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Joint Transceiver Design Algorithms for Multiuser
MISO Relay Systems with Energy Harvesting

Yunlong Cai, Ming-Min Zhao, Qingjiang Shi, Benoit Champagne and Min-Jian Zhao

Abstract—In this paper, we investigate a multiuser multiple-
input single-output (MISO) relay system with simultaneous wire-
less information and power transfer (SWIPT), where the received
signal is divided into two parts for information decoding (ID) and
energy harvesting (EH), respectively. Assuming that both base
station (BS) and relay station (RS) are equipped with multiple
antennas, this work studies the joint transceiver design problem
for the BS beamforming vectors, the RS amplify-and-forward
(AF) transformation matrix and the power splitting (PS) ratios
at the single-antenna receivers. The aim is to minimize the total
transmission power of the BS and the RS under both signal-to-
interference-plus-noise ratio (SINR) and EH constraints. Firstly,
an iterative algorithm based on alternating optimization (AO) and
with guaranteed convergence is proposed to successively optimize
the transceiver coefficients. This AO-based approach is then
extended into a robust transceiver design against quantization
errors in channel state information (CSI), by using semidefinite
relaxation (SDR) and the S-procedure. Secondly, a novel design
scheme based on switched relaying (SR) is proposed that can sig-
nificantly reduce the computational complexity and overhead of
the AO-based designs while maintaining a similar performance.
In the proposed SR scheme, the RS is equipped with a codebook
of permutation matrices. For each permutation matrix, a latent
transceiver is designed which consists of BS beamforming vectors,
optimally scaled RS permutation matrix and receiver PS ratios.
For the given CSI, the optimal transceiver with the lowest total
power consumption is selected for transmission. We propose
a concave-convex procedure (CCCP) based and subgradient-
type iterative algorithms for the non-robust and robust latent
transceiver designs. Simulation results are presented to validate
the effectiveness of all the proposed algorithms.

Index Terms—Beamforming, concave-convex procedure,
switched relaying, power splitting, energy harvesting, SWIPT.

I. INTRODUCTION

Recently, electromagnetic (EM) energy transfer techniques
have attracted considerable interest in the wireless research
community. Indeed, by exploiting the radiative far-field prop-
erties of EM waves, these techniques could in theory enable a
radio receiver to harvest energy from its environment, thereby
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relaxing the battery requirements on user devices. An interest-
ing application of wireless energy transfer is to jointly transmit
information and energy using the same waveform, which
is known as simultaneous wireless information and power
transfer (SWIPT). The idea of SWIPT was first proposed
by Varshney in [1], which characterizes the rate-energy (R-
E) tradeoff in a discrete memoryless channel. The study of
the R-E tradeoff was later extended to frequency selective
fading channels in [2]. In [3], the authors studied a two-way
communication scenario with noiseless channels and limited
resources, with emphasis on the tradeoffs due to the need
of balancing the information flow with the resulting energy
exchange among the communicating nodes. The authors of [4]
focused on multiuser systems and demonstrated that energy
transfer constraints call for additional coordination among
distributed nodes of a wireless network. However, the above
studies have not been realized yet due to practical circuit
limitations.

The first practical receiver structure that makes SWIPT
possible was proposed in [5], where two practical signal sep-
aration schemes were considered, namely, the time switching
(TS) scheme, where the receiver switches between information
decoding (ID) and energy harvesting (EH), and the power
splitting (PS) scheme, where the received signal is split into
two streams, such that a fraction ρ (0 ≤ ρ ≤ 1) of the received
signal power is used for ID while the remaining fraction (1−ρ)
is used for EH. PS-based algorithms were considered in [6]–
[10]. In [6], the authors derived the optimal PS rule at the
receiver, for both SISO (single-input single-output) and SIMO
(single-input multiple-output) systems, in order to optimize the
R-E performance tradeoff. In [7], the authors proposed two
practical receiver architectures, i.e., separated and integrated
information and energy receivers, based on dynamic power
splitting. These authors characterized the R-E performance by
taking circuit power consumption into account.

The authors of [8] studied the joint beamforming and power
splitting (JBPS) design for a multiuser multiple-input single-
output (MISO) broadcast system with SWIPT. In this study,
the total transmission power at the base station (BS) is mini-
mized subject to signal-to-interference-plus-noise ratio (SINR)
and EH constraints for all the receivers. The JBPS problem
for a K-user MISO interference channel was considered in
[9], where the authors used the semidefinite relaxation (SDR)
technique to address the non-convex problem and proved that
the SDR is tight in the case of K = 2 or 3. Different
from the approach of [9], an alternative second-order-cone-
programming (SOCP) relaxation method was proposed in [10].
The SOCP relaxation based method guarantees a feasible so-
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lution to the JBPS problem and has lower complexity than the
SDR method, while achieving a performance extremely close
to the minimum transmission power. A primal-decomposition
based decentralized algorithm was also presented in this work.

Besides, the SWIPT technique for relay systems was con-
sidered in [11]–[14]. Specifically, the authors of [11] proposed
a joint source and relay precoding design algorithm to achieve
different tradeoffs between the energy transfer and the infor-
mation rate. In [12], the relay beamforming design problem
for the SWIPT scheme was considered in a non-regenerative
two-way multi-antenna relay network, where a global opti-
mal solution, a local optimal solution and a low-complexity
suboptimal solution were proposed. The design of a high-rate
beamformer that supports multiple communication pairs and
intended for SWIPT in wireless relay networks was considered
in [13]. In [14], a game-theoretical framework was developed
to address the distributed power splitting problem for SWIPT
in relay interference channels. The aforementioned works
assume the availability of perfect channel state information
(CSI), which may be impractical in realistic implementations
of these systems.

In this paper, we consider the use of PS-based receivers in
a general multiuser MISO relay systems, i.e., where a multi-
antenna relay station (RS) is incorporated into the traditional
MISO multiuser setup, as in [15]–[17]. We focus our study
on the downlink transmission where the BS first transmits
the signals intended for different receivers via beamforming
to the RS. Then, the RS processes the received signals
through an amplify-and-forward (AF) transformation matrix
and broadcasts it to all the receivers. Finally, each receiver
employs the PS technique to decode information and harvest
energy simultaneously. We present an optimization framework
for the joint design of the BS beamforming vectors, the RS
AF transformation matrix and the receiver PS ratios aiming to
minimize the total power consumption under a set of minimum
SINR and EH constraints at the receivers. In this work, we
shall assume that the proposed joint design algorithms are
implemented at the BS.1

To this end, we first propose an iterative algorithm based
on alternating optimization (AO) and with guaranteed con-
vergence to successively optimize the transceiver coefficients,
i.e. the BS beamformers, the AF transformation matrix and
the receiver PS ratios. We show that each subproblem can
be relaxed as a semidefinite programming (SDP) problem by
applying the celebrated SDR technique [21]. This AO-based
approach is then extended into a robust transceiver design
against quantization errors in CSI based on the SDR technique
and the S-procedure [22], [23]. While the performance of
the AO-based designs is remarkable, we note that in this
approach, the BS needs to compute and send the complete
AF matrix to the RS before transmission, which entails
high design complexity and signaling requirements for the
overhead. Secondly, to reduce the design and implementation
costs, we present extensions of the switched relaying (SR)

1In practice, in cellular systems it is preferable to implement most of the
signal processing operations at the BS rather than the RS due to the fact that
the BS is more powerful and the RS is expected to have a simple structure
and low energy consumption [18]–[20].

processing reported in [24] to multiuser MISO relay systems
with energy harvesting. For this scheme, we equip the RS
with a codebook of permutation matrices. Based on each
element of the codebook, we can obtain a permuted channel
matrix and therefore create a latent transceiver, which includes
the BS beamforming vectors, an optimally scaled relaying
permutation matrix and the receiver PS ratios. Among the
latent transceivers so obtained for given CSI, the optimal one
is chosen according to a suitable criterion for transmission.

Specifically, SR-based algorithm constructs the RS AF
transformation matrix within each latent transceiver by mul-
tiplying a permutation matrix from the codebook with a
power scaling factor. Before data transmission, the BS sends
the index of the permutation matrix (instead of the RS AF
transformation matrix), the RS power scaling factor, and the
PS ratios corresponding to the optimal transceiver to the
RS and the receivers through signaling channels. Compared
to the AO-based algorithms, the SR approach reduces the
number of optimization variables from the complete RS AF
transformation matrix to a single power scaling factor, which
in turn significantly reduces the computational complexity
and signaling overhead. To design the latent transceivers in
the SR scheme, an iterative algorithm based on the concave-
convex procedure (CCCP) [25], [26] is proposed that uses
the estimated CSI, and is guaranteed to converge to a local
optimal point. Each subproblem in the iterative algorithm can
be formulated as an SOCP problem. By taking the quantization
CSI errors into account, we propose a robust subgradient algo-
rithm which utilizes the side information provided by standard
convex solvers. Furthermore, a simplified SR-based transceiver
design algorithm is proposed with much less computational
complexity, while achieving a performance extremely close
to the non-simplified scheme. Finally, two efficient codebook
design approaches are developed.

Simulation results demonstrate that the proposed transceiver
design algorithms are capable of providing robustness against
the effects of norm-bounded CSI errors. In particular, the
SR-based algorithms using a small codebook of permutation
matrices can achieve almost the same performance as the
AO-based algorithms but with reduced design/implementation
complexity and signaling overhead.

