malicious user can implant highly direc-
tional antennas to intercept the communication. Also, larger
antenna arrays at the malicious user will give him higher
degrees of freedom to decode the message. Furthermore, the
addition of blockages may add uncertainty to the performance
of legitimate communication. This uncertainty may be bene-
ficial or a hindrance to the legitimate node, which we will
explore in a later section of the paper. It is of paramount
importance to characterize the achievable secrecy in mmWave
networks along with current micro wave (µWave) cellular
systems.

A great effort has been made to develop information-
theoretic security [10]–[12], which indicates the possibility
of securing communication links without cryptography and
in the presence of transparent eavesdroppers. The theoretical
foundations of information-theoretic security were led by
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Wyner, who introduced the concept of wire-tap channel and
analyzed the existence of a reliable transmission condition to
achieve perfect secrecy in discrete memoryless channels [10].
Since then, the concept of information-theoretic security, i.e.
physical layer security, has been extended to specific channels,
such as, additive white Gaussian noise (AWGN) channels by
Cheong and Hellman [11], and broadcast wireless channel by
Csiszár and Körner [12]. In this direction, channel propagation
effect has been taken into consideration. For instance, the se-
crecy capacity of wireless fading channels was investigated in
[13] based on the channel state information (CSI). Expressions
for the outage probability and average secrecy capacity of
quasi-static fading channels were derived in [14] by studying
both the perfect and imperfect CSI scenarios.

Noticeably, previous works in the area such as those afore-
mentioned are marked by significant abstraction from practical
applicability, with various factors of relevance ignored for
the sake of simplicity, to include: 1) the fact that wireless
channels are often subjected to fading and 2) the fact that
communicating devices often compose networks of unknown
topology (randomly distributed nodes).

A few decades later, the increasing prospect of putting infor-
mation theoretical secrecy concepts to actual use has motivated
the community to deepen its understanding of the inherent
secrecy capabilities of wireless systems by taking into account
more realistic conditions of the wireless medium. Addressing
point 1, for instance, the secrecy capacity of wireless fading
channels was investigated in [13], [15] with expressions for the
outage probability and average secrecy capacity of quasi-static
fading channels also derived expressions in [14]. Considering
point 2, and specifically when studying wireless secrecy in
random networks using stochastic-geometric tools [16], the
notion of secrecy graphs has emerged [17].

Following this trend, secrecy capacity scaling laws were
studied in [18] and recently a new perspective on the role of
node spatial distribution with wireless propagation mediums
and aggregate network interference on network secrecy has
been given in [19]. The secrecy capacity of unicast links in
the presence of eavesdroppers was investigated in [20], where
the transmission to the k-th legitimate node was based on the
order of the distance between the source and the destination.
Although there is an increasing tendency of research on intrin-
sic secrecy in random wireless networks, most current works
focus on µWave systems which do not take into consideration
the effect of blockages. Hence, it is imperative to devise a more
general model which can take into account blockage effects
and various wireless propagation mediums.

To the best of the authors’ knowledge, characterization
of secrecy outage considering blockages at the legitimate
user or eavesdropper has not yet been evaluated in mmWave
random networks. In this article, we consider a mmWave
overlaid µWave network in the presence of eavesdroppers. We
model the received signal-to-interference-noise ratio (SINR)
distributions at the user and eavesdroppers and consequently
the expressions for the connection outage probability and
secrecy outage probability of random mmWave networks in the
presence of eavesdroppers are derived. At this point we would
like to state that this model is applicable only to an outdoor

μWave 
BSmmWave 

BS

Blockages

Eavesdroppers

Typical 
UE

Fig. 1: An illustration of a mmWave overlaid µWave network
model.

typical user. We consider a stochastic geometry approach to
characterize the spatially distributed µWave, mmWave base
stations (BSs) and the eavesdroppers. It is assumed that the
BSs and the eavesdroppers in the mmWave overlaid network
follow PPPs but are independent of each other.

The remainder of the paper is organized as follows. The
system model is described in Section II, where the formu-
lations of the blockage model and the received SINR’s are
briefly revised and preliminaries about perfect transmission
and association probabilities are discussed in Section III. In
Section IV, we characterize the connection and secrecy outage
probabilities for µWave links, while Section V models the
outage probabilities for mmWave links. Based on those derived
expressions, numerical results are drawn and briefly discussed
in Section VI. Finally, concluding remarks are offered in
section VII.

II. SYSTEM MODEL

We consider the secure downlink transmission in a hybrid
cellular network comprising of both mmWave and µWave
networks as shown in Fig. 1. The mmWave BSs are modeled as
a two dimensional homogeneous poisson point process (HPPP)
Φm with density λm, while the µWave BSs follow another
homogeneous PPP Φµ with density λµ. The eavesdroppers
also follow a PPP Φe with density λe. All the processes are
independent of each other. A typical user equipment (UE) is
assumed to be located at origin. A simple offloading technique
is adopted wherein the typical UE is offloaded to the µWave
network if the capacity achieved on the mmWave network
drops below a certain threshold. Similar offloading strategies
were analyzed in [8] and stated to be reasonable for mmWave
based networks.

Directional beamforming modeling: Due to the small wave-
length of mmWaves, directional beamforming can be exploited
for compensating the path loss and additional noise. Ac-
cordingly, antenna arrays are deployed at the transmitter and
receiver pairs. In our model, we assume all the transmit and
receiver pairs to be equipped with directional antennas with
sectorized gain pattern. In particular, we assume that both the
transmit and receiver pairs implement beamforming and main



SUBMITTED TO IEEE TRANSACTIONS ON COMMUNICATIONS 3

lobe is aligned in the direction of dominant propagation path
while side lobe directs energy in all other directions. Let θ
be the beamwidth of the main lobe. Then the antenna gain
pattern of node about some angle φ is given as [21]

Gq(θ) =

{
Gmax
q if|φ| ≤ θ

Gmin
q if|φ| ≥ θ

}
, (1)

where q ∈ UE,BS, φ ∈ [0, 2π) is the angle of boresight
direction, G(max)

q and G
(min)
q are the array gains of main

and side lobes, respectively. Similarly, the user gain pattern
can also be modeled. However, following the approach as
used in [8], we consider omnidirectional antennas at the
UE. The beams of all non-intended links are assumed to be
randomly oriented with respect to each other and hence the
effective antenna gains on the interfering links are random.
For simplicity, we assume that the link between the BS and
the UEs is aligned and henceforth, we consider the gain to be
G.

