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Abstract—The aim of this paper is to investigate the recently
developed mixed-ADC architecture for frequency-selectie chan-
nels. Multi-carrier techniques such as orthogonal frequeny divi-
sion multiplexing (OFDM) are employed to handle inter-symtol
interference (ISI). A frequency-domain equalizer is desiged
for mitigating the inter-carrier interference (ICl) intro duced by
the nonlinearity of one-bit quantization. For static single-input-
multiple-output (SIMO) channels, a closed-form expressio of the
generalized mutual information (GMI) is derived, and basedon
which the linear frequency-domain equalizer is optimized.The
analysis is then extended to ergodic time-varying SIMO chamels
with estimated channel state information (CSI), where numg-
cally tight lower and upper bounds of the GMI are derived. The
analytical framework is naturally applicable to the multi- user
scenario, for both static and time-varying channels. Extesive
numerical studies reveal that the mixed-ADC architecture vith
a small proportion of high-resolution ADCs does achieve a
dominant portion of the achievable rate of ideal conventioal
architecture, and that it remarkably improves the performance
as compared with one-bit massive MIMO.

Index Terms—Analog-to-digital converter (ADC), frequency-
selective fading, generalized mutual information, interearrier
interference, linear frequency-domain equalization, masive
multiple-input-multiple-output (MIMO), mixed-ADC archi tec-
ture, orthogonal frequency division multiplexing (OFDM).

|. INTRODUCTION

is to use economical low-power components when building
the RF chains. These components, however, generally have
to tolerate severe impairments, such as quantization hoise
nonlinearity of power amplifier, phase noise of oscillator,
and 1/Q imbalance. By modeling the aggregate effect of the
impairments (including quantization noise) as an addiion
Gaussian noise independent of the desired signal, the rgutho
of [5] investigated the impact of hardware impairments on
the system spectral efficiency and radiated energy effigienc
and concluded that massive MIMO exhibits some degree of
resilience against hardware impairments. Further, enipdoy

a similar model the authors of [6] derived a scaling law that
reveals the tradeoff among hardware cost, circuitry power ¢
sumption, and the level of impairments. Although the addpte
stochastic impairment models are not rigorous theoréyical
(for example, the quantization noise inherently depends on
the desired signal), the analytical results in [5]-[6] elys
match those obtained by a more accurate hardware-specific
deterministic model, as demonstrated by [7].

Among all the components in a RF chain, high-resolution
ADC (typically with a bit-width exceeding 10) is particulgar
power-hungry, especially for wideband systems, since the
power consumption of an ADC scales roughly exponentially
with the bit-width and linearly with the baseband bandwidth

By deploying tens to hundreds of antennas at the bd&. Lowering the bit-width of the adopted ADC will therefer
station (BS) and simultaneously serving multiple usershi tbring in considerable savings on cost and energy. This fact
same time-frequency resource block, massive multipletinp actually has motivated extensive research on low-costggne
multiple-output (MIMO) achieves unprecedented gain inhbotfficient design of wireless communication systems through
spectral efficiency and radiated energy efficiency, accomnm@mnploying low-resolution or even one-bit ADCs to build the

dating the stringent requirements of future 5G system$4JL]-

RF chain; see, e.g., [9] for additive white Gaussian noise

The performance gains, however, come at the expense ofAVGN) channels, [10] for ultra-wideband channels, and{11
linear increase in hardware cost as well as circuitry powgk4] for MIMO channels.
consumption, and therefore massive MIMO will be more Regarding massive MIMO, the impact of coarse quantiza-

attractive if low-cost, energy-efficient solutions are italale.

A. Related Work

tion has been investigated only recently. In [15], the argho
evaluated the achievable rates of an uplink one-bit massive
MIMO system adopting QPSK constellation, least-squares
(LS) channel estimation, and maximum ratio combiner (MRC)

Basically, if each BS antenna is configured with aB, ;a6 forcing combiner (ZFC). The authors of [16]-[17]
unabridged radio frequency (RF) chain, then the only Way e revealed that enhancement of achievable rates can
to alleviate hardware cost and circuitry power consumptiqq, 4tained by high-order modulation such as 16-QAM. The
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underlying reason is that, even for one-bit massive MIM@, th
amplitude of the transmit signal can still be recovered pled

that the number of BS antennas is sufficiently large and that
the signal-to-noise ratio (SNR) is not too high. Optimiaat

of pilot length and ADC bit-width were performed in [18] and
[19] respectively, both adopting MRC at the receiver. Régen
the authors of [20] analyzed the achievable rates of one-bit
massive MIMO in frequency-selective channels, employing
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linear minimum mean squared error (MMSE) channel estisers’ demand for mobile data traffic. To be specific, when the
mator and linear combiners such as MRC and ZFC. users’ sum rate requirementis low, part of the BS antennas ca
Beyond that, various channel estimation and data detectio® deactivated. Then high-resolution ADCs may be adopted
algorithms have been proposed for massive MIMO undar the channel training phase while one-bit ADCs may be
coarse quantization. For example, near maximum likeliho@inployed in the data transmission phase. Compared with the
(nML) detector and channel estimator were proposed in [2ibmogeneous-ADC architecture, the mixed-ADC architectur
for one-bit massive MIMO in frequency-flat fading channelsn this situation incurs much lower channel estimation ever
In [22], channel estimation and data detection algorithresew head and will therefore achieve higher energy efficiency.
developed for quantized massive MIMO in frequency-selecti
fading channels. Particularly, tradeoffs between errde rac  contributions

performance and computational complexity were investigat In thi | he inf ion-th ical
therein based on mismatched quantization models. Tecésiqu n this paper, we leverage ¢ em ormation-t eoret_|ca too
generalized mutual information (GMI) to quantify the

based on message passing algorithm (and its variants) w%fr - . . .
also applied to quantized massive MIMO systems, such ggﬁlevable rates of the mixed-ADC architecture in freqyenc

