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Abstract

A bit error rate (BER)-based physical layer security approach is proposed for finite blocklength. For

secure communication in the sense of high BER, the information-theoretic strong converse is combined

with cryptographic error amplification achieved by substitution permutation networks (SPNs) based

on confusion and diffusion. For discrete memoryless channels (DMCs), an analytical framework is

provided showing the tradeoffs among finite blocklength, maximum/minimum possible transmission

rates, and BER requirements for the legitimate receiver andthe eavesdropper. Also, the security gap is

analytically studied for Gaussian channels and the conceptis extended to other DMCs including binary

symmetric channels (BSCs) and binary erasure channels (BECs). For fading channels, the transmit

power is optimized to minimize the outage probability of thelegitimate receiver subject to a BER

threshold for the eavesdropper.

Index Terms

BER, error amplification, finite blocklength, physical layer security, strong converse.

I. INTRODUCTION

Security is a critical issue in communications [1] and it is particularly challenging with a

growing number of different wireless communication applications and various wireless devices.

Due to the broadcast nature of wireless medium, the wirelesssecurity is inherently more

vulnerable than the wired security: the eavesdropper may overhear and interpret the messages in

wireless communications more easily than in wireline communications. Traditionally, the issue

of security has been addressed at a higher layer by cryptography, which requires secret keys. A

problem of this approach is that it is often challenging to distribute and manage the secret keys,

especially for many emerging wireless networks. Furthermore, once the devices are physically

compromised by an adversary, the communication is no longersecure.

As a fundamentally different approach, the physical layer security, particularly information

theoretic security, has received a lot of attention. The information-theoretic security is based on

the pioneering work of [2], where the channel from the transmitter (Alice) to the eavesdropper

(Eve) was assumed to be a degraded version of the channel fromAlice to the legitimate

receiver (Bob), namely the degraded wiretap channel. For this channel, Wyner derived the

capacity-equivocation region. Later, this work was extended to the non-degraded case, where the

eavesdropper’s channel is not necessarily a degraded version of the legitimate user’s channel [3],

and also applied to Gaussian channels [4]. Recently, the information theoretic security and/or
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the physical layer security have regained much interest forsecure wireless communications.

In most of the works in the area of physical layer security, the security metric is defined

based on mutual information between Alice and Eve. If the mutual information is strictly zero,

it is perfectly secure, called perfect security [1]. With perfect security, Eve cannot obtain any

additional information about Alice’s message from Eve’s received signal. However, in order

to ensure such perfect security, the entropy of the secret key must not be smaller than the

entropy of the source message. In real communications, therefore, it is not practical to try to

achieve the perfect security. Addressing this issue, two non-perfect security notions have been

extensively studied: weak secrecy [2] and strong secrecy. The weak secrecy requires that the

mutual information rate, i.e., mutual information dividedby the blocklength (or codelength),

approaches zero when the blocklength goes to infinity. On theother hand, the strong secrecy

requires that the mutual information itself approaches zero when the blocklength goes to infinity.

Many researchers have designed codes providing the weak secrecy or strong secrecy [5]– [10].

Vast majority of the works have been devoted to the weak secrecy, mostly based on low-density

parity-check (LDPC) codes [5], [6] or polar codes [7] (also,see the references in [10]). Because

designing codes to achieve the strong secrecy is generally much more difficult, the works for the

strong secrecy were generally limited to simplistic scenarios such as noiseless Bob’s channel [7],

[8] or binary symmetric channel [9]. However, it has been argued that the weak secrecy might

be a too weak security condition [11], [12], and in fact, one can easily construct examples of

codes achieving weak security that are never secure in practice [10]. A problem of those codes

in [5]– [10] is that they are not directly applicable to continuous-input channels, such as additive

white Gaussian noise (AWGN) or fading channels. Another (perhaps more serious) problem is

that, for finite blocklength, it is not clear how to evaluate or quantify the strength of security

actually achieved by the codes designed based on strong or weak secrecy secrecy. Unless the

blocklength is very long, the codes might not be secure enough to be used in practical systems,

especially for the case of weak secrecy.

Other than the information theoretic security notions based on mutual information, there are

few other security measures considered in the literature. For example, the signal-to-interference-

plus-noise ratio (SINR) has been used as a secrecy measure inthe area of physical layer security

based on signal processing techniques [13], [14]. However,it is unclear how to exactly set an

SINR threshold and to evaluate what strength (or kind) of security can be actually achieved
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by an SNIR threshold. Another security measure considered in the literature is the block error

probability, i.e., decoding error probability of codeword. When the transmission rate is above the

channel capacity, by the strong converse [15], the block error probability approaches one as the

blocklength tends to infinity. Given a security condition interms of block error probability, for

a Gaussian wiretap channel, the authors of [16] studied the asymptotic transmission rate and the

rate for finite blocklength using a rate approximation expression [17, Theorem 54] for AWGN

channels. In [18], a coset lattice code was designed to ensure high block error probability at

Eve and low block error probability at Bob. However, a limitation of the approach based on

the block error probability only is that high block error probability at Eve does not necessarily

mean secure communication. This is because a block error event simply means that there is at

least one bit error within a block (or codeword). As an example, if there is always only one bit

error in a block, the block error probability is one. However, all the remaining bits except the

particular single bit can be decoded by Eve, which is certainly not secure.

Arguably, apractically effective and useful security measure in the physical layersecurity

might be the bit error rate (BER). If it is possible to ensure that Eve’s BER is (very close to)

0.5, she essentially cannot recover any information bits transmitted by Alice. In [19], for AWGN

channels, punctured LDPC codes were designed to ensure highBER at Eve. The analysis was

limited to asymptotic case of LDPC codes and Eve’s BER is evaluated only by simulations, from

which it is not easy to obtain any theoretical insights. In [20], to induce high BER at Eve for

AWGN channels, Bose-Chaudhuri-Hocuenghem (BCH) codes andLDPC codes are combined

with scrambling/descrambling. The BER analysis of BCH codes was based on an approximate

BER equation of [21] under the assumption of bounded-distance decoding with hard decision,

and the study on LDPC codes was purely based on simulations.

In this paper, we also adopt the BER as the security measure for Eve. Using Gallager’s

random coding exponent and the strong converse over generaldiscrete memoryless channels

(DMCs), we first ensure that Bob’s block error probability tends to zero and Eve’s block error

probability tends to one. To amplify the errors such that Eve’s BER is close to 0.5, we then

utilize substitution permutation networks (SPNs). In particular, the error amplification by SPN

is not only mathematically analyzed based on the ideal modeling, but also numerically evaluated

based on actual simulation of a real SPN. Given BER requirements for Bob and Eve, for finite

blocklength, we analyze the maximum and minimum possible transmission rates. Also, the
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security gap is defined and analyzed for AWGN channels and then the concept is extended to

other DMCs. Focusing on Gaussian-input fading channels, weanalytically optimize the transmit

power to minimize Bob’s reliability outage probability, subject to a security condition given in

terms of a BER lower-bound threshold for Eve. The summary of the contributions is as follows:

• For secure communication in the sense of high BER, the information-theoretic strong

converse is combined with cryptographic error amplification achieved by SPNs based on

confusion and diffusion.

• For DMCs, an analytical framework is provided showing the trade-offs among finite block-

length, maximum/minimum possible transmission rates, andBER requirements for Bob and

Eve.

• For Gaussian channels, with finite blocklength, the security gap is analytically studied and

the concept is extended to other DMCs including binary symmetric channels (BSCs) and

binary erasure channels (BECs).

• For fading channels, with finite blocklength, the transmit power is analytically optimized

to minimize Bob’s outage probability subject to a BER threshold for Eve.

A practical benefit of the BER-based physical layer securityis particularly evident when both

Bob’s and Eve’s channels are good and the channel quality difference is small:Cb > Ce ≫ 1

with Cb−Ce ≪ 1, whereCb is Bob’s capacity andCe is Eve’s capacity. If the weak secrecy or

strong secrecy constraint is imposed, the transmission rate is bounded by the secrecy capacity

given byCb − Ce ≪ 1 for the channels such as symmetric degraded wiretap channels [22] or

Gaussian channels [4]. On the other hand, if the high BER condition is imposed as a security

constraint and our approach is taken, the transmission ratecan go up toCb ≫ 1. Another

benefit of the proposed approach is that, for finite blocklength, we can ensure a high target BER

requirement for Eve, whereas for weak/strong secrecy, it isnot entirely clear how to ensure a

particular security requirement with finite blocklength.

The rest of this paper is organized as follows. In Section II,Gallager’s random coding

exponent and the strong converse are reviewed to derive Bob’s block error probability upper-

bound and Eve’s block error probability lower-bound. Also,it is demonstrated that the errors can

be effectively amplified by SPNs. In Section III, we first combine the strong converse and the

SPNs. Then the maximum/minimum rates and security gaps are analyzed given finite blocklength

and the BER requirements for Bob and Eve. Also, for fading channels, the transmission power
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is optimized to minimize the reliability outage probability subject to a security condition. In

Section IV, some numerical results are presented and the paper is concluded in Section V.

Notation: We use A := B to denote that A, by definition, is equal to B, and weuse A =: B

to denote that B, by definition, is equal to A. Also,CN (0, σ2) denotes a circularly symmetric

complex Gaussian distribution with varianceσ2 (or varianceσ2/2 per dimension).

II. GALLGER FUNCTION, STRONG CONVERSE, AND ERROR AMPLIFICATION

Assume that messageM represented byK bits is transmitted by Alice. Using a code composed

of 2K codewords, the message is encoded into a codewordXn of n symbols. The transmission

rateR is given by

R =
K ln 2

n
(nats/channel use). (1)

Bob’s received codeword is denoted byY n
b and Eve’s received codeword is denoted byY n

e . As-

suming both channels are DMCs, they are described by the conditional probability distributions

fYb|X(yb|x) andfYe|X(ye|x), respectively, for Bob and Eve. Let̂Mb andM̂e denote the decoded

messages at Bob and Eve, respectively. LetCb andCe denote the channel capacities for Bob

and Eve, respectively.