The reminder of this paper is organized as follows. Section
II presents the multiuser MISO relay system model, the
channel error model and the problem formulation. In Section
III, the AO-based transceiver design algorithms for both non-
robust and robust cases are developed. Section IV discusses
the SR-based transceiver scheme, including the proposed la-
tent transceiver design algorithms and the codebook design
methods. A complexity analysis of the proposed algorithms
along with a discussion of their initialization are provided in
Section V. Finally, in Section VI computer simulations are
used to verify the proposed algorithms. Conclusions are drawn
in Section VII.

Notations: Scalars, vectors and matrices are respectively
denoted by lower case, boldface lower case and boldface upper
case letters. For a square matrix A, Tr(A), rank(A), AT ,
conj(A), and AH denote its trace, rank, transpose, conjugate,
and conjugate transpose respectively, while A � 0 means that
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A is a positive semidefinite matrix. The operator vec(·) stacks
the elements of a matrix in one long column vector, invp(x)
denotes the inverse of the positive portion, i.e., 1

max(x,0) . ‖ · ‖,
(·)!, and |·| denote the Euclidean norm of a complex vector, the
factorial operator, and the absolute value of a complex scalar,
respectively. Cm×n (Rm×n) denotes the space of m× n
complex (real) matrices, and R+ (R−) denotes the set of
positive (negative) real numbers. Finally, the symbol⊗ denotes
the Kronecker product of two vectors/matrices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Proposed System Model
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...

Receiver 1

Receiver K

kn

Power
splitter

EH 
Receiver

ID 
Receiver

kv
1 k

k

...

...

...BS

...

1h

kh

Kh

G

Fig. 1. The multiuser MISO relay system with PS-based receiver. Each
receiver splits the received signal into two parts for ID and EH, respectively.

In this work, we consider a multiuser MISO relay system
which consists of one BS, one RS, and K mobile receivers
indexed by k ∈ K , {1, . . . ,K}. The number of antennas at
the BS and the RS is denoted as Nt and Nr, respectively, while
each receiver is equipped with a single antenna. We assume
that K ≤ min {Nt, Nr}, which provides sufficient degrees of
freedom for signal detection. We also assume that the classical
two-hop AF relaying protocol [27] is employed, and that the
direct links between the BS and the receivers are sufficiently
weak (to be ignored). Different from the conventional mul-
tiuser MISO relay channels [17], we here consider PS-based
receivers. The received signal at each receiver is split into
two separate signal streams with different power levels: one is
sent to the EH receiver and the other one is diverted to the ID
receiver [5], as shown in Fig. 1. Under the above assumptions,
the signals are transmitted in two phases as explained below.

In the first phase, the BS transmits K data streams, each
carrying an independent message intended for one of the K
receivers. Thus, the transmitted data vector at the BS can be
expressed as

xB =

K∑
k=1

fksk, (1)

where sk is the data signal for receiver k, with zero mean and
variance E{|sk|2} = 1, and fk ∈ CNt×1 denotes the transmit
beamforming vector. The data signals {sk}k∈K are assumed
to be independent of each other. The transmit power of the

BS can be shown as

PB = E{xBxHB } =

K∑
k=1

‖fk‖2. (2)

The transmission from the BS to the RS can be modeled as
a standard point-to-point MIMO channel. Hence, the received
data vector at the RS can be expressed as

yR = G

K∑
k=1

fksk + nr, (3)

where G ∈ CNr×Nt denotes the MIMO channel from the BS
to the RS, and nr ∈ CNr×1 is the complex circular Gaus-
sian noise vector at the RS, with zero mean and covariance
E{nrnHr } = σ2

rI, where σ2
r is the average noise power. It is

assumed that the transmitted signals {sk}k∈K are independent
of the noise vector nr.

In the second phase, the RS forwards the received signal to
all the receivers after performing linear AF processing. Hence
the vector signal transmitted from the RS can be formulated
as

xR = WyR, (4)

where W ∈ CNr×Nr is the AF transformation matrix at the
RS. The transmission power of the RS can be shown as

PR = E{xRxHR } =

K∑
k=1

‖WGfk‖2 + σ2
r‖W‖2. (5)

Finally, The signal received at the kth receiver, k ∈ K, is given
by

yk = hHk WG

K∑
k=1

fksk + hHk Wnr + nk, (6)

where hk ∈ CNr×1 denotes the complex conjugate channel
vector between the RS and receiver k, and nk is the additive
noise introduced by the receive antenna at receiver k, which
is assumed to be a complex circular Gaussian variable with
zero mean and variance σ2

k.
Let ρk (0 ≤ ρk ≤ 1) denotes the PS ratio for receiver k,

which means that portion ρk of the signal power is used for
signal detection while the remaining portion 1−ρk is diverted
to an energy harvester. Thus, on the one hand, the signal
available for ID at receiver k can be expressed as

rID
k =

√
ρk

(
hHk WG

K∑
k=1

fksk + hHk Wnr + nk

)
+ vk, (7)

where vk is the additional complex circular Gaussian circuit
noise with zero mean and variance E{|vk|2} = ω2

k, resulting
from phase offsets and non-linearities during baseband conver-
sion [5]. Thus, the SINR at the kth receiver can be expressed
as

Γk =
ρk|hHk WGfk|2

ρk

(
K∑
j 6=k
|hHk WGfj |2 + σ2

r‖hHk W‖2 + σ2
k

)
+ ω2

k

.

(8)
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On the other hand, the total harvested energy that can be
stored by receiver k is equal to

P EH
k = ξk(1−ρk)

 K∑
j=1

|hHk WGfj |
2

+ σ2
r‖hHk W‖2 + σ2

k

 ,

(9)
where ξk ∈ (0, 1] denotes the energy conversion efficiency of
the kth EH unit, which indicates that only a portion ξk of the
radio frequency energy can be stored.

B. Channel Error Model

We assume that the required CSI can be estimated at the
BS and the RS by means of a suitable channel estimation
algorithms [28]–[30]. In this work, we consider a time division
duplex (TDD) mode and assume that the radio channels vary
sufficiently slowly over time, so that the downlink transmit
CSI can be obtained by channel reciprocity [31]. Therefore,
the BS can obtain the MIMO channel matrix G involved the
first phase of transmission, while the RS can obtain the channel
vectors {hk} involved in the second. However, the second
phase CSI needs to be fed back from the RS to the BS using
signaling channels [31]–[33] for implementation of the design
algorithms, as explained earlier. Hence, here we assume that
the BS can perfectly know the first phase CSI, matrix G,
but not the second phase CSI, i.e. vectors {hk}. We consider
quantization errors during channel feedback from the RS to the
BS and employ the NBE model [34] to characterize this type
of imperfection. In particular, the true (but unknown) second
phase CSI can be expressed as follows:

hk = ĥk + ek, k ∈ K, (10)

where ĥk denotes the estimated channel vector, while ek
denotes the CSI error vector. We assume that vector ek is
bounded in its Euclidean norm, that is

‖ek‖ ≤ ηk, k ∈ K, (11)

where ηk is a known positive constant. Equivalently, hk
belongs to the uncertainty set <k defined as

<k = {h|h = ĥk + ek, ‖ek‖ ≤ ηk}, k ∈ K. (12)

The shape and the size of <k model the type of uncertainty
in the estimated CSI, which is linked to the physical phe-
nomenon producing the CSI errors. It should be emphasized
that the actual errors ek are assumed to be unknown while
the corresponding upper bounds ηk can be obtained using
preliminary knowledge about the type of imperfection and/or
coarse knowledge of the channel type and main characteristics
[35].

C. Problem Formulation

In this subsection, we formulate the optimization problem
for the joint design of W, {fk}k∈K and {ρk}k∈K so as to min-
imize the total power consumption at the BS and the RS under
the constraint that a set of minimum SINR and EH targets be

satisfied at the receivers. In this study, we consider both non-
robust and robust designs (against quantization errors).2 The
non-robust optimization problem can be expressed as3

min
W, {fk, ρk}

PB + PR

s.t. Γk ≥ γk, P EH
k ≥ ψk,

0 ≤ ρk ≤ 1, ∀k ∈ K,
(13)

where in the evaluation of (8) and (9), the true channel vectors
hk are replaced by their estimates ĥk.

Similarly, the robust optimization problem can be formu-
lated as

min
W, {fk, ρk}

PB + PR

s.t. Γk ≥ γk, P EH
k ≥ ψk,

0 ≤ ρk ≤ 1, ‖ek‖2 ≤ η2k, ∀k ∈ K,
(14)

where in this case, the channel vectors in (8) and (9) are given
by (10).

It is not difficult to see that both (13) and (14) are in
general non-convex because both their objective functions
and constraints are not convex over W, {fk} and {ρk}.
Furthermore, (14) involves an infinite number of constraints.
These characteristics make it intractable to obtain the global
optimal solution for (13) and (14). In the sequel, we present
two algorithms for obtaining suboptimal solutions to the above
problems by applying proper convex optimization techniques,
which are based on AO and SR, respectively. We complete
this section with the following lemma.

Lemma 1: Problem (13) is feasible for any finite user SINR
targets if rank(HG) = K, where H = [h1, . . . ,hK ]H .

