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Abstract—The aim of this paper is to investigate the recently
developed mixed-ADC architecture for frequency-selective chan-
nels. Multi-carrier techniques such as orthogonal frequency divi-
sion multiplexing (OFDM) are employed to handle inter-symbol
interference (ISI). A frequency-domain equalizer is designed
for mitigating the inter-carrier interference (ICI) intro duced by
the nonlinearity of one-bit quantization. For static single-input-
multiple-output (SIMO) channels, a closed-form expression of the
generalized mutual information (GMI) is derived, and basedon
which the linear frequency-domain equalizer is optimized.The
analysis is then extended to ergodic time-varying SIMO channels
with estimated channel state information (CSI), where numeri-
cally tight lower and upper bounds of the GMI are derived. The
analytical framework is naturally applicable to the multi- user
scenario, for both static and time-varying channels. Extensive
numerical studies reveal that the mixed-ADC architecture with
a small proportion of high-resolution ADCs does achieve a
dominant portion of the achievable rate of ideal conventional
architecture, and that it remarkably improves the performance
as compared with one-bit massive MIMO.

Index Terms—Analog-to-digital converter (ADC), frequency-
selective fading, generalized mutual information, inter-carrier
interference, linear frequency-domain equalization, massive
multiple-input-multiple-output (MIMO), mixed-ADC archi tec-
ture, orthogonal frequency division multiplexing (OFDM).

I. I NTRODUCTION

By deploying tens to hundreds of antennas at the base
station (BS) and simultaneously serving multiple users in the
same time-frequency resource block, massive multiple-input-
multiple-output (MIMO) achieves unprecedented gain in both
spectral efficiency and radiated energy efficiency, accommo-
dating the stringent requirements of future 5G systems [1]-[4].
The performance gains, however, come at the expense of a
linear increase in hardware cost as well as circuitry power
consumption, and therefore massive MIMO will be more
attractive if low-cost, energy-efficient solutions are available.

A. Related Work

Basically, if each BS antenna is configured with an
unabridged radio frequency (RF) chain, then the only way
to alleviate hardware cost and circuitry power consumption

N. Liang and W. Zhang are with Key Laboratory of Wireless-Optical
Communications, Chinese Academy of Sciences, and Department of Elec-
tronic Engineering and Information Science, University ofScience and
Technology of China, Hefei, China (Emails: liangn@mail.ustc.edu.cn, weny-
izha@ustc.edu.cn).

This work has been supported by the National High TechnologyRe-
search and Development Program of China (863 Program) through grant
2014AA01A702, the National Natural Science Foundation of China under
Grant 61379003, and the Fundamental Research Funds for the Central
Universities under Grant WK3500000003.

is to use economical low-power components when building
the RF chains. These components, however, generally have
to tolerate severe impairments, such as quantization noise,
nonlinearity of power amplifier, phase noise of oscillator,
and I/Q imbalance. By modeling the aggregate effect of the
impairments (including quantization noise) as an additional
Gaussian noise independent of the desired signal, the authors
of [5] investigated the impact of hardware impairments on
the system spectral efficiency and radiated energy efficiency,
and concluded that massive MIMO exhibits some degree of
resilience against hardware impairments. Further, employing
a similar model the authors of [6] derived a scaling law that
reveals the tradeoff among hardware cost, circuitry power con-
sumption, and the level of impairments. Although the adopted
stochastic impairment models are not rigorous theoretically
(for example, the quantization noise inherently depends on
the desired signal), the analytical results in [5]-[6] closely
match those obtained by a more accurate hardware-specific
deterministic model, as demonstrated by [7].

Among all the components in a RF chain, high-resolution
ADC (typically with a bit-width exceeding 10) is particularly
power-hungry, especially for wideband systems, since the
power consumption of an ADC scales roughly exponentially
with the bit-width and linearly with the baseband bandwidth
[8]. Lowering the bit-width of the adopted ADC will therefore
bring in considerable savings on cost and energy. This fact
actually has motivated extensive research on low-cost, energy-
efficient design of wireless communication systems through
employing low-resolution or even one-bit ADCs to build the
RF chain; see, e.g., [9] for additive white Gaussian noise
(AWGN) channels, [10] for ultra-wideband channels, and [11]-
[14] for MIMO channels.

Regarding massive MIMO, the impact of coarse quantiza-
tion has been investigated only recently. In [15], the authors
evaluated the achievable rates of an uplink one-bit massive
MIMO system adopting QPSK constellation, least-squares
(LS) channel estimation, and maximum ratio combiner (MRC)
or zero-forcing combiner (ZFC). The authors of [16]-[17]
further revealed that enhancement of achievable rates can
be attained by high-order modulation such as 16-QAM. The
underlying reason is that, even for one-bit massive MIMO, the
amplitude of the transmit signal can still be recovered provided
that the number of BS antennas is sufficiently large and that
the signal-to-noise ratio (SNR) is not too high. Optimizations
of pilot length and ADC bit-width were performed in [18] and
[19] respectively, both adopting MRC at the receiver. Recently,
the authors of [20] analyzed the achievable rates of one-bit
massive MIMO in frequency-selective channels, employing
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linear minimum mean squared error (MMSE) channel esti-
mator and linear combiners such as MRC and ZFC.

Beyond that, various channel estimation and data detection
algorithms have been proposed for massive MIMO under
coarse quantization. For example, near maximum likelihood
(nML) detector and channel estimator were proposed in [21]
for one-bit massive MIMO in frequency-flat fading channels.
In [22], channel estimation and data detection algorithms were
developed for quantized massive MIMO in frequency-selective
fading channels. Particularly, tradeoffs between error rate
performance and computational complexity were investigated
therein based on mismatched quantization models. Techniques
based on message passing algorithm (and its variants) were
also applied to quantized massive MIMO systems, such as
[23]-[24] for frequency-flat fading channels and [25]-[26]
for frequency-selective fading channels. In general, [15]-[26]
conclude that massive MIMO is somewhat robust to coarse
quantization, validating the potential of building massive
MIMO by low-resolution ADCs.1

B. Mixed-ADC Architecture

Except [24], all the aforementioned works have assumed
a homogeneous-ADC architecture; that is, all the antennas
at the BS are equipped with low-resolution ADCs of the
same bit-width. Although such an architecture seems feasible
in terms of achievable rate or bit error rate (BER), it has
several practical issues, including data rate loss in the high
SNR regime [13]-[14], error floor for linear multi-user detec-
tion with 1-3 bit quantized outputs [24]-[25], overhead and
challenge of channel estimation [15]-[20], [29] and of time-
frequency synchronization [22] from quantized outputs. From
this perspective, high-resolution ADCs can still be usefulfor
effective design of massive MIMO receivers.

Motivated by such consideration, in early works [27]-[28]
we have proposed a mixed-ADC architecture for massive
MIMO, where a small proportion of the high-resolution ADCs
are reserved while the others are replaced by one-bit ADCs.2

For frequency-flat channels, [27] shows that the mixed-ADC
architecture is able to achieve an attractive tradeoff between
spectral efficiency and energy efficiency. Moreover, compared
with the homogeneous-ADC architecture, the mixed-ADC ar-
chitecture is inherently immune to most of the aforementioned
concerns. For example, channel estimation and time-frequency
synchronization in the mixed-ADC architecture are more
tractable than those in the homogeneous-ADC architecture
[30], benefiting from the reserved high-resolution ADCs.

It is perhaps also worth noting that the mixed-ADC architec-
ture is much more flexible to the time-varying property of the

1From an engineering perspective, coarse quantization actually subverts
almost every aspect of the system design, including time-frequency synchro-
nization, digital filtering, data detection, among others.In this paper, however,
we primarily focus on the fundamental performance evaluation of such system,
and leave the other practically important aspects for future research.

2Generally speaking, mixed-ADC architecture stands for anyreceiver
architecture that contains ADCs of possibly different bit-widths, thus even
including homogeneous-ADC architecture as a special case.Unless otherwise
specified, however, the mixed-ADC architecture in this paper refers in
particular to the one that is built upon one-bit and high-resolution ADCs,
simply for analytical convenience.

users’ demand for mobile data traffic. To be specific, when the
users’ sum rate requirement is low, part of the BS antennas can
be deactivated. Then high-resolution ADCs may be adopted
in the channel training phase while one-bit ADCs may be
employed in the data transmission phase. Compared with the
homogeneous-ADC architecture, the mixed-ADC architecture
in this situation incurs much lower channel estimation over-
head and will therefore achieve higher energy efficiency.

C. Contributions

In this paper, we leverage the information-theoretical tool
of generalized mutual information (GMI) to quantify the
achievable rates of the mixed-ADC architecture in frequency-
selective channels.3 The main contributions of this paper are
summarized as follows:

• We modify the mixed-ADC architecture to make it suit-
able for frequency-selective channels, adopting OFDM
to handle inter-symbol interference (ISI) and a linear
frequency-domain equalizer to mitigate inter-carrier in-
terference (ICI).