A. Bob’s Block Error Probability based on Gallager Function

Let C denote a code whose symbolsX are randomly generated by input distributionqX(x),

which is simply denoted byq(x) whenever there is no ambiguity. LetP b
err(R|C) = Pr(M 6=

M̂b|C) denote the decoding error probability of codeC at Bob. LetP b
err(R) denote the average

probability over the ensemble of all codes at Bob. The ensemble average block error probability

P b
err(R) at Bob can be upper-bounded as follows [23, Theorem 5.6.2]:

P b
err(R) = E[P b

err(R|C)] ≤ P b,U
err (R, ρ, q(x)) (2)

where the upper-boundP b,U
err (R, ρ, q(x)) is given by

P b,U
err (R, ρ, q(x)) = exp

(

−n
{

Eb
0 (ρ, q(x))− ρR

})

, 0 ≤ ρ ≤ 1. (3)

In the above equation, Gallager functionEb
0 (ρ, q(x)) is given by

Eb
0 (ρ, q(x)) = − ln

∑

yb

[

∑

x

q(x)fYb|X(yb|x)
1

1+ρ

]1+ρ

, 0 ≤ ρ ≤ 1 (4)
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where
∑

x is replaced by
∫

x
if X is continuous, and

∑

Yb
is replaced by

∫

Yb
if Yb is continuous.

Since the upper-boundP b,U
err (R, ρ, q(x)) is valid for any0 ≤ ρ ≤ 1 and for any distributionq(x),

the bound can be tightened by optimizingρ andq(x) as follows:

min
0≤ρ≤1

min
q(x)

P b,U
err (R, ρ, q(x)) (5)

or

min
0≤ρ≤1

{

max
q(x)

Eb
0 (ρ, q(x))− ρR

}

. (6)

In this paper, we will usĕq(x) andρ̆ to denote the optimal distribution and optimalρ, respectively,

which are defined as follows:

q̆(x) = argmin
q(x)

P b,U
err (R, ρ, q(x)) = argmax

q(x)
Eb

0 (ρ, q(x)) (7)

ρ̆ = arg min
0≤ρ≤1

P b,U
err (R, ρ, q̆(x)) = arg max

0≤ρ≤1

{

Eb
0 (ρ, q̆(x))− ρR

}

. (8)

WhenR < Ib(q(x)), the exponent in (3) is positive with maximization overρ [23, Section

5.6, p. 143]:

max
0≤ρ≤1

{

Eb
0 (ρ, q(x))− ρR

}

> 0, R < Ib(q(x)). (9)

WhenR < Cb, the exponent in (3) is positive with maximization overq(x) andρ [23, Section

5.6, p. 143]:

max
0≤ρ≤1

{

max
q(x)

Eb
0 (ρ, q(x))− ρR

}

> 0, R < Cb. (10)

WhenR < Cb, therefore, there exists at least one code of which block error probability upper-

bound tends exponentially to zero asn → ∞. With the optimal q̆(x) yielding the tightest

upper-bound, the asymptotic slope ofEb
0 (ρ, q(x)) whenρ approaches zero from the right is the

capacity of Bob’s channel [23, Section 5.6]:

Cb = lim
ρ↓0

1

ρ
max
q(x)

Eb
0 (ρ, q(x)) (11)

= max
q(x)

∂

∂ρ
Eb

0 (ρ, q(x))

∣

∣

∣

∣

ρ=0

. (12)
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B. Eve’s Block Error Probability based on Arimoto’s Strong Converse

Let P e
err(R|C) = Pr(M 6= M̂e|C) denote the block error probability of codeC at Eve. We first

defineP e,L
err (R, ρ′, q′(x)) as follows

P e,L
err (R, ρ′, q′(x)) = 1− exp (−n {Ee

0(ρ
′, q′(x))− ρ′R}) , − 1 < ρ′ ≤ 0 (13)

whereEe
0(ρ

′, q′(x)) is given by (4) withq(x), fYb|x(yb|x), andρ replaced byq′(x), fYe|x(ye|x),

and ρ′, respectively. WhenR > Ce and a priori probabilities are equal, Eve’s block error

probabilityP e
err(R|C) of any codeC is be lower bounded by [15], [24, Eq. (3.9.21)]:

P e
err(R|C) ≥ P e,L

err (R, ρ′, q̆′(x)), ∀C (14)

where q̆′(x) is given by

q̆′(x) = argmin
q′(x)

P e,L
err (R, ρ′, q′(x)) = argmin

q′(x)
Ee

0(ρ
′, q′(x)). (15)

Note that, unlike the case of upper-bound, the single-letter expression (14) of the lower-bound

is obtained with the particular input distribution̆q′(x).1 Since lower-boundP e,L
err (R, ρ′, q̆′(x)) is

still valid for any−1 < ρ′ ≤ 0, the tightest bound can be obtained by optimizingρ′ as follows:

ρ̆′ = arg max
−1<ρ′≤0

P e,L
err (R, ρ′, q̆′(x)) = arg max

−1<ρ′≤0
{Ee

0(ρ
′, q̆′(x))− ρ′R} . (16)

WhenR > Ce, the exponent in (13) is positive with maximization overρ′ and minimization

over q′(x): [15, Theorem 2] [24, Theorem 3.9.1]:

max
−1<ρ′≤0

{

min
q′(x)

Ee
0(ρ

′, q′(x))− ρ′R

}

> 0, R > Ce. (17)

WhenR > Ce and a priori probabilities are equal, therefore, the error probability upper-bound

of any code tends exponentially to one asn → ∞. With the particular distribution̆q′(x) yielding

the valid lower-bound for any code, the asymptotic slope ofEe
0(ρ

′, q′(x)) when ρ′ approaches

zero from the left is the capacity of Eve’s channel [15]:

Ce = lim
ρ′↑0

1

ρ′
min
q′(x)

Ee
0(ρ

′, q′(x)) (18)

= max
q′(x)

∂

∂ρ′
Ee

0(ρ
′, q′(x))

∣

∣

∣

∣

ρ′=0

. (19)

1Compared to the upper-bound tightened byq̆(x), the lower-bound determined by̆q′(x) might be considered to be weaker or

less tight becausĕq′(x) is obtained by minimizingEe
0(ρ

′, q(x)) rather than maximizing it. In return, the obtained lower-bound

is valid for all possible codes (rather than some codes in theensemble as in the upper-bound case).



9

C. Confusion and Diffusion: Error Amplification by SPN in Cryptography

In this subsection, the issue of error amplification is discussed. In cryptography, error ampli-

fication has been extensively and systematically studied for various applications including hash

functions and block ciphers such as Data Encryption Standard (DES) and Advanced Encryption

Standard (AES) [25]. A most common approach is to use substitution-boxes (S-boxes), which

are designed based on several criterions such as the completeness, avalanche property, etc. In

particular, the avalanche property plays a very important role. This property was first introduced

by Feistel [26]; but, the fundamental concept was actually based on Shannon’s confusion [1].

In [27], strict avalanche criterion (SAC) was defined as follows: SAC is satisfied if, whenever a

single input bit is complemented, each of all output bits changes with a 50% probability. Also,

high degree SAC can be defined [28]– [31]: SAC of degreel is satisfied if, wheneverl input

bits are complemented at the same time, each of the output bits changes with a 50% probability.

In general, it is very difficult to design large-size S-boxessatisfying SAC. In today’s practical

cryptographic systems, therefore, small-size S-boxes areoften used; for example,8× 8 S-boxes

are used for AES. In order to handle a larger number of input bits at the same time, substitution-

permutation networks (SPNs) are often used. An SPN is composed of multiple parallel-connected

S-boxes taking multiple input bits. The output bits from those S-boxes are permutated by a

permutation box (P-box). Typically, an SPN is designed by implementing several rounds of

alternating S-boxes and P-boxes.2 In fact, the design of alternating S-boxes and P-boxes is

based on Shannon’s two fundamental security concepts: confusion and diffusion [1]. In SPNs

for cryptographic applications, secret keys are typicallyused. In this paper, however, we do not

use any secret keys for SPNs because we will use SPNs only to amplify the errors (rather than

encrypting data as in cryptography). In the following, the error amplification effect of SPNs is

evaluated first by analysis assuming ideal S-boxes and then by simulation using real S-boxes.

In [32], assuming ideal S-boxes satisfying SAC, the output error probability of the SPN was

analyzed. LetK denote the number of input and output bits of the SPN. LetWr denote the

random variable representing the number of bit errors afterroundr. Let B denote the number

of input and output bits of each S-box. AssumingK is an integer multiples ofB, we use

J = K
B

to denote the number of S-boxes connected in parallel for each round. LetLr denote

2For example, AES has 10 rounds for 128 bit secret keys, 12 rounds for 192 bit secret keys, and 14 rounds for 256 bit secret

keys.
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the random variable representing the number of S-boxes in round r affected by the bit errors.

The distribution ofWr is given by [32]3

qWr
(wr) =

J
∑

lr=1

fWr|Lr
(wr|lr)

K
∑

wr−1=1

fLr |Wr−1
(lr|wr−1)qWr−1

(wr−1), for wr = 1, · · · , K (20)

where

fLr|Wr−1
(lr|wr−1) =

A1(lr, wr−1)

A2(wr−1)
, for lr = 1, · · · , J (21)

A1(l, w) =

J
∑

i=J−l

(−1)i−(J−l)

(

i

J − l

)(

J

i

)(

(J − i)B

w

)+

(22)

A2(w) =

(

K

w

)

(23)

fWr |Lr
(wr|lr) =

1

(2B − 1)lr

lr
∑

i=0

(−1)i
(

lr
i

)(

(lr − i)B

wr

)+

. (24)

In the above equation,
(

a
b

)+
=
(

a
b

)

if a ≥ b;
(

a
b

)+
= 0 if a < b. Using qWr

(wr), the BER at the

output of the SPN afterr rounds can be determined as follows

P SPN
BER(r,K) =

1

K

K
∑

wr=1

wrqWr
(wr), r = 1, 2, · · · . (25)

In order to actually determine the BER using (25), the initial distribution qW0
(w0) must be

explicitly given. As an example, for the scenario where there is only a single input bit error,

the initial distribution is given by

qW0
(w0) =







1, if w0 = 1

0, otherwise.
(26)

In Fig. 1, the output BER analytically obtained by (20)–(26)is plotted for different sizes of

SPNs withB = 8. The numberJ of S-boxes for each round is given byK
8

. One can see that,

with a small numberr of rounds, the BER is generally smaller for largerK, because it takes

more rounds for the case of largeK to spread the errors over the entire bits. However, for larger

number of rounds (e.g.,r ≥ 4), the BER is essentially 0.5 regardless of the sizeK of the SPN.