[23]-[24] for frequency-flat fading channels and [25]_[26]selective_ channefsThe main contributions of this paper are
for frequency-selective fading channels. In general, {25] summarized _as fO”OW_S' ) o
conclude that massive MIMO is somewhat robust to coarses We modify the mixed-ADC architecture to make it suit-

quantization, validating the potential of building massiv ~ able for frequency-selective channels, adopting OFDM
MIMO by low-resolution ADCst to handle inter-symbol interference (ISI) and a linear

frequency-domain equalizer to mitigate inter-carrier in-
. . terference (IClI).
B. Mixed-ADC Architecture « For static SIMO channels, we derive an explicit expres-
Except [24], all the aforementioned works have assumed sion of the GMI, and based on which further optimize
a homogeneous-ADC architecture; that is, all the antennas the linear frequency-domain equalizer. The analytical
at the BS are equipped with low-resolution ADCs of the results are then extended to ergodic time-varying SIMO
same bit-width. Although such an architecture seems flsasib  channels, where tight lower and upper bounds of the
in terms of achievable rate or bit error rate (BER), it has GMI are derived. The impact of frequency diversity and

several practical issues, including data rate loss in tigé hi
SNR regime [13]-[14], error floor for linear multi-user dete

tion with 1-3 bit quantized outputs [24]-[25], overhead and .

challenge of channel estimation [15]-[20], [29] and of time
frequency synchronization [22] from quantized output®rfr

imperfect CSI on the system performance is investigated
as well.

We then extend the analytical framework to the multi-
user scenario. BER performance is also examined for a
practical convolutional codec.

this perspective, high-resolution ADCs can still be uséful  + We develop a reduced-complexity algorithm, by which
effective design of massive MIMO receivers. the computational complexity of the linear frequency-
Motivated by such consideration, in early works [27]-[28]  domain equalizer is reduced fronO(N3Q3) to
we have proposed a mixed-ADC architecture for massive O(max{N3Q, N?Q?log, Q}), where N is the number
MIMO, where a small proportion of the high-resolution ADCs  of BS antennas an€ is the number of subcarriers.
are reserved while the others are replaced by one-bit ADCs. Extensive numerical studies under various setups revagl th
For frequency-flat channels, [27] shows that the mixed-ADgjith only a small proportion of high-resolution ADCs, the
architecture is able to achieve an attractive tradeoff betw mixed-ADC architecture attains a large portion of the achie
spectral efficiency and energy efficiency. Moreover, cor@arape rate of ideal conventional architecture, and signitiga
with the homogeneous-ADC architecture, the mixed-ADC agytperforms antenna selection with the same number of high-
chitecture is inherently immune to most of the aforemeri®n resojution ADCs. In addition, the mixed-ADC architecture
concerns. For example, channel estimation and time-freqjue i the multi-user scenario remarkably lowers the error floor
synchronization in the mixed-ADC architecture are morgncountered by one-bit massive MIMO. These observations

tractable than those in the homogeneous-ADC architectygidate the merits of the mixed-ADC architecture for effez
[30], benefiting from the reserved high-resolution ADCs. design of massive MIMO receivers.

It is perhaps also worth noting that the mixed-ADC architec-
ture is much more flexible to the time-varying property of th% .
. Notation

From an engineering perspective, coarse quantizationalgctaubverts Throughout this paper, vectors and matrices are given in
almost every aspect of the system design, including tiregefency synchro-

nization, digital filtering, data detection, among othénsthis paper, however, bold typeface, e.gx and X, respecuvely, while scalars are

we primarily focus on the fundamental performance evatmatif such system, diven in regular typeface, e.gz. We let X*, X* and Xt
and leave the other practically important aspects for &utaesearch.

2Generally speaking, mixed-ADC architecture stands for aegeiver 3Due to the nonlinearity of coarse quantization, the frequeselective
architecture that contains ADCs of possibly different witiths, thus even channel cannot be decomposed into multiple independemjudrey-flat
including homogeneous-ADC architecture as a special tadess otherwise subchannels by simply applying orthogonal frequency aivisnultiplexing
specified, however, the mixed-ADC architecture in this papefers in (OFDM). Therefore in this situation, channel estimatiord atata detection
particular to the one that is built upon one-bit and higlehaetion ADCs, algorithms designed for frequency-flat channels are nodoagplicable, and
simply for analytical convenience. new methods have to be developed to handle the aforemedtiesees.



denote the conjugate, transpose and conjugate transpd&ge of To fulfill signal processing in the digital domaig,, needs
respectively. The;-th element of vectox is symbolized as to be quantized by a pair of ADCs, one for each of the real
(x)q, and in the meantime, th@, ¢)-th element of matrixXX and imaginary parts. For the mixed-ADC architecture, there
is symbolized agX),,. Notationdiag(-) denotes a diagonal are only K pairs of high-resolution ADCs available at the BS
matrix, with the diagonal elements numerated in the brackand all the othe(N — K') pairs of ADCs are with only one-bit
For a positive integerV, we useN to represent the set of resolution. Thus the quantized output can be expressed as
positive integers no larger thaw, i.e., N = {1,...,N}. -
For a positive real number, we use[z] to denote the Tn = OnYn + Onsgn(yn). (3)
minimum integer that satisfiegz] > x. NotationCN(u,C) Here, §,, € {0,1}, 6, & 1 — 4, and Zﬁ’:l 5, = K.
stands for the distribution of a circularly symmetric compl Particularly, 5, = 1 means thaty,, is quantized by a pair
Gaussian random vector with mean vectorand covariance of high-resolution ADCs, wherea$, = 0 indicates thaty,,
matrix C. SubscriptsR and I are used to indicate the realis quantized by a pair of one-bit ADCs. We further define
and imaginary parts of a complex number, respectively, e.gn ADC switch vectord £ [6y,...,6x]¢, which should be

r = xR + jz1, with j being the imaginary unit. We further optimized according to the channel stétg, } V_, to maximize
usesgn(z) = —s[sen(zr) + jsgn(ar)] to denote the sign the user's data rate.