Blockage modeling: We consider the blockages to be sta-
tionary blocks which are invariant with respect to directions.
Leveraging the modeling of blockage in [22], we consider a
two state statistical model for each and every link. The link
can be either LOS or NLOS. LOS link occurs when there is
a direct propagation path between the BS and the UE while
NLOS occurs when the link is blocked and the UE receives
the signal through reflection from a blockage. Let the LOS
link be of length r, then the probabilities of occurrence pL(.)
and pN(.) of LOS and NLOS states respectively can be given
as a function of r as

pL(r) = e−βr, pN(r) = 1− e−βr, (2)

where β is the blockage density.
Another model that has been considered in literature is a

fixed LOS probability model, as was depicted in [8]. Let the
LOS area within a circular ball of radius rD be centered around
the reference point. Then, if the LOS link is of length r, the
probability of the connection link to be LOS is given by pL

if r < rD and 0 otherwise. The parameters r and rD are
dependent on the geographical and deployment scenario of
the network. Our results are based on the data from [8].

SINR modeling: By a slight abuse of notation, we consider
Φm to be the set of interfering locations. The received SINR
for the typical UE can now be defined as

ζml ,
PmGl|hml |2rl−αm

σ2
m +

∑
i∈Φm

PmGi|hmi |2r
−αm
i

, (3)

where Gl is the antenna array gain function, hml is the fading
gain at the UE of interest, rl is the link length, σ2

m is the noise
power. hmi denotes each interference fading gain and ri is the
distance from the interferer i to the typical UE.

Similarly, SINR at any eavesdropper can be given as

ζme
,

PmGe|hme |2re
−αm

σ2
m +

∑
i∈Φm

PmGi|hmi |2r
−αm
i

. (4)

In mmWave networks, small scale fading does not have as
much of an impact on transmitted signals as compared to lower

TABLE I: Notations

Notation Description

Φµ Poisson Point Process (PPP) of µWave BS

λµ Density of µWave BS

Φm PPP of mmWave BS

λm Density of mmWave BS

Φe Poisson Point Process (PPP) of eavesdropper

λe Density of eavesdropper

ζµl The received SINR from µWave BS

ζml The received SINR from mmWave BS

m Nakagami-m Figure

Pµ Transmit power at µWave BS

Pm Transmit power at mmWave BS

αµ Path loss exponent for µWave systems

αm Path loss exponent for mmWave systems

Ge Antenna gain at eavesdropper

frequency systems. It is mentioned in literature [1], [2] that in
mmWave analysis, small scale fading can be ignored. How-
ever, to capture generalized propagation environment and for
analytical tractability, we consider Nakagami fading model1.

Under Nakagami-m channel model [16], the channel power
is distributed according to

Hm ∼ fHm(x;m) ,
mmxm−1e−mx

Γ(m)
, (5)

where m is the Nakagami fading parameter and Γ(m) is the
gamma function.
µWave modeling: The µWave channels are modeled simi-

larly to its mmWave counterparts with the only exception that
the antennas2 are now omni-directional with transmitted signal
power Pµ at µWave BSs and path loss exponent αµ. It is to be
noted that blockage effects are neglected for µWave systems
due to very low penetration loss of µWave signals.

Under the consideration of separate encoding scheme at
each BS, ith BS sends an information symbol si through a
linear beamforming vector vi = [ν1

i , · · · , ν
Nt
i ]T with unit

norm, i.e., ||vi||2 = 1, i ∈ Φµ. Here, Nt is the number of
antennas at the ith µWave BS. Therefore, the received signal
at the typical UE can be given as

y =
√
Pµh1,lvlr

−αµ/2
l sl +

∑
i∈Φµ

h1,ivir
−αµ/2
i si + ω1, (6)

where h1,i = [h1
1,i, · · · , h

Nt
1,i ] ∈ C1×Nt is the downlink

channel between ith µWave BS to the typical UE3 and each
entry is independently identically distributed (IID) complex
gaussian random variable with zero mean and unit variance.
ω denotes the additive Gaussian noise.

Without loss of generality, we consider a µWave UE located
at the origin. For notational simplicity, we remove the subscript
1 from the channel vector. Accordingly, the received SINR

1The choice of Nakagami-m fading to simulate the small scale fading is
commonly used in literature [1], [21], [22].

2We assume that the µWave BSs are equipped with Nt antennas and UEs
are equipped with single antenna.

3The subscript 1 in h1,l corresponds to the typical UE.
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for the typical UE and any eavesdropper can now be given
respectively as

ζµl ,
Pµ|hµlvl|2rl−αµ

σ2
µ +

∑
i∈Φµ

Pµ|hµivi|2r
−αµ
i

, (7)

ζµe
,

Pµ|hµevl|2re
−αµ

σ2
µ +

∑
i∈Φµ

Pµ|hµivi|2r
−αµ
i

. (8)

III. DEFINITIONS AND PRELIMINARIES

A. Perfect transmission characterization

In our system model, the communication links in both the
microwave and mmWave are assumed to be eavesdropped. To
combat this and enhance security, each link adopts a secrecy
coding scheme called Wyner code [10]. Hence, two kinds of
rates, namely the rate of transmitted confidential code words
Rs and the rate of the transmitted messages Rl, need to be
characterized at the transmitter. Depending on the choices of
Rl and Rs in the Wyner encoding scheme, the following
outage schemes are bound to happen.

