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Abstract

Generalized frequency division multiplexing (GFDM) is a recent multicarrier 5G waveform candi-

date with flexibility of pulse shaping filters. However, the flexibility of choosing a pulse shaping filter

may result in inter carrier interference (ICI) and inter symbol interference (ISI), which becomes more

severe in a broadband channel. In order to eliminate the ISI and ICI, based on discrete Gabor transform

(DGT), in this paper, a transmit GFDM signal is first treated as an inverse DGT (IDGT), and then

a frequency-domain DGT is formulated to recover (as a receiver) the GFDM signal. Furthermore, to

reduce the complexity, a suboptimal frequency-domain DGT called local DGT (LDGT) is developed.

Some analyses are also given for the proposed DGT based receivers.

Index Terms

Discrete Gabor transform (DGT), generalized frequency division multiplexing (GFDM), inter carrier

interference (ICI), inter symbol interference (ISI).

I. INTRODUCTION

Generalized frequency division multiplexing (GFDM) [1]–[3] has attracted much attention

in recent years as a candidate waveform of 5G cellular systems for its low spectral leakage

due to the flexibility of its pulse shaping filter [1]–[8], [16]–[18]. A pulse shaping filter with

better spectral property, however, may cause intersymbol interference (ISI) and inter carrier

interference (ICI), which becomes more severe in a broadband channel and may cause problems

P. Wei, Y. Xiao, and S. Li are with the National Key Laboratoryof Science and Technology on Communications, University

of Electronic Science and Technology of China, Chengdu, China (e-mail: pisces.wp@gmail.com;{xiaoyue, lsq}@uestc.edu.cn).

X.-G. Xia is with the Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716 USA

(e-mail: xianggen@udel.edu).

July 1, 2021 DRAFT

http://arxiv.org/abs/1602.04877v1


2

at the receiver. Among the methods in [1], [2] for signal recovery in the receiver for a GFDM

system, matched filter (MF) receiver maximizes the signal-to-noise ratio (SNR) while causing

self-interference from the nonorthogonality of the transmit waveform. Zero-forcing (ZF) receiver

can cancel the self-interference at the price of the channelnoise enhancement. To reduce the

high self-interference in MF, MF with successive interference cancellation (MF-SIC) receiver is

presented in [2] at the cost of high-complexity iterative processing. Linear minimum mean square

error (MMSE) receiver can improve the performance of ZF receiver. However, based on the

transmitter matrix for generating the GFDM signal, these GFDM receivers have high complexities

proportional to the square of the total number of the data symbols in a GFDM symbol. To obtain

a low-complexity implementation in the GFDM receiver, based on fast Fourier transform (FFT)

and inverse FFT (IFFT), FFT-based ZF/MF [1], FFT-based MF-SIC [5] and several techniques

for MF [8], [16]–[18], ZF [8], [17], [18], and MMSE [7], [17],[18] are proposed. In the ideal

channel, among the low-complexity methods, the ZF/MF receiver in [17], [18] can obtain the

lowest complexity by splitting the multiplication of the transmitter matrix and discrete Fourier

transform (DFT)/inverse DFT (IDFT) matrix into small blocks with FFT/IFFT implementation.

In a broadband channel, besides the complexity of the techniques themselves, another key factor

is the channel equalization that should be considered in thereceiver. Since the direct channel

equalization in time domain in [1] has a high complexity proportional to the square of the total

number of the data symbols in a GFDM symbol, frequency domainequalization (FDE) can be

used to reduce the complexity [17], [18]. In this case, the proposed receivers in [17], [18] have

lower computational cost than the low-complexity receivers in [1]. Unfortunately, compared to

the orthogonal frequency multiplexing division (OFDM) receiver, the FDE [17], [18] needs extra

FFT/IFFT operations, where in [17], [18], it is called ZF/MFreceiver directly and its complexity

will be compared in details.

In this paper, to simplify the GFDM receiver for a broadband channel similar to the OFDM

receiver, a relationship between a GFDM signal and discreteGabor transform (DGT) [9]–[11]

is first investigated, similar to [4], [6], i.e, a transmit GFDM signal is an inverse DGT (IDGT)

of a data array. Then, according to DGT [9]–[11], a frequency-domain DGT is proposed for

GFDM signal recovery, which is different from the time-domain DGT in [4], [6] causing high-

complexity time-domain channel equalization. By analyzing the interference after the frequency-

domain DGT for GFDM signals, we conclude that the coherence bandwidth, related to the

reciprocal of the maximum channel delay, and the roll-off factor of a transmit waveform are
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two key factors of the interference in a GFDM system, where high coherence bandwidth and

small roll-off factor can make the GFDM signal recovered by the frequency-domain DGT

much like OFDM. Furthermore, to reduce the complexity of thefrequency-domain DGT in

the whole band, a suboptimal frequency-domain DGT in local subbands, called local DGT

(LDGT), is proposed. Simulation results show that the frequency-domain DGT with small roll-

off factor can achieve considerable bit-to-error rate (BER) performance close to OFDM, and

LDGT significantly reduces the complexity of the frequency-domain DGT with a small BER

performance degradation.

The rest of the paper is organized as follows. In Section II, GFDM signals are formulated in

transmitter as IDGT and in receiver as DGT, and the frequencydomain DGT is proposed. In

Section III, a received GFDM signal is formulated by the frequency-domain DGT followed by

analyzing the interference generated in the frequency-domain DGT, and LDGT is presented and

analyzed for complexity reduction. In Section IV, simulation results for the frequency-domain

DGT, LDGT, and several other existing GFDM signal recovery methods are presented. Finally,

in Section V, this paper is concluded.

II. GFDM, DGT, IDGT, AND FREQUENCY-DOMAIN DGT

In this section, transmitted and received GFDM signals are first briefly introduced. Then,

based on the theory of DGT, an IDGT is investigated for a transmitted GFDM signal. Lastly, a

frequency-domain DGT is proposed for the GFDM signal recovery.

A. GFDM Signal

In GFDM transmitter, bit streams are first modulated to complex symbolsdk,m that are divided

into sequences ofKM symbols long. Each sequence (as a vector)d = [dT
0 ,d

T
1 , . . . ,d

T
M−1]

T with

dm = [d0,m, d1,m, . . . , dK−1,m]
T , m = 0, 1, . . . ,M−1, is spread onK subcarriers inM time slots.

Therein,dk,m is the transmitted data on thekth subcarrier in themth subsymbol of each GFDM

block. The data symbols are taken from a zero mean independent and identically distributed

(i.i.d) process with the unit variance. Eachdk,m is transmitted with a pulse shaping filter [1]

gk,m(n) = g ((n−mK)N) e
−j2π k

K
n, (1)

where the signal sample index isn = 0, 1, . . . , N − 1 with N = KM satisfying the condition

of critical sampling in DGT,(·)N denotes the modulo ofN, andg(n) is a prototype filter whose
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time and frequency shifts aregk,m(n). By the superposition of all the filtereddk,m, the GFDM

signal in transmission is

x(n) =
K−1
∑

k=0

M−1
∑

m=0

dk,mgk,m(n). (2)

At the receiver, the received GFDM signal is

y(n) = h(n) ∗ x(n) + w(n), (3)

where ∗ denotes the linear convolution operation,h(n) is the channel response in the time

domain, andw(n) is the AWGN noise with zero mean and varianceσ2.