Proof: The feasibility of (13) is not connected to the EH
constraints and PS ratios according to Lemma 3.1 & Lemma
3.2 in [36]. Hence, according to Theorem 1 in [17], we can
easily see that the above lemma holds.

On the other hand, the feasibility of problem (14) has
not been well studied in the literature and still remains an
open question, which would be an interesting topic for future
research.

III. ALTERNATING OPTIMIZATION BASED JOINT
TRANSCEIVER DESIGN

In this section, we present the AO-based transceiver design
algorithms for the jointly optimization of the BS beamforming
vectors, the RS AF transformation matrix and the receiver PS
ratios, for both non-robust and robust cases. In the proposed
design, {fk, ρk}k∈K and W are successively optimized in turn
with the other fixed. We show that each subproblem for the
optimization of {fk, ρk} or W can be reformulated as an SDP
problem based on the celebrated SDR technique and the S-
procedure. Furthermore, modified randomization techniques
based on the worst-case concept are provided to recover a
rank-one solution when higher-rank solutions are returned.

2The non-robust joint design is only based on the estimated CSI, while the
robust design algorithm takes the CSI error into account.

3There is in general a power consumption tradeoff between the BS and
the RS [17], and the objective function should be PB + αPR where α is
a positive weight. We assume that α = 1 in this work, since this does not
change the nature of the problem.
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A. Non-Robust AO-Based Joint Transceiver Design

In the following, we introduce a non-robust joint transceiver
design algorithm. First, let us consider the optimization of
{fk, ρk} in (13) while the RS AF matrix W is fixed. The
celebrated SDR technique can be applied to solve the re-
maining optimization problem by introducing a new variable
Fk = fkf

H
k . Hence, problem (13) can be reformulated as the

following problem by ignoring the rank-one constraints for all
Fk
′s:

min
{Fk, ρk}

K∑
k=1

Tr(Fk) +
K∑
k=1

Tr(Qk) + σ2
r‖W‖2

s.t. 1
γk
ĥHk Qkĥk −

K∑
j 6=k

ĥHk Qjĥk ≥ σ2
r‖ĥHk W‖2 + σ2

k +
ω2

k

ρk
,

K∑
j=1

ĥHk Qjĥk ≥ ψk

ξk(1−ρk) − σ
2
k − σ2

r‖ĥHk W‖2,

Fk � 0, 0 ≤ ρk ≤ 1, ∀k ∈ K,
(15)

where Qk = WGFkG
HWH . In this way, problem (13) is

relaxed to a convex SDP problem, which can be efficiently
solved by off-the-shelf algorithms [37]. Let {F∗k} and {ρ∗k}
denote the optimal solution to (15). Based on Proposition 4.1
in [36], it can be verified that {F∗k} and {ρ∗k} satisfy the
first two sets of constraints of problem (15) with equality and
{F∗k} satisfy rank(F∗k) = 1, ∀k. Thus the optimal solution of
problem (13) can be expressed as {f∗k , ρ∗k}, where f∗k is the
principal component of F∗k, such that F∗k = f∗k f

∗H
k , ‖f∗k‖ =√

fk and fk is the largest eigenvalue of F∗k.
Next, we consider the optimization of the RS AF matrix W

while assuming that {fk, ρk} are fixed. Noting that xTYz =
vec(xzT )T vec(Y), the numerator in (8) can be rewritten as

ρk|ĥHk WGfk|2 = ρk|gTkkvec(W)|2

= ρkg
T
kkW̃conj(gkk),

(16)

where gkj = vec(conj(ĥk)fTj G
T ) and W̃ =

vec(W)vec(W)H . Similarly, the denominator in (8)
can be reformulated as

ρk
K∑
j 6=k

gTkjW̃conj(gkj)

+ρkσ
2
r

Nr∑
j=1

ĥHk EjW̃EHj ĥk + ρkσ
2
k + ω2

k,

(17)

where Ek ∈ {0, 1}Nr×N2
r is a linear mapping matrix such

that ĥHk Ejvec(W) = ĥHk W(:, j), where W(:, j) denotes the
jth column of W. With the help of (16) and (17), the SINR
and EH constraints in problem (13) can be expressed as the
following two inequalities

1
γk
gTkkW̃conj(gkk)−

K∑
j 6=k

gTkjW̃conj(gkj)−

σ2
r

Nr∑
j=1

ĥHk EjW̃EHj ĥk ≥ σ2
k +

ω2
k

ρk
,

(18)

K∑
j=1

gTkjW̃conj(gkj)+

σ2
r

Nr∑
j=1

ĥHk EjW̃EHj ĥHk ≥
ψk

ξk(1−ρk) − σ
2
k.

(19)

TABLE I
AO-BASED NON-ROBUST TRANSCEIVER DESIGN ALGORITHM

1. Initialize W and define the tolerance of accuracy δ.
2. Repeat

2.1 Solve problem (15) with fixed W to obtain the updated
{fk, ρk}.

2.2 Solve problem (20) with fixed {fk, ρk} to obtain the up-
dated W. Employ the proposed rank-one recovery method
in Appendix A if higher-rank solutions are returned by
solving problem (20).

3. Until the total power consumption between two adjacent itera-
tions is less than δ or the total power consumption of step 2.2
is higher than that of step 2.1.

Hence, (13) can be reformulated as the following SDP problem
by employing the well-known SDR technique

min
W̃

K∑
k=1

(
‖fk‖2 + Tr(CkW̃CH

k )
)

+ σ2
rTr(W̃)

s.t. (18) and (19), W̃ � 0, ∀k ∈ K,
(20)

where Ck = (Gfk)T ⊗ INr
. Different from (15), the opti-

mal solution W̃∗ to problem (20) is not necessarily rank-
one; hence a simple rank-one recovery method based on a
randomization procedure is proposed in Appendix A to address
this issue.

The AO-based iterative algorithm to solve problem (13) is
summarized in Table I. Note that in each iteration of this
algorithm, the objective function can only be decreased4 and
it is also lower bounded by zero, thus the convergence of the
iterative algorithm is guaranteed.

B. Robust AO-Based Joint Transceiver Design
In this subsection, we address the robust counterpart of the

non-robust AO-based joint transceiver design by employing
the channel error model considered in Subsection II-B. We
demonstrate that the corresponding subproblems can be con-
verted to alternative forms where the concepts of SDR and
S-procedure can be applied.

First, let us consider the optimization of {fk, ρk} in (14)
when W is fixed under imperfect CSI , i.e. hk = ĥk +
ek, ∀k ∈ K. In this case, the SINR constraints in (15) can be
replaced by the following quadratic forms:

(ĥk + ek)HUk(ĥk + ek) ≥ σ2
k +

ω2
k

ρk
, (21)

where ek satisfy (11) and Uk can be expressed as

Uk =
1

γk
Qk −

K∑
j 6=k

Qj − σ2
rWWH . (22)

Similarly, the EH constraints can be reformulated as the
following expression:

(ĥk + ek)HVk(ĥk + ek) + σ2
k ≥

ψk
ξk(1− ρk)

,∀‖ek‖2 ≤ η2k,
(23)

4Due to the rank-one recovery method, the total transmission power of step
2.2 is not necessarily less than that of step 2.1. However, we can terminate the
algorithm if that happens to ensure the convergence of the algorithm. Note
that this rare situation does not happen in all our simulations.
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where Vk =
K∑
j=1

Qj + σ2
rWWH .

By applying the S-procedure, the constraints in (21) and
(23) can be reformulated as finite convex constraints, which
are equivalent to the following two linear matrix inequality
(LMI) constraints[

Uk + λkI Ukĥk
ĥHk Uk ĥHk Ukĥk − σ2

k − ω2
kpk − λkη2k

]
� 0,

(24)[
Vk + µkI Vkĥk
ĥHk Vk ĥHk Vkĥk + σ2

k −
ψk

ξk
qk − µkη2k

]
� 0,

(25)
where pk = 1

ρk
, qk = 1

1−ρk , while λk ≥ 0 and µk ≥ 0 are
slack variables.

With (24) and (25), the robust counterpart of problem (15)
can be reformulated as follows by ignoring the rank-one
constraints for all Fk′s:

min
{Fk, pk, qk, λk, µk}

K∑
k=1

Tr(Fk) +
K∑
k=1

Tr(Qk) + σ2
r‖W‖

2

s.t. (24) and (25), λk ≥ 0, µk ≥ 0,
pk ≥ 1, qk ≥ 1, invp(pk) + invp(qk) ≤ 1,
Fk � 0, ∀k ∈ K.

(26)
It is worth noting that different from problem (15) which
always returns a rank-one solution, the optimal solution {F∗k}
of (26) may not be of rank-one, in which case, additional
processing steps may be needed to extract a rank-one solution
from the F∗k. To this end, a rank-one recovery method based
on a randomization procedure but with lower complexity is
presented in Appendix A.