function of a complex number, andlog(z) to denote the  Then we employ a DFT tp,,. Due to the strong nonlinearity

natural logarithm of a positive real number of one-bit quantization, severe ICl is introduced during th
time-frequency conversion. To handle this, we propose a
E. Outline linear frequency-domain equalizer as illustrated in Fégdr

The remaining part of this paper is organized as followéccordmgly, the processed output is

Section Il describes the system model in the single-user R N
scenario. For static SIMO channels, Section Il first desisa X = W,Fr,, (4)
explicit expression of the GMI and then optimizes the linear n=1

frequency-domain equalizer. Besides, properties of thel GMherew,, £ diag(w,,) is a@Q-dimensional diagonal matrix.
in several special cases are explored and the analytiagdtsesFor expositional concision, we may define2 [wi, ..., wh]t,

are further extended to ergodic time-varying SIMO channelgnd it should be optimized according i, }N_, andé to
Section IV applies the analytical framework to the multimaximize the user’s achievable rate.

user scenario. A reduced-complexity algorithm is propased  For analytical convenience, we let the decoder adopt a
Section V for efficiently implementing the linear frequencygeneralized nearest-neighbor decoding rule; that is, uien

domain equalizer. Numerical results are presented in (Sectiserving{g}[l]}le, it computes, for each possible input message
VI to corroborate the analysis. Finally, Section VII cori#s 4, the distance metric

this paper. Auxiliary technical derivations are collectedhe

L
appendix. D(m) = %; IX[l) - axm, 1)]2, meM,  (5)
_ Il. SYsTEM MOI_DEL and determinesn as the one that minimize®(m). Here

A single-antenna user communicates to /drantenna BS (¢ genotes the set of all the possible messag&én, 1]}~
through a fre_quency-selective SIMO channel, _of which e‘?‘%notes the codeword for messagén the frequency domiain,
branch consists of” taps. We start by focusing on staticand, is the codeword length measured in OFDM symbol. We
channels and assuming perfect CSI at the BS. Particulaglystrict the codebook to be drawn from a Gaussian ensemble;
OFDM is adopted to handle ISI. We den_ote _the freque_n%at is, each codeword is a sequenceLofi.d. CN(0, &.1)
domain OFDM symbol byx € CQXl and its time-domain angom vectors, and all the codewords are mutually indepen-
counterpart by = F'x, whereq is the number of subcarriersgent. Such a choice of the codebook ensemble satisfies an
and the discrete Fourier transform (DFT) matfxsatisfies average power constraint &f, and therefore we define SNR

FF' =F'F =1Io. _asSNR £ &,/a?, hereafter letting-? = 1 for concision.
For the branch related to theth BS antenna, we denote it

by h,, £ [hp1, ..., hnt, 0, ..., 0] € C2*1, and accordingly, its i
circulant matrix form byC,,. Note thatC,, can be decomposed
asC,, = FTA,F, with the diagonal matrixA,, = diag(\,,)
given by

. PERFORMANCE INSINGLE-USER SCENARIO

For the mixed-ADC architecture, since there is no closed-
form expression of the channel capacity, in this paper, we
A, = \/@th_ @ leverage GMI to evaluate its ach|eyable rates. The GMI is a

lower bound of the channel capacity, and more precisely, it

The channel outputs at theth BS antenna ovef) channel characterizes the maximum achievable rate of specific. i.i.d

uses (with cyclic prefix removed) can be collectively writte
as 4In this paper, we restriciW,, to be diagonal, and for analytical conve-
nience, the weight for each BS antenna is absorbedWitg.
Yn = Cnx + 2y, (2) SFor tractability consideration, here the scaling paramigteeach subcar-
. . rier is designated an identical value Although such a choice is generall
wherez,, ~ GN(O, UQIQ) collects the mdependent and Iden?suboptimal,g we note that the resulting perfgormance Iossuixpase% to bey
tically distributed (i.i.d.) complex Gaussian noise. marginal, benefiting from the channel hardening effect ossie MIMO.
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Fig. 1. lllustration of the mixed-ADC architecture for frgency-selective SIMO channels. We note that the ADC switcldute can also be placed before
the RF chains. In that manner, the RF chain followed by a pgaame-bit ADCs can be manufactured with lower quality regmients and consequently we
can further reduce the power consumption and hardware 28ktQn the other hand, switching at radio frequency may besnsballenging and costly than
at baseband. Which choice is favorable will be determinegbiiagtical engineering.