Consider a scenario where a BS wishes to reliably and
securely transmit the confidential messages to its intended
user in the presence of eavesdroppers. In such a scenario, the
following definitions in [23] are worth mentioning here:

Non-zero capacity event: This occurs if the rate of trans-
mitted message R` is below the capacity of the link and the
received message is decoded with an arbitrarily small error.

Non-zero secrecy capacity event: This happens if the rate
Rs −R` is above the rate of the most detrimental eavesdrop-
ping link and the received message at the user provides no
information about the transmitter.

Remark 1: For given SINR thresholds Tl and Te, any
transmission is said to be perfect if ζml/µl > Tl and ζe < Te

4.
However, due to the wireless medium of communication, it

is appropriate to characterize their corresponding non-outage
probabilities with the perfect transmission scheme.

Remark 2: Therefore, the transmission is said to be (θ, ε)-
perfect transmission if Pr{ζml/µl > Tl} ≥ θ and Pr{ζe <
Te} ≥ ε where θ and ε denote the minimum non-outage
constraints at the user and the most detrimental eavesdropper
respectively.

Consequently, any transmission is said to be secure if and
only if (1,1)-perfect transmission is achieved. Additionally,
for (θ, ε)-perfect transmission, 1 − θ and 1 − ε represent
the maximum connection outage probability and maximum
secrecy outage probability respectively. Accordingly, we define
two important metrics of interest as given below.

Connection outage probability: We assume that the typical
UE associates itself with its strongest BS node. Thus, the
connection outage probability can occur when the UE is

4The subscripts µe and me are replaced with e hereinafter as the eaves-
dropper can operate in both mmWave or µWave frequencies. Tl , 2Rl − 1
and Te , 2Re−1 are the threshold SINR of any legitimate and eavesdropper
nodes, respectively.

connected to the strongest BS and if the received SINR falls
below Tl. It can be mathematically represented as

Pco(Tl) = Pr

[
max

x∈Φml/µl

ζ(x) < Tl

]
. (9)

Since the mmWave and µWave networks follow two inde-
pendent PPPs, it is possible to perform the analysis on both
the processes independently with an association probability.
Let pmm be the probability that the typical UE is offloaded to
the mmWave network, then pµ = 1− pmm is the probability
that the typical UE is offloaded to the µWave network.
Accordingly, the total connection outage probability can be
given as

Pco(Tl) = Pmm
co (Tl)pmm + Pµco(Tl)pµ (10)

where Pmm
co (Tl) and Pµco(Tl) denotes the conditional connec-

tion outage probabilities of mmWave and µWave networks,
respectively.

Secrecy outage probability: If the capacity of the channel
from the BS to any eavesdroppers is above the rate Re, i.e.,
log2(1+ζe) > Re, the security of the message is compromised.
In other words, the confidential message may not be perfectly
secure against the eavesdropper in R2. The probability of this
event is known as secrecy outage probability [23], which is
denoted by Ps.

Assume a set of eavesdroppers that can cause secrecy outage
as Be = {i ∈ Φe : ζi > Te}. Hence, we can define
the indicator function, 1A(e), which equals to 1 when the
eavesdropper e is in the set Be. The secrecy outage probability
can thus be described as the probability that at least one of
the eavesdroppers in set Be causes a secrecy outage, which
can be written as [23],

Ps(Te)= 1−EΦml/µl

[
EΦe

[
EX
[ ∏

e∈Be

(
1− 1A(e)

)]]]
, (11)

= 1− EΦml/µl

[
EΦe

[ ∏
e∈Φe

(
1− Pr

(
ζe > Te

)∣∣
Φml/µl ,Φe

]]
.

This follows from the independence of fading at each eaves-
dropper so that the expectation on X = (hme

/hµe
, hmi/hµi)

can be moved inside the product of Φe. Since it is difficult to
express Ps(Te), we consider the upper bound of equation (11)
which can be obtained by using the generating functional of
a PPP [23], [24] as5

Ps(Te) = 1−EΦml/µl

[
exp

[
−λe

∫
R2

Pr
(
ζe > Te

∣∣
Φml/µl

)
de

]]
.

(12)
Similar to connection outage probability characterization,

the total secrecy outage probability can be given as

Ps(Te) = Pmms (Te)pmm + Pµs (Te)pµ (13)

where Pmms (Te) and Pµs (Te) denotes the conditional secrecy
outage probabilities of mmWave and µWave networks, respec-
tively.

5Unless explicitly mentioned in the equations, we perform the analyses
using the secrecy outage expression for upper bound as given in (12).
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In addition, the lower bound of the secrecy outage proba-
bility can be obtained by considering only the nearest eaves-
dropper as

PLB
s (Te) =

∫ ∞
0

Pr{ζe(r) > Te}fre(re)dre, (14)

where fre(r) represents the probability distribution function
(PDF) of the distance between the nearest eavesdropper to the
associated BS. As the eavesdroppers are distributed according
to a homogeneous PPP distribution with density λe, the
distribution of the nearest neighbor is shown in [24] as

fre(re) = 2πλere exp(−λπr2
e ). (15)

B. Association probability

In this subsection, we give some qualitative comments
on µWave and mmWave tiers’ association probabilities. It
is assumed that the typical UE is associated with the best
BS, which provides the UE with the strongest signal. We
consider an identical bias factor Bµ or Bmm [25], [26], which
is always positive. When B = 1, no biasing is considered
and the association goes back to a traditional cell association
based on maximum received power or nearest node. We
consider that the UE is offloaded to either µWave or mmWave
network depending on the maximum received signal from BSs.
Leveraging the analysis from [25], we consider that the UE
is connected to the best BS in terms of long term averaged
biased received power. In such cases, the UE association is
generally conditioned on the least path loss distribution. So,
it is important to characterize such distributions in mmWave
networks under the effect of blockages. As mentioned earlier
in section II, any link i.e the distance between the UE and BS
in a mmWave network depends on the exponential blockage
probability model. Therefore, the least pathloss distribution in
a mmWave network is not the same as for the case of a µWave
network, as given in (15).