• For static SIMO channels, we derive an explicit expres-
sion of the GMI, and based on which further optimize
the linear frequency-domain equalizer. The analytical
results are then extended to ergodic time-varying SIMO
channels, where tight lower and upper bounds of the
GMI are derived. The impact of frequency diversity and
imperfect CSI on the system performance is investigated
as well.

• We then extend the analytical framework to the multi-
user scenario. BER performance is also examined for a
practical convolutional codec.

• We develop a reduced-complexity algorithm, by which
the computational complexity of the linear frequency-
domain equalizer is reduced fromO(N3Q3) to
O(max{N3Q,N2Q2 log2 Q}), whereN is the number
of BS antennas andQ is the number of subcarriers.

Extensive numerical studies under various setups reveal that,
with only a small proportion of high-resolution ADCs, the
mixed-ADC architecture attains a large portion of the achiev-
able rate of ideal conventional architecture, and significantly
outperforms antenna selection with the same number of high-
resolution ADCs. In addition, the mixed-ADC architecture
in the multi-user scenario remarkably lowers the error floor
encountered by one-bit massive MIMO. These observations
validate the merits of the mixed-ADC architecture for effective
design of massive MIMO receivers.

D. Notation

Throughout this paper, vectors and matrices are given in
bold typeface, e.g.,x andX, respectively, while scalars are
given in regular typeface, e.g.,x. We let X∗, Xt and X†

3Due to the nonlinearity of coarse quantization, the frequency-selective
channel cannot be decomposed into multiple independent frequency-flat
subchannels by simply applying orthogonal frequency division multiplexing
(OFDM). Therefore in this situation, channel estimation and data detection
algorithms designed for frequency-flat channels are no longer applicable, and
new methods have to be developed to handle the aforementioned issues.
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denote the conjugate, transpose and conjugate transpose ofX,
respectively. Theq-th element of vectorx is symbolized as
(x)q , and in the meantime, the(p, q)-th element of matrixX
is symbolized as(X)pq . Notationdiag(·) denotes a diagonal
matrix, with the diagonal elements numerated in the bracket.
For a positive integerN , we useN to represent the set of
positive integers no larger thanN , i.e., N = {1, ..., N}.
For a positive real numberx, we use ⌈x⌉ to denote the
minimum integer that satisfies⌈x⌉ ≥ x. NotationCN(µ,C)
stands for the distribution of a circularly symmetric complex
Gaussian random vector with mean vectorµ and covariance
matrix C. SubscriptsR and I are used to indicate the real
and imaginary parts of a complex number, respectively, e.g.,
x = xR + jxI, with j being the imaginary unit. We further
use sgn(x) = 1√

2
[sgn(xR) + jsgn(xI)] to denote the sign

function of a complex numberx, and log(x) to denote the
natural logarithm of a positive real numberx.

E. Outline

The remaining part of this paper is organized as follows.
Section II describes the system model in the single-user
scenario. For static SIMO channels, Section III first derives an
explicit expression of the GMI and then optimizes the linear
frequency-domain equalizer. Besides, properties of the GMI
in several special cases are explored and the analytical results
are further extended to ergodic time-varying SIMO channels.
Section IV applies the analytical framework to the multi-
user scenario. A reduced-complexity algorithm is proposedin
Section V for efficiently implementing the linear frequency-
domain equalizer. Numerical results are presented in Section
VI to corroborate the analysis. Finally, Section VII concludes
this paper. Auxiliary technical derivations are collectedin the
appendix.

II. SYSTEM MODEL

A single-antenna user communicates to anN -antenna BS
through a frequency-selective SIMO channel, of which each
branch consists ofT taps. We start by focusing on static
channels and assuming perfect CSI at the BS. Particularly,
OFDM is adopted to handle ISI. We denote the frequency-
domain OFDM symbol bỹx ∈ CQ×1 and its time-domain
counterpart byx = F†x̃, whereQ is the number of subcarriers
and the discrete Fourier transform (DFT) matrixF satisfies
FF† = F†F = IQ.

For the branch related to then-th BS antenna, we denote it
by hn , [hn1, ..., hnT , 0, ..., 0]

t ∈ CQ×1, and accordingly, its
circulant matrix form byCn. Note thatCn can be decomposed
asCn = F†ΛnF, with the diagonal matrixΛn , diag(λn)
given by

λn =
√

QFhn. (1)

The channel outputs at then-th BS antenna overQ channel
uses (with cyclic prefix removed) can be collectively written
as

yn = Cnx+ zn, (2)

wherezn ∼ CN(0, σ2IQ) collects the independent and iden-
tically distributed (i.i.d.) complex Gaussian noise.

To fulfill signal processing in the digital domain,yn needs
to be quantized by a pair of ADCs, one for each of the real
and imaginary parts. For the mixed-ADC architecture, there
are onlyK pairs of high-resolution ADCs available at the BS
and all the other(N−K) pairs of ADCs are with only one-bit
resolution. Thus the quantized output can be expressed as

rn = δnyn + δ̄nsgn(yn). (3)

Here, δn ∈ {0, 1}, δ̄n , 1 − δn, and
∑N

n=1 δn = K.
Particularly, δn = 1 means thatyn is quantized by a pair
of high-resolution ADCs, whereasδn = 0 indicates thatyn

is quantized by a pair of one-bit ADCs. We further define
an ADC switch vectorδ , [δ1, ..., δN ]t, which should be
optimized according to the channel state{hn}Nn=1 to maximize
the user’s data rate.

Then we employ a DFT torn. Due to the strong nonlinearity
of one-bit quantization, severe ICI is introduced during the
time-frequency conversion. To handle this, we propose a
linear frequency-domain equalizer as illustrated in Figure 1.
Accordingly, the processed output is

ˆ̃x =
N
∑

n=1

WnFrn, (4)

whereWn , diag(wn) is aQ-dimensional diagonal matrix.4

For expositional concision, we may definew , [wt
1, ...,w

t
N ]t,

and it should be optimized according to{hn}Nn=1 and δ to
maximize the user’s achievable rate.

For analytical convenience, we let the decoder adopt a
generalized nearest-neighbor decoding rule; that is, uponob-
serving{ˆ̃x[l]}Ll=1, it computes, for each possible input message
m, the distance metric5

D(m) =
1

L

L
∑

l=1

‖ˆ̃x[l]− ax̃[m, l]‖2, m ∈ M, (5)

and determineŝm as the one that minimizesD(m). Here
M denotes the set of all the possible messages,{x̃[m, l]}Ll=1

denotes the codeword for messagem in the frequency domain,
andL is the codeword length measured in OFDM symbol. We
restrict the codebook to be drawn from a Gaussian ensemble;
that is, each codeword is a sequence ofL i.i.d. CN(0,EsIQ)
random vectors, and all the codewords are mutually indepen-
dent. Such a choice of the codebook ensemble satisfies an
average power constraint ofEs, and therefore we define SNR
asSNR , Es/σ

2, hereafter lettingσ2 = 1 for concision.

III. PERFORMANCE INSINGLE-USERSCENARIO

For the mixed-ADC architecture, since there is no closed-
form expression of the channel capacity, in this paper, we
leverage GMI to evaluate its achievable rates. The GMI is a
lower bound of the channel capacity, and more precisely, it
characterizes the maximum achievable rate of specific i.i.d.

4In this paper, we restrictWn to be diagonal, and for analytical conve-
nience, the weight for each BS antenna is absorbed intoWn.

5For tractability consideration, here the scaling parameter for each subcar-
rier is designated an identical valuea. Although such a choice is generally
suboptimal, we note that the resulting performance loss is supposed to be
marginal, benefiting from the channel hardening effect of massive MIMO.
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Fig. 1. Illustration of the mixed-ADC architecture for frequency-selective SIMO channels. We note that the ADC switch module can also be placed before
the RF chains. In that manner, the RF chain followed by a pair of one-bit ADCs can be manufactured with lower quality requirements and consequently we
can further reduce the power consumption and hardware cost [22]. On the other hand, switching at radio frequency may be more challenging and costly than
at baseband. Which choice is favorable will be determined bypractical engineering.

random codebook ensemble (Gaussian ensemble here) and
specific decoding rule (generalized nearest-neighbor decoding
here) such that the average decoding error probability (av-
eraged over the codebook ensemble) is guaranteed to vanish
asymptotically as the codeword lengthL grows without bound
[31]. As a performance metric, it has proven convenient and
useful in several important scenarios, such as fading channel
with imperfect CSI at the receiver [31] and channels with
transceiver distortion [27]-[28], [32]-[33].

A. GMI and Optimal Linear Frequency-Domain Equalizer

We exploit the theoretical framework in [27] and [32] to
derive the GMI of the mixed-ADC architecture. Following
essentially the same steps as [32, App. C], we obtain an
explicit expression of the GMI as follows.