Next, we consider the optimization of the RS AF matrix W
with fixed {fk, ρk}. Similar to Subsection III-A, we have the
following expression

gkj = vec(conj(hk)fTj G
T ) = (Gfj ⊗ INr

)conj(hk) (27)

= Ĝjconj(hk),

where Ĝj = Gfj ⊗ INr
, j ∈ K. Thus, the robust version of

(18) can be formulated as

1
γk

(ĥHk + eHk )Wk(ĥk + ek)

−
K∑
j 6=k

(ĥHk + eHk )Wj(ĥk + ek)

−σ2
r

Nr∑
j=1

(ĥHk + eHk )EjW̃EHj (ĥk + ek)

≥ σ2
k +

ω2
k

ρk
, ∀‖ek‖2 ≤ η2k, k ∈ K,

(28)

where Wj = ĜT
j W̃conj(Ĝj), and W̃ has already been

defined in Subsection III-A. By applying the S-procedure, we
can transform (28) into the following LMIs[

Ũk + λkI Ũkĥk
ĥHk Ũk ĥHk Ũkĥk − σ2

k − ω2
kpk − λkη2k

]
� 0,

(29)

TABLE II
AO-BASED ROBUST TRANSCEIVER DESIGN ALGORITHM

1. Initialize W and define the tolerance of accuracy δ.
2. Repeat

2.1 Solve problem (26) with fixed W to obtain the updated
{Fk, ρk}. If {Fk} are rank-one matrices, use their prin-
cipal eigenvectors as a solution. Otherwise, employ the
rank-one recovery method to recover a rank-one solution
from {Fk}.

2.2 Solve problem (31) with fixed {Fk, ρk} to obtain the
updated W. If W̃ is a rank-one matrix, use its principal
eigenvector as a solution. Otherwise, employ the method
in Appendix A to recover a rank-one solution from W̃.

3. Until the total power consumption between two adjacent itera-
tions is less than δ or increased.

where Ũk = 1
γk
Wk−

K∑
j 6=k

Wj−σ2
r

Nr∑
k=1

EkW̃EHk and λk ≥ 0.

Similarly, the robust version of (19) can be formulated as[
Ṽk + µkI Ṽkĥk
ĥHk Ṽk ĥHk Ṽkĥk + σ2

k −
ψk

ξk
qk − µkη2k

]
� 0,

(30)

where Ṽk =
K∑
j=1

Wk + σ2
r

Nr∑
k=1

EkW̃EHk and µk ≥ 0. Hence,

problem (14) with fixed {fk, ρk} can be formulated as the
following SDP problem with the SDR technique

min
W̃, {λk, µk}

K∑
k=1

(
‖fk‖2 + Tr(CkW̃CH

k )
)

+ σ2
rTr(W̃)

s.t. (29) and (30), W̃ � 0, λk ≥ 0, µk ≥ 0, ∀k,
(31)

where Ck has been defined in Subsection III-A. Note that the
optimal solution of (31) is also not necessarily rank-one and
thus we can employ the method in Appendix A to address this
issue.

We summarize the AO-based robust joint transceiver design
algorithm in Table II. For practical implementation, the opti-
mally designed AF matrix W and PS ratios {ρk} should be
fed forward from the BS to the RS and receivers, respectively,
through signaling channels prior to data transmission.

IV. SWITCHED RELAYING BASED JOINT TRANSCEIVER
DESIGN

In the previous section, we proposed novel AO-based
transceiver design algorithms. As will be shown in Section
VI, these algorithms can achieve an excellent performance in
transmission, but they are characterized by higher signaling
overhead and computational complexity. In this section, mo-
tivated by these considerations, we develop alternative SR-
based transceiver design algorithms that are more efficient
and simpler to implement. As illustrated in Fig. 2, we equip
the RS with a finite codebook of permutation matrices5, i.e.,
Υ = {T1,T2, . . . ,TB}, where Tl ∈ {0, 1}Nr×Nr is the l-th
matrix in the codebook, index l ∈ {1, . . . , B} and B denotes

5A permutation matrix is a square binary matrix that has exactly one entry
equal to 1 in each row and each column, while all the other entries are equal
to 0.
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the codebook size which satisfies B � Nr!.6 In order to
reduce the signaling overhead and the number of optimization
variables, the RS AF matrix W is constructed by multiplying
the appropriate permutation matrix from the codebook with
a power scaling factor. That is to say, the optimization of
W is replaced by

√
βlTl, where βl is a variable power

scaling factor. Thus, each permutation matrix gives rise to
a permuted channel matrix for which we can design a so-
called latent transceiver, consisting of the BS beamforming
vectors, the RS power scaling factor and the receiver PS
ratios. Among the B latent transceivers so designed, by an
algorithm to be developed below, the optimal one with index
lopt is chosen by means of a suitable selection criterion for
transmission. Specifically, the selection mechanism is designed
to choose the optimal latent transceiver with the minimum
power consumption, which can be expressed as

lopt = arg min
l
Pl, (32)

where Pl denotes the total transmission power corresponding
to the lth latent transceiver.

Before data transmission, the BS only sends the index of
the permutation matrix, the RS power scaling factor and the
receiver PS ratios corresponding to the optimum transceiver
to the RS and the receivers. Compared to the AO-based
algorithms, the SR-based algorithms can significantly reduce
the number of signaling bits and the computational complexity.
The proposed SR-based scheme works as follows.
• The BS designs the B latent transceivers based on avail-

able permutation matrices within the codebook; it then
determines the optimal latent transceiver based on (32).

• The BS sends the optimal permutation index lopt, the
corresponding RS power scaling factor, and the PS ratios
corresponding to the optimal transceiver to the RS and
the receivers through signaling channels.

• The RS constructs the optimal RS AF matrix based on
the forwarded RS power scaling factor and the stored
permutation matrix with index lopt.

We introduce the non-robust and robust latent transceiver
design algorithms in Subsection IV-A and IV-B, respectively.
In Subsection IV-C, a simplified SR-based transceiver design
algorithm is proposed. The design approach for the codebook
of permutation matrices is presented in Subsection IV-D.

A. Non-Robust Latent Transceiver Design

Firstly, we introduce a non-robust algorithm to construct
the lth latent transceiver. We aim to design the beamforming
vectors {f lk}, the RS power scaling factor βl and the receiver
PS ratios {ρlk} so as to minimize the sum of BS and RS
transmit power under both SINR and EH constraints. We note
that superscripts l in {f lk}, {ρlk}, etc., have been removed in the

6The total number of permutation matrices at the RS is Nr!. It is not
realistic to use all the permutation matrices as the codebook when Nr is large.
Thus, we propose to construct a codebook of permutation matrices with B
elements, B � Nr!. The codebook design approach will be introduced in
Subsection IV-D. In practice, the value of B should be chosen to achieve
a suitable tradeoff between performance requirements and implementation
complexity.

following for notational simplicity. For each latent transceiver,
the optimization problem can be formulated as

min
{fk, ρk}, βl

PB + PR

s.t. Γk ≥ γk, P EH
k ≥ ψk,

0 ≤ ρk ≤ 1, W =
√
βlTl, ∀k ∈ K.

(33)

As we can see, although we replaced the AF matrix W with√
βlTl, problem (33) is still non-convex and difficult to solve

due to the coupling between variables fk, ρk and βl. Our
proposed method is motivated by the observation that problem
(33) can be reformulated as a difference of convex (DC)
programming problem with proper transformations. Thus, the
concept of CCCP [25], [26] can be adopted to iteratively solve
the DC problem, as explained below.

First, we introduce the variable substitution

ϕl =
1

βl
, (34)

and further define the following vectors:

p = [p1, . . . , pK ]T , q = [q1, . . . , qK ]T ,
f = [fT1 , . . . , f

T
K ]T , r = [pT ,qT , ϕl, f

T ]T ,
(35)

where pk and qk have already been introduced in Subsection
III-B, alongside with (24) and (25). Then, the objective func-
tion of problem (33) can be transformed into

Pl(r) =

K∑
k=1

fHk fk +

K∑
k=1

fHk GHGfk
ϕl

+ σ2
r

1

ϕl
, (36)

which is strictly jointly convex in the variables {ϕl, f} ∈ R+×
CKNt×1 [22].

Similar to the transformation of the objective function, the
SINR constraints can be rewritten as

wk(r)− xk(r) ≤ 0, (37)

where wk(r) and xk(r) are defined as

wk(r) =

K∑
j 6=k

fHj GHTH
l ĥkĥ

H
k TlGfj (38)

+ σ2
kϕl + σ2

r ĥ
H
k ĥk +

1

4
ω2
k(pk + ϕl)

2,

xk(r) =
1

4
ω2
k(pk − ϕl)2 +

1

γk
fHk GHTH

l ĥkĥ
H
k TlGfk. (39)

Moreover, the EH constraints can be recast as

yk(r)− zk(r) ≤ 0, (40)

where
yk(r) =

ψk
4ξk

(qk + ϕl)
2 − σ2

r ĥ
H
k ĥk, (41)

zk(r) =

K∑
j=1

fHj GHTH
l ĥkĥ

H
k TlGfj (42)

+ σ2
kϕl +

ψk
4ξk

(qk − ϕl)2.

We remark that (38), (39), (41) and (42) are all convex
functions jointly with respect to the variables in r ∈ RK+ ×
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Fig. 2. Proposed transceiver scheme with switched relaying processing for multiuser MISO relay system. The dashed line denotes signaling channels.

RK+ ×R+×CKNt×1. Thus, problem (33) can be equivalently
reformulated as the following DC program:

min
r

Pl(r)

s.t. wk(r)− xk(r) ≤ 0, yk(r)− zk(r) ≤ 0,
pk ≥ 1, qk ≥ 1, invp(pk) + invp(qk) ≤ 1, ∀k ∈ K,

(43)

where the last set of inequality constraints must be satisfied
with equality at optimality, for otherwise, the objective value
can be further decreased by decreasing the pk’s.