Assuming perfect synchronization and long enough cyclic prefix (CP) against the maximum

channel delay are implemented, the frequency-domain expression of (3) can be written as

Y (l) = H(l)X(l) +W (l), (4)

wherel = 0, 1, . . . , N − 1, X(l) is theN-point DFT of x(n) as

X(l) =
K−1
∑

k=0

M−1
∑

m=0

dk,mGk,m(l), (5)

andGk,m(l) is theN-point DFT of gk,m(n) as

Gk,m(l) =

N−1
∑

n=0

gk,m(n)e
−j2π l

N
n

=

N−1
∑

n=0

g((n−mK)N)e
−j2π l+kM

N
n

n′=n−mK
=

N−1−mK
∑

n′=−mK

g((n′)N)e
−j2π l+kM

N
(n′+mK)

= e−j2π l
M

me−j2πkm
N−1−mK
∑

n′=−mK

g((n′)N )e
−j2π l+kM

N
n′

= e−j2π l
M

m

N−1
∑

n=0

g(n)e−j2π l+kM
N

n

= G((l + kM)N )e
−j2π l

M
m, (6)

whereG(l) for l = 0, 1, . . . , N − 1 is the N-point DFT of g(n) for n = 0, 1, . . . , N − 1, and

thus the frequency and time shifts ofG(l) areGk,m(l) shown in Fig. 1. In Fig. 1,

G((l)N) =











f(l), −τ 6 l 6 τ,

0, otherwise,
(7)
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where f(l) is a baseband-equivalent window function in the frequency domain, for example,

the raised cosine (RC) function, the root raised cosine (RRC) function and the Xia pulse [13],

integerl is in the finite interval[−N/2, N/2−1], andτ is a positive integer satisfyingτ 6 N/2

and denotes the window width. Additionally, the local property of G(l) can save the storage

compared to theN ×N transmitter matrix in [1].

(k-1)M kM-τ kM kM+τ (k+1)M lkM-βτ kM+βτ

Fig. 1. Frequency-domain GFDM transmitting filterGk,m(l) whereβ̄ = 1/(1 + β) andβ is the roll-off factor ofg(n).

To demodulate the GFDM signal after the time-domain channelequalization, MF, ZF, linear

MMSE, and MF-SIC receivers are proposed in [1]. However, when the transmitter matrix has

a large size, these receivers with the time-domain channel equalization have high complexities.

Our goal here is to simplify the GFDM receiver with insignificant ICI and ISI.

B. DGT, IDGT, and Frequency-Domain DGT

Without the channel influence, i.e., in an ideal channel, in order to cancel the ISI and ICI

for the GFDM signal recovery, the properties of the transmitted GFDM signal should be first

investigated. To do so, let us briefly review DGT and IDGT.

For a signalx(n), n = 0, 1, ..., N − 1, its DGT is defined as

dk,m =
N−1
∑

n=0

x(n)γ∗
k,m(n), (8)

where the time and frequency shifts of an analysis windowγ(n) are

γk,m(n) = γ ((n−mK)N ) e
−j2π kM

N
n. (9)

July 1, 2021 DRAFT
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The IDGT of dk,m are defined as

x(n) =

K−1
∑

k=0

M−1
∑

m=0

dk,mg ((n−mK)N) e
−j2π k

K
n, (10)

whereg(n) is a synthesis window, which is the same as the GFDM transmitted signal in (2).

When g(n) and γ(n) satisfy the following Wexler-Raz identity,dk,m andx(n) in (8) and (10)

are the same:
N−1
∑

n=0

g(n+ kK)e−j2πmM
N

nγ∗(n) = δ(k)δ(m)

0 6 k 6 M − 1, and 0 6 m 6 K − 1. (11)

In this case, DGT is the receiver while IDGT is the transmitter, and (8) and (10) form a pair.

Furthermore, from (5) and (10), (5) is the IDGT ofdk,m in the frequency domain. Thus, from

(8), the frequency domain DGT, as a pair with the frequency domain IDGT in (5), is

dk,m =
1

N

N−1
∑

l=0

X(l)Γ∗
k,m(l), (12)

where1/N is from theN-point IDFT and

Γk,m(l) = Γ((l + kM)N )e
−j2π m

M
l, (13)

which are the frequency and time shifts ofΓ(l) for l = 0, 1, . . . , N − 1, andΓ(l) is theN-point

DFT of γ(n). According to the Wexler-Raz identity [9]–[11], the biorthogonality between the

synthesis windowG(l) and the analysis windowΓ(l) is expressed by

1

N

N−1
∑

l=0

G((l +mM)N )e
j2π k

M
lΓ∗(l) = δ(k)δ(m)

0 6 k 6 M − 1, and0 6 m 6 K − 1. (14)

In summary, for a GFDM signal over an ideal channel, it can be recovered by its DGT in

either time domain (8) or frequency domain (12). In other words, (8) or (12) is a receiver for

GFDM signals in an ideal channel or a narrow band channel. Thereason why the frequency

domain DGT is mentioned here is for a broadband channel in next section.
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III. FREQUENCY-DOMAIN DGT RECEIVER FORGFDM SIGNALS OVER A BROADBAND

CHANNEL

In this section, we formulate a received GFDM signal similarto OFDM by the proposed

frequency-domain DGT in a broadband channel. Two models areproposed and analyzed, in

which the frequency-domain DGT in the whole band is considered in the first model and LDGT

is proposed in the second model for the complexity reduction.

A. Frequency-Domain DGT Model in the Whole Band

From (3), in a broadband channel, to use the time-domain DGT at the receiver, the time-

domain channel equalization in the whole GFDM symbol of length N has a high complexity,

i.e., O(N2), and the FDE of the channel needs a pair ofN-point FFT andN-point IFFT. In

contrast, as we shall see below, afterN-point FFT, the frequency-domain DGT can be adopted

for the GFDM signal recovery, where the channel equalization has much lower complexity

than the time-domain equalization and reduces an IFFT compared to FDE. Moreover, after the

frequency-domain DGT for the coded GFDM signal, without a direct channel equalization, the

signal with the channel information can be directly used to calculate the soft information for the

decoder.

Substituting (4) into (12), the frequency-domain DGT of thereceived GFDM signalY (l) in

the broadband channel is expressed by

Yk,m =
1

N

N−1
∑

l=0

Y (l)Γ∗
k,m(l)

=
1

N

N−1
∑

l=0

H(l)X(l)Γ∗
k,m(l) +

1

N

N−1
∑

l=0

W (l)Γ∗
k,m(l)

=
1

N

N−1
∑

l=0

H(kM)X(l)Γ∗
k,m(l) +

1

N

N−1
∑

l=0

(H(l)−H(kM))X(l)Γ∗
k,m(l) +

1

N

N−1
∑

l=0

W (l)Γ∗
k,m(l)

= H(kM)dk,m + Ωk,m +Ψk,m, (15)

whereH(kM) is the frequency-domain channel response corresponding tothe kth subcarrier,

Ωk,m =
1

N

N−1
∑

l=0

(H(l)−H(kM))X(l)Γ∗
k,m(l)

=
1

N

N−1
∑

l=0

(H(l)−H(kM))X(l)Γ∗((l + kM)N )e
j2π m

M
l, (16)

July 1, 2021 DRAFT
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and

Ψk,m =
1

N

N−1
∑

l=0

W (l)Γ∗((l + kM)N )e
j2π m

M
l. (17)

It is shown in (15) that after the frequency-domain DGT, the (k, m)-th GFDM symbolYk,m has

the similar format to the received OFDM symbol in the frequency domain. Then, the symbol-

by-symbol detection is

d̂k,m = arg min
dk,m∈S

|Yk,m −H(kM)dk,m|
2, (18)

whereS is the signal constellation.