Above analysis and numerical results are based on the ideal S-boxes satisfying SAC. We now

evaluate the BER of an actual SPN composed of real S-boxes. Inthis paper, as an example,

we use the actual8× 8 S-boxes adopted for AES [25, Fig. 3.8], which is known to havegood

3Although this expression is given in closed-form, it becomes difficult to use asK increases, because the computational

complexity grows withK very quickly.
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avalanche property [33]. For the case of single input bit error, Fig. 2 shows the output BER

obtained by simulations. One can see that, by increasing thenumberr of rounds, it is possible to

make the output BER close to 0.5. This means that the input error can be effectively amplified

by actual SPNs.
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Fig. 1. BER at the output of the SPN composed of8× 8 theoreticalS-boxes satisfying SAC, when only one input bit is in

error out of totalK input bits. The numberJ of S-boxes for each round is given byK
8

. The BER is analytically obtained by

(20)–(26).

III. SECURE TRANSMISSION IN BER SENSE WITH FINITE BLOCKLENGTH

In this section, by combining the strong converse and cryptographic confusion and diffusion,

a transmission scheme that is secure in the BER sense is proposed. Then the rate margins,

security gains, and power optimization are discussed.

A. Combining Strong Converse and Cryptographic Confusion and Diffusion

WhenCe < R < Cb, by increasing blocklengthn, it is possible to make Bob’s block error

probability arbitrarily small and Eve’s block error probability arbitrarily large. Ensuring small

block error probability at Bob means reliable communication. However, ensuring high block

error probability at Eve does not necessarily mean that the transmission is secure, because a
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Fig. 2. BER at the output of SPN composed of8×8 practical S-boxes that are adopted for AES [25, Fig. 3.8], when only one

input bit is in error out of totalK input bits. The numberJ of S-boxes for each round is given byK
8

. The BER is numerically

obtained by simulation.

block error event simply means that there is at least a singlebit error in the block. As a simple

example, one may consider the case where only a single bit within a codeword is always in error

whenever the codeword is decoded. In this case, the block error probability is one; however, all

other bits except the one are decoded by Eve, which means the communication is never secure.

In order to address this issue, a method to induce high BER at Eve is discussed.

Channel

Encoder

Channel

Decoder

SPN

(no secret key)

Inverse SPN

(no secret key)

K bits n symbolsK bits

K bits K bits
| ( | )

Channel

Decoder

Inverse SPN

(no secret key)
K bits K bits

Alice 

Bob 

Eve 

| ( | )

Fig. 3. Block diagram of the proposed scheme.

The block diagram of the proposed scheme is presented in Fig.3. Using an SPN, Alice
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encrypts messageM of lengthK bits into bit sequenceSK of the same length, which is then

encoded into a codewordXn of length n symbols. Bob performs the inverse processing: he

decodes the received codewordY n
b into bit sequencêSK

b , which is then decrypted intôMb by

the inverse SPN. On the other hand, in principle, Eve can design her receiver as she wants, no

matter what it is. In this paper, Eve’s receiver structure isassumed to be the same as Bob’s,

which appears to be a reasonable assumption because otherwise it seems even more difficult for

her to estimateM . Eve decodes the received codewordY n
e into bit sequencêSK

e , which is then

decrypted intoM̂e by the inverse SPN.

At the receiver side (Bob or Eve), if no block decoding error occurs at the channel decoder,

there is no bit error at the input of the inverse SPN, and thus,no output bit errors. On the other

hand, when block decoding error occurs at the channel decoder, there is at least one bit error at

the input of the inverse SPN and the input error(s) will be amplified by the inverse SPN. The

BER PBER(R|C) for a codeC at the output of the inverse SPN is given by

PBER(R|C) = P SPN
BER(r,K)

∣

∣

block error
× Perr(R|C) (27)

wherePerr(R|C) denotes the block error probability at the output of the decoder andP SPN
BER(r,K)

∣

∣

block error

is the BER at the output of the inverse SPN given a block error.In order to (analytically or

numerically) compute the BERP SPN
BER(r,K)

∣

∣

block error
, the initial error distributionqW0

(w0) must

be determined from the condition that there was a block error, which means that there was at

least a single bit error at the input of the inverse SPN. However, the exact number of bit errors

within a block is random and the exact distribution of the number of bit errors is unknown.

Furthermore, the exact block error probabilities,Perr(R|C), for Bob and Eve are unknown. In

the following, therefore, we consider their bounds: for Bob, an upper-bound of the ensemble

averageE[Perr(R|C)] is used; and for Eve, a lower-bound ofPerr(R|C) is used.

For Bob, using ensemble average block error probability upper-boundP b
err(R) ≤ P b,U

err (R, ρ̆, q̆(x))

in (2) and noting thatP SPN
BER(r,K)

∣

∣

block error
is upper-bounded by 0.5,4 the ensemble average BER

of Bob is upper-bounded as follows:

P b
BER(R) ≤ 0.5P b,U

err (R, ρ̆, q̆(x)) (28)

=: P b,U
BER(R, ρ̆, q̆(x)). (29)

4Although 0.5 is a trivial BER upper-bound, it is actually tight in our case because the output BERP SPN
BER(r,K)

∣

∣

block error

of SPN given a block error is (very) close to 0.5 as long asr is large enough, e.g.,r ≥ 10, as shown in Figs. 1 and 2.
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For Eve, usingP e
err(R|C) ≥ P e,L

err (R, ρ̆′, q̆′(x)), ∀C in (14) andP SPN
BER(r,K) ≥ P SPN,L

BER (r,K), the

BER is lower-bounded as follows:

P e
BER(R|C) ≥ P SPN,L

BER (r,K)P e,L
err (R, ρ̆′, q̆′(x)), ∀C (30)

=: P e,L
BER(R, ρ̆′, q̆′(x)) (31)

whereP SPN,L
BER (r,K) is given by

P SPN,L
BER (r,K) = P SPN

BER(r,K)
∣

∣

only one input bit error
. (32)

That is,P SPN,L
BER (r,K) denotes the BER at the output of the inverse SPN when there is only a

single input bit error (rather than at least one input bit error), andP SPN,L
BER (r,K) can be obtained

by analysis or simulation as in Section II.C.

In general, the optimal distribution̆q(x) making the upper bound tightest and the distribution

q̆′(x) making the lower bound valid for anyC are not necessarily the same, i.e.,q̆(x) 6= q̆′(x).

For symmetric DMCs, however, they are the same and given by equi-probable distributions.

Lemma 1:For symmetric DMCs including BSC, BEC, and binary input (BI)-AWGN, we

have

q̆(x) = q̆′(x) = qequ(x) (33)

whereqequ(x) is the equi-probable distribution.

Proof: See Appendix A. �

In our scheme, two bounds are imposed at the same time given a single transmitter (Alice).

Therefore, it is important to ensure the existence of such code satisfying both bounds. That

is, it must be ensured that at least a code exists for which Bob’s BER (not Bob’s ensemble

average BER) is upper-bounded byP b,U
BER(R, ρ̆, q̆(x)) and Eve’s BER is lower-bounded by

P e,L
BER(R, ρ̆′, q̆′(x)) at the same time. Such existence is shown in the following.

Lemma 2:WhenCe < R < Cb and a priori probabilities are the same,

∃C such that P b
BER(R|C) ≤ P b,U

BER(R, ρ̆, q̆(x)) and P e
BER(R|C) ≥ P e,L

BER(R, ρ̆′, q̆′(x)). (34)

Proof: WhenR < Cb, there existsat least onecode for which Bob’s BER is upper-bounded

by P b,U
BER(R, ρ̆, q̆(x)). Furthermore, whenR > Ce and a priori probabilities are the same, Eve’s

BER for any code is lower-bounded byP e,L
BER(R, ρ̆′, q̆′(x)). Therefore, there must exist a code

satisfying both. �
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For the asymptotic case of infinite blocklength, we havelimn→∞ P b,U
err (R, ρ̆, q̆(x)) = 0 and

limn→∞ P e,L
err (R, ρ̆′, q̆′(x)) = 1 whenCe < R < Cb. Thus, Bob’s BER upper-bound and Eve’s

BER lower-bound are asymptotically given by

lim
n→∞

P b,U
BER(R, ρ̆, q̆(x)) = 0, R < Cb (35)

lim
n→∞

P e,L
BER(R, ρ̆′, q̆′(x)) = P SPN,L

BER (r,K), R > Ce. (36)

Recall thatP SPN,L
BER (r,K) can be made very close to 0.5 by increasing the numberr of rounds,

as demonstrated in Figs. 1 and 2.

B. Rate Upper and Lower Bounds for Finite Blocklength

In practice, the blocklengthn is finite, and thus, it is not possible to achieveP b,U
BER(R, ρ̆, q̆(x)) →

0 whenR < Cb. In this paper, therefore, Bob’s BER upper-bound is constrained to be smaller

than a BER threshold,0 < Pb,Th
BER ≤ 0.5, as follows:

P b
BER(R) ≤ P b,U

BER(R, ρ̆, q̆(x)) ≤ Pb,Th
BER . (37)

This condition will be referred to as the reliability condition. To adjustPb,Th
BER , it is possible to

use a block error probability threshold0 < Pb,Th
err ≤ 1, which is related toPb,Th

BER as follows:

Pb,Th
BER = 0.5Pb,Th

err . (38)

For high reliability,Pb,Th
err should be set small (e.g.,10−6). Similar to Bob’s case, with finite

blocklengthn, it is not possible to achieveP e,L
BER(R, ρ̆′, q̆′(x)) → P SPN,L

BER (r,K) for Eve when

R > Ce. Therefore, Eve’s BER lower-bound is constrained to be larger than a BER threshold,

Pe,Th
BER with 0 ≤ Pe,Th

BER < P SPN,L
BER (r,K) as follows:

P e
BER(R|C) ≥ P e,L

BER(R, ρ̆′, q̆′(x)) ≥ Pe,Th
BER, ∀C. (39)

This condition will be referred to as the security condition. To adjustPe,Th
BER, it is possible to use

a block error probability threshold0 ≤ Pe,Th
err < 1, which is related toPe,Th

BER as follows:

Pe,Th
BER = P SPN,L

BER (r,K)Pe,Th
err . (40)

For high security,Pe,Th
err should be set large (e.g.,0.999999).