Lemma 1. The least path loss distribution in a mmWave
network can be given as

Fmm
ξl

(r)=1−exp

(
−πλm(rPmGlBm)

1
αN (16)

− 2πλm
β2 (1−e−β(rPmGlBm)

1
αL(1 + β(rPmGlBm)

1
αL ))

+ 2πλm
β2 (1−e−β(rPmGlBm)

1
αN (1 + β(rPmGlBm)

1
αN ))

)
.

Proof. The proof of this lemma can be obtained from the
proof of Theorem 1 of [27]. However, we present a sketch
of the proof here, since we repeatedly use the following
approach in later sections of the paper. Consider a point
process, where the points represent the path loss between the
UE and randomly placed BSs in a mmWave network. Let
φmm =

{
ξl ,

xαml
PmGlBm

}
be a homogeneous PPP of intensity

λm. Here, the distance is a random variable, and its LOS
state occurs with the probability of e−βx. By using Mapping
theorem [28, Theorem 2.34], the density function of this one

dimensional PPP under the effect of blockages can be given
as

Λ([0, r]) =

(rPmGlBm)

1
αL∫

0

2πλmxe
−βxdx (17)

+

(rPmGlBm)

1
αN∫

0

2πλmx(1− e−βx)dx.

Using the void probability of a PPP and with the help of
(17), the least path loss distribution in a mmWave network can
be given as (16).

Proposition 1. The association probability that a typical UE
is connected to the µWave network is given by

pµ=2πλµ

∞∫
0

r exp

(
−Λm

((
P̄mm

P̄µ

) 1
αm r

αµ
αm

))
e−πλµr

2

dr,

(18)
where P̄mm = PmGlBm; P̄µ = PµBµ and

Λm

(
P̄mm

P̄µ

1
αm r

αµ
αm

)
= πλm

(
P̄mm

P̄µ

) 1
αN r

αµ
αN (19)

− 2πλm
β2

1−e−β( P̄mm

P̄µ

) 1
αN r

αµ
αN
(

1 + β
(
P̄mm

P̄µ

) 1
αN r

αµ
αN

)
+ 2πλm

β2

1−e−β( P̄mm

P̄µ

) 1
αL r

αµ
αL
(

1 + β
(
P̄mm

P̄µ

) 1
αL r

αµ
αL

) .

Proof. This proof can be obtained by leveraging results of
Lemma 1 and [25, Lemma 1]. A sketch of the proof is given
in Appendix A for the sake of completeness.

Similarly, one can obtain the association probability pmm

using the above analysis.

IV. SECRECY OUTAGE PROBABILITY: µWAVE LINK

In this section, we derive the conditional connection outage
probability and the conditional secrecy outage probability of
µWave links. Before proceeding further, we would like to
state that we will start this section with the noise limited
scenario. This is just to keep the analysis tractable with respect
to mmWave systems, where it has been explicitly mentioned
in [2], [6], [8] that these networks in urban settings tend to be
noise limited rather than interference limited. However, it is
different for µWave systems where interference dominates the
noise. Accordingly, we will also consider the case where both
noise and interference play equivalent roles in determining
the SINR. Let us first consider the noise limited case where
noise power dominates the interference power. Using (9),
the connection outage probability of any microwave link by
neglecting interference is given in Proposition 1.
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Proposition 2. The conditional connection outage probability
of a typical µWave link in mmWave overlaid cellular networks
is given as

Pµco(Tl) = exp

(
−πλµP

2
α
µ T

−2
α
` EHµ

(
h

2
α
µl

))
. (20)

Proof. The proof is given in Appendix B.

Similarly, the conditional secrecy outage probability is given
in Proposition 2.

Proposition 3. The conditional secrecy outage probability of
a typical µWave link in mmWave overlaid cellular networks is
given as

Pµs (Te) = 1− (21)

× exp

− 2πλeΓ(
2
αµ

)

αµ

(
ATeσ

2
µ

Pµ

)−2
αµ Nt∑

i=1

(
Nt
i

)
(−1)i+1i

−2
αµ

 .

Proof. Denoting the integral expression in (12) asM, we have

M =

∞∫
0

Pr

(
Pµ|hµe

ve|2re
−αµ

σ2
µ

> Te

)
, (22)

=

∞∫
0

Pr

(
|hµeve|2 >

Tere
αµσ2

µ

Pµ

)
,

(a)
=

∞∫
0

re

1−

(
1− e−

ATer
αµ
e

Pµ

)Nt dre,

(b)
=

Nt∑
i=1

(
Nt
i

)
(−1)i+1

∞∫
0

ree
− iATer

αµ
e

Pµ dre,

=
Γ( 2

αµ
)

αµ

(
ATeσ

2
µ

Pµ

)−2
αµ Nt∑

i=1

(
Nt
i

)
(−1)i+1i

−2
αµ ,

where (a) is the result of Hµ = |hµeve|2, which follows a chi-
square distribution [29] with 2Nt degrees of freedom and uses
the tight upper bound of gamma random variable of parameter
ξ as

Pr{Hµ < γ} < (1− e−Aγ)ξ, (23)

with A = ξ
(ξ!)−1/ξ and (b) is the result of binomial expansion.

This proof concludes by substituting the closed form expres-
sion of M in (12).

Now taking interference into account, the conditional se-
crecy outage probability can be derived similarly as

Pµs (Te) = 1− exp

(
−2πλe

Nt∑
i=1

(
Nt
i

)
(−1)i+1 (24)

×
∞∫

0

ree
−
iATeσ

2
µr
αµ
e

Pµ EIµ

[
e
− iATer

αµ
e

Pµ
Iµ

]
dre

 ,

where EIµ [.] is the Laplace characterization of interference
from all other µWave BSs.