According to the concept of CCCP, we approximate the
functions xk(r) and zk(r) in the ith iteration by their first-
order Taylor expansions around the current point r(i), denoted
as x̂k(r(i), r) and ẑk(r(i), r), respectively. With the help of
[38] and [39], x̂k(r(i), r) is given by

x̂k(r(i), r) = xk(r(i)) + 2R{∇xk(r(i))H(r− r(i))}, (44)

where ∇xk(r(i)) denotes the conjugate derivative of the func-
tion xk(r) with respect to the complex vector r.7 We note that
x̂k(r(i), r) is an affine function of r. ∇xk(r(i)) is given by

∇xk(r(i)) = [01×(k−1),
1
4ω

2
k(p

(i)
k − ϕ

(i)
l ), 01×(2K−k),

− 1
4ω

2
k(p

(i)
k − ϕ

(i)
l ), 1

γk
(GHTH

l ĥkĥ
H
k TlGf

(i)
k )T ]T .

(45)
Similarly, ẑk(r(i), r) can be expressed as

ẑk(r(i), r) = zk(r(i)) + 2R{∇zk(r(i))H(r− r(i))}, (46)

where

∇zk(r(i)) = [01×(K+k−1),
ψk

4ξk
(q

(i)
k − ϕ

(i)
l ), 01×(K−k),

1
2σ

2
k −

ψk

4ξk
(q

(i)
k − ϕ

(i)
l ), (G̃kf

(i)
1 )T , . . . , (G̃kf

(i)
K )T ]T ,

G̃k = GHTH
l ĥkĥ

H
k TlG.

(47)
Then, in the ith iteration of the proposed CCCP based

algorithm, we have the following convex optimization problem

min
r

Pl(r)

s.t. wk(r)− x̂k(r(i), r) ≤ 0, yk(r)− ẑk(r(i), r) ≤ 0,
pk ≥ 1, qk ≥ 1, invp(pk) + invp(qk) ≤ 1, ∀k ∈ K,

(48)
whose solution is denoted by r(i+1).

7Since r is composed of both real and complex variables, we make a
modification of ∇xk(r(i)) such that (44) holds for r.

TABLE III
NON-ROBUST LATENT TRANSCEIVER DESIGN ALGORITHM

1. Define the tolerance of accuracy δ and the maximum number
of iteration Nmax.

2. For l = 1, . . . , B
3. – Initialize the algorithm with a feasible point r(0) which is

obtained by solving problem (33) with W = Tl. Set the
iteration number i = 0.

4. – Repeat
– Compute the affine approximation x̂k(r

(i), r) and
ẑk(r

(i), r) according to (44) and (46), respectively.
– Solve problem (49), and assign the solution to r(i+1).
– Update the iteration number : i = i+ 1.
– Until |Pl(r

(i+1)) − Pl(r
(i))| ≤ δ or the maximum

number of iterations is reached, i.e., i > Nmax.
5. – Obtain the lth latent transceiver {f∗k , ρ

∗
k, β

∗
l }.

6. End

Proposition 1: By introducing a new set of variables dk,
d̃k, ek and ẽk, k ∈ K, problem (48) can be reformulated as
the following SOCP problem

min
r, P1, P2, P3

P1 + P2 + P3

s.t. ‖[fT1 , . . . , fTK , (P1 − 1)/2]‖ ≤ (P1 + 1)/2,
‖[(Gf1)T , . . . , (GfK)T , (P2 − ϕl)/2]‖ ≤ (P2 + ϕl)/2,
‖[2σr, ϕl − P3]‖ ≤ ϕl + P3,∥∥∥[wT

k ,
d̃k−dk−1

2

]∥∥∥ ≤ d̃k−dk+1
2 ,∀k,∥∥∥[√ ψk

4ξk
(qk + ϕl),

ẽk−ek−1
2

]∥∥∥ ≤ ẽk−ek+1
2 ,

pk ≥ 1, qk ≥ 1, invp(pk) + invp(qk) ≤ 1,∀k ∈ K,
(49)

where wk is defined in (71).
Proof: Please refer to Appendix B.
We can show that the proposed CCCP based iterative

algorithm for the lth transceiver design converges to a local
optimal solution of problem (33). The proof is similar to
that of Lemma 2 and Theorem 1 in [39], and we therefore
omit the details. We summarize the proposed non-robust latent
transceiver design algorithm in Table III.

B. Robust Latent Transceiver Design

Secondly, let us propose a robust latent transceiver design
algorithm by taking the channel errors into consideration. As
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we can see, the concept of SR can also be applied to problem
(14), which can be reformulated as follows:

min
{fk, ρk}, βl

PB + PR

s.t. Γk ≥ γk, P EH
k ≥ ψk, 0 ≤ ρk ≤ 1,

W =
√
βlTl, ‖ek‖2 ≤ η2k, ∀k ∈ K.

(50)

We employ a subgradient-type iterative algorithm to solve this
problem. Our proposed method is motivated by the observation
that, if we fix βl, then problem (50) is equivalent to problem
(26) with the SDR technique.8 With fixed βl, (24) and (25)
can be reformulated as the following two LMIs:[

Uk + λkI Ukĥk

ĥHk Uk ĥHk Ukĥk − σ2
k

βl
− ω2

kpk
βl
− λkη2k

]
� 0,

(51)[
Vk + µkI Vkĥk

ĥHk Vk ĥHk Vkĥk +
σ2
k

βl
− ψk

ξkβl
qk − µkη2k

]
� 0,

(52)

where Uk = 1
γk
Q̃k−

K∑
j 6=k

Q̃j −σ2
rI, Vk =

K∑
j=1

Q̃j +σ2
rI, and

Q̃k = TlGFkG
HTH

l .
Then, problem (50) with the use of the SDR technique and

fixed βl can be expressed as

f(βl) =

min
{Fk, pk, qk, λk, µk}

K∑
k=1

Tr(Fk) + βl
K∑
k=1

Tr(Q̃k) + σ2
rβl

s.t. (51) and (52), λk ≥ 0, µk ≥ 0,
pk ≥ 1, qk ≥ 1, invp(pk) + invp(qk) ≤ 1,
Fk � 0, ∀k ∈ K.

(53)
We here consider the SDR version of problem (50) instead of
its original form with rank-one constraints, since strong duality
holds if problem (53) is feasible. The partial dual problem of
(53) can be formulated as (54) shown at the top of next page,

where Xk =

[
Xk xk
xHk xk

]
and Yk =

[
Yk yk
yHk yk

]
denote

the dual variables associated with constraints (51) and (52),
respectively. It is worth noting that Xk and Yk can be obtained
as side information provided with any standard SDP solver,
since dual variables are served as a certificate for optimality.

Next, we can use the subgradient method [40] to iteratively
solve the SDR version of problem (50). At the (i + 1)th
iteration, the power scaling factor βl can be updated according
to

βl(i+ 1) = [βl(i)− θ(i)s(i)]+ε , (55)

where [·]+ε = max (., ε), θ(i) is the step-size in the ith
iteration and s(i) denotes a subgradient of f(βl) at βl(i). The

8The concept of CCCP can also be applied to the robust problem (50).
However, based on simulations we find that the performance of the CCCP
based algorithm is inferior to that of the subgradient-type algorithm. Thus,
we employ the subgradient-type algorithm instead.

TABLE IV
ROBUST LATENT TRANSCEIVER DESIGN ALGORITHM

1. Initialize the step-size θ, define the tolerance of accuracy δ and
the maximum number of iterations Nmax.

2. For l = 1, . . . , B
3. – Initialize βl(0). Set the iteration number i = 0.
4. – Repeat

– Solve problem (53) to obtain the optimal {F∗
k, ρ

∗
k} and

the corresponding dual variables {x∗k, y
∗
k}.

– Update the power scaling factor according to (55).
– Update the iteration number : i = i+ 1.
– Until |f(βl(i+ 1))− f(βl(i))| ≤ δ or the maximum

number of iterations is reached, i.e., i > Nmax.
5. – Obtain the lth latent transceiver {f∗k , ρ

∗
k, β

∗
l }.

6. End

subgradient s(i) can be calculated as [41]

s(i) =

K∑
k=1

Tr(Q̃∗k) + σ2
r −

K∑
k=1

x∗k(
σ2
k

βl(i)
2 +

ω2
k

ρ∗kβl(i)
2 ) (56)

+

K∑
k=1

y∗k(
σ2
k

βl(i)
2 −

ψk

(1− ρ∗k)ξkβl(i)
2 ),

where Q̃∗k = TlGF∗kG
HTH

l , {F∗k, ρ∗k} denotes the optimal
solution of problem (53) and {x∗k, y∗k} denote the lower right
corner elements of X∗k and Y∗k, which are the optimal dual
variables associated with (51) and (52).