When the reliability condition is imposed, the highest possible rate is lower thanCb. Also,

when the security condition is imposed, the lowest possiblerate is higher thanCe. In the

following, the rate differences are defined.
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Definition 1:The rate margin from above is defined by∆Rb := Cb−Rsup and the rate margin

from below is defined by∆Re := Rinf −Ce, where the highest allowable transmission rateRsup

and the lowest allowable transmission rateRinf are determined by

Rsup = sup
0≤R<Cb

R subject to P b,U
BER(R, ρ̆, q̆(x)) ≤ Pb,Th

BER (41)

Rinf = inf
R>Ce

R subject to P e,L
BER(R, ρ̆′, q̆′(x)) ≥ Pe,Th

BER. (42)

�

In the following theorem,∆Rb and∆Re are analyzed.

Theorem 1: For Pb,Th
err = 1, we have∆Rb = 0. For 0 < Pb,Th

err < 1, we have

∆Rb = −
1

nρ̆
lnPb,Th

err + Cb −
1

ρ̆
Eb

0 (ρ̆, q̆(x)) (43)

≥ −
1

nρ̆
lnPb,Th

err (44)

> 0 (45)

where optimal̆ρ is determined by̆ρ = argmax0<ρ≤1

{

Eb
0 (ρ, q̆(x))− ρRsup

}

. ForPe,Th
err = 0, we

have∆Re = 0. For 0 < Pe,Th
err < 1, we have

∆Re =
1

nρ̆′
ln
(

1− Pe,Th
err

)

+
1

ρ̆′
Ee

0(ρ̆
′, q̆′(x))− Ce (46)

≥
1

nρ̆′
ln
(

1− Pe,Th
err

)

(47)

> 0 (48)

where optimalρ̆′ is determined by̆ρ′ = argmax−1<ρ′<0 {Ee
0(ρ

′, q̆′(x))− ρ′Rinf}. As n → ∞,

both rate margins tend to zero:∆Rb → 0 and∆Re → 0.

Proof: See Appendix B. �

From Theorem 1, one can see that, when0 < Pb,Th
err < 1, the rate marge from above∆Rb is

always positive, inversely proportional ton and ρ̆, and logarithmically inversely proportional to

Pb,Th
err . Thus, to reduce∆Rb, it appears that increasing the blocklength would be more effective

than increasingPb,Th
err . A similar observation can be made for the rate margin from below ∆Re.

Let ∆R = Rsup − Rinf denote the rate interval in which the actual transmit rateR can be

chosen. When∆R > 0, it is possible for Alice to transmit datareliably andsecurelysatisfying

(37) and (39). However, if∆R < 0, it is not possible to choose a rateR satisfying both

conditions at the same time, and the data transmission is suspended. Letting∆C = Cb − Ce

denote the capacity interval, the difference between capacity and rate intervals is given by
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∆C − ∆R = ∆Rb + ∆Re > 0. For the case of fading channels, the intervals are random

variables and we havePr(∆C < 0) < Pr(∆R < 0), meaning that the data suspension probability

increases with shorter blocklength and stronger reliability/security conditions.

Remark 1:Ideally, the rate margins should have been defined using the constraintsP b
BER(R) ≤

Pb,Th
BER and P e

BER(R|C) ≥ Pe,Th
BER, rather from P b,U

BER(R, ρ̆, q̆(x)) ≤ Pb,Th
BER and

P e,L
BER(R, ρ̆′, q̆′(x)) ≥ Pe,Th

BER as in Theorem 1. Thus, the results of Theorem 1 can be interpreted

as follows: There existsat lease onecode whose rate margins from above and below arenot

larger than∆Rb and∆Re, respectively.

C. Security Gap

For some specific codes over BI-AWGN channels, the security gap was defined as the differ-

ence between Bob’s received signal to noise ratio (SNR) required to ensure Bob’s BER smaller

than a threshold and Eve’s received SNR required to ensure Eve’s BER larger than a threshold

[19], [20]. In general, the smaller the security gap, the suitable and more efficient the code for

secure communications based on the BER security measure. Bysimulating specifically designed

punctured-LDPC codes for BI-AWGN channels, the authors of [19] numerically obtained the

security gap for their own codes. Similarly, in [20], the security gap was numerically obtained

by simulating some specific BCH and LDPC codes combined with scrambling/descrambling for

BI-AWGN channels. In this subsection, a fundamental limit of the security gap for any code

with finite blocklength is studied for our proposed secure communications of combining strong

converse and error amplification.

Consider the unconstrained Gaussian channel, where the received signals at Bob and Eve are

given by

Yb,i = Xi + ηb,i, i = 1, · · · , n (49)

Ye,i = Xi + ηe,i, i = 1, · · · , n (50)

whereηb,i ∼ CN (0, σ2
b) andηe,i ∼ CN (0, σ2

e ) represent AWGNs at Bob and Eve, respectively.

The transmitted signalXi is normalized such thatE[|Xi|2] = 1. Then the SNRs at Bob and Eve,

respectively, are given byγb = E[|Xi|2]
σ2
b

= 1
σ2
b

andγe =
E[|Xi|2]

σ2
e

= 1
σ2
e
. We now define the security

gap as follows.

Definition 2: For AWGN channels, the security gap∆S is defined by

∆S := 10 log10
γinf
b

γsup
e

(51)
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where the lowest SNRγinf
b for Bob and the highest SNRγsup

e for Eve are determined by

γinf
b = inf

γb>γ0
γb subject to P b,U

BER(R, ρ̆, q̆(x), γb) ≤ Pb,Th
BER (52)

γsup
e = sup

0≤γe<γ0

γe subject to P e,L
BER(R, ρ̆′, q̆′(x), γe) ≥ Pe,Th

BER. (53)

In the above equations,γ0 = C−1
AWGN(R), whereCAWGN(γ) = ln(1 + γ) denotes the capacity of

AWGN channels. �

In order to determine Bob’s tightest ensemble average BER upper-bound and Eve’s valid BER

lower bound for any code, the optimal input distributionsq̆(x) andq̆′(x) must be first determined

by maximizingEb
0 (ρ, q(x), γb) and minimizingEe

0(ρ
′, q′(x), γe), respectively. Such optimizations

are generally challenging, because the optimizations should be numerically performed and the

optimal distributions depend onγb, γe, andR (throughρ̆ andρ̆′). In this subsection, for analytical

tractability, we choose the input distributions asCN (0, 1), which is denoted byqCN (x). With

qCN (x), the upper-bound of Bob’s ensemble average BER and the lower-bound of Eve’s BER

are given in closed-form as follows:

P b,U
BER(R, ρ, qCN (x), γb) = 0.5 exp

(

−n
{

Eb
0 (ρ, qCN (x), γb)− ρR

})

(54)

P e,L
BER(R, ρ′, qCN (x), γe) = P SPN,L

BER (r,K) · (1− exp (−n {Ee
0(ρ

′, qCN (x), γe)− ρ′R})) (55)

where

Eb
0 (ρ, qCN (x), γb) = − ln

(

1 +
γb

1 + ρ

)−ρ

, 0 ≤ ρ ≤ 1 (56)

Ee
0(ρ

′, qCN (x), γe) = − ln

(

1 +
γe

1 + ρ′

)−ρ′

, − 1 < ρ′ ≤ 0. (57)

To determine∆S for AWGN channels, the highest SNRγinf
b and the lowest SNRγsup

e are

first obtained in the following lemma.

Lemma 3:The solutions to (52) and (53) with̆q(x) = q̆′(x) = qCN (x) are given by

γinf
b =







γ0, if Pb,Th
err = 1

gb(ρ̆), if 0 < Pb,Th
err < 1

(58)

γsup
e =







γ0, if Pe,Th
err = 0

ge(ρ̆
′), if 0 < Pe,Th

err < 1
(59)

where

gb(ρ) = (1 + ρ)
(

(

Pb,Th
err

)− 1
nρ eR − 1

)

(60)

ge(ρ
′) = (1 + ρ′)

(

(

1−Pe,Th
err

)− 1

nρ′ eR − 1
)

. (61)
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Optimal ρ̆ and ρ̆′ are determined by

ρ̆ = arg min
0<ρ≤1

gb(ρ) (62)

ρ̆′ = arg max
−1<ρ′<0

ge(ρ
′). (63)

The optimal solution̆ρ to (62) always exists for left-open interval(0, 1] and gb(ρ̆) > γ0. The

optimal solutionρ̆′ to (63) always exists for open interval(−1, 0) andgb(ρ̆′) < γ0. Also gb(ρ̆
′)

is positive if and only if the following condition is satisfied:
(

1−
2

n
ln(1− Pe,Th

err )

)

(

1− Pe,Th
err

)
1
n eR > 1. (64)

Proof: See Appendix C. �

From the lemma, we immediately have the following result.

Theorem 2:When 0 < Pb,Th
err < 1 and 0 < Pe,Th

err < 1, the security gap∆S with q̆(x) =

q̆′(x) = qCN (x) is given by

∆S = 10 log10

(1 + ρ̆)
(

(

Pb,Th
err

)− 1
nρ̆ eR − 1

)

(1 + ρ̆′)

(

(

1−Pe,Th
err

)− 1

nρ̆′

eR − 1

) (65)

whereρ̆ and ρ̆′ are given by (62) and (63), respectively. �

It is not difficult to showlimn→∞∆S = 0, which one can expect. Also, if one takes a high

SNR approximation assumingγb ≫ 1 andγe ≫ 1, it is easier to obtain analytical insights into

the security gap. Whenγb ≫ 1 andγe ≫ 1, the upper-bound of Bob’s ensemble average BER

and the lower-bound of Eve’s BER can be approximated as follows:

P b,U
BER(R, ρ, qCN (x), γb) ≃ 0.5 exp

(

−n

{

− ln

(

γb
1 + ρ

)−ρ

− ρR

})

, 0 ≤ ρ ≤ 1 (66)

P e,L
BER(R, ρ′, qCN (x), γe) ≃ P SPN,L

BER (r,K) ·

(

1− exp

(

−n

{

− ln

(

γe
1 + ρ′

)−ρ′

− ρ′R

}))

,

−1 < ρ′ ≤ 0. (67)

From the approximate BER bounds, the security gap is obtained as follows:

∆S ≃ −
1

nρ̆
10 log10P

b,Th
err +

1

nρ̆′
10 log10

(

1−Pe,Th
err

)

+ 10 log10

(

1 + ρ̆

1 + ρ̆′

)

(68)

where0 < ρ̆ ≤ 1 and−1 < ρ̆′ < 0. From this expression, one can easily see that the security gap

is inversely proportional ton and logarithmically inversely proportional toPb,Th
err and(1−Pe,Th

err ).