random codebook ensemble (Gaussian ensemble here) Braposition 2. For given {h,}_, and §, the optimal linear
specific decoding rule (generalized nearest-neighbordiego frequency-domain equalizev, is

here) such that the average decoding error probability (av- W —D-! ©)
eraged over the codebook ensemble) is guaranteed to vanish opt &
asymptotically as the codeword lengthgrows without bound Accordingly, the maximized\(w, d) and the optimal choice
[31]. As a performance metric, it has proven convenient amd aop (W, d) are given by

useful in several important scenarios, such as fading aiann 1

with imperfect CSI at the receiver [31] and channels with ~ 2(Wopt, ) = dopt(Wopt, 8) = QS‘gTDflg- (10)

transceiver distortion [27]-[28], [32]-[33]. °

In both equationsg = [gt, ..., gkt € CV*1  of which the
n-th segmeng,, is given by

A. GMI and Optimal Linear Frequency-Domain Equalizer 5 e\

We exploit the theoretical framework in [27] and [32] to 87 = On - EsAp + 0n - N 2/Q (11)
derive the GMI of the mixed-ADC architecture. Following _ NOXNG | s
essentially the same steps as [32, App. C], we obtain Hhthe meantimeD € C is a block matrix

explicit expression of the GMI as follows. Dy Dy -+ Dm
Proposition 1. Assuming Gaussian codebook ensemble and D 2 Diz Dy -+ Do (12)
generalized nearest-neighbor decoding, the GMI for giwen : : : ’
and$d is Diy Doy -+ Dnn
B A(w, 9) in which each bloclD,,,,, is a Q-dimensional diagonal matrix
Igmi(w,0) = log <1 + m) ) ) gefined as

(Dnm)qq = (FanFT)qQ' (13)

where the performance indicatdx(w, ) follows from . ) _ ) )
Here R,,,, = E[r,r! ] is analytically evaluated in Appendix-

:T~ 2 A . i N
Alw, 8) = |E[x >f]| - @ ,f\ and the expectation operatidt{-] is taken with respect to
Q& E[xTx] x andz,,n € N.
The corresponding optimal scaling parameter is given by _Proof: For the readers’ better understanding_, here we
outline a sketch of the proof. For a complete version of this
Gopt (W, &) = LIE[SJ:?]. 8) proof, please refer to Appendix-A.
S QEs First, to maximizeA(w, §) we need to derive the closed-

form expressions off[x{x] and E[x'x]. Through tedious
manipulations, we obtain

T2 = wi T2 = wi
We notice thatA(w, §) is lower bounded by zero, and that E[x'x] = w'g, andE[x'x] = w'Dw. (14)
from Cauchy-Schwartz’s inequality, it is upper bounded byhen,A(w,d) in (7) yields a closed-form expression as
one. Moreover/cyi(w, d) is a strictly increasing function of wheet
. . gg' W
A(w, ) for A(w,d) € [0,1), and thus in the following, we A(w,8) = OtwiDw' (15)
only need to maximize\(w, d) by optimizing the design of s

w and 8. The optimal linear frequency-domain equalizer i¥Ve notice thatitis actually a generalized Rayleigh quatin
given by the proposition below. w, and as a result, we conveniently obtain the optimal linear

frequency-domain equalizer as given by (9). [ |

We note that here the expectation operatiti is taken with
respect tox and z,,,n € N.



B. Two Corollaries from Proposition 2 guantization, part of the achievable data rate is degraged b

In the previous subsection, we derived the optimal line& factorZ. Second, to achieve the maximum data rate, high-
frequency-domain equalizer. Thus we are now ready to exafgsolution ADCs should be switched to the antennas with the
. . . i 2 2 i
ine the performance of the proposed mixed-ADC architectur@aximum||A,[| or HEIFH , equw_alently. S
Particularly in this subsection, we focus on two speciakcas FOr @ generab, D™ in the high SNR regime is still too
studies. For the special case &f= 1, the next corollary complicated to yield any simplification. In light of this, we

gives a comparison between the GMI and the channel capact§rive the limit of A(wepe, 6) in the high SNR regime for

) ~ the special case af = 0. The subsequent corollary gives our
Corollary 1. Whend = 1q, Iami(Wopt, ) yields a simplified ogit.

expression as
Corollary 4. For the special case of = 0, A(Wops,d) in

1 i 1 the high SNR regime is given by the following limit
Qim1+e Mgl

Iami(Wopt, 0) = —log <

(16) Jim A(Wepi,8) = ZAD X, (20)
On the other hand, the channel capacity (achieved by MRC - -
over the N antennas at each subcarrier) is given by whereX £ XL/ A1l ..., Ay /I AN ][]t andD £ lime, 00 D.
18 1 The proof is given in Appendix-E. Since bo%andD do
C= 0 log (1 eV |2> (17) not depend ort,, (20) implies that, if all the BS antennas
q=1 § £un=11"14 are equipped with one-bit ADCs, the GMI will ultimately

The proof is given in Appendix-B. Since log(z) is a approach a positive constant, &sgrows large. On the other
convex function of positive real number Iy (Wopt, 8) < C hand, even if there are only one pair of high-resolution ADCs
holds even whed = 1. We note that this rate loss is dueavailable at the BS, the GMI will always increase unboungedl|
to the identical choice of the scaling parametgs: (wop, 8) with increasingt,.® From this perspective, the contribution of
over all the subcarriers in the decoding metric (5), ar@ntennas connected with one-bit ADCs may be negligible in
that benefiting from the channel hardening effect of massitiee high-SNR regime, and this in turn suggests us, intujtive
MIMO, such performance loss is expected to be marginal, #sswitch the high-resolution ADCs to the antennas with the
will be verified by the numerical study in Section VI. maximum||A,[|* or ||k, || equivalently.

The next corollary draws some connection between the
frequency-flat channel scenario addressed in [27]-[28]thad

. . . L D. Extension to Ergodic Time-Varying Channels
frequency-selective channel scenario investigated sygaper.