From (15) one can see that the received signal is corrupted bythe interferenceΩk,m and the

channel noiseΨk,m. For the frequency-domain DGT, the distortion composed ofΩk,m andΨk,m

is different from the Gaussian noise in OFDM systems. Since the Gaussian noise partΨk,m

can be studied easily and similarly to before, we focus our analysis on the interferenceΩk,m.

It is shown in (16) thatΩk,m is affected by the channel responseH(l) and the shifted analysis

window Γk,m(l), which will be analyzed in the following.

AssumingE{ddH} = IN with the identity matrixIN andd = [d0,0, . . . , dK−1,0, d0,1, . . . , dK−1,M−1]
T ,

the variance ofΩk,m can be expressed by

E
{

Ω∗
k,mΩk,m

}

= E

{

1

N

N−1
∑

l=0

(H(l)−H(kM))∗X∗(l)Γk,m(l)
1

N

N−1
∑

l̄=0

(H(l̄)−H(kM))X(l̄)Γ∗
k,m(l̄)

}

=
1

N2

N−1
∑

l=0

N−1
∑

l̄=0

E
{

(H(l)−H(kM))∗(H(l̄)−H(kM))
}

E
{

X∗(l)X(l̄)
}

Γk,m(l)Γ
∗
k,m(l̄)

whereE{·} denotes the expectation. Suppose thatNc paths are in the Jakes’ model [15] of the

Rayleigh fading channel with the discrete maximum Doppler shift kD, the index set of the paths

July 1, 2021 DRAFT
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is N , andPh is the average power per path in the fading channel. Then, we can obtain

E
{

(H(l)−H(kM))∗(H(l̄)−H(kM))
}

=
∑

nc∈N

∑

n̄c∈N

E {h∗(nc)h(n̄c)} e
j2π l

N
nce−j2π l̄

N
n̄c −

∑

nc∈N

∑

n̄c∈N

E {h∗(nc)h(n̄c)} e
j2π l

N
nce−j2π kM

N
n̄c

−
∑

nc∈N

∑

n̄c∈N

E {h∗(nc)h(n̄c)} e
j2π kM

N
nce−j2π l̄

N
n̄c +

∑

nc∈N

∑

n̄c∈N

E {h∗(nc)h(n̄c)} e
j2π kM

N
nce−j2π kM

N
n̄c

=
∑

nc∈N

∑

n̄c∈N

PhJ0

(

2π
kD
N

(nc − n̄c)

)

(

ej2π
l
N
nc − ej2π

kM
N

nc

)(

e−j2π l̄
N
n̄c − e−j2π kM

N
n̄c

)

=
∑

nc∈N

∑

n̄c∈N

Ph

∞
∑

s=0

(−1)s

s!s!

(

2πkD(nc − n̄c)

2N

)2s
(

ej2π
l
N
nc − ej2π

kM
N

nc

)(

e−j2π l̄
N
n̄c − e−j2π kM

N
n̄c

)

= Ph

∞
∑

s=0

(−1)s

(s!)2

(

πkD
N

)2s
∑

n̄c∈N

(

e−j2π l̄
N
n̄c − e−j2π kM

N
n̄c

)

∑

nc∈N

(nc − n̄c)
2s
(

ej2π
l
N
nc − ej2π

kM
N

nc

)

= RH(l, l̄, kM), (19)

whereJ0(·) is the zeroth order Bessel function of the first kind andnc (or n̄c) is the index of

the channel path. It is noted from (19) that the large distance betweenl (or l̄) and kM will

increase the differences of the exponential functions. When the distance betweenkM and l is

smaller than or equal to the coherence bandwidth, the differences of the exponential functions

are small, that isH(l) is close toH(kM). Thus, the result of (19) is small. On the contrary,

when the distance betweenkM andl exceeds the coherence bandwidth, the increased difference

H(l)−H(kM) enlargesRH(l, l̄, kM). On the other hand, with the reduced maximum channel

time delay, that is the increased coherence bandwidth, the difference ofnc− n̄c in (19) becomes

small andRH(l, l̄, kM) also becomes small.

From (5), we can obtain

E
{

X∗(l)X(l̄)
}

= E







K−1
∑

k̄=0

M−1
∑

m̄=0

G∗

k̄,m̄
(l)d∗

k̄,m̄

K−1
∑

k̃=0

M−1
∑

m̃=0

Gk̃,m̃(l̄)dk̃,m̃







=

K−1
∑

k̄=0

M−1
∑

m̄=0

G∗

k̄,m̄
(l)Gk̄,m̄(l̄)E

{

∣

∣dk̄,m̄
∣

∣

2
}

=

K−1
∑

k̄=0

M−1
∑

m̄=0

G∗

k̄,m̄
(l)Gk̄,m̄(l̄).

Moreover, according to the local property ofGk̄,m̄(l), we can getG∗

k̄,m̄
(l)Gk̄,m̄((l̄)N ) = 0 when

|l − l̄| > τ .
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Thus, the variance ofΩk,m is further given by

E
{

Ω∗
k,mΩk,m

}

=
1

N2

N−1
∑

l=0

l+τ
∑

l̄=l−τ

RH(l, l̄, kM)

·
K−1
∑

k̄=0

M−1
∑

m̄=0

G∗

k̄,m̄
(l)Gk̄,m̄((l̄)N)Γk,m(l)Γ

∗
k,m((l̄)N). (20)

Eq. (20) denotes that the variances ofΩk,m is influenced byRH(l, l̄, kM) and the product of

Gk,m(l) andΓk,m(l), whereRH(l, l̄, kM) decreases with the increase of the channel coherence

and the product ofGk,m(l) andΓk,m(l) decreases with the decrease of the roll-off factor. Fig.

2 compares the variances ofΩk,m with different maximum channel delays. It is shown that

when the number of delayed signal samples equals to 1, the maximum channel delay is far

smaller than the length,N, of a GFDM symbol, and thusnc − n̄c approaches zero. The result

is that the summation ofRH(l, l̄, kM) is close to zero and the variance ofΩk,m approaches

zeros. Obviously, in AWGN channel, the whole band is completely flat without channel delay,

that isnc − n̄c = 0 ( or H(l) = 1), we obtainRH(l, l̄, kM) = 0 andΩk,m = 0, similar to the

narrowband channel shown in Fig. 3. Thus, the maximum channel delay, related to the reciprocal

of the coherence bandwidth, is the key factor of the varianceof Ωk,m. On the other hand, with

the increased roll-off factor ofG(l), the frequency-domain DGT enlarges the variance ofΩk,m,

as shown in Fig. 3, due to the decreased time-frequency localization of Γk,m(l) and Gk,m(l).

When the roll-off factor isβ = 0, the synthesis windowG(l) becomes the rectangular window

and its support length2τ + 1 becomesM :

G((l)N) =











1, l ∈ [−M
2
, M

2
− 1] for evenM, l ∈ [−M−1

2
, M−1

2
] for odd M,

0, otherwise,

and Γ(l) is also the same rectangular window asG(l) [10]. In this case,X(l) in (5) and (6)

becomesK manyM-point DFTs:

X(l) =
K−1
∑

k=0

G((l + kM)N )
M−1
∑

m=0

dk,me
−j2π m

M
l =

M−1
∑

m=0

dk,me
−j2π m

M
l

for l ∈ Vk = [N − (k + 1
2
)M + η, N − 1− kM ] ∪ [(N − kM)N , (N − 1 − (k − 1

2
)M + η)N ],

where whenM is even,η = 0 and whenM is odd,η = 1
2
. Similarly, Yk,m in (15) becomes the

M-point IDFT

Yk,m =
1

M

∑

l∈Vk

Y (l)ej2π
m
M

l.

July 1, 2021 DRAFT
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Ωk,m in (16) becomes

Ωk,m =
1

M

∑

l∈Vk

(H(l)−H(kM))X(l)ej2π
m
M

l.