Note that it is incorrect to interpret (68) to mean that, becauseR does not explicitly appear
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in (68), ∆S becomes independent ofR in high SNR. Since both̆ρ and ρ̆′ depend onR, the

security gap∆S still depends onR in high SNR.

Remark 2 (Input distribution):Gaussian distribution does not necessarily maximizeEb
0 (ρ, q(x), γb),

0 ≤ ρ ≤ 1 for all γb andR < Cb. Thus, the ensemble average BER upper-bound (54) is not

necessarily the tightest one. Nevertheless, the upper-bound is still valid in the sense that there

exists a code for which Bob’s BER is upper-bounded by (54). Similarly, Gaussian distribution

does not necessarily minimizeEe
0(ρ

′, q′(x), γe),−1 < ρ′ ≤ 0 for all γe and R > Ce. In this

case, the BER lower-bound might not be valid in the sense thatthe BER of some codes might

not be lower-bounded by (55). Consequently, for the particular code(s) whose BER at Bob is

upper-bounded by (54) for allγb and R < Cb, the corresponding BER at Eve might not be

always larger than (55) for allγe andR > Ce. In this sense, Eve’s BER lower-bound of (55)

is optimistic. Nevertheless, using Gaussian input distribution is still useful because it makes the

analysis tractable and gives some insights. Furthermore, it satisfies the asymptotic property (18)

of the distribution, which makes Eve’s block error probability lower-bound valid for all codes,

as follows:

lim
ρ′↑0

1

ρ′
Ee

0(ρ
′, qCN (x), γe) = ln (1 + γe) = Ce. (69)

This means that Gaussian input distribution makes (55) valid for any code whenρ′ ↑ 0, which is

optimalρ′ whenR → Ce from above. Furthermore, Gaussian distribution satisfies the asymptotic

property (11) of the distribution, which makes Bob’s ensemble average block error probability

upper-bound tightest, as follows:

lim
ρ↓0

1

ρ
Ee

0(ρ, qCN (x), γb) = ln (1 + γb) = Cb. (70)

This means that Gaussian input distribution makes (54) tightest whenρ ↓ 0, which is optimalρ

whenR → Cb from below.

Remark 3 (M-ary input AWGN): For one-dimensional or two-dimensionalM-ary discrete input

AWGN channels with equi-input probabilities, the securitygap∆S can be obtained by (51),

(52), and (53) by usingγ0 = C−1
MI−AWGN(R), whereCMI−AWGN(γ) denotes the capacity of the

M-ary input AWGN channel given in [34, eq. (1.20)]. Also, Bob’s ensemble average BER upper-

bound and Eve’s BER lower-bound can be obtained in a similar way as in the Gaussian input
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case. As an example, for BI-AWGN, the bounds are given by

P b,U
BER(R, ρ, qequ(x), γb) = 0.5×

exp

(

−n

{

− ln

[

∫ ∞

−∞

√

γb
2π

exp

(

−
1

2
γb(y

2
b + 1)

)(

cosh

(

γbyb
1 + ρ

))1+ρ

dyb

]

− ρR

})

(71)

P e,L
BER(R, ρ′, qequ(x), γe) = P SPN,L

BER (r,K)×
(

1− exp

(

−n

{

− ln

[

∫ ∞

−∞

√

γe
2π

exp

(

−
1

2
γe(y

2
e + 1)

)(

cosh

(

γeye
1 + ρ′

))1+ρ′

dye

]

− ρ′R

}))

(72)

where 0 ≤ ρ ≤ 1 and −1 < ρ′ ≤ 0 are optimized to obtain tightest bounds. Unlike the

Gaussian input case, it is difficult to analytically obtain the security gap∆S for the M-ary

input case because the BER bounds are not given in closed-form. Thus,∆S should be obtained

numerically.

Remark 4 (BSC and BEC):Although the security gap was originally considered only for

AWGN channels in the literature, the concept can be extendedto other channels such as BSC

and BEC. Letεb denote the crossover and erasure probabilities for BSC and BEC, respectively,

for Bob. Let εe denote the crossover and erasure probabilities for BSC and BEC, respectively,

for Eve. It is assumed that0 ≤ εb < εe ≤ 0.5 for BSC, and0 ≤ εb < εe ≤ 1 for BEC. Given

R, the security gap can be defined as the difference between thetwo probabilities as follows:

Definition 3: For BSC and BEC, the security gap is defined as follows:

∆S := εinfe − εsupb ≥ 0 (73)

whereεsupb andεinfe are determined by

εsupb = sup
0≤εb<ε0

εb subject to P b,U
BER(R, ρ̆, qequ(x), εb) ≤ Pb,Th

BER (74)

εinfe = inf
εe>ε0

εe subject to P e,L
BER(R, ρ̆′, qequ(x), εe) ≥ Pe,Th

BER. (75)

In these equations,ε0 = C−1
BSC(R) for BSC andε0 = C−1

BEC(R) for BEC, whereCBSC(ε) and

CBEC(ε) are the capacities of BSC and BEC, respectively. �
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For BSC, the BER bounds are given by

P b,U
BER(R, ρ, qequ(x), εb)

= 0.5 exp

(

−n

{

− ln

[

2−ρ

(

ε
1

1+ρ

b + (1− εb)
1

1+ρ

)1+ρ
]

− ρR

})

(76)

P e,L
BER(R, ρ′, qequ(x), εe)

= P SPN,L
BER (r,K) ·

(

1− exp

(

−n

{

− ln

[

2−ρ′
(

ε
1

1+ρ′

e + (1− εe)
1

1+ρ′

)1+ρ′
]

− ρ′R

}))

.

(77)

For BEC, the BER bounds are given by

P b,U
BER(R, ρ, qequ(x), εb) = 0.5 exp

(

−n
{

− ln
[

2−ρ(1− εb) + εb
]

− ρR
})

(78)

P e,L
BER(R, ρ′, qequ(x), εe) = P SPN,L

BER (r,K) ·
(

1− exp
(

−n
{

− ln
[

2−ρ′(1− εe) + εe

]

− ρ′R
}))

.

(79)

D. Power Optimization for Gaussian-Input Fading Channels

In this subsection, the transmit power is optimized for Gaussian-input fading channels. Let

hb denote the channel from Alice to Bob andhe the channel from Alice to Eve, wherehb and

he are fixed over the duration of a codeword. The received signals at Bob and Eve are given by

Yb,i = hbXi + ηb,i, i = 1, · · · , n (80)

Ye,i = heXi + ηe,i, i = 1, · · · , n (81)

whereηb,i ∼ CN (0, σ2
b) andηe,i ∼ CN (0, σ2

e). The transmit powerp is given byp = E[|Xi|2]. Let

Γb = |hb|
2

σ2
b

denote Bob’s instantaneous channel SNR andΓe =
|he|2

σ2
e

denote Eve’s instantaneous

channel SNR. When the input distribution is given byqCN (x) = CN (0, p), the upper-bound of

Bob’s ensemble average BER and the lower-bound of Eve’s BER are given in closed-form as

follows:

P b,U
BER(R, ρ, qCN (x),Γb, p) = 0.5 exp

(

−n

{

− ln

(

1 +
pΓb

1 + ρ

)−ρ

− ρR

})

, 0 ≤ ρ ≤ 1 (82)

P e,L
BER(R, ρ′, qCN (x),Γe, p) = P SPN,L

BER (r,K) ·

(

1− exp

(

−n

{

− ln

(

1 +
pΓe

1 + ρ′

)−ρ′

− ρ′R

}))

,

−1 < ρ′ ≤ 0. (83)

Using these bounds, we first define the reliability, security, and overall outage probabilities

as follows:



23

Definition 4: The reliability outage is declared wheneverP b,U
BER(R, ρ̆, qCN (x),Γb, p) > Pb,Th

BER ,

the security outage is declared wheneverP e,L
BER(R, ρ̆′, qCN (x),Γe, p) < Pe,Th

BER, and the overall

outage is declared wheneverP b,U
BER(R, ρ̆, qCN (x),Γb, p) > Pb,Th

BER or P e,L
BER(R, ρ̆′, qCN (x),Γe, p) <

Pe,Th
BER. The reliability, security, and overall outage probabilities are given by

P rel
out(R, p) = Pr

(

P b,U
BER(R, ρ̆, qCN (x),Γb, p) > Pb,Th

BER

)

(84)

P sec
out(R, p) = Pr

(

P e,L
BER(R, ρ̆′, qCN (x),Γe, p) < Pe,Th

BER

)

(85)

P overall
out (R, p) = Pr

(

P b,U
BER(R, ρ̆, qCN (x),Γb, p) > Pb,Th

BER or P e,L
BER(R, ρ̆′, qCN (x),Γe, p) < Pe,Th

BER

)

.

(86)

�

Now, the transmit power is optimized to minimize the reliability outage probability subject

to an average power constraint and the security condition for Eve:

min
p(Γb,Γe)

P rel
out(R, p(Γb,Γe)) (87a)

subject to p(Γb,Γe) ≥ 0 (87b)

E[p(Γb,Γe)] ≤ pav (87c)

P e,L
BER(R, ρ̆′, qCN (x),Γe, p(Γb,Γe)) ≥ Pe,Th

BER (87d)

where the transmit powerp(Γb,Γe) is denoted as an explicit function ofΓb andΓe.

When Pb,Th
BER = 0.5 or Pb,Th

err = 1, the reliability outage probability is always zero. Also,

when Pe,Th
BER = 0 or Pe,Th

err = 0, the security constraint is degenerate. Therefore, focusing on

0 < Pb,Th
err < 1 and0 < Pe,Th

err < 1, the optimal solution is derived in the following.