] ) ~Although our analysis thus far has been dedicated to the
Corollary 2. WhenT' = 1, the analytical results in Proposi- static channel scenario, the analytical framework devadlop
tion 2 reduce to those for frequency-flat channels obtaimed i3, pe extended to the time-varying channel scenario. We
[27]-[28]. assume that the time-varying channel under consideration

See Appendix-C for its proof. The impact of frequencpbeys the block fading model. Within each channel coherence

diversity on the system performance will be revealed Hjterval, CSIneeds to be explicitly or implicitly acquireglg.,

numerical studies in Section VI. via channel training. Since the channel estimation from-one

bit quantized outputs is inefficient and is elusive for asiy

C. Asymptotic Behavior ofcuii(wep, 8) in Low or High in this paper we only activate the high-resolution ADCs ie th
Py channel training phase.

SNR Regime . L . .
) ] ] ) _Particularly, channel training is performed in a roundinob
In the foIIowmg, we first examine the asymptotic behaviof,anner. That is, in the first OFDM symbol interval, we
of Iamr(Wopt, 0) in the low SNR regime, and then for thegyitch the K pairs of high-resolution ADCs to the firsk
special case of = 0, explore the limit oflayi(Wopt, §) N antennas and estimate, ..., hx: in the subsequent OFDM
the high SNR regime. symbol interval, we switch the high-resolution ADCs to the
Corollary 3. As&, — 0, for a given ADC switch vectaf we next K antennas and estimatex i, ..., hok; and so on.
have As a result, the training procedure consunég K| OFDM
L& ) symbol intervals. To simplify analysis, in this subsectioa
Tont (Wopt, 0) = — Z <5n + 3, - _) IAnll2Es + o(Es). assume that the channel coefficients follow i.i.d. Rayleigh
Q -~ m fading, i.e.,h,; ~ CN(0,1/T), for anyn € N andt € T.
(18) The BS adopts an MMSE estimator, and thus without loss of
On the other hand, the channel capacity fr= 14 ap- generality, we can decompoke into
proaches . 5
C== [AnlEs + 0(Es). (19)
Q n=1 6From (16) it can be readily inferred that the GMI of antennéect®n
ith K > 1 will increase unboundedly with increasirtty. Moreover, it is

The proof is given in Appendix-D. Comparing (18) an(f

) ) asy to verify that the mixed-ADC architecture achievesebgierformance
(19), we can make two observations. First, due to one-Iitn antenna selection with the same number of high-résol&DCs.



where h,, is the estimated channel vector aig, is the wherey_ , Cox"+z, ~ EN(0,021g+Es D vt ce(c)h)
independent error vector. Both, and h, are complex summarizes the co-channel interference and Gaussian noise
Gaussian distributed. Moreover, if we define the normalizeckperienced by user. Noticing thaty“ is actually identical for
MSE asMSE,, = o7, then By ~ EN(0,(1 — 02)/T) and anyu € U, here the superscriptis simply for distinction with
Bt ~ CN(0,02/T), for anyn € N andt € T. the single-user scenario. The SNR is definefdR = €,/02,
Following a similar technical route as [27, Prop. 4 & 5], wand without loss of generality, hereafter we ¢ét= 1. Then,
obtain lower and upper bounds of the GMI, summarized ky' is quantized by either a pair of high-resolution ADCs or a
the proposition below. pair of one-bit ADCs, and the quantized output is

Proposition 3. For block fading channels with imperfect CSl, ré = 8,y% + Snsgn(yl). (26)

a lower bound of the GMI is We assume that there are sfill pairs of high-resolution ADCs

Eg neN[A(ngt’é)] available at the BS.
T_E. AW 5] )’ (22)  The quantized output® is then transformed to the fre-
h, ,neN

Ig’l\vfﬁr = plog <1 +

opt? guency domain and later processed by user-specific fregjuenc
and an upper bound of the GMI is domain equalization, leading to
. N
A(Wlm 5) Su U U
IERPer — P log [14+ —=2 ). (23 x'=) W,Fr,. (27)
GMI = PR, men [Og ( 1o A(wg;;t,a))] 2 2
_ At the decoder, a generalized nearest-neighbour decodiag r
4 Te—[N/K]
Here p = T. accounts for the overhead of channeas adopted to decode theth user’s transmit signal. That is,

trainingi,mwithgcAbeiil;lng ghe (I:oherencefintesr)val Ign%h. Q/Ior upon observing{x“[l] L., the decoder computes, for each
ovet, Wopt and A(wep;, 9) as-o come from( A) and (10), but possible input message" of useru, the following distance
therein we need to replaggwith B, | _y[glh,,n € N|, and  yetric

replaceD with EﬁmneN[Dmn, n € NJ. L

u 1 su UZGU[, U 2 u u
Due to space limitation, the proof is omitted. Whenr= 1 D(m*) = Iz Z 13 [1] = a®x*[m®, 07, m® € M¥, (28)
=1

and o} = 0, the above results apply directly to time-varying o S
channels with perfect CSI at the BS. Numerical results wighd determinesi* as the one that minimize®(m"). Here

be given in Section VI to confirm the tightness of the bound3!" denotes the set of all the possible messages for wser
{x4[m*,1]}L, is the corresponding codeword for message

m*, and L" is the codeword length of user. Note thatL“

IV. M ULTI-USER SCENARIO . . .
in (28) can be different for different users.

A. System Description

A total of U single-antenna users communicate to the B& GMI and Optimal Equalizer

simultaneously. Again we start from the static channelaten  In the multi-user scenario, if we take the co-channel ieterf
with perfect CSI at the BS. The-th user’s frequency-domainence (before quantization) as an additional colored Ganssi
OFDM symbol isCN(0, €:Iq) distributed and is denoted bynoise, then there is no essential difference with the single
x“. Before transmission, an IDFT is applied %¢, and thus user scenario, and the resulting equalizer can effectivatylle
the time-domain transmit symbol of useris x* = F'x“, this noise term by exploiting its statistical charactécistThe
which is alsoCN(0, 1) distributed. We further assume thakubsequent proposition summarizes our main results.

the OFDM symbols from different users are independentgsin
typically the users do not cooperate with each other.