Delayed sample index
0 10 20 30 40 50 60 70
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ar
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20

Frequency-domain DGT, β=0.1
Frequency-domain DGT, β=0.9

Fig. 2. Variances ofΩk,m with different channel delays and roll-off factors under the normalized energy ofΓk,m(l) in the

9-path Rayleigh fading channel with the maximum channel delay 2.51 × 10−6s.

The variance ofΨk,m in (17) is

E
{

Ψ∗
k,mΨk,m

}

= E

{

∥

∥

∥

(

Γ
∗
k,m

)T
W

∥

∥

∥

2

2

}

= Tr
{

E
{

Γ
H
k,mWW

H
Γk,m

}}

= Tr
{

Γ
H
k,mE

{

WW
H
}

Γk,m

}

= Nσ2Tr
{

Γ
H
k,mΓk,m

}

= Nσ2‖Γ‖22,

which denotes that the variance ofΨk,m is unaffected by the frequency-domain DGT, but this

noise will be colored now and may not be white anymore, whereΓk,m , 1
N
[Γk,m(0),Γk,m(1), . . . ,Γk,m(N−

1)]T, Γ , 1
N
[Γ(0),Γ(1), . . . ,Γ(N − 1)]T andW , [W (0),W (1), . . . ,W (N − 1)]T.

However, the frequency-domain DGT in the whole band still causes high complexity. Firstly,

to get the received GFDM signalY (l), MK-point FFT is required withMK
2

log2(MK) complex

multiplications. Then, for the frequency-domain DGT in (15), the number of complex multipli-

cations required forK many MK-point circular convolutions betweenY (l) andΓ(l) is MK2.
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Roll-off factor β
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|2 }
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0.005

0.01

0.015

0.02

0.025
Broadband channel
Narrowband channel

Fig. 3. Variances ofΩk,m with different roll-off factors in a broadband channel and anarrowband channel.

After that, based on the DFT-based DGT [10], the frequency-domain DGT in the whole band of

lengthMK can be implemented byMK-point FFT. Lastly, for detecting the data in (18),JMK

complex multiplications are required fromH(kM)dk,m and modulus in (18). Thus, for a largeM

or K, the complexityMK log2(MK) +MK2 +2JMK of the frequency-domain DGT receiver

is high. In order to further reduce the complexity of the frequency-domain DGT in (15) at the

receiver, the frequency-domain DGT in the local subbands isproposed below.

B. Frequency-Domain Local DGT and A Fast Receiver

1) Frequency-Domain Local DGT: Similar to the running window processing in time domain

in [10], [11], a signalY (l) with a localized analysis windowΓ(l) in the frequency domain called

frequency-domain local DGT (LDGT) can be defined below. The LDGT of Y (l) to get the (k,

m)-th datadk,m in the subband[kM − L, kM + L] is defined by

d̃k,m =
1

N

kM+L
∑

l=kM−L

Y (l)Γ̃∗
k,m(l), (21)

where

Γ̃k,m(l) = Γ̃((l + kM)N )e
−j2π m

M
l, (22)
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which are the time and frequency shifts of an analysis windowΓ̃(l) for l ∈ [0, L]∪[N−L,N−1]

and 2L+1 is the support length of the analysis window̃Γ(l). Note that an analysis window

function usually has lowpass property, the non-zero elements of Γ̃(l) areΓ̃(0), . . . , Γ̃(L), Γ̃(N−

L), . . . , Γ̃(N−1). The biorthogonality relationship between the synthesis window and the analysis

window becomes

1

N

L
∑

l=−L

G(((l)N +mM)N )e
j2π k

M
(l)N Γ̃∗((l)N) = δ(k)δ(m)

0 6 k 6 M − 1, and0 6 m 6 K − 1, (23)

for d̃k,m = dk,m, k = 0, . . . , K− 1, m = 0, . . . ,M − 1. Clearly when the synthesis windowG(l)

is given, the local analysis window̃Γ(l) can be solved from (23) if (23) has solutions.

By rearranging (23) into a matrix vector form and deleting the all-zero rows, (23) becomes

BΓ̃
∗ = ẽ1, (24)

whereB is a(2α−1)M×(2L+1) matrix withα = ⌈L+τ+1
M

⌉, and2τ+1 is the non-zero length of

the synthesis windowG(l), (2α−1)M andN−(2α−1)M , respectively, denote the number of all

nonzero rows and the number of all-zero rows in (23), and thusthe(k+1+(m)2α−1M, l+L+1)th

element ofB is

G(((l)N + (m)KM)N )e
j2π k

M
(l)N = G(((l)N + (m)KM)N )e

−j2πM−k
M

(l)N (25)

for k = 0, . . . ,M − 1, m ∈ [−α + 1, α − 1], and l ∈ [−L, L], Γ̃ , 1
N
[Γ̃(N − L), . . . , Γ̃(N −

1), Γ̃(0), . . . , Γ̃(L)]T, and ẽ1 = [1, 0, . . . , 0]T is a (2α − 1)M × 1 vector with its first element

equal to 1.

The support length ofG(l) always satisfies2τ + 1 > M , as an example, for the RC window

shown in Fig. 1, whereM = 2β̄τ for an evenM and M = 2β̄τ + 1 for an oddM. Since

0 6 β 6 1, we can obtain2τ + 1 > 2β̄τ + 1 > M , where the equal sign can be obtained when

β = 0. As mentioned above, whenβ = 0, the analysis windowΓ(l) becomes a rectangular

window the same asG(l) with the support lengthM. In this case, the frequency-domain DGT

becomesK manyM-point DFTs. Then,B becomes anM×M DFT matrix and (24) has a unique

solution. Thus, the data easily recovered by a DFT is unique and is also with the least-squared

error. On the contrary, when0 < β 6 1, we can obtain2τ + 1 > 2β̄τ + 1 > M . Then, we

have(2α − 1)M > 2(L + τ + 1) − M > 2L + 1 for 0 < β 6 1, which means that there are

more equations than unknowns in (24). Therefore, in general, the system of linear equations (24)
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does not have a solution. We next focus on the case of0 < β 6 1 in the GFDM system in the

following. In this case, we find̃Γ in (24) by using the following least squares criterion:

Γ̃opt = argmin
Γ̃

∥

∥

∥
ẽ1 −BΓ̃

∗

∥

∥

∥

2

2
, (26)

whose solution is the pseudoinverse ofB, i.e.,

Γ̃opt = ((B∗)HB∗)−1(B∗)Hẽ∗1 = (BT
B

∗)−1
B

T
ẽ1 = (BT

B
∗)−1

G̃0, (27)

whereG̃0 , [G(N − L), . . . , G(N − 1), G(0), . . . , G(L)]T becauseBT
ẽ1 = G̃0.

In the following, we prove that the GFDM datãdk,m demodulated by LDGT with the optimal

solutionΓ̃opt also have the least-squared error compared to the original GFDM datadk,m among

all analysis window functions̃Γ(l) of length 2L+1 as above. Note that in this case it corresponds

to the ideal channel.