Theorem 3:For 0 < Pb,Th
err < 1 and0 < Pe,Th

err < 1, the optimal solution to (87) is given by

popt(Γb,Γe) =







pmin(Γb, ρ̆), if pmin(Γb, ρ̆) ≤ pmax(Γe, ρ̆
′) and pmin(Γb, ρ̆) ≤ zopt

0, if pmin(Γb, ρ̆) > pmax(Γe, ρ̆
′) or pmin(Γb, ρ̆) > zopt

(88)

where

pmin(Γb, ρ) = Γ−1
b gb(ρ) (89)

pmax(Γe, ρ
′) = Γ−1

e ge(ρ
′) (90)

zopt = max{z : z ≥ 0,E[popt(Γb,Γe)] ≤ pav}. (91)

In the above equations,gb(ρ), ge(ρ′), ρ̆′, and ρ̆′ are respectively given by (60), (61), (62), and

(63).
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Proof: See the Appendix D. �

The optimal powerpopt(Γb,Γe) derived in Theorem 3 can be intuitively explained as follows.

Firstly, in order to avoid any reliability outage at Bob, at least certain amount of transmit power

should be used. GivenΓb, power pmin(Γb, ρ) is the minimum instantaneous power required

to satisfy Bob’s reliability conditionP b,U
BER(R, ρ, qCN (x),Γb, p) ≤ Pb,Th

BER . However, when we

consider Eve, too much transmit power leads to weak security, because with higher power she

can more easily decode the codeword. In order to enhance security for Eve and eventually to

avoid any security outage at Eve, less transmit power shouldbe used to ensure lower SNR at

Eve. GivenΓe, powerpmax(Γe, ρ
′) is the maximum instantaneous allowable power to satisfy the

security conditionP e,L
BER(R, ρ′, qCN (x),Γe, p) ≥ Pe,Th

BER. Overall, any transmit power in the interval

[pmin(Γe, ρ), pmax(Γb, ρ
′)] satisfies both reliability and security conditions. With the average

power constraint, however, the transmit power must be set toa minimum possible level by

popt(Γb,Γe) = pmin(Γe, ρ), to minimize the reliability outage probability by most efficiently

utilizing the power on average.

Secondly, the case ofpopt(Γb,Γe) = 0 in Theorem 3 can be explained as follows. When

pmin(Γb, ρ) is greater thanpmax(Γb, ρ
′), it is not possible to satisfy both the reliability and

security requirements at the same time, and thus, the data transmission must be suspended

i.e., popt(Γb,Γe) = 0. Furthermore, due to the average power constraint, the transmission is

suspended by settingpopt(Γb,Γe) = 0 whenever the minimum power required is too large, i.e.,

pmin(Γb, ρ) > z. LetPsus(R, p(Γb,Γe)) denote the data transmission suspension probability given

by

Psus(R, p(Γb,Γe)) = Pr(p(Γb,Γe) = 0). (92)

Then z is maximized under the average power constraint in order to minimize the suspension

probability, which is a necessary condition for reliability outage probability minimization because

reliability outage occurs wheneverp(Γb,Γe) = 0. The condition ofpmin(Γb, ρ) > zopt can be

rewritten as

Γb <
gb(ρ)

zopt
. (93)

This means that, for efficient power consumption, the data transmission must be suspended when

Bob’s instantaneous channel SNRΓb is worse than a threshold.

Finally, the reason why optimal̆ρ and ρ̆′ in Theorem 3 are obtained by (62) and (63), respec-

tively, can be explained as follows. In order to minimizePsus(R, p(Γb,Γe)) or Pr(p(Γb,Γe) = 0),
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the value ofρ must be optimized to minimizepmin(Γb, ρ), which is equivalent to the optimiza-

tion in (62). Also,ρ′ must be optimized to maximizepmax(Γe, ρ
′), which is equivalent to the

optimization in (63). The computational complexities required for these optimization are not

high because each of̆ρ and ρ̆′ can be individually obtained by one-dimensional searching.

From Theorem 3, we also have the following result.

Corollary 1: With the optimal powerpopt(Γb,Γe) of Theorem 3, we have

P rel
out(R, popt(Γb,Γe)) = P overall

out (R, popt(Γb,Γe)) = Psus(R, popt(Γb,Γe)) (94)

P sec
out(R, popt(Γb,Γe)) = 0. (95)

Proof: First, whenpopt(Γb,Γe) = 0, we havePr
(

P e,L
BER (R, ρ̆′, qCN (x),Γe, 0) < Pe,Th

BER

)

= 0,

becauseP e,L
BER(R, ρ̆′, qCN (x),Γe, 0) = 0.5 with probability one. Second, whenpopt(Γb,Γe) =

pmin(Γb, ρ̆), we havePr
(

P e,L
BER(R, ρ̆′, qCN (x),Γe, pmin(Γb, ρ̆)) < Pe,Th

BER

)

= 0, becauseP e,L
BER(R, ρ̆′,

qCN (x),Γe, pmin(Γb, ρ̆)) = Pe,Th
BER with probability one as shown in Appendix D. It follows from

the total probability theorem thatP sec
out(R, popt(Γb,Γe)) = 0. Given this, it is straightforward to

showP rel
out(R, popt(Γb,Γe)) = P overall

out (R, popt(Γb,Γe)) = Psus(R, popt(Γb,Γe)). �

IV. NUMERICAL RESULTS
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Fig. 4. Rate differences∆Rb and∆Re for BSC with εb = 0.01 andεe = 0.3.
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Fig. 5. Rate differences∆Rb and∆Re for BI-AWGN with γb = 6 dB andγe = −2 dB.

In this section, we present numerical results for the proposed secure communication method.

First, we present the numerical results of rate margins∆Rb and∆Re obtained in Theorem 1. Dif-

ferent reliability and security requirements are tested byconsideringPb,Th
err ∈ {1, 0.01, 0.0001, 0.000001}

andPe,Th
err ∈ {0, 0.99, 0.9999, 0.999999}. Recall that Bob’s BER upper-bound threshold is given

byPb,Th
BER = 0.5Pb,Th

err and Eve’s BER lower-bound threshold is given byPe,Th
BER = P SPN,L

BER (r,K)Pe,Th
err .

Fig. 4 shows∆Rb and∆Re for BSC with εb = 0.01 and εe = 0.3 for different blocklengths

102 ≤ n ≤ 106. Also, Fig. 5 shows∆Rb and∆Re for BI-AWGN with γb = 6 dB andγe = −2

dB. One can see that as the blocklengthn increases,∆Rb and∆Re approach zero as expected

in Theorem 1. With weaker reliability and security requirements (i.e., largerPb,Th
err and smaller

Pe,Th
err ), the rate margins decrease.

Second, we present the numerical results for the security gap ∆S obtained in Theorem 2. Fig.

6 shows the region where the condition of (64) is satisfied. Itcan be easily seen that the condition

is satisfied for all practical cases, e.g., for allR with n > 10. Fig. 7 shows the security gaps for

BI-AWGN with R = 0.5 (nats/one-dimensional-channel use) and Gaussian-input (GI) AWGN

with R = 1 (nats/two-dimensional-channel use). It can be seen that, for the same reliability and

security conditions, Gaussian input gives smaller security gap than binary input.

We now consider fading channels, where|hb| and |he| are modeled by Rayleigh random
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variables withE[|hb|2] = 2 andE[|he|2] = 1 and we setσ2
b = σ2

e = σ2. Generating the channels

105 times, we numerically obtain the reliability outage probability P rel
out(R, p) of (84), the security

outage probabilityP sec
out(R, p) of (85), and the overall outage probabilityP overall

out (R, p) of (86).

Note that when|hb| < |he| (i.e., Cb < Ce), it is never possible to avoid both reliability and

security outages at the same time no matter which rateR and transmit powerp are used. In the

following, therefore, we evaluate the outage probabilities only when|hb| > |he|. The reliability

and security conditions are set toPb,Th
err = 0.0001 andPe,Th

err = 0.9999. The blocklengthn is

set to105. We first consider the case of equal (or constant) transmit power, where the transmit

powerp is set topav. Fig. 8 shows the outage probabilities with the equal transmit power for

different ratesR ∈ {0.5, 3.0, 5.5} (nats/two-dimensional-channel use). Given rateR, aspav/σ2

increases, the reliability outage probability decreases,whereas the security outage probability

increases as can be expected. Consequently, the overall outage probability always remains high

(e.g., larger than say 0.4), because both reliability and security outage probabilities cannot be

decreased at the same time.

For the proposed optimal power allocation of Theorem 3, Fig.9 shows the outage probabilities

with the same system parameters of Fig. 8. The obtained security outage probability of the

optimal power allocation is exactly zero, which cannot be plotted in the figure of log-scale
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Fig. 7. Security gap∆S for BI-AWGN with R = 0.5 (nats/one-dimensional-channel use) and for GI-AWGN withR = 1

(nats/two-dimensional-channel use).

outage probability. The reliability probability, the overall outage probability, and the suspension

probability are the same, as expected from Corollary 1. Aspav/σ
2 increases, the overall outage

probability (or suspension probability) decreases and then flattens.5 However, the achieved lowest

overall outage probability of the optimal power allocationis much lower than that of the constant

transmit power case. The reason why there is an error floor forthe overall outage probability or

suspension probability is as follows. The suspension probability is given byPr(popt(Γb,Γe) = 0).

From Theorem 3, the suspension probability can be decreasedonly by reducing the probabilities

of pmin(Γb, ρ̆) > pmax(Γe, ρ̆
′) andpmin(Γb, ρ̆) > zopt. By increasingpav, it is possible to reduce

the probability of pmin(Γb, ρ̆) > zopt. However, it is not possible to reduce the probability

of pmin(Γb, ρ̆) > pmax(Γe, ρ̆
′) by increasing powerpav. In order to reduce the probability of

pmin(Γb, ρ̆) > pmax(Γe, ρ̆
′), Bob’s channel must be made even better (i.e., largerΓb) or Eve’s

channel must be made even worse (i.e., smallerΓe). Only in this case, the suspension outage

probability is further decreased. Fig. 10 shows the overalloutage probabilities for the equal

power and optimal power allocations for such channel scenario where Bob’s channel is much

5This is in sharp contrast to the case of conventional power optimization without a security condition, in which the outage

probability (or suspension probability) decreases indefinitely with pav/σ
2 [35].
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Fig. 8. Reliability outage probabilityP rel
out(R, pav) of (84), security outage probabilityP sec

out(R,pav) of (85), and overall

outage probabilityP overall
out (R, pav) of (86) with constant transmit power withp = pav. Pb,Th

err = 0.0001 andPe,Th
err = 0.9999.