Finally, the robust latent transceiver design algorithm is
summarized in Table IV.9

C. Proposed Simplified SR-based Transceiver Design

As shown in Subsection IV-A and IV-B, the proposed
SR-based transceiver design algorithm involves devising B
latent transceivers corresponding to the elements in Υ where
for each transceiver, we employ iterative methods to address
the highly non-convex problem. Specifically, the design of
each transceiver involves an iterative algorithm to obtain the
corresponding BS beamforming vectors, RS power scaling
factor and receiver PS ratios. However, for given CSIs only the
best transceiver with the minimum total power consumption is
selected for transmission according to the selection mechanism
(32) while the other B−1 solutions are discarded. Thus, there
will be a considerable waste in the computational resources.
In order to improve the proposed SR-based transceiver design
algorithm and make it more suitable for practical implemen-
tation, we propose a heuristic approach, referred to as the
simplified latent transceiver design algorithm, to address the
aforementioned problem. Based on simulation experiments,
we find that a good initial point obtained by solving problem
(33) or (50) with fixed initial power scaling factor βl almost
always leads to a better convergent point than by solving

9For the non-robust case, we can also employ the subgradient method to
address problem (33) with each subproblem being an SDP problem. It is well
known that solving an SDP problem requires relatively high computational
complexity compared with solving an SOCP problem. Moreover, it is impor-
tant to note that the two algorithms for the non-robust case have very close
performance in our simulations. Thus, we employ the CCCP based algorithm
for the non-robust case.
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f(βl) = max
{Xk, Yk}

min
{Fk, ρk}

−
K∑
k=1

Tr

(
Xk

[
Uk + λkI Ukĥk

ĥHk Uk ĥHk Ukĥk − σ2
k

βl
− ω2

kαk

βl
− λkη2k

])

−
K∑
k=1

Tr

(
Yk

[
Vk + µkI Vkĥk

ĥHk Vk ĥHk Vkĥk +
σ2
k

βl
− ψk

ξkβl
βk − µkη2k

])
+

K∑
k=1

Tr(Fk) + βl
K∑
k=1

Tr(Q̃k) + σ2
rβl,

(54)

TABLE V
SIMPLIFIED NON-ROBUST LATENT TRANSCEIVER DESIGN ALGORITHM

1. Define the tolerance of accuracy δ and the maximum iteration
number Nmax.

2. For the lth latent transceiver (l = 1, . . . , B)
3. – Compute a initial feasible point r(0) which is obtained by

solving problem (33) with W = Tl.
4. end
5. Choose the initial r(0) and Tlopt

with the minimum objective
value. Set the iteration number i = 0.

6. Repeat
– Compute the affine approximation x̂k(r

(i), r) and
ẑk(r

(i), r) according to (44) and (46), respectively.
– Solve problem (49), and assign the solution to r(i+1).
– Update the iteration number : i = i+ 1.

7. Until |Plopt (r
(i+1)) − Plopt (r

(i))| ≤ δ or the maximum
number of iterations is reached, i.e., i > Nmax.

with a not so good initial point. Thus, we only design the
particular transceiver with the best initial point. The proposed
simplified non-robust latent transceiver design algorithm is
summarized in Table V. The robust version of the simplified
latent transceiver design algorithm is similar to the non-robust
case, and thus is omitted here. We will show in Section VI
that the simplified SR-based transceiver design algorithms can
achieve a similar performance with that of the proposed SR-
based algorithms in Table III and IV.

D. Codebook Design

In this subsection, we propose two algorithms to construct
the codebook of permutation matrices. The basic principle of
the proposed algorithms is to choose the permutation matrices
which are more likely to result in lower transmission power.
We make a promising observation that when the singular
values of the permuted channel matrix HTlG are larger
or more equally distributed, the total power consumption is
usually smaller, where the channel matrix H has already
been defined in Subsection II-C and HTlG represents the
equivalent channel matrix between the BS and the receivers.

Let πlk denotes the kth singular value of HTlG, k ∈ K.
The first scheme (referred to as Sum-Max method) constructs
the codebook of permutation matrices by choosing the ones
which correspond to the B largest sums of singular values,
i.e.,

{T1, . . . ,TB} = arg maxB
Tl

(
K∑
k=1

πlk

)
, (57)

where maxB(·) returns the permutation matrices correspond
to the B largest values of its argument.

Alternatively, the second scheme (referred to as Max-Min
method) chooses the permutation matrices to maximize the

smallest singular value, i.e.,

{T1, . . . ,TB} = arg maxB
Tl

(
min
k∈K

(πlk)

)
. (58)

It is worth noting that the proposed two schemes are heuristic
techniques which may serve as a shortcut to the process
of finding a satisfactory solution. The performance of the
codebook design algorithms will be studied in the simulation
results in Section VI.

V. COMPLEXITY ANALYSIS

In Section III and IV, we proposed the AO-based and
SR-based transceiver design algorithms for problem (13) and
(14), respectively. In this section, we compare the relative
computational complexity of the proposed transceiver design
algorithms. Moreover, we apply the same basic element of
complexity analysis as in [42]. Among the proposed algo-
rithms in this paper, we consider:
• Non-robust AO: the algorithm summarized in Table I.
• Robust AO: the algorithm summarized in Table II.
• Non-robust SR: the algorithm summarized in Table III.
• Robust SR: the algorithm summarized in Table IV.
• Simplified non-robust SR: the algorithm summarized in

Table V.
• Simplified robust SR: the robust counterpart of the algo-

rithm in Table V.
The complexity of the non-robust AO algorithm is domi-

nated by solving problems (15) and (20) I1 times , where I1
denotes the iteration number. We note that the dual problems
of (15) and (20) can be solved instead of (15) and (20) for
better efficiency. Consider the dual problem of (15), which
involves K LMI constraints of size Nt and on the order of
n1 = O(KN2

t +K) decision variables. Thus, the complexity
of a generic interior-point method for solving problem (15) is
given by O(n1

√
KNt(KN

3
t + n1KN

2
t + n21)). Similarly, the

complexity of solving the dual problem of (20) can be written
as O(n2

√
N2
r (N6

r + n2N
4
r + n22)), where n2 = O(N4

r ) is the
order of the corresponding decision variables. The complexity
of solving problem (65) can be neglected since it admits
closed-form solution. Thus, the overall complexity of the non-
robust AO algorithm is on the order of the quantity shown in
the first row of Table VI.

The complexity of the robust AO algorithm is dominated by
solving problems (26) and (31) I2 times, plus the complex-
ity of the rank-one recovery method. Problem (26) involves
KN2

t + 4K variables, 2K LMI constraints of size Nr + 1
and K LMI constraints of size Nt. Problem (31) involves
N4
r + 2K variables, 2K LMI constraints of size Nr + 1 and

1 LMI constraint of size N2
r . Moreover, the complexity of

the rank-one recovery method in Table VII is dominated by
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solving problem (64) R times, where R is the number of
randomization steps.10 Problem (64) involves 2K variables
and 2K second-order cone (SOC) constraints of dimension
3. Thus, the overall complexity of the robust AO algorithm is
on the order of the quantity shown in the second row of Table
VI.

The complexity of the non-robust SR algorithm is dominated
by solving problem (49) BI3 times, where I3 is the iteration
number, since the complexity of computing the affine approx-
imation x̂k(r(i), r) and ẑk(r(i), r) is negligible compared to
solving (49). Problem (49) involves 2K + 3 SOC constraints,
including 1 SOC of dimension KNt+2, 1 SOC of dimension
KNr + 2, K SOCs of dimension K + 2, and K + 1 SOCs
of dimension 3. The number of variables is on the order of
O(KNt + 2K). It follows that the complexity of the non-
robust SR algorithm is on the order of the quantity shown in
the third row of Table VI.

The complexity of the robust SR, simplified non-robust SR
and simplified robust SR algorithms can be analyzed in a
similar way; the corresponding complexity figures are shown
in the fourth to sixth rows of Table VI, respectively, where
I4 denotes the iteration number of the (simplified) robust
SR algorithm. It is of interest to investigate the asymptotic
complexity of the proposed algorithms when Nt, Nr and K
are large, i.e., when we let Nr = Nt = K → ∞. We
further assume that I1 = I2 = I3 = I4 = I for simplicity.
Under these conditions, one can verify that the complexities
of the proposed algorithms in Table VI are on the orders of
2IN13

t , 2
√

3IN13
t , 6BIN6.5

t , 3
√

3BIN10
t , 6(B+I)N6.5

t and
3
√

3(B + I)N10
t , respectively. As seen, the robust algorithms

always consume more computational resources than their
non-robust counterparts, the SR-based algorithms have lower
complexity compared with the AO-based algorithms and the
simplified SR-based algorithms have the lowest complexity.

VI. SIMULATION RESULTS

In order to evaluate the performance of the proposed
transceiver designs, numerical results have been obtained
by performing computer simulations. In the simulations, we
assume that both the first phase and the second phase channel
coefficients are flat-fading i.i.d. with unit variance Rayleigh
distribution. The nominal system configuration is defined by
the following choice of parameters: Nt = Nr = 4, K = 3,
ξ = 1, σ2

k = σ2 = −30dBm, ω2
k = ω2 = −20dBm,

and σ2
r = −30dBm unless otherwise specified. In addition,

we assume equal SINR and EH thresholds at the destination
receivers, i.e., γk = γ, ψk = ψ, ∀k ∈ K, and equal
norm bounds for the second phase channel error vectors, i.e.,
ηkj = η, ∀j, k for simplicity. In the implementations of
the various algorithms, the tolerance parameter is chosen as
δ = 2 × 10−3 while I1 = I2 = 20 and I3 = I4 = 50; all the
rank-one recovery methods employ R = 100 randomization
steps. All convex problems are solved by CVX [43] on a
desktop Intel (i3-2100) CPU running at 3.1GHz with 4GB
RAM.