In the GFDM system, according to (21), the LDGT using the GFDMsignal X(l) can be

rewritten in the matrix form as

d̃ = Ad, (28)

whered̃ = [d̃0,0, d̃0,M−1, . . . , d̃0,1, . . . , d̃K−1,0, d̃K−1,M−1, . . . , d̃K−1,1]
T, d , [d0,0, d0,M−1, . . . , d0,1, . . . ,

dK−1,0, dK−1,M−1, . . . , dK−1,1]
T, A = [A0 A1 · · · AK−1]

T, AT
0 = [A0,1 0M×(N−(2α−1)M) A0,2]

with [A0,2 A0,1] = Γ̃
H
2L+1B

T and theM × (N − (2α − 1)M) all-zero matrix0M×(N−(2α−1)M),

A
T
k is the shifted version ofAT

0 where the (m+1)th row ofAT
k is the cyclic shift of the (m+1)th

row of AT
0 by kM for m = 0, . . . ,M − 1, the (2L+ 1)×M matrix Γ̃2L+1 is defined by

Γ̃2L+1 , [Φ0Γ̃,Φ1Γ̃, · · · ,ΦM−1Γ̃] (29)

with

Φm , diag{e−j2π m
M

(N−L), . . . , e−j2π m
M

(N−1), 1, . . . , e−j2π m
M

L}. (30)

From the block-cyclic format ofA, we just need to study any sub-matrixAT
k in A. By deleting

the all-zero matrix0M×(N−(2α−1)M), only Γ̃
H
2L+1B

T in A
T
k is left. In the following, we prove

that Γ̃ and its shiftsΦmΓ̃ in Γ̃2L+1 have the same optimal solutioñΓopt.

For simplicity, by replacingm and k with k andm′ in B, corresponding to the data indices

of dk,m and d̃k,m, the ((M −m)M + 1, (M −m′)M + 1+ (k)2α−1M)th element ofΓ̃H
2L+1B

T is

given by
1

N

L
∑

l=−L

G(((l)N + (k)KM)N )Γ̃
∗((l)N)e

j2π
(l)N
M

(m−m′), (31)
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where k ∈ [−α + 1, α − 1], and m,m′ = 0,M − 1, . . . , 1. To obtain d̃k,m = dk,m, the

shifted analysis windows and the shifted synthesis windowsin (31) should also satisfy the

biorthogonality similar to (23), i.e., (31) equals toδ(k)δ(m−m′). Thus, based on (23) and (24),

(31) satisfying biorthogonality can be expressed as

BΦ
∗
mΓ̃

∗ = ẽm+1, (32)

where ẽm+1 = [0, . . . , 0, 1, 0, . . . , 0]T is a (2α − 1)M × 1 vector with its ((M − m)M + 1)th

element equal to 1 form = 0,M − 1, . . . , 1. SinceBΦ
∗
m has the same numbers of rows and

columns asB, similar to (26), we can also formulate

Γ̃opt = argmin
Γ̃

∥

∥

∥
ẽm+1 −BΦ

∗
mΓ̃

∗

∥

∥

∥

2

2
, (33)

with the optimal solution

Γ̃opt = ((B∗
Φm)

H
B

∗
Φm)

−1(B∗
Φm)

H
ẽ
∗
m+1 = Φ

∗
m(B

T
B

∗)−1
ΦmG̃0 = (Φ∗

mB
T
B

∗
Φm)

−1
G̃0,

(34)

where the(l + L+ 1, l′ + L+ 1)th element ofΦ∗
mB

T
B

∗
Φm is expressed by

∑

k∈K

M−1
∑

m′=0

G(((l)N + kM)N )G
∗(((l′)N + kM)N )e

j 2π
M

(l−l′)(m−m′)

=
∑

k∈K

G(((l)N + kM)N )G
∗(((l′)N + kM)N )e

j 2π
M

(l−l′)m
M−1
∑

m′=0

e−j 2π
M

(l−l′)m′

=
∑

k∈K

G(((l)N + kM)N )G
∗(((l′)N + kM)N )e

j 2π
M

(l−l′)mMδ(l − l′ + pM)

= M
∑

k∈K

G(((l)N + kM)N )G
∗(((l′)N + kM)N )δ(l − l′ + pM), (35)

for K = [0, α − 1] ∪ [K − α + 1, K − 1], m = 0,M − 1, . . . , 1, l, l′ ∈ [−L, L] and p =

0,±1, . . . ,±⌊2L
M
⌋. From (35), one can see that it is independent ofm. As a result,

B
T
B

∗ = Φ
∗
0B

T
B

∗
Φ0 = Φ

∗
mB

T
B

∗
Φm, (36)

which proves that the optimal solution with the least-squared error in (33) is identical to the

optimal solution with the least-squared error in (26).

Thus, using the optimal̃Γopt for the LDGT of the GFDM signal, for any other̃Γ of length

2L+1, according to (33), we can obtain
∥

∥

∥
ẽm+1 −BΦ

∗
mΓ̃

∗
opt

∥

∥

∥

2

2
6

∥

∥

∥
ẽm+1 −BΦ

∗
mΓ̃

∗

∥

∥

∥

2

2
. (37)
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We assume thatE{d∗k,mdk,m} = 1. Sincedk,m for all k and m are i.i.d., based on (37), we

have

E

{

∥

∥

∥
d− d̃opt

∥

∥

∥

2

2

}

= E
{

‖(IN −Aopt)d‖
2
2

}

= Tr
{

(IN −Aopt) (IN −Aopt)
H
}

=
K−1
∑

k=0

M−1
∑

m=0

∥

∥

∥
ẽ
T
m+1 − Γ̃

H
optΦ

∗
mB

T
∥

∥

∥

2

2
6

K−1
∑

k=0

M−1
∑

m=0

∥

∥

∥
ẽ
T
m+1 − Γ̃

H
Φ

∗
mB

T
∥

∥

∥

2

2

= Tr
{

(IN −A) (IN −A)H
}

= E

{

∥

∥

∥
d− d̃

∥

∥

∥

2

2

}

, (38)

whereAopt can be obtained by replacing̃Γ in A with Γ̃opt. It is concluded by (38) that the data

d̃k,m demodulated by the LDGT with the optimal analysis windowΓ̃opt has the least-squared

error compared to the original datadk,m among all analysis window functions̃Γ of length 2L+1

as above. In this case, the channel is ideal.

2) A Fast Receiver: In the receiver for a broadband channel, similar to (15)-(17), the LDGT

for the received GFDM signalY (l) in (4) in the subband[kM − L, kM + L] is given by

Ỹk,m =
1

N

kM+L
∑

l=kM−L

Y ((l)N)Γ̃
∗
k,m((l)N)

= H(kM)dk,m + Ω̃k,m + Ψ̃k,m, (39)

where

Ω̃k,m =
1

N

kM+L
∑

l=kM−L

H((l)N)X((l)N)Γ̃
∗(((l)N + kM)N )e

j2π m
M

(l)N

−
1

N

N−1
∑

l=0

H(kM)X(l)Γ∗((l + kM)N )e
j2π m

M
l, (40)

and

Ψ̃k,m =
1

N

kM+L
∑

l=kM−L

W ((l)N)Γ̃
∗(((l)N + kM)N )e

j2π m
M

(l)N , (41)

where the local analysis window functioñΓ(l) = Γ̃opt(l) obtained previously. Then, based on

(39), the (k, m)-th symboldk,m is detected by using̃Yk,m similar to (18).