E[|hb|
2] = 2 andE[|he|

2] = 1. Blocklengthn is 105.

better than Eve’s channel:E[|hb|2] = 10 andE[|he|2] = 1. In this channel scenario, the floors

of the overall outage probabilities are lower for both equaland optimal power allocations. But,

the performance gap between the two power allocations is still significant.

V. CONCLUSIONS

In this paper, a secure data transmission method has been studied, where the security measure

was given in terms of the BER at the eavesdropper. To realize such secure communication,

information-theoretic strong converse and cryptographicerror amplification have been combined.

For finite blocklengths, the maximum and minimum allowable transmission rates and the security

gap have been analyzed for any block codes over DMCs. It has been observed that increasing the

blocklength is very effective to reduce the rate loss and thesecurity gap. For fading channels, the

transmission power has been optimized. It has been found that simply increasing the transmission

power does not decrease the reliability outage probabilityindefinitely. The error floor of the

reliability outage probability depends on the channel quality difference between Bob and Eve.
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Fig. 9. Reliability outage probabilityP rel
out(R, popt(Γb,Γe)) of (84), security outage probabilityP sec

out(R, popt(Γb,Γe)) of (85),

and overall outage probabilityP overall
out (R, popt(Γb,Γe)) of (86) with optimal power allocation in Theorem 3.Pb,Th

err = 0.0001

andPe,Th
err = 0.9999. E[|hb|

2] = 2 andE[|he|
2] = 1. Blocklengthn is 105.
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Fig. 10. Overall outage probabilities of equal transmit power and optimal transmit power.Pb,Th
err = 0.0001 andPe,Th

err = 0.9999.

E[|hb|
2] = 10 andE[|he|

2] = 1. Blocklengthn is 105.
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APPENDIX A

PROOF OFLEMMA 1

For symmetric DMCs, it is well-known thatEb
0 (ρ, q(x)), 0 ≤ ρ ≤ 1, is maximized by equi-

probable distributionqequ(x) [36, Theorem 7.2]. In the following, therefore, we will onlyshow

thatEe
0(ρ

′, q′(x)),−1 < ρ′ ≤ 0, is also minimized byqequ(x).

The proof of this appendix is only for finite input and output alphabet sizes. But, the approach

holds for well-behaved channels with infinite alphabet sizes. Forx ∈ {a1, · · · , aQ}, let us define

α(ye,q) as follows

α(ye,q) =
∑

x

q(x)fYe|X(ye|x)
1/(1+ρ′), − 1 < ρ′ ≤ 0 (A.1)

=

Q
∑

k=1

qkfYe|X(ye|x)
1/(1+ρ′), − 1 < ρ′ ≤ 0 (A.2)

whereq = (q1, · · · , qQ) = (q(x = a1), · · · , q(x = aQ)). Becauseα(ye,q) is linear in q and

the functionα1+ρ′ is concave inα, α(y,q)1+ρ′ must be concave inq. Letting F (ρ′,q) =

exp(−Ee
0(ρ

′,q)) =
∑

ye
α(ye,q), the functionF (ρ′,q) is concave, because it is the sum of

concave functions. ThenF (ρ′,q) has a minimum for someq0.

Following [23, Theorem 4.4.1], the necessary and sufficientconditions thatF (ρ′,q) is mini-

mized atq0 are

∂F (ρ′,q)

∂qk

∣

∣

∣

∣

q=q0

≤ λ, k = 1, 2, · · · , Q;−1 < ρ′ ≤ 0 (A.3)

whereλ is a constant and the equality holds wheneverqk 6= 0 (i.e., qk > 0). Using [23, Theorem

5.6.5], the necessary and sufficient conditions onq which maximizeF (ρ′,q), equivalently,

minimizeEe
0(ρ

′,q), are

∑

ye

fYe|X(ye|x)
1/(1+ρ′)α(ye,q)

ρ′ ≤
∑

ye

α(ye,q)
1+ρ′, − 1 < ρ′ ≤ 0 (A.4)

where equality holds for whichqk > 0. Finally, for symmetric DMCs, the equi-probable

distributionqk = 1
Q

satisfies the following condition [36, Theorem 7.2]:

∑

ye

fYe|X(ye|x)
1/(1+ρ′)α(ye,q)

ρ′ =
∑

ye

α(ye,q)
1+ρ′ , − 1 < ρ′ ≤ 0. (A.5)

This complete the proof.
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APPENDIX B

PROOF OFTHEOREM 1

For Rsup, the optimization problem is

sup
0≤R<Cb

R subject to min
0≤ρ≤1

P b,U
err (R, ρ, q̆(x)) ≤ Pb,Th

err (B.1)

whereP b,U
err (R, ρ, q̆(x)) = 2P b,U

BER(R, ρ, q̆(x)). First, we consider the case ofPb,Th
err = 1. In this

case, the constraint is always satisfied. Thus,Rsup = sup0≤R<Cb
R = Cb. Second, we consider

the case of0 < Pb,Th
err < 1. For ρ = 0, we haveP b,U

err (R, ρ, q̆(x)) = 1. However, we know that

min0≤ρ≤1 P
b,U
err (R, ρ, q̆(x)) < 1 becausemax0≤ρ≤1{Eb

0 (ρ, q̆(x)) − ρR} > 0 for R < Cb. Thus,

the optimalρ̆ must be in0 < ρ̆ ≤ 1. That is, we havĕρ(R) = argmin0<ρ≤1 P
b,U
err (R, ρ, q̆(x)) =

argmax0<ρ≤1

{

Eb
0 (ρ, q̆(x))− ρR

}

, where
{

Eb
0 (ρ, q̆(x))− ρR

}

is convex inρ ∈ (0, 1] for R <

Cb [23, Proof of Theorem 5.6.3]. BecauseP b,U
err (R, ρ, q̆(x)) is a monotonically decreasing func-

tion of R, the constraint must be satisfied with equality to maximizeR: P b,U
err (Rsup, ρ, q̆(x)) =

Pb,Th
err . Thus, we have

Rsup =
1

nρ̆(Rsup)
lnPb,Th

err +
1

ρ̆(Rsup)
Eb

0 (ρ̆(Rsup), q̆(x)) (B.2)

(a)

≤
1

nρ̆(Rsup)
lnPb,Th

err +
1

ρ̆(Rsup)
max
q(x)

Eb
0 (ρ̆(Rsup), q(x)) (B.3)

(b)

≤
1

nρ̆(Rsup)
lnPb,Th

err +max
q(x)

∂

∂ρ
Eb

0 (ρ, q(x))

∣

∣

∣

∣

ρ=0

(B.4)

=
1

nρ̆(Rsup)
lnPb,Th

err +max
q(x)

Ib(q(x)) (B.5)

=
1

nρ̆(Rsup)
lnPb,Th

err + Cb (B.6)

(c)
< Cb (B.7)

where (b) is due to [15, eq.(34)] and(c) is valid for any 0 < Pb,Th
err < 1. When n →

∞, we haveRsup → Cb from below, because the constraint becomes always satisfiedby

min0≤ρ≤1 P
b,U
err (R, ρ, q̆(x)) → 0 for any R < Cb as n → ∞. Also, whenn → ∞, we have

∆Rb → 0.

For Rinf , the optimization problem is

inf
R>Ce

R subject to max
−1<ρ′≤0

P e,L
err (R, ρ′, q̆′(x)) ≥ Pe,Th

err (B.8)

whereP e,L
err (R, ρ′, q̆′(x)) = P e,L

BER(R, ρ′, q̆′(x))/PSPN,L
BER (r,K). We first consider the case ofPe,Th

err =

0. In this case, the constraint is always satisfied. Thus,Rinf = infR>Ce
R = Ce. Second,
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consider the case of0 < Pe,Th
err < 1. For ρ′ = 0, we haveP e,L

err (R, ρ′, q̆′(x)) = 0. However,

we know thatmax−1<ρ′≤0 P
e,L
err (R, ρ′, q̆′(x)) > 0 becausemax−1<ρ′≤0{Ee

0(ρ
′, q̆′(x))− ρ′R} > 0

for R > Ce. Thus, the optimalρ̆′ must be in−1 < ρ̆′ < 0. That is, we haveρ̆′(R) =

argmax−1<ρ<0 P
e,L
err (R, ρ′, q̆′(x)) = argmax−1<ρ′<0 {Ee

0(ρ
′, q̆′(x))− ρ′R}, where{Ee

0(ρ
′, q̆′(x))− ρ′R}

is convex inρ′ ∈ (−1, 0) for R > Ce [15], [24, Lemma 3.2.1]. BecauseP e,L
err (R, ρ′, q̆′(x)) is

a monotonically decreasing function ofR, the constraint must be satisfied with equality to

minimizeR: max−1<ρ′≤0 P
e,L
err (Rinf , ρ

′, q̆′(x)) = Pe,Th
err . Thus, we have

Rinf =
1

nρ̆′(Rinf)
ln
(

1−Pe,Th
err

)

+
1

ρ̆′(Rinf)
Ee

0(ρ̆
′(Rinf), q̆

′(x)) (B.9)

=
1

nρ′(Rinf)
ln
(

1−Pe,Th
err

)

+
1

ρ̆′(Rinf)
min
q(x)

Ee
0(ρ̆

′(Rinf), q(x)) (B.10)

(d)

≥
1

nρ̆′(Rinf)
ln
(

1−Pe,Th
err

)

+max
q(x)

∂

∂ρ′
Ee

0(ρ
′, q(x))

∣

∣

∣

∣

ρ′=0

(B.11)

=
1

nρ̆′(Rinf)
ln
(

1−Pe,Th
err

)

+max
q(x)

Ie(q(x)) (B.12)

=
1

nρ̆′(Rinf)
ln
(

1−Pe,Th
err

)

+ Ce (B.13)

(e)
> Ce (B.14)

where (d) is due to [15, eq.(37)] and(e) is valid for any 0 < Pe,Th
err < 1. When n →

∞, we haveRinf → Ce from above, because the constraint becomes always satisfiedby

min−1≤ρ′≤0 P
e,L
err (R, ρ′, q̆′(x)) → 1 for any R > Ce as n → ∞. Thus, whenn → ∞, we

have∆Re → 0.