V. SECRECY OUTAGE PROBABILITY: MMWAVE LINK

In this section6, we derive the conditional connection outage
probability and the conditional secrecy outage probability of
mmWave cellular links. As discussed before, such networks in
urban settings tend to be noise limited rather than interference
limited, which is due to the fact that in the presence of
blockages, the signals received from unintentional sources
are close to negligible. In such densely blocked scenarios
(typical for urban settings), SNR provides a good enough
approximation to SINR for directional mmWave networks. As
mentioned before, in the following analysis we consider two
blockage models:

A. Random blockage model

Here, we leverage the modeling of blockage from [22]
where blockages are modeled randomly with LOS probability
of e−βr. In conjunction to the previous section, we char-
acterize the conditional secrecy outage probability without
considering interference in first part, and interference in the
second.

Proposition 4. The conditional connection outage probability
of a typical mmWave link for random blockage model is given
as

Pmm
co (Tl) = exp

−∑
j∈L,N

2πλm
αj

(
PmGl
σ2
m

) 2
αj

(25)

×
∞∫
Tl

y
−2
αj
−1

∞∫
0

pj(
y
z )z

2
αj fHm(z) dzdy

 .

Proof. The proof is given in Appendix C.

Corollary 1. The conditional connection outage probability
of the typical mmWave link for the case of Additive white
Gaussian noise (AWGN) is given as

Pmm
co (Tl)=exp

πλ( Tlσ2
m

PmGl

)− 1
αN−2πλ

β2

∑
j∈L,N

(
PmGl
σ2
m

) 2
αj

(26)

e−β
(
Tlσ

2
m

PmGl

)−
1
αj (

−1− β
(
Tlσ

2
m

PmGl

)− 1
αj

)
 .

Proof. A detailed proof is given in Appendix D.

Proposition 5. The conditional secrecy outage probability of
a typical mmWave for random blockage model link can be
given as

Pmm
s (Te) = 1− exp

−2πλe

∑
j∈L,N

m∑
i=1

(
m

i

)
(−1)i+1 (27)

×
∞∫

0

ree
−
iATeσ

2
mr

αj
e

PmGe pj(re)dre

 .

6For tractable analysis, we take the interference into account only for the
case secrecy outage probability.
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Proof. The proof follows from the Proposition 2. However,
for better understanding, readers can follow the proof from
Appendix E.

LOS analysis: In mmWave systems, the performance gap
between LOS and NLOS regimes is quite large. Therefore, it
is of paramount importance to characterize the LOS regime.

Corollary 2. The conditional secrecy outage probability in
LOS regime is given as

Pmm
s (Te)= 1−exp

(
−2πλe

m∑
i=1

(
m

i

)
(−1)i+1

[
PmGe

iATeσ2
m

(28)

−
√
πP

3/2
m e

β2PmGe

4iATeσ2
m

4(iATeσ2
m)3/2

erfc

(
β
√
PmGe

2
√
iATeσ2

m

)
 .

Proof. Considering α = 2, the integral expression M in (12)
under LOS scenario follows from proposition 4 as

M = 2πλe

m∑
i=1

(
m

i

)
(−1)i+1

∞∫
0

ree
−
iATeσ

2
mr

2
e

PmGe e−βredre. (29)

Now, substituting the closed form expression of (29) in (12),
the desired proof is obtained.

Corollary 3. The lower bound of conditional secrecy outage
probability in LOS regime is given in (30) on top of the
following page.

Proof. Considering α = 2, the conditional secrecy outage
probability (14) under LOS scenario can be given as

PmmLB
s (Te)=

∫ ∞
0

Pr{ζe(r) > Te}fre(re)e−βredre, (31)

=

∫ ∞
0

Pr

{
PmGehme

r−αe

σ2
m

> Te

}
fre(re)e−βredre,

(a)
=

m∑
i=1

(
m

i

)
(−1)i+1

∞∫
0

e
−
iATeσ

2
mr

2
e

PmGe fre(re)e−βredre,

(b)
= 2πλe

m∑
i=1

(
m

i

)
(−1)i+1

∞∫
0

ree
−
iATeσ

2
mr

2
e

PmGe e−πr
2
e e−βredre,

where (a) and (b) follow the same analyses as in proposition
2. Now, substituting the closed form expression of (31) in (12),
we obtain the desired proof.

At this point, it is worthwhile to mention some insights on
interference modeling in mmWave networks. As mentioned
earlier in beginning of this section, it is widely accepted
that interference may not play a significant role in urban
mmWave systems. However, Ad-hoc networks and indoor
mmWave systems may still be susceptible to some amount
of interference as depicted in [21]. In order to not to deviate
from the analysis, we now characterize conditional secrecy
outage probability by taking interference into account.

Thus, the conditional secrecy outage probability of a typical
mmWave link can be given as

Pmm
s (Te) = 1− exp

−2πλe

∑
j∈L,N

m∑
i=1

(
m

i

)
(−1)i+1 (32)

×
∞∫

0

ree
−
iATeσ

2
mr

αj
e

PmGe EIm

[
e
− iATer

αj
e

PmGi
Im

]
pj(re)dre

 ,

where EIm [.] is the Laplace representation of interference
from all other mmWave BSs. The detailed characterization
of the above integral is given in Appendix D.

Since we model the links between the BSs and the typical
UE as LOS and NLOS which are independent of each other,
we leverage the notion of mark from stochastic geometry to
further split the Poisson point processes into two independent
LOS and NLOS sub processes. Therefore, the interference Im
can be expressed as

Im = IΦL
m + IΦN

m . (33)

Hence, the conditional secrecy outage probability of a
typical mmWave link can now be given as

Pmm
s (Te) = 1− exp

−2πλe

∑
j∈L,N

m∑
i=1

(
m

i

)
(−1)i+1 (34)

×
∞∫

0

ree
−
iATeσ

2
mr

αj
e

PmGe

∏
j

EIm

[
e
− iATer

αj
e

PmGi
Ijm

]
pj(re)dre

 .