10The complexity to recover W∗ is negligible since problem (65) has
closed-form solution.

In the AO-based transceiver design algorithms, the RS AF
matrices W can be initialized in three different ways:
• Init-1 : Initialize the RS AF matrix as an identity matrix.
• Init-2 : Random matrices are generated according to

normal distribution with zero mean and unit variance.
• Init-3 : According to Section III and IV, the SR-based

transceiver can be used to initialize the AO-based designs.
Fig. 3 shows the average power consumption performance
versus the receiver EH target ψ for the AO-based transceiver
designs with the three different initialization methods. From
the results, we can see that the best performance is achieved
by Init-3 for both the non-robust and robust algorithms; Init-1
and Init-2 result into similar performance. For example, the
power consumption of Init-3 is 0.5dB less than that of Init-
1 and Init-2 for the non-robust case, and the power saving
rises up to 1dB for the robust case. As seen, the AO-based
algorithms are sensitive to the initial point. The use of Init-3
is not realistic in practice since it has to employ both the AO-
based and the SR-based algorithms. However, in the following
simulations, we employ Init-3 as the initialization method for
both the non-robust and robust AO algorithms, which serves
as a performance bound unless otherwise stated.

Fig. 4 shows the performance comparison of the SR-based
transceiver design algorithms proposed in Subsection IV-A
and IV-B and the simplified SR-based transceiver design
proposed in Subsection IV-C. It is worth noting that the
algorithms with codebook size B = 1 only use the identity
matrix as the permutation matrix (naive method)11, and the
algorithms with the B = 8 codebook employ the Sum-Max
codebook design method. We include the identity matrix into
the B = 8 codebook regardless of the singular values in
order to guarantee that the performance of the algorithms with
B = 8 is always better than with B = 1. We can see that
the simplified SR-based transceiver design algorithms achieve
almost the same performance as the non-simplified ones for
both non-robust and robust cases. However, the simplified SR-
based algorithms consume much less computational resources
compared with their non-simplified counterparts. Thus, we
employ the simplified SR-based design in the following sim-
ulations for comparison unless otherwise specified.

We compare the performance of the codebook design ap-
proaches, i.e., the Sum-Max and Max-Min methods, in terms
of average power consumption. For completeness, we also
consider the performance of a codebook whose elements (per-
mutation matrices) are randomly selected. The results which
are illustrated in Fig. 5 show the average power consumption
performance curves versus EH target. We can see that the Sum-
Max method outperforms other methods. Compared with the
randomly generated codebook, the proposed Sum-Max method
can lead to a power saving of 0.4dB for the non-robust case
and 2dB for the robust case. The performance of the Max-Min
method is slightly inferior to the Sum-Max method.

Fig. 6 shows the average power consumption performance
for various codebook sizes in the SR-based transceiver design
algorithms. It is observed that the SR-based robust transceiver

11The naive method means that the RS only processes the received data
vector yR by adjusting its power (i.e. scaling) and forwarding it.
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TABLE VI
COMPLEXITY ANALYSIS OF THE PROPOSED TRANSCEIVER DESIGNS

Proposed design Complexity Order (suppressing the ln(1/ε) )

Non-robust AO I1(O(n1
√
KNt(KN3

t + n1KN2
t + n2

1)) +O(n2Nr(N6
r + n2N4

r + n2
2))), n1 = O(KN2

t +K), n2 = O(N4
r )

Robust AO
I2(O(n1

√
2K(Nr + 1) +KNt(2K(Nr + 1)3 +KN3

t + 2n1K(Nr + 1)2 + n1KN2
t + n2

1))+

O(n2

√
2K(Nr + 1) +N2

r (2K(Nr + 1)3 +N6
r + 2n2K(Nr + 1)2 + n2N4

r + n2
2))+

R(O(2K
√
4K(2K32 + 4K2)))), n1 = O(KN2

t + 4K), n2 = O(N4
r + 2K)

Non-robust SR BI3(O(n
√
4K + 6((KNt + 2)2 + (KNr + 2)2 +K(K + 2)2 + (K + 1)32 + n2))), n = O(KNt + 2K)

Robust SR BI4(O(n1

√
2K(Nr + 1) +KNt(2K(Nr + 1)3 +KN3

t + 2n1K(Nr + 1)2 + n1KN2
t + n2

1)))

R(O(2K
√
4K(2K32 + 4K2)))), n1 = O(KN2

t + 4K).
Simplified non-robust SR (B + I3)(O(n

√
4K + 6((KNt + 2)2 + (KNr + 2)2 +K(K + 2)2 + (K + 1)32 + n2))), n = O(KNt + 2K)

Simplified robust SR (B + I4)(O(n1

√
2K(Nr + 1) +KNt(2K(Nr + 1)3 +KN3

t + 2n1K(Nr + 1)2 + n1KN2
t + n2

1)))

+R(O(2K
√
4K(2K32 + 4K2)))), n1 = O(KN2

t + 4K).
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Fig. 3. Initialization methods comparison of the AO-based transceiver designs
(η = 0.1, γ = 10dB).
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Fig. 4. Performance comparison of the non-simplified SR-based transceiver
designs and the simplified SR-based transceiver designs (η = 0.1, γ = 10dB,
βl(0) = 1, θ = 6).

design algorithm with codebooks of size B = 4, 8, 16 and 24
achieves a power saving of 5dB compared to that with the B =
1 codebook, and its non-robust counterpart with codebooks of
size B = 4, 8, 16 and 24 achieves about 1dB in power saving
compared with the B = 1 codebook.12 We can also see from

12Note that the algorithms with B = 24 codebook conduct a search for
all the Nr! permutation matrices, which is known as the optimal SR-based
transceiver design algorithm.
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Fig. 5. Comparison of the codebook design methods for the SR-based
transceiver designs (η = 0.1, γ = 10dB, βl(0) = 1, θ = 6).

this figure that an increase in B does not necessarily gives
rise to an improvement of the power consumption performance
when B > 8, which is the reason we proposed to construct a
restricted number of transceivers, i.e., to select a small fraction
of all the permutation matrices for transceiver design (B �
Nr!).
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Fig. 6. Codebook size comparison of the SR-based transceiver designs (η =
0.1, γ = 10dB, βl(0) = 1, θ = 6).

In the next series of simulations, we examine the compar-
ative performance of the AO-based and SR-based transceiver
design algorithms. Fig. 7 shows the average normalized trans-
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mitted power versus ψ for these two algorithms. It is observed
that the performance of the SR-based algorithms is very close
to that of the AO-based algorithms. From the complexity
analysis in Section VI, we note that if Nr increases, the
complexity of solving problem (20) and (31) in the AO-
based transceiver design might become unacceptable, which
limits the practicality of the algorithm. Thus, the SR-based
transceiver design is very promising and suitable for systems
with large Nr. It is also important to mention that the number
of signaling bits of the SR-based algorithms is much less
than the AO-based algorithms since only the index of the
optimal transceiver and the power scaling factor have to be
sent to the RS instead of the whole RS AF matrix. Besides,
a comparison of the feasibility rate between the AO-based
and SR-based algorithms is provided. Specifically, Fig. 8
presents the feasibility rate comparison versus SINR target
γ. One can observe that the feasibility rate performance of
the AO-based algorithms is slightly inferior to that of the SR-
based algorithms since we employ Init-3 as the initialization
method for the AO-based algorithms. Fig. 9 presents a similar
comparison of the feasibility rate versus the channel error
bound η. Similarly, from this figure, we can see that the
performance of the AO-based algorithms and the SR-based
algorithms is very close. The non-robust algorithms fail to
satisfy both the SINR and EH constraints almost all the time
under the NBE model.
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Fig. 7. Performance comparison of the SR-based transceiver designs and the
AO-based transceiver designs (η = 0.1, γ = 10dB, βl(0) = 1, θ = 6).

VII. CONCLUSION

In this paper, we considered the joint transceiver design
problem for multiuser MISO relay systems with energy har-
vesting. We proposed AO-based and SR-based algorithms,
including both non-robust and robust versions to CSI errors,
for the joint optimization of the BS beamforming vectors,
the RS AF matrix and the receiver PS ratios. Especially,
the SR-based algorithms can achieve almost the same per-
formance compared with the AO-based algorithms but with
much reduced computational complexity and overhead. We
also presented a simplified SR-based algorithm and carried out
a detailed complexity analysis of all the proposed algorithms.
Two efficient approaches for the design of the permutation

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

 (dB)

F
ea

si
bi

lit
y 

R
at

e 
(%

)

 

 

Simplified non-robust SR B=8
Simplified non-robust SR B=1
Simplified robust SR B=8
Simplified robust SR B=1
Non-robust AO
Robust AO

17.85 17.9 17.95 18 18.05 18.1

67.5

68

68.5

69

69.5

70

 

 

Fig. 8. Feasibility rate comparison of the SR-based transceiver designs and
the AO-based transceiver designs versus SINR threshold γ (η = 0.1, βl(0) =
1, θ = 6).
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Fig. 9. Feasibility rate comparison of the SR-based transceiver designs and
the AO-based transceiver designs versus CSI error bound η (γ = 10dB,
ψ = 5dBm, βl(0) = 1, θ = 6).

matrix codebook in the SR-based algorithms were proposed.
The simulation results validated the effectiveness of the pro-
posed joint transceiver design algorithms and the necessity of
using a robust formalism in the presence of imperfect CSI. We
note that the proposed algorithms can be easily extended to
more complicated (multi-hop) relay systems, which remains
an open avenue for future work.