We denote the multipath channel between usend the
n-th BS antenna byh? £ [hY,...,h%;.,0,...,0] € C@*1
and further its circulant matrix form b¢*. Then,C! can be
decomposed a€* = FTA“F, where the eigenvalue matrix
A £ diag(X,) is given by

E’roposition 4. For givend and channel realizationgh? }V_,,
v € U, the GMI of useru is given by

1o = tog (14 2o d) Y (29)
GMI 1—A(w ., 0)

Wopt?
The performance indicatof (wy,,d) and the optimal scal-

ing parameterag, (w,,d) are
A = /QFh". (24) , Y L ot
. . . A(Woptvé) = aopt(woptaé) = Qg (g )T(D ) 1g (30)
Note that we allowl™ to be different for different users since s

they may be located in various environments. Besides, it3§d are achieved by the optimal linear frequency-domain
perhaps worth noting that typicall) > max,—, T, to €qualizer
keep the overhead of cyclic prefix relatively low. Wiy, = (D) 'gh. (31)

We ma!<e the ideal assumptipn that all the users are perfeGHyne aboveg® £ [(g¥)t, ... (g%)!]t € CNV@¥1 of which the
synchronized. '_I'hen, the reqewed QFDM symbol at thth 1, segmeng? is given by
BS antenna, with user considered, is

. (32)

yh=Cux"+ ) Cix’ +z,, (25)  8n = 0n-Es(A}) +5n-\/; =
v#U \/1 + Zv:l 85”)‘7711”2/62



The block matriXD* € CN@*N€ s identical for all the users: D. GMI Lower and Upper Bounds for Ergodic Time-Varying
Channels

Analogously we extend the analytical results to ergodic
: (33) time-varying channels. Round-robin channel training is- pe
: : . : formed across the users and the BS antennas. Similarly we
Djiy Djy -+ DRy assume i.i.d. Rayleigh fading, i.é.;;, ~ CN(0,1/T'), for any
n € N, ¢t € T, andu € U. The BS also adopts an MMSE
and each of its blocks is @-dimensional diagonal matrix as estimator, and we decompoké into

D1f1 Dgl D}L\Zl
Dv 2 D1f2 D12*2 D}%

(D,)gq = (FRE,,FT)gq. (34) h% = h{ +h!, (37)

and Where h* is the estimated channel vector ahd is the
independent error vector. Under the Rayleigh fading assump
tion, it is easy to verify that botth” and h” are complex
Proof: As aforementioned, there is no fundamental difGaussian distributed. Moreover, if we define the normalized
ference between the single-user and the multi-user semarMSE asMSE;, = o7, then b, ~ CN(0, (1 — 02)/T) and
Therefore, we only outline the sketch of the proof. For user h¥, ~ CN(0,07/T), for anyn € N, t € T, andu € U.
the GMI also follows from (6), except that we need to replace The lower and upper bounds of the GMI are given by the

Here RY,, = E[r¥(r%)'] is the correlation matrix of®

r , and is also identical for all the users.

(7) by following proposition, and numerical study will be condedt
Zu\tgu]|2 in Section VI to verify their tightness.
A(w,8) = A XE (35) N - o
QEE[(x*)Txu] Proposition 5. For ergodic time-varying channels with esti-

. o mated CSI, lower and upper bounds of the GMI of usare
The calculation off[(x*)"x] andE[(x*)"x"] follows essen- given by
tially the same line as that in the single-user scenarioexc

. . E-[A u,im76
that we replacéY ., in (57) with = plog <1+ il (Wop;im )] ) 7 (38)
I e U Ccv (Y t N 1_EE[A(Wopt 76)]
Yzm — Q +US Zv:l n( n) , M=meE (36) i A(ngtm, 5)
&Y o Cr(Cu)T, n#m e N. Ichn = PEg |log | 1+ ————||. (39)
1_A(Wo£)t 36)

Then following the same technical route as Appendix-Ap the abovep accounts for the overhead of channel training.

we formulate A(w",d) as a generalized Rayleigh quowjoreover, A(w™™, §) and w':i™ also come from(30) and

tient of w*, and based on which obtain the optimal Iinea(31)’ but we n;gtd 7to replacg?twith Eﬁ[gu|f1]a and replace

frequency-domain equalizev,, as well as the correspondingD with . [D|ﬁ] Here h and b denoteh”. n € N. v € U
- h : 1 [ [

AWy, 6)- andh?, n € N, v € U respectively.

In practice, the fast fading can be approximated to be
C. ADC Switch Scheme piecewise-constant oveY, successive subcarriers since typi-
cally @ > T, to keep the overhead of cyclic prefix relatively
ow. Within each piecewise-constant frequency intervalyo
ne pilot symbol is required for each user. Therefore we can

In the multi-user scenario, there is no generally convigci
ADC switch scheme. Moreover, the high-dimensional prgper
of the problem calls for efficient ADC switch scheme, ang

. . . regduce the channel training overhead by letting differesetrs
time-consuming schemes such as exhaustive search or gree

algorithm are practically infeasible. Therefore, we cdasithe plc}{_symbols occupy non-overlapped subcarrlers. For more
following heuristic schemes. details, please refer to [1, Sec. II-C]. In this manner, the

channel training overhead turns out to P& /K - [U/N;]
« Random ADC switch: high-resolution ADCs are switcheg g accordingly = TCJN/I;W-TU/NSW 7

to K randomly chosen antennas.

o Norm-based ADC switch: switch the high-resolution
ADCs to the antennas with the maximuEvU:1 [ A2
or -V |ny |12, equivalently.