What is shown previously is that the local analysis windowΓ̃opt(l) is optimal in terms of the

data recovery, when the channel is ideal or narrowband. One might ask what will happen for a

broadband channel, i.e., what will happen if a different local analysis window functionΓ(l) of

length 2L+1 is used in (39)-(41). An obvious local analysis window function is the truncated

Γ(l) obtained through (14) to the length of 2L+1, i.e., the truncated frequency-domain DGT in
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(15) to the band[kM −L, kM +L]. In this way, we can also obtain a fast GFDM receiver with

the same complexity as the LDGT, which can be expressed by

Ȳk,m =
1

N

kM+L
∑

l=kM−L

Y ((l)N)Γ
∗
k,m((l)N)

= H(kM)dk,m + Ω̄k,m + Ψ̄k,m, (42)

where

Ω̄k,m =
1

N

kM+L
∑

l=kM−L

H((l)N)X((l)N)Γ
∗(((l)N + kM)N )e

j2π m
M

(l)N

−
1

N

N−1
∑

l=0

H(kM)X(l)Γ∗((l + kM)N )e
j2π m

M
l, (43)

and

Ψ̄k,m =
1

N

kM+L
∑

l=kM−L

W ((l)N)Γ
∗(((l)N + kM)N )e

j2π m
M

(l)N . (44)

We next give the optimal analysis window with the least-squared error in the LDGT for the

received GFDM signal when the channel statistics is known. Firstly, based on (39)-(41), the

average-squared error betweenH(kM)dk,m and Ỹk,m is expressed by

E

{

∥

∥

∥
H̃d− Ỹ

∥

∥

∥

2

2

}

= E

{

∥

∥

∥
H̃d− Ãd−CW

∥

∥

∥

2

2

}

= E

{

Tr

{

(

H̃− Ã

)

dd
H
(

H̃− Ã

)H
}}

+ E
{

Tr
{

CWW
H
C

H
}}

= E

{

Tr

{

dd
H
(

H̃− Ã

)H (

H̃− Ã

)

}}

+ Tr
{

CE
{

WW
H
}

C
H
}

= Tr

{

E
{

dd
H
}

E

{

(

H̃− Ã

)H (

H̃− Ã

)

}}

+Nσ2Tr
{

CINC
H
}

= Tr

{

E

{

(

H̃− Ã

)(

H̃− Ã

)H
}}

+Nσ2Tr
{

CC
H
}

(45)

where theN ×N channel matrixH̃ is defined as

H̃ ,















H(0)IM

H(M)IM
. . .

H((K − 1)M)IM















,

Ã = [Ã0 Ã1 · · · ÃK−1]
T, ÃT

0 = [Ã0,1 0M×(N−(2α−1)M) Ã0,2] with [Ã0,2 Ã0,1] = Γ̃
H
2L+1H0,2L+1B

T,

Ã
T
k is the shifted version of̃̃AT

0 that is obtained fromÃT
0 by replacingH0,2L+1 in Ã

T
0 with
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Hk,2L+1, where the (m+1)th row of ÃT
k is the cyclic shift of the (m+1)th row of ˜̃AT

0 by kM for

m = 0, . . . ,M − 1, and the(2L+ 1)× (2L+ 1) diagonal channel matrixHk,2L+1 is defined by

Hk,2L+1 , diag {H((kM − L)N) · · · H((kM − 1)N) H((kM)N) · · · H((kM + L)N )} ,

(46)

Γ̃
H
2L+1 and B have been shown in (29) and (25), respectively,C = [C0 C1 · · · CK−1]

T,

C
T
0 = [C0,1 0M×(N−(2α−1)M) C0,2] with [C0,2 C0,1] = Γ̃

H
2L+1, C

T
k is shifted version ofCT

0 where

the (m+1)th row ofCT
k is the cyclic shift of the (m+1)th row ofCT

0 by kM for m = 0, . . . ,M−1.

Considering the property of (36), we can further rewrite (45) as

Tr

{

E

{

(

H̃− Ã

)(

H̃− Ã

)H
}}

+Nσ2Tr
{

CC
H
}

=

K−1
∑

k=0

Tr
{

E
{(

H(kM)
[

IM 0M×(2α−2)M

]

− Γ̃
H
2L+1Hk,2L+1B

T
)

·
(

H(kM)
[

IM 0M×(2α−2)M

]

− Γ̃
H
2L+1Hk,2L+1B

T
)H }}

+Nσ2
K−1
∑

k=0

Tr
{

Γ̃
H
2L+1Γ̃2L+1

}

=
K−1
∑

k=0

M−1
∑

m=0

Tr

{

E

{

(

H(kM)ẽTm+1 − Γ̃
H
Φ

∗
mHk,2L+1B

T
)(

H(kM)ẽTm+1 − Γ̃
H
Φ

∗
mHk,2L+1B

T
)H

}}

+Nσ2

K−1
∑

k=0

M−1
∑

m=0

∥

∥

∥
Γ̃

H
Φ

∗
m

∥

∥

∥

2

2

=

K−1
∑

k=0

M−1
∑

m=0

(

E
{

|H(kM)|2
}

− G̃
H
0 E

{

H(kM)H∗
k,2L+1

}

Γ̃− Γ̃
HE {Hk,2L+1H

∗(kM)} G̃0

+ Γ̃
HE

{

Φ
∗
mHk,2L+1B

T
B

∗
H

∗
k,2L+1Φm

}

Γ̃

)

+N2σ2
∥

∥

∥
Γ̃

∥

∥

∥

2

2

=

K−1
∑

k=0

M−1
∑

m=0

(

E
{

|H(kM)|2
}

− G̃
H
0 E

{

H(kM)H∗
k,2L+1

}

Γ̃− Γ̃
HE {Hk,2L+1H

∗(kM)} G̃0

+ Γ̃
HE

{

Hk,2L+1B
T
B

∗
H

∗
k,2L+1

}

Γ̃

)

+N2σ2
∥

∥

∥
Γ̃

∥

∥

∥

2

2
(47)

Under the constraint of the constant‖Γ̃‖22, to minimize the error in (47), we just need to

minimize the first term of (47). Thus, for obtaining the analysis window Γ̃opt with the least-

squared error, we formulate

Γ̃opt = argmin
Γ̃

{e} . (48)
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where

e =E
{

|H(kM)|2
}

− G̃
H
0 E

{

H(kM)H∗
k,2L+1

}

Γ̃− Γ̃
HE {Hk,2L+1H

∗(kM)} G̃0

+ Γ̃
HE

{

Hk,2L+1B
T
B

∗
H

∗
k,2L+1

}

Γ̃.

By ∂e/∂Γ̃ = 0, we have

E
{

Hk,2L+1B
T
B

∗
H

∗
k,2L+1

}

Γ̃opt = E {H∗(kM)Hk,2L+1} G̃0. (49)

Therefore, the optimal solution is

Γ̃opt =
(

E
{

Hk,2L+1B
T
B

∗
H

∗
k,2L+1

})−1
E {H∗(kM)Hk,2L+1} G̃0. (50)

For simplicity, by replacingk and m of B in (25) with m and k, according to (19), the

(l + L+ 1, l′ + L+ 1)th element ofE{Hk,2L+1B
T
B

∗
H

∗
k,2L+1} in (50) is expressed by

∑

k∈K

M−1
∑

m=0

E {H((l + kM)N )H
∗((l′ + kM)N )}G(((l)N + kM)N )G

∗(((l′)N + kM)N )e
−j 2π

M
(l−l′)m

=
∑

k∈K

E {H((l + kM)N )H
∗((l′ + kM)N )}G(((l)N + kM)N )G

∗(((l′)N + kM)N )

M−1
∑

m′=0

e−j 2π
M

(l−l′)m

= M
∑

k∈K

E {H((l + kM)N )H
∗((l′ + kM)N )}G(((l)N + kM)N )G

∗(((l′)N + kM)N )δ(l − l′ + pM)

= M
∑

k∈K

G(((l)N + kM)N )G
∗(((l′)N + kM)N )δ(l − l′ + pM)

·
∑

nc∈N

∑

n′

c∈N

PhJ0

(

2π
kD
N

(n′
c − nc)

)

e−j 2π
N

((l+kM)Nnc−(l′+kM)Nn′

c)