APPENDIX A
PROPOSED RANK-ONE RECOVERY METHOD

As we mentioned in Section III and IV, the optimal solution
of problem (20), (26), (31) and (53) is not guaranteed to be
rank-one. In this appendix, we propose a rank-one recovery
method based on a randomization procedure. Inspired by the
concept of worst-case robustness [44]–[46], we consider the
following subproblems:

ukj = min
‖ek‖2≤η2k

|(ĥHk + eHk )W∗Gf∗j |2, (59)

vkj = max
‖ek‖2≤η2k

|(ĥHk + eHk )W∗Gf∗j |2, j 6= k, (60)
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wk = max
‖ek‖2≤η2k

‖(ĥHk + eHk )W∗‖2, (61)

w̃k = min
‖ek‖2≤η2k

‖(ĥHk + eHk )W∗‖2, (62)

where f∗k and W∗ are extracted from the optimal solutions
F∗k and W̃∗ using the randomization procedure as will be
detailed in Table VII.13 It is not difficult to see that problem
(59)-(62) can be solved by the Cauchy-Schwarz inequality and
Lagrange multiplier method. We omit the detailed derivation
and let {u∗kj , v∗kj , w∗k, w̃∗k} denote the corresponding optimal
objective values.

For problem (26) and (53), we propose to scale up f∗k by√
ϕk and then jointly optimize {√ϕk} and {ρk} to recover

a rank-one solution. The optimization problem can be formu-
lated as

min
{ϕk, ρk}

K∑
k=1

ϕkf
∗H
k f∗k +

K∑
k=1

ϕk‖W∗Gf∗k‖
2

s.t. ρkϕku
∗
kk

ρk
K∑

j 6=k

ϕjv∗kj+ρkσ
2
rw
∗
k+ρkσ

2
k+ω

2
k

≥ γk,

K∑
j=1

ϕju
∗
kj + σ2

r w̃
∗
k + σ2

k ≥
ψk

ξk(1−ρk) ,

ϕk ≥ 0, 0 ≤ ρk ≤ 1, ∀k ∈ K.

(63)

The above problem can be reformulated as the following
SOCP problem

min
{ϕk, ρk}

K∑
k=1

ϕkf
∗H
k f∗k +

K∑
k=1

ϕk‖W∗Gf∗k‖
2

s.t. ‖[2ωk, zk − ρk]‖ ≤ zk + ρk,

‖[2
√
ψk/ξk, z̃k − 1 + ρk]‖ ≤ z̃k + 1− ρk,

zk =
ϕku

∗
kk

γk
−

K∑
j 6=k

ϕjv
∗
kj − σ2

k − σ2
rw
∗
k,

z̃k =
K∑
j=1

ϕju
∗
kj + σ2

r w̃
∗
k + σ2

k,

ϕk ≥ 0, 0 ≤ ρk ≤ 1, ∀k ∈ K.

(64)

Similarly, we also propose to scale up W∗ by
√
ϕ and then

jointly optimize {√ϕ} and {ρk} to recover a rank-one solution
for problem (20) and (31). The optimization problem can be
formulated as14

min
{ϕ,ρk}

K∑
k=1

ϕ‖W∗Gf∗k‖
2

+ σ2
rϕ‖W∗‖2

s.t. ρkϕu
∗
kk

ρkϕ
K∑

j 6=k

v∗kj+ϕρkσ
2
rw
∗
k+ρkσ

2
k+ω

2
k

≥ γk,

ϕ
K∑
j=1

u∗kj + ϕσ2
r w̃
∗
k + σ2

k ≥
ψk

ξk(1−ρk) ,

ϕ ≥ 0, 0 ≤ ρk ≤ 1, ∀k ∈ K.

(65)

As has been discussed in our previous work [47], the above
optimization problem admits a closed-form solution and we
omit the detailed derivation in this work. The proposed rank-
one recovery method is summarized in Table VII.15

13For problem (53), W∗ can be expressed as
√
β∗
l Tl, where β∗

l denotes
the relay power scaling factor corresponding to the lth latent transceiver.

14For problem (20), {u∗kj , v
∗
kj , w

∗
k, w̃

∗
k} is the solution of (59)-(62) with

ek = 0, ∀k.
15We only list the detailed steps to recover f∗k , which can be easily extended

to the recovery of W∗.

TABLE VII
PROPOSED RANK-ONE RECOVERY METHOD

1. For the ith randomization step (i = 1, . . . , R, R is the number
of randomization steps.)

2. – If i = 1, let f∗k equal to the principal component of
F∗

k . Else, calculate the eigenvalue decomposition F∗
k =

QΛQH , then the candidate vector is generated as f∗k =

QΛ
1
2 w, where w is an i.i.d. complex Gaussian vector

with zero mean and unit variance.
– Solve problem (64) to obtain the optimal {ϕ∗

k, ρ
∗
k}. If the

problem turns out to be infeasible, discard that candidate
vector. Otherwise, save the candidate {f∗k , ϕ

∗
k, ρ

∗
k} and the

objective value of the problem.
End

4. Select the candidate {f∗k , ϕ
∗
k, ρ

∗
k} which corresponds to the

minimum objective value.

APPENDIX B
THE PROOF OF PROPOSITION 1

We first introduce four sets of auxiliary variables dk, d̃k, ek
and ẽk, ∀k ∈ K, which satisfy

dk = σ2
rh

H
k hk +

1

4
ω2
k(p

(i)
k − ϕ

(i)
l )2 +

1

γk
f
(i)H
k G̃kf

(i)
k , (66)

d̃k = −σ2
kϕl +

1

2
(p

(i)
k − ϕ

(i)
l )(pk − ϕl) +

2

γk
R{f (i)Hk G̃kfk},

(67)

ek = −σ2
rh

H
k hk+

K∑
j=1

f
(i)H
j G̃kf

(i)
j +

ψk
4ξk

(q
(i)
k − ϕ

(i)
l )2, (68)

ẽk = 2R{
K∑
j=1

f
(i)H
j G̃kfj}+

ψk
2ξk

(q
(i)
k −ϕ

(i)
l )(qk−ϕl)+σ2

kϕl,

(69)
where dk and ek are constant scalars while d̃k and ẽk are
affine functions in r. Then, the SINR constraints in problem
(48) can be rewritten as the following SOCs∥∥∥∥∥

[
wT
k ,
d̃k − dk − 1

2

]∥∥∥∥∥ ≤ d̃k − dk + 1

2
,∀k, (70)

where

wk = [hHk TlGf1, . . . ,h
H
k TlGfk−1,h

H
k TlGfk+1,

. . . ,hHk TlGfK ,
1
2ωk(pk + ϕl)]

T .
(71)

Similarly, the EH constraints in problem (48) can be reformu-
lated as the following SOCs∥∥∥∥∥

[√
ψk
4ξk

(qk + ϕl),
ẽk − ek − 1

2

]∥∥∥∥∥ ≤ ẽk − ek + 1

2
,∀k.

(72)
Next, by introducing slack variables P1, P2 and P3, we can

equivalently write the objective function Pl(r) of problem (48)
as follows

Pl(r) = P1 + P2 + P3, (73)

where

‖[fT1 , . . . , fTK , (P1 − 1)/2]‖ ≤ (P1 + 1)/2, (74)

‖[(Gf1)
T
, . . . , (GfK)

T
, (P2 − ϕl)/2]‖ ≤ (P2 + ϕl)/2, (75)
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‖[2σr, ϕl − P3]‖ ≤ ϕl + P3. (76)

Therefore, problem (48) can be shown to be equivalent to the
following SOCP problem

min
r, P1, P2, P3

P1 + P2 + P3

s.t. (70), (72), (74), (75) and (76),
pk ≥ 1, qk ≥ 1, invp(pk) + invp(qk) ≤ 1, ∀k ∈ K.

(77)

This completes the proof.
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[37] R. H. Tütüncü, K. C. Toh and M. J. Todd, “Solving semidefinite-
quadratic-linear programs using SDPT3,” Math. Program., Ser. B, vol. 95,
no. 2, pp. 189–217, 2003.

[38] D. H. Brandwood, “A complex gradient operator and its application in
adaptive array theory,” in Proc. Inst. Elect. Eng., vol. 130, no. 1, pp.
11–16, 1983.

[39] Y. Cheng and M. Pesavento, “Joint optimization of source power
allocation and distributed relay beamforming in multiuser peer-to-peer
relay networks,” IEEE Trans. Signal Process., vol. 60, no. 6, pp. 2962–
2973, Jun. 2012.

[40] G. Zheng, S. Chatzinotas, and B. Ottersten, “Generic optimization of
linear precoding in multibeam satellite systems,” IEEE Trans. Wireless
Commun., vol. 11, no. 6, pp. 2308–2320, Jun. 2012.
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