APPENDIX C

PROOF OFTHEOREM 2

For γinf
b , the optimization problem is

inf
γb>γ0

γb subject to min
0≤ρ≤1

P b,U
err (R, ρ, qCN (x), γb) ≤ Pb,Th

err (C.1)

whereP b,U
err (R, ρ, qCN (x), γb) = 2P b,U

BER(R, ρ, qCN (x), γb). First, we consider the case ofPb,Th
err =

1. In this case, the constraint is always satisfied. Thus,γinf
b = infγb>γ0 γb = γ0. Second, we

consider the case of0 < Pb,Th
err < 1. As shown in Appendix B, the interval for optimizingρ can

be restricted to0 < ρ ≤ 1. For this interval, the constraint can be rewritten as

γb ≥ min
0<ρ≤1

(1 + ρ)
(

(

Pb,Th
err

)− 1
nρ eR − 1

)

= min
0<ρ≤1

gb(ρ). (C.2)
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Thus,γinf
b = infγb≥γ0 γb = gb(ρ̆), where optimal̆ρ is given byρ̆ = argmin0<ρ≤1 gb(ρ). Finally,

we show the existence of̆ρ for left-open interval(0, 1]. For all 0 < ρ ≤ 1, it is straightforward

to show

gb(ρ) > γ0 ≥ 0 (C.3)

lim
ρ→0+

∂

∂ρ
gb(ρ) = −∞ (C.4)

lim
ρ→1

∂

∂ρ
gb(ρ) = ube

R − 1 > 0 (C.5)

∂2

∂ρ2
gb(ρ) > 0 (C.6)

whereub =
(

Pb,Th
err

)− 1
n > 1. Therefore, the optimalρ minimizing gb(ρ) must not beρ → 0+,

and a solution exists in(0, 1].

For γsup
e , the optimization problem is

sup
0≤γe<γ0

γe subject to max
−1<ρ′≤0

P e,L
err (R, ρ′, qCN (x), γe) ≥ Pe,Th

err (C.7)

whereP e,L
err (R, ρ′, qCN (x), γe) = P e,L

BER(R, ρ′, qCN (x), γe)/P
SPN,L
BER (r,K). First, we consider the

case ofPe,Th
err = 0. In this case, the constraint is always satisfied. Thus,γsup

e = sup0≤γe<γ0 γe =

γ0. Second, we consider the case of0 < Pe,Th
err < 1. As shown in Appendix B, the interval for

optimizingρ′ can be restricted to−1 < ρ′ < 0. For this interval, the constraint can be rewritten

as

γe ≤ max
−1<ρ′<0

(1 + ρ′)
(

(

1− Pe,Th
err

)− 1

nρ′ eR − 1
)

= max
−1<ρ′<0

γe(ρ
′). (C.8)

Thus,γsup
e = sup0≤γe<γ0 γe = ge(ρ̆

′), where optimalρ̆′ is given by ρ̆′ = argmax−1<ρ′<0 γe(ρ
′).

Finally, we consider the existence ofρ̆′ for open interval(−1, 0). It is straightforward to show

ge(ρ
′) < γ0 (C.9)

lim
ρ′→−1

ge(ρ
′) = 0 (C.10)

lim
ρ′→0−

ge(ρ
′) = −1 (C.11)

lim
ρ′→−1

∂

∂ρ′
ge(ρ

′) = (1 + 2 ln ue)u
−1
e eR − 1 (C.12)

where ue =
(

1−Pe,Th
err

)− 1
n > 1. From (C.10) and (C.11),ge(ρ′) cannot be maximized by

ρ′ → 0−. If limρ′→−1
∂
∂ρ′

ge(ρ
′) > 0, from (C.10) and (C.11), it is clear thatge(ρ′) cannot

be maximized byρ′ → −1 and a solution must exist in(−1, 0). Furthermore, in this case, the
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maximum valuege(ρ̆′) must be positive due to (C.10). On the other hand, iflimρ′→−1
∂
∂ρ′

ge(ρ) =
(

(1 + 2 lnue)u
−1
e eR − 1

)

≤ 0, we havege(ρ′) = (1+ρ′)

(

u
1

ρ′

e eR − 1

)

< (1+ρ′)
(

u−1
e eR − 1

)

<

(1 + ρ′)
(

(1 + 2 lnue)u
−1
e eR − 1

)

≤ 0 for all −1 < ρ′ < 0. Thus, it follows from (C.10) that a

solution does not exist for the open interval of(−1, 0).

APPENDIX D

PROOF OFTHEOREM 3

The optimization problem is

min
p(Γb,Γe)

Pr

(

min
0≤ρ≤1

P b,U
err (R, ρ, qCN (x),Γb, p(Γb,Γe)) > Pb,Th

err

)

(D.1a)

subject to p(Γb,Γe) ≥ 0 (D.1b)

E[p(Γb,Γe)] ≤ pav (D.1c)

max
−1<ρ′≤0

P e,L
err (R, ρ′, qCN (x),Γe, p(Γb,Γe)) ≥ Pe,Th

err (D.1d)

whereP b,U
err (R, ρ, qCN (x),Γb, p(Γb,Γe)) = 2P b,U

BER(R, ρ, qCN (x),Γb, p(Γb,Γe)) and P e,L
err (R, ρ′,

qCN (x),Γe, p(Γb,Γe)) = P e,L
BER(R, ρ′, qCN (x),Γe, p(Γb,Γe))/P

SPN,L
BER (r,K). As shown in Appendix

B, the interval for optimizingρ can be restricted to0 < ρ ≤ 0 and the interval for optimizingρ′

can be restricted to−1 < ρ′ < 0. In (D.1),ρ is optimized to minimizeP b,U
err (R, ρ, qCN (x),Γb, p).

But, this is equivalent to optimizingρ to minimize the outage probability. Also, in (D.1),ρ′

is optimized to maximizeP e,L
err (R, ρ′, qCN (x),Γe, p), which maximizes the probability that the

instantaneous security condition (D.1d) is satisfied. But,this is equivalent to optimizingρ′ to

minimize the outage probability, because an outage is declared whenever the condition is not

satisfied. Therefore, the problem of (D.1) is equivalent to the following:

min
0<ρ≤1,−1<ρ′<0

min
p(Γb,Γe,ρ,ρ′)

Pr
(

P b,U
err (R, ρ, qCN (x),Γb, p(Γb,Γe, ρ, ρ

′)) > Pb,Th
err

)

(D.2a)

subject to p(Γb,Γe, ρ, ρ
′) ≥ 0 (D.2b)

E[p(Γb,Γe, ρ, ρ
′)] ≤ pav (D.2c)

P e,L
err (R, ρ′, qCN (x),Γe, p(Γb,Γe, ρ, ρ

′)) ≥ Pe,Th
err (D.2d)

where powerp(Γb,Γe, ρ, ρ
′) is denoted as an explicit function ofρ andρ′.

First, we focus on the inner optimization overp(Γb,Γe, ρ, ρ
′), and then we later solve the

outer optimization overρ andρ′. In order to solve the inner optimization problem, following the
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approach of [35], we consider the problem of minimizing power to avoid any reliability outage

along with the original constraints except the total average power constraint as follows:

min p(Γb,Γe, ρ, ρ
′) (D.3a)

subject to p(Γb,Γe, ρ, ρ
′) ≥ 0 (D.3b)

P b,U
err (R, ρ, qCN (x),Γb, p(Γb,Γe, ρ, ρ

′)) ≤ Pb,Th
err (D.3c)

P e,L
err (R, ρ′, qCN (x),Γe, p(Γb,Γe, ρ, ρ

′)) ≥ Pe,Th
err . (D.3d)

It can be shown that, from the reliability condition of (D.3c), the solution to this optimization

problem must be given in the form ofpmin(Γb, ρ) = 1
Γb
gb(ρ). Furthermore, from the security

condition of (D.3d),pmin(Γb, ρ) can be a valid solution only when the following inequality is

satisfied:

pmin(Γb, ρ) ≤ pmax(Γb, ρ
′) (D.4)

wherepmax(Γe, ρ
′) = 1

Γe
ge(ρ

′). Then, following [35, Proposition 4], the optimal solutionto the

inner optimization problem of (D.2) is given by

popt(Γb,Γe, ρ, ρ
′) =



















pmin(Γb, ρ), if pmin(Γb, ρ) ≤ pmax(Γe, ρ
′) and pmin(Γb, ρ) ≤ zopt

0, if pmin(Γb, ρ) ≤ pmax(Γe, ρ
′) and pmin(Γb, ρ) > zopt

0, if pmin(Γb, ρ) > pmax(Γe, ρ
′)

(D.5)

wherezopt is determined such that the average power constraint is satisfied:

zopt = max{z : z ≥ 0,E[popt(Γb,Γe, ρ, ρ
′)] ≤ pav}. (D.6)

We now solve the outer optimization of (D.2), i.e., optimizing ρ and ρ′ to minimize the

reliability outage probability:

(ρ̆, ρ̆′) = min
0<ρ≤1,−1<ρ′<0

Pr
(

P b,U
err (R, ρ, qCN (x),Γb, p) > Pb,Th

err

)
∣

∣

p=popt(Γb,Γe,ρ,ρ′)
. (D.7)

Because the reliability outage occurs if and only ifpopt(Γb,Γe, ρ, ρ
′) = 0, we have

(ρ̆, ρ̆′) = min
0<ρ≤1,−1<ρ′<0

Pr (pmin(Γb, ρ) > pmax(Γe, ρ
′) or pmin(Γb, ρ) > zopt) . (D.8)

This joint optimization forρ andρ′ is equivalent to two independent optimizations:min0<ρ≤1 pmin(Γb, ρ)

andmax−1<ρ′<0 pmax(Γe, ρ
′), which are equivalent to (62) and (63), respectively. Note that these

optimizations are independent ofΓb andΓe; that is,ρ̆ andρ̆′ are independent of the instantaneous

channels.
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