= PhM
∑

k∈K

G(((l)N + kM)N )G
∗(((l′)N + kM)N )δ(l − l′ + pM)

·
∞
∑

s=0

(−1)s

(s!)2

(

πkD
N

)2s
∑

nc∈N

∑

n′

c∈N

(n′
c − nc)

2se−j 2π
N

((l+kM)Nnc−(l′+kM)Nn′

c) (51)

for K = [0, α− 1]∪ [K − α+ 1, K − 1], l, l′ ∈ [−L, L], andp = 0,±1, . . . ,±⌊2L
M
⌋. Meanwhile,

according to (19), the(l + L+ 1)th element ofE {H∗(kM)Hk,2L+1} G̃0 in (50) is

E {H∗(kM)H((l + kM)N )}G((l)N )

= G((l)N )
∑

nc∈N

∑

n′

c∈N

PhJ0

(

2π
kD
N

(n′
c − nc)

)

e−j 2π
N

((l+kM)Nnc−kMn′

c)

= PhG((l)N)

∞
∑

s=0

(−1)s

(s!)2

(

πkD
N

)2s
∑

nc∈N

∑

n′

c∈N

(n′
c − nc)

2se−j 2π
N

((l+kM)Nnc−kMn′

c). (52)
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Eqs. (51) and (52) show that̃Γopt in (50) is related to the synthesis windowG((l)N) and

its shifts and the channel covariance. When the channel is ideal, there is one channel de-

lay, i.e., nc = n′
c = 0. In this case, we haveE {H((l + kM)N )H

∗((l′ + kM)N )} = Ph and

E {H∗(kM)H((l + kM)N )} = Ph. Thus, the optimal analysis window in (50) is the same as

the optimal analysis window in (27).

By decreasing the length of the analysis windowΓ̃(l) to 2L+1, the complexity of the LDGT

can be reduced compared to the frequency-domain DGT. AfterMK-point FFT, the number of the

complex multiplications of the convolutions betweenY (l) andΓ̃(l) is reduced toK(2L+1), and

the number of multiplications based on FFT for the LDGT is reduced to(L+ 1) log2(MK) in

(39). The same as the frequency-domain DGT receiver, the data detection in (18) after the LDGT

is also used. Thus, forL ≪ MK, the complexity(MK
2

+L+1) log2(MK)+K(2L+1)+2JMK

of the LDGT receiver is lower than the complexityMK log2(MK) + MK2 + 2JMK of the

frequency-domain DGT receiver.

Table I compares the complexities of several GFDM receiversin a broadband channel, where

I indicates the span of a receiver filter in the neighborhood ofeach subcarrier band in [1] and

I0 is the number of iterations in the SIC algorithm [5]. According to [1], I = 2 andI = 16 are

considered for the MF/MF-SIC and ZF receivers. Consideringthe channel equalization in OFDM,

for fair complexity comparison, FDE is used as the channel equalization in the ZF receiver in

[1], the FFT-based ZF/MF receiver in [1], the MF-SIC receiver in [5], and the ZF/MF receiver

for GFDM in [17], [18]. The FDE for the channel of lengthMK in the GFDM receivers has

MK log2(MK) +MK complex multiplications caused by a pair of FFT and IFFT and ZF/MF.

For simplicity, uncoded systems are considered here. LetJ be the size of the constellationS.

ForL ≪ MK, the LDGT in (39) can make a fast implementation of GFDM signal recovery. As

shown in Fig. 4, for smallM 6 4, the ZF/MF receiver for GFDM in [17], [18] has the lowest

complexity, while the LDGT receiver has the complexity close to the ZF/MF receiver in [17],

[18] and the FFT-based MF receiver in [1] and better than the FFT-based ZF receiver in [1].

On the contrary, whenM > 4, the LDGT receiver has the lowest complexity among the GFDM

receivers.

After we study the above LDGT for the receiver of GFDM, it is clear that when the analysis

window length 2L+1 is increased, the receiver performance can be increased,while its complexity

is increased as well. A simple way to trade-off the performance and the complexity of the LDGT

receiver in choosing an analysis window length is as follows. First, we observe the whole band
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Fig. 4. Computational complexity comparison of different GFDM receiver techniques in a broadband channel whenL = 12,

J = 4, andI0 = 8. (a) M ∈ [1, 21] andK = 256; (b) K ∈ {32, 64, 128, 256, 512, 1024} andM = 7.
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TABLE I

COMPUTATIONAL COMPLEXITIES OFDIFFERENTGFDM RECEIVERTECHNIQUES INA BROADBAND CHANNEL

Technique Number of complex multiplications

OFDM receiver MK

2
log2 K +MK + JMK

ZF receiver in [1] (MK)2 +MK log2(MK) +MK + JMK

MF-SIC receiver in [5] MK( 3
2
log2(MK) + 1

2
log2 M + I + 1 + I0(log2 M + 1 + J))

FFT-based MF/ZF receiver in [1] MK( 3
2
log2(MK) + 1

2
log2 M + I + 1 + J)

ZF/MF receiver in [17], [18] MK

2
(M + 3 log2 K) +MK + JMK

Frequency-domain DGT (FD-DGT) receiver MK log2 (MK) +MK2 + 2JMK

LDGT receiver (MK

2
+ L+ 1) log2 (MK) +K(2L+ 1) + 2JMK

analysis windowΓ(l) obtained from the Wexler-Raz identity (14) to see where its concentration

is as shown in Fig. 5. Clearly, if one wants to truncate this function, one may want to see where

its main energy is, for example, use its main lobe or so, whichcan determine the truncated

window length 2L+1. This, then, can be used as the length in the LDGT as the local analysis

window length. As we have proved before, using the optimal local analysis window function is

always better than or at least equal to the truncated window function, the performance of the

LDGT with the obtained optimal local analysis window function will be good.

kM-4βτ kM-3βτ kM-τ kM kM+τ kM+3βτ kM+4βτ l

Fig. 5. The diagram ofΓk,m(l) of RC with β = 0.6.
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IV. SIMULATION RESULTS

In the following simulations, the parameters are listed in Table II. The 9-path EVA channel

model in 3GPP LTE is used, whose channel delay and channel power are [0, 30, 150, 310, 370,

710, 1090, 1730, 2510] ns and [0, -1.5, -1.4, -3.6, -0.6, -9.1, -7.0, -12.0, -16.9] dB, respectively.

TABLE II

SIMULATION PARAMETERS

Parameters Values

Constellation modulation QPSK and 16QAM

Transmitter filter RC

Roll-off factor (β) 0.1 and 0.9

Number of subcarriers (K) 256

Number of subsymbols (M) 7

Subcarrier interval 15 KHz

Sampling interval 37.2 ns

Carrier frequency 2 GHz

Channel code convolutional code

Code rate 0.5

Maximum Doppler shift (fD) 100 Hz

Length of CP in GFDM 80

Length of CP in OFDM 80

Channel environment multipath Rayleigh fading channel

In Fig. 6, the BER performances of the frequency-domain DGT,the truncated frequency-

domain DGT and the LDGT with varying lengths of the analysis window and varying roll-off

factors are depicted in Rayleigh fading channel. It is shownthat the LDGT can obtain better BER

performance than the truncated frequency-domain DGT, suchas forβ = 0.9 andL=9 in QPSK

andβ = 0.9 andL=20 in 16QAM. Compared to the frequency-domain DGT, the LDGThas the

system performance degradation for the inaccurateΓ̃, which is the analysis window in the local

subband, obtained by the least squares criterion in (26), but with the increasedL, the LDGT can

obtain better BER performance than the frequency-domain DGT for the improved accuracy of

Γ̃ and the removal of the part of the channel noise due to the local property ofΓ̃. For example,

whenβ = 0.9 and L=9 in QPSK andβ = 0.9, L=20 in 16QAM, the LDGT can obtain better

BER performance than the frequency-domain DGT, while the truncated frequency-domain DGT

cannot do. Meanwhile, the complexity of the LDGT in (39), thesame as the truncated frequency-
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domain DGT in (42), is significantly reduced compared to the frequency-domain DGT in (15),

such as whenβ = 0.9, L=20 in 16QAM, the complexity reduction ratio is 85.5%. Furthermore,

with a small roll-off factor, both the LDGT and the truncatedfrequency-domain DGT can obtain

the same BER performance as the frequency domain DGT in the whole band, such asβ = 0.1.