Proposition 1. Assuming Gaussian codebook ensemble and
generalized nearest-neighbor decoding, the GMI for givenw

and δ is

IGMI(w, δ) = log

(

1 +
∆(w, δ)

1−∆(w, δ)

)

, (6)

where the performance indicator∆(w, δ) follows from

∆(w, δ) =
|E[ˆ̃x†x̃]|2

QEsE[ˆ̃x† ˆ̃x]
. (7)

The corresponding optimal scaling parameter is given by

aopt(w, δ) =
1

QEs
E[x̃† ˆ̃x]. (8)

We note that here the expectation operationE[·] is taken with
respect tox̃ and zn, n ∈ N.

We notice that∆(w, δ) is lower bounded by zero, and that
from Cauchy-Schwartz’s inequality, it is upper bounded by
one. Moreover,IGMI(w, δ) is a strictly increasing function of
∆(w, δ) for ∆(w, δ) ∈ [0, 1), and thus in the following, we
only need to maximize∆(w, δ) by optimizing the design of
w and δ. The optimal linear frequency-domain equalizer is
given by the proposition below.

Proposition 2. For given{hn}Nn=1 and δ, the optimal linear
frequency-domain equalizerwopt is

wopt = D−1g. (9)

Accordingly, the maximized∆(w, δ) and the optimal choice
of aopt(w, δ) are given by

∆(wopt, δ) = aopt(wopt, δ) =
1

QEs
g†D−1g. (10)

In both equations,g , [gt
1, ...,g

t
N ]t ∈ C

NQ×1, of which the
n-th segmentgn is given by

gn = δn · Esλ
∗
n + δ̄n ·

√

2

π

Esλ
∗
n

√

1 + Es‖λn‖2/Q
. (11)

In the meantime,D ∈ CNQ×NQ is a block matrix

D ,











D11 D21 · · · DN1

D12 D22 · · · DN2

...
...

. . .
...

D1N D2N · · · DNN











, (12)

in which each blockDnm is aQ-dimensional diagonal matrix
defined as

(Dnm)qq = (FRnmF†)qq. (13)

HereRnm , E[rnr
†
m] is analytically evaluated in Appendix-

A, and the expectation operationE[·] is taken with respect to
x̃ and zn, n ∈ N.

Proof: For the readers’ better understanding, here we
outline a sketch of the proof. For a complete version of this
proof, please refer to Appendix-A.

First, to maximize∆(w, δ) we need to derive the closed-
form expressions ofE[ˆ̃x†x̃] and E[ˆ̃x† ˆ̃x]. Through tedious
manipulations, we obtain

E[ˆ̃x†x̃] = w†g, andE[ˆ̃x† ˆ̃x] = w†Dw. (14)

Then,∆(w, δ) in (7) yields a closed-form expression as

∆(w, δ) =
w†gg†w

QEsw†Dw
. (15)

We notice that it is actually a generalized Rayleigh quotient of
w, and as a result, we conveniently obtain the optimal linear
frequency-domain equalizer as given by (9).
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B. Two Corollaries from Proposition 2

In the previous subsection, we derived the optimal linear
frequency-domain equalizer. Thus we are now ready to exam-
ine the performance of the proposed mixed-ADC architecture.
Particularly in this subsection, we focus on two special case
studies. For the special case ofδ = 1Q, the next corollary
gives a comparison between the GMI and the channel capacity.

Corollary 1. Whenδ = 1Q, IGMI(wopt, δ) yields a simplified
expression as

IGMI(wopt, δ) = − log

(

1

Q

Q
∑

q=1

1

1 + Es

∑N
n=1 |λnq|2

)

.

(16)
On the other hand, the channel capacity (achieved by MRC
over theN antennas at each subcarrier) is given by

C = − 1

Q

Q
∑

q=1

log

(

1

1 + Es

∑N
n=1 |λnq|2

)

. (17)

The proof is given in Appendix-B. Since− log(x) is a
convex function of positive real numberx, IGMI(wopt, δ) ≤ C
holds even whenδ = 1Q. We note that this rate loss is due
to the identical choice of the scaling parameteraopt(wopt, δ)
over all the subcarriers in the decoding metric (5), and
that benefiting from the channel hardening effect of massive
MIMO, such performance loss is expected to be marginal, as
will be verified by the numerical study in Section VI.

The next corollary draws some connection between the
frequency-flat channel scenario addressed in [27]-[28] andthe
frequency-selective channel scenario investigated in this paper.

Corollary 2. WhenT = 1, the analytical results in Proposi-
tion 2 reduce to those for frequency-flat channels obtained in
[27]-[28].

See Appendix-C for its proof. The impact of frequency
diversity on the system performance will be revealed by
numerical studies in Section VI.

C. Asymptotic Behavior ofIGMI(wopt, δ) in Low or High
SNR Regime

In the following, we first examine the asymptotic behavior
of IGMI(wopt, δ) in the low SNR regime, and then for the
special case ofδ = 0, explore the limit ofIGMI(wopt, δ) in
the high SNR regime.

Corollary 3. AsEs → 0, for a given ADC switch vectorδ we
have

IGMI(wopt, δ) =
1

Q

N
∑

n=1

(

δn + δ̄n · 2
π

)

‖λn‖2Es + o(Es).

(18)
On the other hand, the channel capacity forδ = 1Q ap-
proaches

C =
1

Q

N
∑

n=1

‖λn‖2Es + o(Es). (19)

The proof is given in Appendix-D. Comparing (18) and
(19), we can make two observations. First, due to one-bit

quantization, part of the achievable data rate is degraded by
a factor 2

π . Second, to achieve the maximum data rate, high-
resolution ADCs should be switched to the antennas with the
maximum‖λn‖2 or ‖hn‖2, equivalently.

For a generalδ, D−1 in the high SNR regime is still too
complicated to yield any simplification. In light of this, we
derive the limit of∆(wopt, δ) in the high SNR regime for
the special case ofδ = 0. The subsequent corollary gives our
result.

Corollary 4. For the special case ofδ = 0, ∆(wopt, δ) in
the high SNR regime is given by the following limit

lim
Es→∞

∆(wopt, δ) =
2

π
λ̄tD̄−1λ̄∗, (20)

whereλ̄ , [λt
1/‖λ1‖, ...,λt

N/‖λN‖]t, andD̄ , limEs→∞ D.

The proof is given in Appendix-E. Since both̄λ andD̄ do
not depend onEs, (20) implies that, if all the BS antennas
are equipped with one-bit ADCs, the GMI will ultimately
approach a positive constant, asEs grows large. On the other
hand, even if there are only one pair of high-resolution ADCs
available at the BS, the GMI will always increase unboundedly
with increasingEs.6 From this perspective, the contribution of
antennas connected with one-bit ADCs may be negligible in
the high-SNR regime, and this in turn suggests us, intuitively,
to switch the high-resolution ADCs to the antennas with the
maximum‖λn‖2 or ‖hn‖2, equivalently.

D. Extension to Ergodic Time-Varying Channels

Although our analysis thus far has been dedicated to the
static channel scenario, the analytical framework developed
can be extended to the time-varying channel scenario. We
assume that the time-varying channel under consideration
obeys the block fading model. Within each channel coherence
interval, CSI needs to be explicitly or implicitly acquired, e.g.,
via channel training. Since the channel estimation from one-
bit quantized outputs is inefficient and is elusive for analysis,
in this paper we only activate the high-resolution ADCs in the
channel training phase.

Particularly, channel training is performed in a round-robin
manner. That is, in the first OFDM symbol interval, we
switch theK pairs of high-resolution ADCs to the firstK
antennas and estimateh1, ...,hK ; in the subsequent OFDM
symbol interval, we switch the high-resolution ADCs to the
next K antennas and estimatehK+1, ...,h2K ; and so on.
As a result, the training procedure consumes⌈N/K⌉ OFDM
symbol intervals. To simplify analysis, in this subsectionwe
assume that the channel coefficients follow i.i.d. Rayleigh
fading, i.e.,hnt ∼ CN(0, 1/T ), for any n ∈ N and t ∈ T.
The BS adopts an MMSE estimator, and thus without loss of
generality, we can decomposehn into

hn = ĥn + h̃n, (21)

6From (16) it can be readily inferred that the GMI of antenna selection
with K ≥ 1 will increase unboundedly with increasingEs. Moreover, it is
easy to verify that the mixed-ADC architecture achieves better performance
than antenna selection with the same number of high-resolution ADCs.



6

where ĥn is the estimated channel vector and̃hn is the
independent error vector. Botĥhn and h̃n are complex
Gaussian distributed. Moreover, if we define the normalized
MSE asMSEh = σ2

h, then ĥnt ∼ CN(0, (1 − σ2
h)/T ) and

h̃nt ∼ CN(0, σ2
h/T ), for anyn ∈ N and t ∈ T.

Following a similar technical route as [27, Prop. 4 & 5], we
obtain lower and upper bounds of the GMI, summarized by
the proposition below.