V. DiscussiON ONCOMPUTATIONAL COMPLEXITY

Since the computational complexity of matrix inversion
) ) ) rows cubically with the dimension of the matrix, directly

The norm-based ADC switch scheme is asymptoticallyerting the N x NQ matrix D may impose great compu-
optimal in terms of sum rate in the low SNR regime, anghional burden on the receiver. In the following, we exploi
achieves slightly better performance than the random ADge specific structure db, and propose a reduced-complexity

switch scheme. As the SNR or the number of users increasg@orithm to efficiently computeD—!. With the proposed
the performance gain tends to decrease. Numerical resililts w

be presented in Section VI to examine the performance of théFor a typical system configuration, e.gV, = 64, K = 16, U = 10, and
norm-based ADC switch scheme. Meanwhile, numerical stué‘g = 14, the proposed channel training method consumes four OFDMW sy
for th d ADC itch h . itted d t bol intervals. As a comparison, the channel training in theal conventional
or the random switch scheme Is omitte ue 10 spagfenitecture only needs one OFDM symbol interval and thenchlatraining

limitation. in [22] lasts forU = 10 OFDM symbol intervals.
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Fig. 2. Transform the matriD into a block diagonal matrix by row and column permutatioms:example forlNV = Q = 2.

algorithm, the computational complexity @' can be re-
duced fromO(N3Q?) to O(N3Q), significantly alleviating
the computational burden of the receiver.

Proposition 6. The block matrixD consists of N x N

blocks, of which each block is &-dimensional diagonal 5
matrix. Exploiting this structure, the evaluation Bf~! can K
be simplified by applyin®~! = P(P'DP)~'P!, whereP b}
is a specific permutation matrix that makB$DP a block =
diagonal matrix M [P te = = - Capacity: CA
o1 // GMI upper bound| |
Proof: Observing the structure dD, we notice thatD v L e
can be transformed into a block diagonal matrix by some row- % 1
permutation matrixP, and some column-permutation matrix ol ‘ ‘ ‘ ‘ ‘ ‘ ‘
P.. Moreover, it is straightforward thd®! = P, £ P, due ° ¢ Numlfer of }fizh—reso?ilzltion ﬁ%c paﬁi: P

to the symmetry ofD. Figure 2 gives an example fav =
Q@ = 2, where the zero elements &f are left blank and the Fig. 3. GMI for different numbers of high-resolution ADC pai perfect
nonzero entries belonging to the same subcarrier are marké&d N =64, U =1, Q =32, andT = 5.
by the same color.

Since the permutation matri® solely depends on the
system parametérV, Q), it can be saved offline thus incuring

no additional computational burden on the receiver. More- 75¢
over, the permutation matri can be found by a simple 7
training program. To this end, we create a training matrix 65k

G that shares the same structure[Bs, ..., Dy1]; that is,
G 2 [Gy,..,Gy], and G,, is a Q-dimensional diagonal
matrix for anyn € N. Particularly, the value of each nonzero
element ofG indicates its column index after performing the

o
T

GMI |bits/s/Hz]
o &

column permutatior?. Exploiting these inherent marks we 45(
are able to transfornix into GP by no more thanV(Q times 4
of pair-wise column permutations and obtdh during the o5
training process. [ |
Before invertingD, evaluatingD itself also incurs a com- % 8 16 2 32 40 48 56 o4

Number of full-resolution ADC pairs: K

putational complexity ofO(N2Q?log, Q). Beyond that, the
. S .
C(.)mpUtatlona.ll burden qf andD .g IS negllglble_. Therefore, Fig. 4. GMI lower bound for different numbers of high-res@a ADC pairs:
with Proposition 6, the computational complexitywf; can perfect CSILN = 64, U — 1, and Q — 32. Three different choices of’
be reduced fron®(N3Q?) to O(max{N3Q, N2Q?log, Q}), are made, of whict’ = 1 means frequency-flat fading; = 8 corresponds

significantly aIIeviating the computational burden of the r to frequency-selective fading in a rich-scattering envinent, andl’ = 4
ceiver accounts for a mediate scenario.

VI. NUMERICAL STUDY . . -
_ time-varying channels, and the channel coefficients aremira
Now we corroborate the analytical results through ext@nsiyom i.i.d. Rayleigh fading, i.e.h?, ~ CN(0,1/T), for any
numerical studies. All the figures in this section are foloelig ,, ¢ N, + ¢ T, andv € U. The norm-based ADC switch
N _ _scheme is adopted in both single-user and multi-user siosnar
Noticing that the permutation matri® has exactly one element of 1 in , ~ ,,, d “AS” ideal . | hi o
each row and each column and Os elsewhere, the computatonglexity CA" and "AS .represent ! .ea conventional architecturedan
of P!DP is virtually negligible. antenna selection, respectively.
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Fig. 5. GMI lower bound for various SNRs: perfect COI,= 64, K =0, Fig. 7. Per-user GMI for different numbers of high-resaatiADC pairs:
U=1,Q =32, andT =1, 4, 8. perfect CSI,N = 64, U = 10, Q = 32, andT" = 5 for anyv € U.