It is concluded that compared to to the frequency-domain DGTin the whole band, the LDGT

with a small length of the analysis window has significant complexity reduction while it can

achieve a similar or better error performance.

Figs. 7 and 8 compare the BER performances among the ZF receiver in [1], the FFT-based MF

receiver in [1], the MF-SIC receiver in [5], the ZF receiver in [18], and the LDGT receiver in a

narrowband channel and a broadband channel, respectively,where QPSK is adopted. Compared

to the other GFDM receivers, the LDGT receiver shows the promising BER performance. The

BER performance in the LDGT receiver can be significantly improved by a largeL or a small

roll-off factor β. For example, let the parameterL increase fromL = 3 to L = 9 whenβ = 0.9

in the broadband channel and the performances are shown in Fig. 8. In this case, the LDGT

receiver can obtain the better BER performance than the ZF receiver in [1], the ZF receiver in

[18], and the MF-SIC receiver withI0=1. This is because our proposed LDGT receiver does

not use a direct channel equalization or the symbol-by-symbol detection in (18) to calculate the

soft information of the channel decoder. However, before the calculation of the soft information,

the other GFDM receivers in [1], [5], [18] still employ channel equalization before decoding.

Without consideration of the complexity of the soft information calculation and the channel

decoding, according to Table I, in the coded GFDM system withβ = 0.9, compared to the ZF

receiver in [1], the MF-SIC receiver in [5], the ZF receiver in [18] and the FFT-based MF receiver

in [1], the complexity reduction ratios in LDGT receiver with L = 9 are 99.6%, 66.5%, 50.4%,

and 60.3%, respectively. Thus, the LDGT receiver has the lowest complexity while maintaining

considerable BER performance in the broadband channel.

V. CONCLUSION

In this paper, the transmitted GFDM signal was first considered as the IDGT in time domain

and frequency domain, respectively. Then, for redcing the complexity caused by the channel

equalization, we proposed the frequency-domain DGT for thereceived GFDM signal to simplify

the GFDM signal recovery similar to OFDM. By analyzing the interference caused by the

frequency-domain DGT, the channel with high coherence and asmall roll-off factor of the
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Fig. 6. BERs of the GFDM signal processed by the frequency-domain DGT, the truncated frequency-domain DGT, and the

LDGT with different lengths of the analysis windows and different roll-off factors of the synthesis windows in Rayleighfading

channels. (a) QPSK; (b) 16QAM.
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Fig. 7. BER performance comparison among several detectionmethods for the GFDM signal in a narrowband channel with

channel delay 37.2 ps and channel power 0 dB, where QPSK is adopted.

E
b
/N

0
(dB)

0 2 4 6 8 10 12 14 16 18 20 22

B
E

R

10-5

10-4

10-3

10-2

10-1

100

OFDM receiver
ZF receiver in [1]
ZF receiver in [18]
MF receiver in [1]
MF-SIC receiver in [5], I

0
=1

LDGT, L=3
LDGT, L=9

β=0.9

β=0.1
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synthesis widow can lead to small interference to the received signal. Based on the localized

synthesis window in the frequency domain, the LDGT was proposed in the local band to further

reduce the complexity of the frequency-domain DGT in the whole band. Although the truncation

of the frequency-domain DGT can achieve the same complexityas the LDGT, we proved that the

data demodulated by the LDGT with the optimal analysis window has the least-squared error

in the ideal channel and the broadband channel compared to the truncated frequency-domain

DGT. Simulation results showed that as the length of the optimal analysis window increases,

the LDGT can obtain BER performance as good as the frequency-domain DGT, while having

notable complexity reduction compared to other GFDM receivers.
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[6] I. Gaspar, L. Mendes, M. Matthé, N. Michailow, D. Zhang,A. Alberti, and G. Fettweis, “GFDM–a framework for virtual

PHY services in 5G networks,” arXiv:1507.04608v1, Jul. 2015.

[7] M. Matthe, I. Gaspar, D. Zhang, and G. Fettweis, “Reducedcomplexity calculation of LMMSE filter coefficients for

GFDM,” arXiv:1503.02782v2, Apr. 2015.

[8] I. Gaspar, M. Matthe, N. Michailow, L. L. Mendes, D. Zhang, and G. Fettweis, “GFDM transceiver using precoded data

and low-complexity multiplication in time domain,” arXiv:1506.03350v1, Jun. 2015.

[9] J. Wexler and S. Raz, “Discrete Gabor expansions,”IEEE Trans. Signal Processing, vol. 21, pp. 207-220, 1990.

[10] S. Qian and D. Chen, “Discrete Gabor transform,”IEEE Trans. Signal Processing, vol. 41, pp. 2429-2438, July 1993.

[11] S. Qian,Introduction to Time-Frequency and Wavelet Transforms. Upper Saddle River, NJ: Prentice Hall PTR, 2002.

[12] X.-G. Xia, “On characterization of the optimal biorthogonal window functions for Gabor transforms,”IEEE Trans. Signal

Processing, vol. 44, no. 1, pp. 133-136, Jan. 1996.

[13] X.-G. Xia, “A family of pulse-shaping filters with ISI-free matched and unmatched filter properties,”IEEE Trans. Commun.,

vol. 45, no. 10, pp. 1157-1158, Oct. 1997.

[14] R. A. Horn and C. R. Johnson,Matrix Analysis. Cambridge, U. K.: Cambridge Univ. Press, 1987.

[15] W. C. Jakes,Microwave Mobile Communications. Piscataway, NJ: IEEE Press, 1994.

July 1, 2021 DRAFT

http://arxiv.org/abs/1507.04608
http://arxiv.org/abs/1503.02782
http://arxiv.org/abs/1506.03350


28

[16] H. Lin and P. Siohan, “Orthogonality improved GFDM withlow complexity implementation,”2015 IEEE Wireless Commun.

Networking Conf. (WCNC), New Orleans, United states, Jun. 2015, pp. 597-602.

[17] A. Farhang, N. Marchetti, and L. E. Doyle, “Low complexity GFDM receiver design: a new approach,”2015 IEEE Int.

Conf. Commun. (ICC), London, England, Jun. 2015, pp. 4775-4780.

[18] A. Farhang, N. Marchetti, and L. E. Doyle, “Low complexity modem design for GFDM,”IEEE Trans. Signal Processing,

vol. 64, no. 6, pp. 1507-1518, Mar. 2016.

July 1, 2021 DRAFT


	I Introduction
	II GFDM, DGT, IDGT, and Frequency-Domain DGT
	II-A GFDM Signal
	II-B DGT, IDGT, and Frequency-Domain DGT

	III Frequency-Domain DGT Receiver for GFDM Signals over a Broadband Channel
	III-A Frequency-Domain DGT Model in the Whole Band
	III-B Frequency-Domain Local DGT and A Fast Receiver
	III-B1 Frequency-Domain Local DGT
	III-B2 A Fast Receiver


	IV Simulation Results
	V Conclusion
	References