Proposition 3. For block fading channels with imperfect CSI,
a lower bound of the GMI is

I lower
GMI = ρ log

(

1 +
E
ĥn,n∈N

[∆(wim
opt, δ)]

1− E
ĥn,n∈N

[∆(wim
opt, δ)]

)

, (22)

and an upper bound of the GMI is

IupperGMI = ρE
ĥn,n∈N

[

log

(

1 +
∆(wim

opt, δ)

1−∆(wim
opt, δ)

)]

. (23)

Here ρ ,
Tc−⌈N/K⌉

Tc

accounts for the overhead of channel
training, with Tc being the coherence interval length. More-
over,wim

opt and∆(wim
opt, δ) also come from(9) and (10), but

therein we need to replaceg with E
h̃n,n∈N

[g|ĥn, n ∈ N], and

replaceD with E
h̃n,n∈N

[D|ĥn, n ∈ N].

Due to space limitation, the proof is omitted. Whenρ = 1
andσ2

h = 0, the above results apply directly to time-varying
channels with perfect CSI at the BS. Numerical results will
be given in Section VI to confirm the tightness of the bounds.

IV. M ULTI -USER SCENARIO

A. System Description

A total of U single-antenna users communicate to the BS
simultaneously. Again we start from the static channel scenario
with perfect CSI at the BS. Theu-th user’s frequency-domain
OFDM symbol isCN(0,EsIQ) distributed and is denoted by
x̃u. Before transmission, an IDFT is applied tõxu, and thus
the time-domain transmit symbol of useru is xu = F†x̃u,
which is alsoCN(0,EsIQ) distributed. We further assume that
the OFDM symbols from different users are independent, since
typically the users do not cooperate with each other.

We denote the multipath channel between useru and the
n-th BS antenna byhu

n , [hu
n1, ..., h

u
nTu , 0, ..., 0]t ∈ CQ×1

and further its circulant matrix form byCu
n. Then,Cu

n can be
decomposed asCu

n = F†Λu
nF, where the eigenvalue matrix

Λu
n , diag(λn) is given by

λu
n =

√

QFhu
n. (24)

Note that we allowT u to be different for different users since
they may be located in various environments. Besides, it is
perhaps worth noting that typicallyQ ≫ maxu=1,...,U T u, to
keep the overhead of cyclic prefix relatively low.

We make the ideal assumption that all the users are perfectly
synchronized. Then, the received OFDM symbol at then-th
BS antenna, with useru considered, is

yu
n = Cu

nx
u +

∑

v 6=u

Cv
nx

v + zn, (25)

where
∑

v 6=u C
v
nx

v+zn ∼ CN(0, σ2IQ+Es

∑

v 6=u C
v
n(C

v
n)

†)
summarizes the co-channel interference and Gaussian noise
experienced by useru. Noticing thatyu

n is actually identical for
anyu ∈ U, here the superscriptu is simply for distinction with
the single-user scenario. The SNR is defined asSNR , Es/σ

2,
and without loss of generality, hereafter we letσ2 = 1. Then,
yu
n is quantized by either a pair of high-resolution ADCs or a

pair of one-bit ADCs, and the quantized output is

run = δny
u
n + δ̄nsgn(y

u
n). (26)

We assume that there are stillK pairs of high-resolution ADCs
available at the BS.

The quantized outputrun is then transformed to the fre-
quency domain and later processed by user-specific frequency-
domain equalization, leading to

ˆ̃xu =

N
∑

n=1

Wu
nFr

u
n. (27)

At the decoder, a generalized nearest-neighbour decoding rule
is adopted to decode theu-th user’s transmit signal. That is,
upon observing{ˆ̃xu[l]}Lu

l=1, the decoder computes, for each
possible input messagemu of useru, the following distance
metric

D(mu) =
1

Lu

Lu

∑

l=1

‖ˆ̃xu[l]− aux̃u[mu, l]‖2, mu ∈ M
u, (28)

and determineŝmu as the one that minimizesD(mu). Here
M

u denotes the set of all the possible messages for useru,
{x̃u[mu, l]}Lu

l=1 is the corresponding codeword for message
mu, andLu is the codeword length of useru. Note thatLu

in (28) can be different for different users.

B. GMI and Optimal Equalizer

In the multi-user scenario, if we take the co-channel interfer-
ence (before quantization) as an additional colored Gaussian
noise, then there is no essential difference with the single-
user scenario, and the resulting equalizer can effectivelyhandle
this noise term by exploiting its statistical characteristics. The
subsequent proposition summarizes our main results.

Proposition 4. For givenδ and channel realizations{hv
n}Nn=1,

v ∈ U, the GMI of useru is given by

IuGMI = log

(

1 +
∆(wu

opt, δ)

1−∆(wu
opt, δ)

)

. (29)

The performance indicator∆(wu
opt, δ) and the optimal scal-

ing parameterauopt(w
u
opt, δ) are

∆(wu
opt, δ) = auopt(w

u
opt, δ) =

1

QEs
(gu)†(Du)−1gu (30)

and are achieved by the optimal linear frequency-domain
equalizer

wu
opt = (Du)−1gu. (31)

In the above,gu , [(gu
1 )

t, ..., (gu
N )t]t ∈ CNQ×1, of which the

n-th segmentgu
n is given by

gu
n = δn ·Es(λ

u
n)

∗+ δ̄n ·
√

2

π

Es(λ
u
n)

∗
√

1 +
∑U

v=1 Es‖λv
n‖2/Q

. (32)



7

The block matrixDu ∈ CNQ×NQ is identical for all the users:

Du ,











Du
11 Du

21 · · · Du
N1

Du
12 Du

22 · · · Du
N2

...
...

. . .
...

Du
1N Du

2N · · · Du
NN











, (33)

and each of its blocks is aQ-dimensional diagonal matrix as

(Du
nm)qq = (FRu

nmF†)qq . (34)

HereRu
nm , E[run(r

u
m)†] is the correlation matrix ofrun and

rum, and is also identical for all the users.

Proof: As aforementioned, there is no fundamental dif-
ference between the single-user and the multi-user scenarios.
Therefore, we only outline the sketch of the proof. For useru,
the GMI also follows from (6), except that we need to replace
(7) by

∆(wu, δ) =
|E[(ˆ̃xu)†x̃u]|2
QEsE[(ˆ̃xu)† ˆ̃xu]

. (35)

The calculation ofE[(ˆ̃xu)†x̃u] andE[(ˆ̃xu)† ˆ̃xu] follows essen-
tially the same line as that in the single-user scenario, except
that we replaceYnm in (57) with

Yu
nm =

{

IQ + Es

∑U
v=1 C

v
n(C

v
n)

†, n = m ∈ N

Es

∑U
v=1 C

v
n(C

v
m)†, n 6= m ∈ N.

(36)

Then following the same technical route as Appendix-A,
we formulate ∆(wu, δ) as a generalized Rayleigh quo-
tient of wu, and based on which obtain the optimal linear
frequency-domain equalizerwu

opt as well as the corresponding
∆(wu

opt, δ).

C. ADC Switch Scheme

In the multi-user scenario, there is no generally convincing
ADC switch scheme. Moreover, the high-dimensional property
of the problem calls for efficient ADC switch scheme, and
time-consuming schemes such as exhaustive search or greedy
algorithm are practically infeasible. Therefore, we consider the
following heuristic schemes.

• Random ADC switch: high-resolution ADCs are switched
to K randomly chosen antennas.

• Norm-based ADC switch: switch the high-resolution
ADCs to the antennas with the maximum

∑U
v=1 ‖λv

n‖2
or
∑U

v=1 ‖hv
n‖2, equivalently.

The norm-based ADC switch scheme is asymptotically
optimal in terms of sum rate in the low SNR regime, and
achieves slightly better performance than the random ADC
switch scheme. As the SNR or the number of users increases,
the performance gain tends to decrease. Numerical results will
be presented in Section VI to examine the performance of the
norm-based ADC switch scheme. Meanwhile, numerical study
for the random ADC switch scheme is omitted due to space
limitation.

D. GMI Lower and Upper Bounds for Ergodic Time-Varying
Channels

Analogously we extend the analytical results to ergodic
time-varying channels. Round-robin channel training is per-
formed across the users and the BS antennas. Similarly we
assume i.i.d. Rayleigh fading, i.e.,hu

nt ∼ CN(0, 1/T ), for any
n ∈ N, t ∈ T, and u ∈ U. The BS also adopts an MMSE
estimator, and we decomposehu

n into

hu
n = ĥu

n + h̃u
n, (37)

where ĥu
n is the estimated channel vector and̃hu

n is the
independent error vector. Under the Rayleigh fading assump-
tion, it is easy to verify that botĥhu

n and h̃u
n are complex

Gaussian distributed. Moreover, if we define the normalized
MSE asMSEh = σ2

h, then ĥu
nt ∼ CN(0, (1 − σ2

h)/T ) and
h̃u
nt ∼ CN(0, σ2

h/T ), for anyn ∈ N, t ∈ T, andu ∈ U.
The lower and upper bounds of the GMI are given by the

following proposition, and numerical study will be conducted
in Section VI to verify their tightness.