B. Fixed LOS model

Leveraging the modeling of blockage in [8], we consider
a simple LOS model for each and every link7. At this
point, we would like to note that the adoption offixed LOS
probability model in our analysis enables faster calculations of
the connection and secrecy outage probability, as it simplifies
expressions for the evaluation of the numerical integrals. It has
been shown via simulations in [22], [30] that the error due to
such an approximation (LOS step model) is generally small in
dense mmWave networks, which also motivates the use of this
first-order approximation of the LOS probability function. This
significantly simplifies the dense network analysis. As shown
in [22], the step function approximation generally provides a
lower bound of the actual SINR distribution, and errors due
to the approximation become smaller when the base station
density increases.

Proposition 6. The conditional connection outage probability
of a typical mmWave link for random blockage model is given
as

Pmm
co (Tl) = exp

−∑
j∈L,N

2πλm
αj

(
PmGl
σ2
m

) 2
αj

(ATl)
−2
αj (35)

×
m∑
i=0

(
m

i

)
(−1)i+1i

−2
αj Γ

(
2
αj
, iAtrd

))
.

7Here, we elucidate the conditional secrecy outage probability only. The
conditional connection outage probability follows easily from the previous
subsection with fixed pL.
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Pmm
s (Te)= 2−1

(
iATeσ

2
m

PmGe
+ π

)−1/2

−β e

β2

4

 iATeσ
2
m

PmGe
+π

√
πerfc

(
β2−1

(
iATeσ

2
m

PmGe
+ π

)−1/2
)

4

(
iATeσ

2
m

PmGe
+ π

)−3/2

. (30)

Proof. The proof follows from Proposition 3.

Proposition 7. The conditional secrecy outage probability of
a typical mmWave link for fixed LOS Model is given as

Pmm
s (Te) =1−exp

−∑
j∈L,N

pj
2πλer

2
d

αj

m∑
i=1

(
m

i

)
(−1)i+1 (36)

×Eα−2
α

(
iATeσ

2
mr
αj
d

PmGe

))
,

where Ea(b) denotes the exponential integral.

Proof. The proof follows from Proposition 4.

LOS analysis: Similar to the previous analysis on LOS
using the random blockage model, here we characterize the
conditional secrecy outage probability for fixed blockage
model.

Corollary 4. The conditional secrecy outage probability using
the fixed blockage model can be given as

Pmm
s (Te)=1−exp

(
−pLπλe

PmGe

Teσ2
m

m∑
i=1

(
m

i

)
(−1)i+1

i
(37)

×
(

1− exp
(
− i.ATeσ

2
mr

2
d

PmGe

)))
.

Proof. Consider α = 2, then the integral expression M in
(12) under LOS scenario is given as

M = 2πλe

m∑
i=1

pL

(
m

i

)
(−1)i+1

∞∫
0

ree
−
iATeσ

2
mr

2
e

PmGe dre. (38)

Therefore, by substituting the closed form expression of (38)
in (12), this proof concludes.

Corollary 5. The lower bound of conditional secrecy outage
probability in LOS regime is given as

PmmLB
s (Te) =

PmGe

2 (iATeσ2
m + πPmGe)

. (39)

Proof. Considering α = 2, the conditional secrecy outage
probability equation (14) under LOS scenario can be written
as

PmmLB
s (Te) =

∫ ∞
0

Pr{ζe(r) > Te}fre(re)dre, (40)

(b)
= 2πλe

m∑
i=1

(
m

i

)
(−1)i+1

∞∫
0

ree
−
iATeσ

2
mr

2
e

PmGe e−πr
2
e dre.

Similar to the previous proofs, this proof concludes by
substituting the closed form expression of (40) in (14).

Now, by taking interference into account, the conditional
secrecy outage probability of a typical mmWave link can now
be given as

Pmm
s (Te)=1−exp

−2πλe

∑
j∈L,N

pj

m∑
i=1

(
m

i

)
(−1)i+1 (41)

×
∞∫

0

ree
−
iATeσ

2
mr

αj
e

PmGe EIm

[
e
− iATer

αj
e

PmGi
I

]
dre

 ,

where EIm [.] is the interference from all other mmWave BSs.
The characterization of EIm [.] follows from the previous sub-
section.

VI. NUMERICAL RESULTS

In this section, we validate the system model and also
verify the results derived in the propositions. In general, the
computations are done through Monte Carlo simulations which
are then used to validate the analytical expressions. Unless
stated otherwise, most of the values of the parameters used
are inspired from literature mentioned in the references. For
the system guidelines, we mention these parameters and their
corresponding values in Table II.

With the expressions already derived, we can now study the
availability of secrecy in random mmWave overlaid µWave
networks in the presence of randomly distributed eavesdrop-
pers. In particular, we analyze the effect of change of param-
eters such as Ge, α, λe and Te on conditional secrecy outage
probability in Figures 3, 4, 5 and 6. The latter part of numerical
section and figures are devoted to explaining the importance
of blockage modeling from secrecy perspective.