Proposition 5. For ergodic time-varying channels with esti-
mated CSI, lower and upper bounds of the GMI of useru are
given by

Iu,lGMI = ρ log

(

1+
E
ĥ
[∆(wu,im

opt , δ)]

1−E
ĥ
[∆(wu,im

opt , δ)]

)

, (38)

Iu,uGMI = ρE
ĥ

[

log

(

1+
∆(wu,im

opt , δ)

1−∆(wu,im
opt , δ)

)]

. (39)

In the above,ρ accounts for the overhead of channel training.
Moreover,∆(wu,im

opt , δ) and w
u,im
opt also come from(30) and

(31), but we need to replacegu with E
h̃
[gu|ĥ], and replace

D with E
h̃
[D|ĥ]. Here, ĥ and h̃ denoteĥv

n, n ∈ N, v ∈ U,
and h̃v

n, n ∈ N, v ∈ U respectively.

In practice, the fast fading can be approximated to be
piecewise-constant overNs successive subcarriers since typi-
cally Q ≫ T , to keep the overhead of cyclic prefix relatively
low. Within each piecewise-constant frequency interval, only
one pilot symbol is required for each user. Therefore we can
reduce the channel training overhead by letting different users’
pilot symbols occupy non-overlapped subcarriers. For more
details, please refer to [1, Sec. II-C]. In this manner, the
channel training overhead turns out to be⌈N/K⌉ · ⌈U/Ns⌉
and accordinglyρ = Tc−⌈N/K⌉·⌈U/Ns⌉

Tc
.7

V. D ISCUSSION ONCOMPUTATIONAL COMPLEXITY

Since the computational complexity of matrix inversion
grows cubically with the dimension of the matrix, directly
inverting theNQ×NQ matrix D may impose great compu-
tational burden on the receiver. In the following, we exploit
the specific structure ofD, and propose a reduced-complexity
algorithm to efficiently computeD−1. With the proposed

7For a typical system configuration, e.g.,N = 64, K = 16, U = 10, and
Ns = 14, the proposed channel training method consumes four OFDM sym-
bol intervals. As a comparison, the channel training in the ideal conventional
architecture only needs one OFDM symbol interval and the channel training
in [22] lasts forU = 10 OFDM symbol intervals.
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D DP t
P DP
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Fig. 2. Transform the matrixD into a block diagonal matrix by row and column permutations:an example forN = Q = 2.

algorithm, the computational complexity ofD−1 can be re-
duced fromO(N3Q3) to O(N3Q), significantly alleviating
the computational burden of the receiver.

Proposition 6. The block matrixD consists ofN × N
blocks, of which each block is aQ-dimensional diagonal
matrix. Exploiting this structure, the evaluation ofD−1 can
be simplified by applyingD−1 = P(PtDP)−1Pt, whereP
is a specific permutation matrix that makesPtDP a block
diagonal matrix.8

Proof: Observing the structure ofD, we notice thatD
can be transformed into a block diagonal matrix by some row-
permutation matrixPr and some column-permutation matrix
Pc. Moreover, it is straightforward thatPt

r = Pc , P, due
to the symmetry ofD. Figure 2 gives an example forN =
Q = 2, where the zero elements ofD are left blank and the
nonzero entries belonging to the same subcarrier are marked
by the same color.

Since the permutation matrixP solely depends on the
system parameter(N,Q), it can be saved offline thus incuring
no additional computational burden on the receiver. More-
over, the permutation matrixP can be found by a simple
training program. To this end, we create a training matrix
G that shares the same structure as[D11, ...,DN1]; that is,
G , [G1, ...,GN ], and Gn is a Q-dimensional diagonal
matrix for anyn ∈ N. Particularly, the value of each nonzero
element ofG indicates its column index after performing the
column permutationP. Exploiting these inherent marks we
are able to transformG into GP by no more thanNQ times
of pair-wise column permutations and obtainP during the
training process.

Before invertingD, evaluatingD itself also incurs a com-
putational complexity ofO(N2Q2 log2 Q). Beyond that, the
computational burden ofg andD−1g is negligible. Therefore,
with Proposition 6, the computational complexity ofwopt can
be reduced fromO(N3Q3) to O(max{N3Q,N2Q2 log2 Q}),
significantly alleviating the computational burden of the re-
ceiver.

VI. N UMERICAL STUDY

Now we corroborate the analytical results through extensive
numerical studies. All the figures in this section are for ergodic

8Noticing that the permutation matrixP has exactly one element of 1 in
each row and each column and 0s elsewhere, the computationalcomplexity
of PtDP is virtually negligible.
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Fig. 3. GMI for different numbers of high-resolution ADC pairs: perfect
CSI, N = 64, U = 1, Q = 32, andT = 5.
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Fig. 4. GMI lower bound for different numbers of high-resolution ADC pairs:
perfect CSI,N = 64, U = 1, andQ = 32. Three different choices ofT
are made, of whichT = 1 means frequency-flat fading,T = 8 corresponds
to frequency-selective fading in a rich-scattering environment, andT = 4

accounts for a mediate scenario.

time-varying channels, and the channel coefficients are drawn
from i.i.d. Rayleigh fading, i.e.,hv

nt ∼ CN(0, 1/T ), for any
n ∈ N, t ∈ T, and v ∈ U. The norm-based ADC switch
scheme is adopted in both single-user and multi-user scenarios.
“CA” and “AS” represent ideal conventional architecture and
antenna selection, respectively.
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Fig. 6. GMI for different numbers of high-resolution ADC pairs: imperfect
CSI, N = 64, U = 1, Q = 32, T = 5, MSEh = −10dB, andTc = 53.

A. Single-User Scenario

Assuming perfect CSI at the BS, Figure 3 displays the GMI
of the mixed-ADC architecture for different numbers of high-
resolution ADC pairs. Several observations are in order. First
we notice that the GMI lower and upper bounds are very
tight, and thus we will only use the GMI lower bound in
the subsequent evaluation. In addition, for the special case of
K = N , there is a barely visible gap between the GMI and the
capacity, as predicted by Corollary 1. Moreover, the mixed-
ADC architecture with a small proportion of high-resolution
ADCs does achieve a dominant portion of the capacity of
ideal conventional architecture, and significantly outperforms
antenna selection with the same number of high-resolution
ADCs.

The impact of frequency diversity on the system perfor-
mance is addressed by Figure 4, where three different choices
of T are made. For each given SNR, we notice that there is an
intersection between two of the curves. Particularly, ifK lies
at the right side of the intersection, a largerT would lead to
a lower GMI. This may be attributed to the limitation of the
linear frequency-domain equalizer in mitigating ICI. IfK lies
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Fig. 7. Per-user GMI for different numbers of high-resolution ADC pairs:
perfect CSI,N = 64, U = 10, Q = 32, andT v = 5 for any v ∈ U.
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Fig. 8. Per-user GMI for different numbers of high-resolution ADC pairs:
imperfect CSI,N = 64, U = 10, Q = 32, MSEh = −10dB, Tc = 53, and
T v = 5 for any v ∈ U.

at the left side of the intersection, on the other hand, a largerT
would achieve a higher GMI. Because in this situation, there
are few high-resolution ADCs and, hence, frequency diversity
becomes crucial for signal recovery at the receiver.

By letting K = 0 and varying the SNR, Figure 5 gives a
closer look at the impact of frequency diversity. The dashed
lines correspond to the limits of the GMI in the high SNR
regime, as given by Corollary 4. First we notice that, for each
givenT , the GMI will increase first and then turn down as the
SNR grows large. Such a phenomenon has been observed in
frequency-flat one-bit massive SIMO systems, e.g., [16]-[17]
and [27]. As explained in the aforementioned works, for one-
bit massive SIMO, the amplitude information of the transmit
signal tends to be totally lost as the SNR approaches infinity;
see also [13]. That is, in this situation a moderate amount of
noise is actually beneficial for signal recovery at the receiver.
Further we notice that, over the entire SNR regime, a largerT
will always achieve a higher GMI. Because for one-bit massive
SIMO, frequency diversity is a key factor that enables signal
recovery at the receiver.
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Fig. 9. BER performance in the multi-user scenario: perfectCSI, N = 64,
U = 10, Q = 32, andT v = 5 for any v ∈ U.

Figure 6 examines the impact of imperfect CSI on the
system performance, assumingMSEh = −10dB andTc =53.9

We observe that the performance gap between the mixed-
ADC architecture and the ideal conventional architecture is
slightly enlarged, mainly due to the increase of the channel
training overhead. Nevertheless, the conclusions we made for
the perfect CSI case still hold here.

B. Multi-user Scenario

Several observations are in order from Figure 7. First, we
notice that the GMI lower and upper bounds again virtually co-
incide with each other. Second, due to not applying successive
interference cancellation (SIC) at the receiver, there is avisible
but marginal performance loss atK = N when compared with
the per-user capacity10 of the ideal conventional architecture.
Finally, the mixed-ADC architecture with a small proportion
of high-resolution ADCs still achieves a large portion of
the per-user capacity of the ideal conventional architecture,
while overwhelms antenna selection with the same number
of high-resolution ADCs. Such observations also hold for the
imperfect CSI case, as verified by Figure 8.

We further examine the BER performance of the mixed-
ADC architecture in the multi-user scenario. To this end,
we assume that each user adopts an independent(2, 1, 3)
convolutional coder, where the code rate is1/2, the constraint
length is 3, and the generator polynomials are(1, 1, 0) and
(1, 1, 1). 16-QAM modulation with Gray mapping is adopted
to map the coded bits into system inputx̃.11 In this manner,
two information bits are first encoded into four codeword

9We adopt Jake’s model and assumefc = 2GHz, with the OFDM symbol
interval being 71.4µs and the users’ speed being60km/h. As a comparison,
the authors of [17] assume a coherence interval as long as 1142 symbols.

10The per-user capacity is obtained through dividing the sum-capacity by
the number of users.

11Noting that the optimal linear frequency-domain equalizerin Proposition
4 is with respect to Gaussian distributed channel inputs, itis mismatched
with 16-QAM modulation and is therefore suboptimal in this situation.
Nevertheless, benefiting from the central-limit theorem, the actual channel
inputs,F†

x̃, may be approximately viewed as Gaussian asQ grows large.
As a result, the performance loss due to this mismatch is expected to be
marginal.
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Fig. 10. Per-user GMI under different ADC configurations: perfect CSI,
N = 64, U = 10, Q = 32, andT v = 5 for any v ∈ U.

bits and then mapped into a 16-QAM symbol. As a result,
Eb/N0 under this setup equalsSNR−3dB. Hard-decision
Viterbi decoding is performed at the BS, also in a per-user
manner.

Numerical result is presented in Figure 9, whereKi is
the number ofi-bit ADC pairs. The quantization bins and
output levels ofi-bit ADC are given by [34, Tab.-I]. We
notice that one-bit massive MIMO suffers from error floor,
as already revealed in [24]-[25]. The mixed-ADC architecture,
on the other hand, remarkably improves the BER performance.
Performance loss due to replacing high-resolution ADCs by 5-
bit ADCs is also examined, still using the equalizer derivedin
Proposition 4. Such a mismatched equalizer entails relatively
low computational complexity, and incurs marginal BER loss
as verified by Figure 9.12 These observations again validate
the merits of the mixed-ADC architecture.

C. GMI under Different ADC Configurations

We note that, beyond the mixed-ADC architecture special-
ized in this paper, the GMI analytical framework established
is also applicable to any other ADC configuration. For any
other kind of ADC configuration, calculation of the GMI still
follows from the general idea of Proposition 4, and onlygu

n

and Ru
nm will change along with the ADC configuration.

Moreover,gu
n always has a closed-form expression.Ru

nm has
a closed-form expression if the BS adopts one-bit or high-
resolution ADCs, otherwise we have to rely on numerical
integrations to accurately evaluateRu

nm.
Figure 10 displays the per-user GMI under different ADC

configurations, assuming perfect CSI at the BS. Unlike Figure
9, here each equalizer is matched with the corresponding ADC
configuration. It is clear that one-bit massive MIMO generally
has to tolerate large rate losses for target spectral efficiency
(TSE) above 2 bits/s/Hz. Four-bit massive MIMO, on the
other hand, only incurs marginal rate losses for TSE below
7 bits/s/Hz.

12Similarly, the authors of [22] observed that the standard OFDM process-
ing (i.e., ignoring the quantizer) actually achieves good BER performance for
4-bit quantization and beyond.



11

Comparison between the homogeneous-ADC architecture
and the mixed-ADC architecture is also conducted, taking
K3 = 64 andK2 = 32, K4 = 32 as an example. Note that
hardware costs of these two configurations are close. Figure
10 reveals that these two configurations achieve nearly the
same performance for TSE below 6 bits/s/Hz and the mixed-
ADC architecture performs better for TSE above 6 bits/s/Hz.
A comprehensive comparison between the homogeneous-ADC
architecture and the mixed-ADC architecture is left for future
work due to space limitation.

VII. C ONCLUSION

In this paper, we developed an analytical framework for the
mixed-ADC architecture operating over frequency-selective
channels. Notably, the analytical framework is also applicable
to any other kind of ADC configuration. Extensive numeri-
cal studies demonstrate that the mixed-ADC architecture is
able to achieve performance close to the ideal conventional
architecture, and thus we envision it as a promising option for
effective design of massive MIMO receivers.

Beyond the scope of this paper, several important problems
need further investigation. First, for a given TSE, optimization
of the bit-width and ratio of each kind of ADC adopted will
further reduce the hardware cost and energy consumption of
the mixed-ADC architecture. Second, more efficient channel
estimation algorithm and more effective ADC switch scheme
will further improve the performance of the mixed-ADC ar-
chitecture, especially in the multi-user scenario. Third,another
line of work advocates the homogeneous-ADC architecture
for energy-efficient design of massive MIMO, and therefore a
reasonable and comprehensive comparison between the mixed-
ADC architecture and the homogeneous-ADC architecture is
particularly important, especially when taking practicalissues
such as time/frequency synchronization and channel estimation
into account.

APPENDIX

A. Proof of Proposition 2

We first introduce a lemma, with which we are able to derive
a closed-form expression of∆(w, δ). The proof is similar as
those for [27, Lem. 1&2], and thus is omitted due to space
limitation.

Lemma 1. For bivariate circularly-symmetric complex Gaus-
sian vector

(

u1

u2

)

∼ CN

(

0,

(

σ2
1 σ12

σ†
12 σ2

2

))

, (40)

we have

E[sgn†(u1)u2] =

√

2

π

σ†
12

σ1
, (41)

and

E[sgn(u1)sgn
†(u2)] =

2

π
[arcsin(θR) + j arcsin(θI)], (42)

where θR and θI are the real and imaginary parts of the
correlation coefficientθ = σ12

σ1σ2

respectively, andσ12 is

defined asσ12 , E[u1u
†
2].

Hereafter we denote byN1 the set of indexes that make
δn = 1 while by N0 the set of indexes that makeδn = 0. For
the numeratorE[ˆ̃x†x̃], with some manipulation we have

E[ˆ̃x†x̃]

=
∑

n∈N

E[r†nF
†W†

nx̃]

=
∑

n∈N1

E[y†
nF

†W†
nx̃]+

∑

n∈N0

E[sgn†(yn)F
†W†

nFx],(43)

where the first term is contributed by the antennas connected
with high-resolution ADCs, and the second term comes from
the antennas connected with one-bit ADCs. In the following,
we need to evaluate them separately.

First let us look atE[y†
nF

†W†
nx̃]. With some manipulations

we have

E[y†
nF

†W†
nx̃] = E[x†C†

nF
†W†

nx̃] + E[z†nF
†W†

nx̃]
(a)
= E[x̃†Λ†

nW
†
nx̃]

= tr
(

Λ†
nW

†
nE[x̃x̃

†]
)

= Estr
(

Λ†
nW

†
n

)

= Esw
†
nλ

∗
n, (44)

where (a) follows from the independence ofx̃ and zn, the
relationshipx = F†x̃, and the decompositionCn = F†ΛnF.

Next, we turn toE[sgn†(yn)F
†W†

nFx]. To start with, we
defineyn , [yn1, ..., ynQ]

t. Then it is obvious that

E[sgn†(yn)F
†W†

nFx] =

Q
∑

q=1

E[sgn†(ynq)(F
†W†

nFx)q].

(45)
By noticing thatynq ∼ CN(0, 1+Es(CnC

†
n)qq), and moreover

that (CnC
†
n)qq = (F†ΛnΛ

†
nF)qq = ‖λn‖2/Q, we obtain the

distribution ofynq as

ynq ∼ CN
(

0, 1 + Es‖λn‖2/Q
)

. (46)

Further,ynq and(F†W†
nFx)q are jointly circularly symmetric

complex Guassian, with their covariance being

E[y†nq(F
†W†

nFx)q ] = (E[F†W†
nFxy

†
n])qq

= Es(F
†W†

nΛ
†
nF)qq

= Esw
†
nλ

∗
n/Q. (47)

As a result, exploiting (41) we arrive at

E[sgn†(yn)F
†W†

nFx] =

√

2

π

Esw
†
nλ

∗
n

√

1 + Es‖λn‖2/Q
. (48)

Now, we are allowed to combine (43)-(44) and (48) to
obtainE[ˆ̃x†x̃], given as

E[ˆ̃x†x̃] =
∑

n∈N1

Esw
†
nλ

∗
n +

∑

n∈N0

√

2

π

Esw
†
nλ

∗
n

√

1 + Es‖λn‖2/Q
.