A network of cell radius of 200m is considered. The trans-
mit power is set at 30dBm for mmWave and 43dBm for µWave
BS with thermal noise density of -174dBm/Hz. We begin by
plotting the association probability, pµ of µWave network with
respect to mmWave network in Fig. 2. It can be seen from
the figure that the association probability of µWave network
increases with the density of µ BSs, which is quite obvious. It
can also be seen that increasing the path loss exponent reduces
pµ. However, one interesting observation from the figure is
that, the blockage parameter, β has a significant impact on the
association probability when the µWave network experiences
higher path loss. Accordingly, the typical UE associates itself
to the mmWave network when it experiences more path loss
in the µWave network. This result confirms that, the typical
UE is always associated with the best BS (either mmWave or
µWave), providing the strongest signal.
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TABLE II: Simulation Parameters

Notation Parameter Values

m Nakagami-m figure 10

λe Density 0.00001

Rs Target rate 0.1

α Path loss exponent 2, 3.5, 4

Ge Antenna gain 2, 3, 5, 10dB

Nt Antenna number at µWave BSs 10

Since, now we have established the association probabilities
of the typical UE for the mmWave and µWave networks,
hereinafter, we analyze the conditional secrecy and connection
outage probability in the following figures. Fig. 3 shows the
conditional secrecy outage probability as a function of λe

for both the µWave and mmWave link which follows from
(24) and (41). It is evident from Fig. 3a that interference is
beneficial for secrecy capacity in µWave systems from the
perspective of increasing uncertainty at the eavesdropper. This
is due to the fact that as the density of BS λµ increases, the
conditional secrecy outage probability decreases. However, in
mmWave systems, due to the blockages, interference doesn’t
play major role, which is clearly evident from Fig. 3b. It can
also be seen that the increase in directional antenna gain at
the eavesdropper increases the secrecy outage probability.

In Fig. 4, we plot the conditional secrecy outage probability
as a function of Te considering the random blockage model for
different values of eavesdroppers antenna gains and path loss
exponents. Fig. 4a shows that the conditional secrecy outage
probability decreases with the increase in Te. It is evident from
this figure that highly directional beamforming may not always
be useful from a secrecy perspective as the eavesdroppers too
will have high gains and can force the communication into
secrecy outage. Therefore, there is a trade-off between the
achievable outage capacity and secrecy outage capacity.

Similar to Fig. 4a, Fig. 4b is plotted as a function of Te

for different values of αN. From this figure, it can be seen
that conditional secrecy outage probability decreases with the
increase in α. It is more likely to have higher path loss
exponent in mmWave systems than µWave systems. Hence,
it is intuitively acceptable that higher values of path loss
exponents degrade the communication more. Consequently,
the eavesdropper receives less information from the BS.

As mentioned earlier, any perfect transmission takes place if
and only if the transmitted messages satisfy both the minimum
connection outage and secrecy outage constraints. Fig. 5 shows
the connection outage probability as a function of mmWave
BS density. The connection outage probability decreases as
the mmWave BS density increases. From this figure, It is
worthwhile to mention that the increase in pL provides better
communication from the BS to the typical UE. Henceforth,
to characterize any perfect transmission scheme, we opt for a
higher LOS probability and a decent mmWave BS density.
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Fig. 2: Association probability of µWave network with respect
to mmWave network. Here, Pm = 30dBm, Pµ = 43dBm,
λm = 0.0001, αL = 2, αN = 4.
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Fig. 3: conditional secrecy outage probability as a function of
λe. Parameters - mmWave: m=10, Te=15dB, µWave: m=10,
Te=1dB.
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Fig. 4: Conditional secrecy outage probability as a function of
Te considering generalized blockage model.

Fig. 6 shows the comparison between LOS and NLOS
scenarios under the fixed blockage model. It can be observed
from the figure that the conditional secrecy outage probability
decreases as we move from LOS scenario to NLOS scenario.
Hence, it is evident that the NLOS scenario helps the com-
munication to transmit the message securely. This is due to
the fact that the blockage density is higher in NLOS scenario,
which provides higher signal loss at the eavesdropper.

Fig. 7 shows the conditional secrecy outage probability as a
function of λe for mmWave link considering the two blockage
models described under various blockage probabilities. This
analysis follows from (28) and (37). It is clearly evident
from the figure that the outage probability decreases with the
increase in blockage density. It can also be seen from the
figure that the performance gap between the two models used
is minimal. While from a practical standpoint, the random
blockage model may intuitively sound more functional, the
fixed LOS model can be categorically stated to be more useful
in obtaining analytical closed form expressions.
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Fig. 5: Connection outage probability as a function of λm.
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At this point, it is worthwhile to mention the fact that higher
path loss exponents, NLOS scenarios and dense blockage
environments can aid secrecy capacity in mmWave overlaid
µWave networks. In order to design a secure system in a hybrid
network, one should calculate the total secrecy outage prob-
ability from (13) with respect to association and conditional
secrecy outage probabilities of mmWave and µWave networks.

VII. CONCLUSION

The secrecy outage of mmWave overlaid µWave networks
under the impact of blockages was analyzed. A tradeoff
between outage capacity and secrecy outage capacity with
respect to blockages was seen. This can be expertly exploited
by network engineers to maintain a balance between higher
data rates and security. Furthermore, in mmWave systems high
antenna gains are usually preferred. However, this may not al-
ways be useful from a secrecy perspective as the eavesdroppers
too will have high gains and can force the communication into
secrecy outage. Moreover, higher path loss exponents, NLOS
scenarios and dense blockage environments were found to aid
secrecy capacity in such network models.

Our results are useful in quantifying the performance of
blockages on the conditional secrecy outage probability of
mmWave networks. Specifically, we would like to state that the
work presented in this paper gives the required initial analyses,
while reiterating some very important results, that can be
considered as a cornerstone for future works in enhancing
hybrid network security. We have also shown that co-existence
of mmWave and µWave networks from a secrecy perspective is
possible when the total secrecy outage probability with respect
to association and conditional secrecy outage probabilities of
mmWave and µWave networks is available.

APPENDIX A
PROOF OF PROPOSITION 1

Let pµ be the association probability of a typical user
connected to a µWave network, i.e., the probability that all
mmWave BSs have maximum path loss when the user is
connected to the nearest µWave BS. If rµ is the nearest µWave
BS node, then pµ can be represented as

pµ = Erµ
[
Pr
[
PµBµr

−αµ
µ > PmGlBmr

−αm
m

]]
,

=

∞∫
0

Pr
(

rαmm
PmGlBm

>
r
αµ
µ

PµBµ

)
frµ(r)dr, (42)

where Pr
(

rαmm
PmGlBm

>
r
αµ
µ

PµBµ

)
can be obtained by taking

complementary cumulative distribution function of equation
(16) in Lemma 1 and frµ(r) is obtained similar to equation
(15).