(49)
For the convenience of further investigation, we definew ,

[wt
1, ...,w

t
N ]t and rewrite (49) as

E[ˆ̃x†x̃] = w†g, (50)

whereg , [gt
1, ...,g

t
N ]t ∈ CNQ×1 is given by

gn = δn · Esλ
∗
n + δ̄n ·

√

2

π

Esλ
∗
n

√

1 + Es‖λn‖2/Q
. (51)
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In order to evaluateE[ˆ̃x† ˆ̃x], we define the correlation matrix
betweenrn andrm asRnm , E[rnr

†
m]. Then we have

E[ˆ̃x† ˆ̃x] =

N
∑

m=1

N
∑

n=1

E[r†mF†W†
mWnFrn]

=

N
∑

m=1

N
∑

n=1

tr
(

W†
mWnFE[rnr

†
m]F†)

=

N
∑

m=1

N
∑

n=1

tr
(

W†
mWnFRnmF†) . (52)

Noticing thatWn, n ∈ N are all diagonal matrices, to get rid
of the trace operation, we may define a diagonal matrixDnm

as
(Dnm)qq = (FRnmF†)qq , (53)

and based on which rewriteE[ˆ̃x† ˆ̃x] as

E[ˆ̃x† ˆ̃x] =
N
∑

m=1

N
∑

n=1

w†
mDnmwn. (54)

This further motivates us to rewrite it in a compact manner

E[ˆ̃x† ˆ̃x]

= [w†
1,w

†
2, ...,w

†
N ]











D11 D21 · · · DN1

D12 D22 · · · DN2

...
...

. . .
...

D1N D2N · · · DNN





















w1

w2

...
wN











, w†Dw. (55)

We note that the block matrixD ∈ CNQ×NQ is a Hermitian
matrix and moreover each of its blocks is aQ-dimensional
diagonal matrix.

Now, we are allowed to formulate∆(w, δ) as a generalized
Rayleigh quotient ofw; that is,

∆(w, δ) =
w†gg†w

QEsw†Dw
. (56)

Then, exploiting a similar argument as that adopted in [27,
Prop. 3], we may easily obtain the optimal linear frequency-
domain equalizerwopt and the corresponding∆(wopt, δ), as
summarized by Proposition 2.

The evaluation of the matrixD remains unaccomplished.
To this end, we first defineYnm , E[yny

†
m], and it is easy

to verify that

Ynm =

{

IQ + EsCnC
†
n, n = m ∈ N,

EsCnC
†
m, n 6= m ∈ N.

(57)

Then, we introduce a series of matricesΘnm, n,m ∈ N0, of
which Θnm corresponds to the correlation coefficient matrix
betweenyn andym, with its (p, q)-th element given by

(Θnm)pq =
(Ynm)pq

√

(Ynn)pp
√

(Ymm)qq
. (58)

Due to the mixed nature ofr, the computation ofRnm for
different (n,m) may follow different routes, and therefore in
the following, we need to evaluate them case by case.

Case 1:n,m ∈ N1. In this case,rn = yn, rm = ym, and
thus we have

Rnm = Ynm. (59)

Case 2:n,m ∈ N0. In this case,rn = sgn(yn) and rm =
sgn(ym). Exploiting (42) we get

(Rnm)pq = E[sgn(ynp)sgn
†(ymq)]

=
2

π
[arcsin((Θnm)pq,R) + j arcsin((Θnm)pq,I)].

(60)

Case 3:n ∈ N1 andm ∈ N0. In this case,rn = yn and
rm = sgn(ym). Applying (41) we obtain

(Rnm)pq = E[sgn†(ymq)ynp] = (Ynm)pq

√

2

π(Ymm)qq
.

(61)
Case 4:n ∈ N0 andm ∈ N1. This case is similar to the

former one, and with some manipulations we find that

(Rnm)pq = E[sgn(ynp)y
†
mq] = (Ynm)pq

√

2

π(Ynn)pp
. (62)

In summary, we enumerateRnm for different kinds of
(n,m) in the above. Combining them with (53), we are able to
obtain the matrixD and further evaluate∆(wopt, δ) according
to (10). Now we conclude the proof.

B. Proof of Corollary 1

Whenδ = 1Q, we haveg = Esλ
∗, whereλ is defined as

λ , [λt
1, ...,λ

t
N ]t. Meanwhile,Rnm = Ynm, for anyn,m ∈

N. As a result,

FRnmF† =

{

IQ + EsΛnΛ
†
n, n = m,

EsΛnΛ
†
m, n 6= m,

(63)

are all diagonal matrices, thus makingDnm exactly equal to
FRnmF†, for any n,m ∈ N. Letting Λ , [Λ1, ...,ΛN ], we
haveD in this situation given as

D = INQ + EsΛ
†Λ. (64)

Then, exploiting Woodbury formula [35], we get its inversion
as follows

D−1 = INQ − EsΛ
† (IQ + EsΛΛ†)−1

Λ. (65)

We notice that(IQ + EsΛΛ†)−1 is in fact a diagonal matrix;
that is

(

IQ + EsΛΛ†)−1
=













1
1+Es

∑
N
n=1

|λn1|2
0 · · · 0

0 1
1+Es

∑
N
n=1

|λn2|2 · · · 0

...
...

. . .
...

0 0 · · · 1
1+Es

∑
N
n=1

|λnQ|2













.

(66)
Further, it is easy to verify thatΛλ∗ satisfies

Λλ∗ =

[

N
∑

n=1

|λn1|2, ...,
N
∑

n=1

|λnQ|2
]t

. (67)
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Then with all the above results and some further manipula-
tions, we arrive at

∆(wopt, δ) =
1

QEs
g†D−1g =

1

Q

Q
∑

q=1

Es

∑N
n=1 |λnq|2

1 + Es

∑N
n=1 |λnq|2

,

(68)
and now, it is straightforward to verify (16).

C. Proof of Corollary 2

When T = 1, we simply usehn to denote the channel
coefficient corresponding to then-th BS antenna. In this
situation, the circulant matrixCn reduces to a scaled identity
matrix hnIQ and the diagonal matrixΛn turns out to be
Λn = FCnF

† = hnIQ. As a result,gn in (11) becomes

gn = h∗
nEs

[

δn + δ̄n ·
√

2

π(|hn|2Es + 1)

]

1Q. (69)

If we let ν ∈ CN×1 collect the coefficients before1Q, i.e.,

(ν)n = h∗
nEs

[

δn + δ̄n ·
√

2

π(|hn|2Es + 1)

]

, (70)

then we have
g = ν ⊗ 1Q, (71)

where⊗ denotes right Kronecker product.
As for the matrixD, with patient examination we find out

that each of its blocks,Dnm, is also a scaled identity matrix,
for anyn,m ∈ N. Then lettingE ∈ CN×N collect the scaling
factors beforeIQ, we have

D = E⊗ IQ, (72)

in which E is given as (with proof omitted)(E)nm =






















































1 + δn · |hn|2Es, if n = m,

h∗
nhmEs

[

δnδm + δnδ̄m ·
√

2
π(|hm|2Es+1)+

δ̄nδm ·
√

2
π(|hn|2Es+1)

]

+

δ̄nδ̄m · 2π
[

arcsin
(

(h∗

nhm)REs√
|hn|2Es+1

√
|hm|2Es+1

)

+

jarcsin
(

(h∗

nhm)IEs√
|hn|2Es+1

√
|hm|2Es+1

)

]

, if n 6= m.

(73)
Comparingν∗ andE∗ with [27, Equ. (13) (14)], we notice that
they are virtually the same except for some little differences
due to the different scaling parameters ofsgn(x).

We proceed by evaluating∆(wopt, δ) in this situation; that
is

∆(wopt, δ) =
1

QEs
(ν ⊗ 1Q)

†(E⊗ IQ)
−1(ν ⊗ 1Q)

=
1

QEs
(ν† ⊗ 1

†
Q)(E

−1 ⊗ IQ)(ν ⊗ 1Q)

=
1

QEs
(ν†E−1ν)⊗ (1†

QIQ1Q)

=
1

Es
ν†E−1ν. (74)

Then we immediately find out that it is the same as that we
obtained for frequency-flat SIMO channels in [27, Prop. 3],
and thus conclude the proof.

D. Proof of Corollary 3

Letting Es tend to zero, we have

lim
Es→0

gn

Es
=

(

δn + δ̄n · 2
π

)

λ∗
n. (75)

To simplify the invertible block matrixD, we need to
examine each of its blocks. First let us look at an arbitrary
nondiagonal block, i.e.,Dnm with n 6= m ∈ N. From (57),
we observe thatlimEs→0 Ynm = OQ, for any n 6= m, and
on the other hand,limEs→0 Ynn = IQ. As a result,Rnm for
n 6= m always approaches a zero matrix no matter which case
it falls into, and consequentlyF†RnmF tends to be a zero
matrix as well, since the unitary transformationF does not
change the Frobenius norm of a matrix. In summary,

lim
Es→0

Dnm = OQ, ∀ n 6= m ∈ N. (76)

For the diagonal blocks, ifn ∈ N1, we haveRnn = Ynn,
and from (63) it is obvious thatlimEs→0 F

†RnnF = IQ. In
other word, we havelimEs→0 Dnn = IQ, for anyn ∈ N1. If
n ∈ N0, on the other hand, from (57) and (58) we obtain
limEs→0 Θnn = IQ. Then, applying (60) it is straightfor-
ward to verify that limEs→0 Rnn = IQ. Again, we have
limEs→0 Dnn = IQ, for anyn ∈ N0. In summary,

lim
Es→0

D = INQ. (77)

With all the above results, we have

lim
Es→0

∆(wopt, δ)

Es

=
1

Q
lim
Es→0

(

g

Es

)†
D−1

(

g

Es

)

(a)
=

1

Q

(

lim
Es→0

g

Es

)† (

lim
Es→0

D−1

)(

lim
Es→0

g

Es

)

(b)
=

1

Q

(

lim
Es→0

g

Es

)† (

lim
Es→0

D

)−1(

lim
Es→0

g

Es

)

=
1

Q

N
∑

n=1

(

δn + δ̄n · 2
π

)

‖λn‖2, (78)

where (a) is obtained by applying the algebraic limit theorem
since the limits ofg/Es andD−1 exist, and (b) comes from
the fact that the inverse of a nonsingular matrix is a continuous
function of the elements of the matrix, i.e.,limEs→0 D

−1 =
(limEs→0 D)−1 [36]. Noting thatlog(1 + x/(1 − x)) = x +
o(x), asx → 0, we immediately have (18).

E. Proof of Corollary 4

Whenδ = 0 and asEs grows without bound, we have

lim
Es→∞

gn√
Es

=

√

2Q

π

λ∗
n

‖λn‖
. (79)
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For expositional concision, we denote the normalization ofλn

by λ̄n , λn/‖λn‖, and accordingly definēλ , [λ̄t
1, ..., λ̄

t
N ]t.

Theng/
√
Es in this situation approaches

lim
Es→∞

g√
Es

=

√

2Q

π
λ̄∗, (80)

which is independent ofEs.
On the other hand, asEs tends to infinity we have

lim
Es→∞

Θnm = QF† Λn

‖λn‖
Λ†

m

‖λm‖F, (81)

which is independent ofEs as well. Since whenδ = 0 and as
Es → ∞, Dnm is given by the combination of (53), (60) and
(81), we conclude thatlimEs→∞ Dnm exists for anyn,m ∈ N.
If we define D̄ , limEs→∞ D, then D̄ also exists and is
independent ofEs. As a result, we have

lim
Es→∞

∆(wopt, δ)

=
1

Q
lim

Es→∞

(

g√
Es

)†
D−1

(

g√
Es

)

(a)
=

1

Q

(

lim
Es→∞

g√
Es

)† (

lim
Es→∞

D−1

)(

lim
Es→∞

g√
Es

)

(b)
=

1

Q

(

lim
Es→∞

g√
Es

)† (

lim
Es→∞

D

)−1(

lim
Es→∞

g√
Es

)

=
2

π
λ̄tD̄−1λ̄∗, (82)

where (a) is obtained by applying the algebraic limit theorem
since bothlimEs→∞ g/

√
Es andlimEs→∞ D−1 exist, and (b)

comes from the fact that the inverse of a nonsingular matrix
is a continuous function of the elements of the matrix, i.e.,
limEs→∞ D−1 = (limEs→∞ D)−1 [36].

REFERENCES

[1] T. L. Marzetta, “Noncooperative cellular wireless withunlimited numbers
of base station antennas,”IEEE Trans. Wireless Commun., vol. 9, no. 11,
pp. 3590-3600, 2010.

[2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,”IEEE Commun. Mag., vol.
52, no. 2, pp. 186-195, 2014.

[3] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A.C. K.
Soong, and J. C. Zhang, “What will 5G be?”IEEE J. Sel. Areas Commun.,
vol. 32, no. 6, pp. 1065-1082, 2014.

[4] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral effi-
ciency of very large multiuser MIMO systems,”IEEE Trans. Commun.,
vol. 61, no. 4, pp. 1436-1449, 2013.

[5] E. Björnson, J. Hoydis, M. Kountouris, and M. Debbah, “Massive MIMO
systems with non-ideal hardware: Energy efficiency, estimation, and
capacity limits,”IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 7112-7139,
2014.

[6] E. Björnson, M. Matthaiou, and M. Debbah, “Massive MIMOwith non-
ideal arbitrary arrays: Hardware scaling laws and circuit-aware design,”
IEEE Trans. Wireless Commun., vol. 14, no. 8, pp. 4353-4368, 2015.

[7] U. Gustavsson, C. Sanchéz-Perez, T. Eriksson, F. Athley, G. Durisi,
P. Landin, K. Hausmair, C. Fager, and L. Svensson, “On the impact
of hardware impairments on massive MIMO,” inProc. IEEE Global
Commun. Conf. (GLOBECOM) Workshops, 2014.

[8] B. Murmann, “ADC Performance Survey 1997-2015,” [Online]. Avail-
able: http://web.stanford.edu/∼murmann/adcsurvey.html.

[9] J. Singh, O. Dabeer, and U. Madhow, “On the limits of communication
with low-precision analog-to-digital conversion at the receiver,” IEEE
Trans. Commun., vol. 57, no. 12, pp. 3629-3639, 2009.

[10] H. Yin, Z. Wang, L. Ke, and J. Wang, “Monobit digital receivers: Design,
performance, and application to impulse radio,”IEEE Trans. Commun.,
vol. 58, no. 6, pp. 1695-1704, 2010.

[11] A. Mezghani and J. A. Nossek, “Analysis of Rayleigh-fading channels
with 1-bit quantized output,” inProc. IEEE Int. Symp. Inf. Theory (ISIT),
2008.

[12] A. Mezghani and J. A. Nossek, “Capacity lower bound of MIMO
channels with output quantization and correlated noise,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), 2012.

[13] J. Mo and R. Heath, “High SNR capacity of millimeter waveMIMO
systems with one-bit quantization,” inProc. Inf. Theory Appl. Workshop
(ITA), 2014.

[14] J. Mo and R. Heath, “Capacity analysis of one-bit quantized MIMO
systems with transmitter channel state information,”IEEE Trans. Signal
Processing, vol. 63, no. 20, pp. 5498-5512, 2015.

[15] C. Risi, D. Persson, and E. G. Larsson, “Massive MIMO with 1-bit
ADC,” arXiv:1404.7736, 2014.

[16] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, andC. Studer,
“One-bit massive MIMO: Channel estimation and high-order modula-
tions,” in Proc. IEEE Int. Conf. Commun. (ICC) Workshop, 2015.

[17] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, andC. Studer,
“Throughput analysis of massive MIMO uplink with low-resolution
ADCs,” arXiv:1602.01139v2, 2016.

[18] L. Fan, D. Qiao, S. Jin, C. -K. Wen, and M. Matthaiou, “Optimal pilot
length for uplink massive MIMO systems with low-resolutionADC,” in
Proc. IEEE Sensor Array and Multichannel Signal ProcessingWorkshop
(SAM), 2016.

[19] D. Verenzuela, E. Björnson, and M. Matthaiou, “Hardware design and
optimal ADC resolution for uplink massive MIMO systems,” inProc.
IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM),
2016.

[20] C. Mollén, J. Choi, E. G. Larsson, and R. Heath, “Performance of the
wideband massive uplink MIMO with one-bit ADCs,”arXiv:1602.07364,
2016.

[21] J. Choi, J. Mo, and R. Heath. “Near maximum-likelihood detector and
channel estimator for uplink multiuser massive MIMO systems with one-
bit ADCs,” IEEE Trans. Commun., vol. 64, no. 5, pp. 2005-2018, 2016.

[22] C. Studer and G. Durisi, “Quantized massive MU-MIMO-OFDM up-
link,” IEEE Trans. Commun., vol. 64, no. 6, pp. 2387-2399, 2016.

[23] C.-K. Wen, C.-J. Wang, S. Jin, K.-K. Wong, and P. Ting, “Bayes-optimal
joint channel-and-data estimation for massive MIMO with low-precision
ADCs,” IEEE Trans. Signal Processing, vol. 64, no. 10, pp. 2541-2556,
2016.

[24] T. Zhang, C.-K. Wen, S. Jin, and T. Jiang, “Mixed-ADC mas-
sive MIMO detectors: Performance analysis and design optimization,”
arXiv:1509.07950, 2015.

[25] S. Wang, Y. Li, and J. Wang, “Multiuser detection for uplink large-scale
MIMO under one-bit quantization,” inProc. IEEE Int. Conf. Commun.
(ICC), 2014.

[26] S. Wang, Y. Li, and J. Wang, “Multiuser detection in massive spatial
modulation MIMO with low-resolution ADCs,”IEEE Trans. Wireless
Commun., vol. 14, no. 4, pp. 2156-2168, 2015.

[27] N. Liang and W. Zhang, “Mixed-ADC massive MIMO,”IEEE J. Sel.
Areas Commun., vol. 34, no. 4, pp. 983-997, 2016.

[28] N. Liang and W. Zhang, “A mixed-ADC receiver architecture for
massive MIMO systems,” inProc. IEEE Inf. Theory Workshop, 2015.
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