APPENDIX B
PROOF OF PROPOSITION 2

Let φµ =
{
xl ,

Pµ
σ2
µ
r
−αµ
l

}
be a path gain process. By using

Mapping theorem [28, Theorem 2.34], the density function of
this point process can be given as

λ(x) =
2πλµ
α

(
Pµ
σ2
µ

) 2
α
x
−2
α −1. (43)

Since our propagation process φµ is also affected by fading
Hµ, i.e φµ = {yi , hixi}, the density of this marked point
process using the displacement theorem [28] can be given as

λ̂(y) =

∞∫
0

λ(x)ρ(x, y) dx, (44)

where

ρ(x, y) =
d

dy
(1− FHµ(y/x)) = − y

x2 fHµ(y/x). (45)

where Hµ = |h1,iv1|2 is chi-squared with 2Nt degrees
of freedom. For more insights on this fading distribution,
interested readers can refer to [29, Lemma 2].

Therefore (44) can now be given as

λ̂(y) =
1

α

∞∫
0

2πλµ

(
Pµ
σ2
µ

) 2
α
x
−2
α −1ρ(x, y) dx

=
1

α

∞∫
0

2πλµ

(
Pµ
σ2
µ

) 2
α
x
−2
α −1fHµ(y/x) 1

x dx

(z= y
x )

=
1

α
2πλµ

(
Pµ
σ2
µ

) 2
α
y
−2
α −1

∞∫
0

z
2
α fHµ(z) dz

=
1

α
2πλµ

(
Pµ
σ2
µ

) 2
α
y
−2
α −1EHµ

(
h

2
α
µl

)
. (46)

Using the void probability of a PPP and from the definition
of connection outage probability according to (9), the connec-
tion outage probability in (Tl,∞) can thus be given as

Pco(Tl) = exp

− ∞∫
Tl

λ̂(y)dy

 (47)

= exp

−2πλµ
α

(
Pµ
σ2
µ

) 2
α EHµ

(
h

2
α
µl

) ∞∫
Tl

y
−2
α −1dy

 .

The proof concludes by evaluating the above integral in
equation (47).

APPENDIX C
PROOF OF PROPOSITION 4

Let φm =
{
xl = PmGl

σ2
m
r
−αj
l

}
be a path gain process, where

j ∈ {L, N}. Similar to the proof of Proposition 1, by using
Mapping theorem [28], the density function under the effect
of blockages can be given as

λ(x) =
∑
j∈L,N

2πλm
αj

(
PmGl
σ2
m

) 2
αj pj(x)x

−2
αj
−1
. (48)

We can obtain the density of marked point process as below.
Now (48) becomes

λ̂(y)=
∑
j∈L,N

2πλm
αj

∞∫
0

(
PmGl
σ2
m

) 2
αjpj(x)x

−2
αj
−1
ρ(x, y) dx, (49)

(z= y
x )

=
∑
j∈L,N

2πλm
αj

(
PmGl
σ2
m

) 2
αj y

−2
αj
−1

∞∫
0

pj(
y
z )z

2
αj fHm(z) dz.
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Using the void probability of a PPP, the path gain distri-
bution for best relay in interval of (Tl,∞) can thus be given
as

Pco(Tl) = exp

− ∞∫
Tl

λ̂(y)dy

 ,

= exp

−∑
j∈L,N

2πλm
α

(
PmGl
σ2
m

) 2
αj (50)

×
∞∫
Tl

y
−2
αj
−1

∞∫
0

pi(
y
z )z

2
αj fHm(z) dzdy

 .

APPENDIX D
PROOF OF COROLLARY 1

Similar to the proofs of previous Propositions 2 and 4, the
density function of a marked point process in AWGN case can
be given as

λ(x) =
∑
i∈L,N

2πλm
α

(
PmGl
σ2
m

) 2
αj pi(x)x

−2
α −1, (51)

=
2πλm
αL

(
PmGl
σ2
m

) 2
αL e−βP

1
αL x

−
1
αL x

−2
αL
−1

+
2πλm
αN

(
PmGl
σ2
m

) 2
αN

(
1− e−βP

1
αN x

−
1
αN

)
x
−2
αN
−1
.

Therefore, the connection outage probability can be simpli-
fied as

Pco(Tl) = exp

− ∞∫
Tl

λ(x)dx


= exp

πλm ( Tlσ2
m

PmGl

)− 1
αN − 2πλm

β2

∑
j∈L,N

(
PmGl
σ2
m

) 2
αj

(52)

e−β
(
Tlσ

2
m

PmGl

)−
1
αj (

−1− β
(
Tlσ

2
m

PmGl

)− 1
αj

)
 .

APPENDIX E
CHARACTERIZATION OF SECRECY OUTAGE PROBABILITY

Let us denote the integrand in the (12) as M.

Therefore,

M=2πλe

∑
j∈L,N

∫
R2

Pr

{
PmGehmer

−α
e

σ2
m

> Te|j
}

dr, (53)

(a)
= 2πλe

∑
j∈L,N

∫
R2

(
1− Pr

{
hme

<
Ter

α
e σ

2
m

PmGe
|j
})

dr,

= 2πλe

m∑
i=1

(
m

i

)
(−1)i+1

×

 ∞∫
0

ree
−
iAσ2

mTer
αL
e

PmGe EIm

[
e
− iATer

αL
e

PmGe
Im

]
e−βredre

+

∞∫
0

ree
− iATer

αN
e

PmGe EIm

[
e
−
iATeσ

2
mr

αN
e

PmGe
Im

]
(1−e−βre)dre

 ,

where (a) follows the same analyses as in Proposition 2.
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