GMI [bits/s/Hz]
GMI [bits/s/Hz]

-7 — = = Achievable rate: CA "
GMI upper bound i el e
---------- GMI lower bound 0.5 b

— = = Achievable rate: CA
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---------------- GMI lower bound
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————— Achievable rate: AS

? * Num\f:r of hi 'l?»zresoluti:f ADC 2?1‘9 K * o 8 16 24 32 40 48 56 64
g ° pairs: Number of high-resolution ADC pairs: K

Fig. 6. GMI for different numbers of high-resolution ADC paiiimperfect iy g per.user GMI for different numbers of high-resa@atiADC pairs:
CSI,N =64,U =1, Q =32, T =5, MSEh = —10dB, andT. = 53. imperfect CSI,N =64, U = 10, Q = 32, MSEh — —10dB, T, = 53, and
TV =5 for anyv € U.

A. Single-User Scenario

Assuming perfect CSI at the BS, Figure 3 displays the GMit the left side of the intersection, on the other hand, aeldfg
of the mixed-ADC architecture for different numbers of highwould achieve a higher GMI. Because in this situation, there
resolution ADC pairs. Several observations are in ordestFiare few high-resolution ADCs and, hence, frequency ditersi
we notice that the GMI lower and upper bounds are veBecomes crucial for signal recovery at the receiver.
tight, and thus we will only use the GMI lower bound in By letting K = 0 and varying the SNR, Figure 5 gives a
the subsequent evaluation. In addition, for the specia ods closer look at the impact of frequency diversity. The dashed
K = N, there is a barely visible gap between the GMI and tHmes correspond to the limits of the GMI in the high SNR
capacity, as predicted by Corollary 1. Moreover, the mixedegime, as given by Corollary 4. First we notice that, forfeac
ADC architecture with a small proportion of high-resolutio givenT', the GMI will increase first and then turn down as the
ADCs does achieve a dominant portion of the capacity &R grows large. Such a phenomenon has been observed in
ideal conventional architecture, and significantly oufpens frequency-flat one-bit massive SIMO systems, e.g., [18]-[1
antenna selection with the same number of high-resolutiand [27]. As explained in the aforementioned works, for one-
ADCs. bit massive SIMO, the amplitude information of the transmit

The impact of frequency diversity on the system perfosignal tends to be totally lost as the SNR approaches infinity
mance is addressed by Figure 4, where three different choisee also [13]. That is, in this situation a moderate amount of
of T" are made. For each given SNR, we notice that there is moise is actually beneficial for signal recovery at the nesei
intersection between two of the curves. Particularlyifies Further we notice that, over the entire SNR regime, a lafger
at the right side of the intersection, a largémwould lead to will always achieve a higher GMI. Because for one-bit massiv
a lower GMI. This may be attributed to the limitation of theSIMO, frequency diversity is a key factor that enables digna
linear frequency-domain equalizer in mitigating ICL.Af lies recovery at the receiver.
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Fig. 9. BER performance in the multi-user scenario: per@8t, N = 64, Fig. 10. Per-user GMI under different ADC configurationsrfget CSl,
U =10, Q =32, andT? = 5 for anyv € U. N =64,U =10, Q =32, andT" =5 for anyv € U.

Figure 6 examines the impact of imperfect CSI on thlits and then mapped into a 16-QAM symbol. As a result,
system performance, assumiNiE, = —10dB and7, =53° E»/No under this setup equalSNR—-3dB. Hard-decision
We observe that the performance gap between the mixafiterbi decoding is performed at the BS, also in a per-user
ADC architecture and the ideal conventional architectgre manner.
slightly enlarged, mainly due to the increase of the channelNumerical result is presented in Figure 9, wheig is
training overhead. Nevertheless, the conclusions we made the number ofi-bit ADC pairs. The quantization bins and
the perfect CSI case still hold here. output levels ofi-bit ADC are given by [34, Tab.-1]. We
notice that one-bit massive MIMO suffers from error floor,
as already revealed in [24]-[25]. The mixed-ADC architeetu
] ) ) ) on the other hand, remarkably improves the BER performance.

Several observations are in order from Figure 7. First, Wy formance loss due to replacing high-resolution ADCs-by 5
notice that the GMI lower and upper bounds again virtually ¢t Apcs is also examined, still using the equalizer deriired
incide with each other. Second, due to not applying SUCEBSSp . sition 4. Such a mismatched equalizer entails relgtiv
interference cancellation (SIC) at the receiver, therevisiale |, computational complexity, and incurs marginal BER loss

but marginal performance loss At = IV when compared with 5 yerified by Figure 8 These observations again validate
the per-user capacity of the ideal conventional architecturesha merits of the mixed-ADC architecture.

Finally, the mixed-ADC architecture with a small proportio

of high-resolution ADCs still achieves a large portion of , , ,

the per-user capacity of the ideal conventional architectuc' GMI under Different ADC Cf‘onﬁguranons _ _

while overwhelms antenna selection with the same numbeiVe note that, beyond the mixed-ADC architecture special-

of high-resolution ADCs. Such observations also hold fer thized in this paper, the GMI analytical framework establihe

imperfect CSI case, as verified by Figure 8. is also applicable to any other ADC configuration. For any
We further examine the BER performance of the mixedther kind of ADC configuration, calculation of the GMI still

ADC architecture in the multi-user scenario. To this endollows from the general idea of Proposition 4, and ogly

we assume that each user adopts an independent3) and Rj,, will change along with the ADC cqnflguratlon.

convolutional coder, where the code rate j2, the constraint Moreover,g;; always has a closed-form expressity;,,, has

length is 3, and the generator polynomials afe 1,0) and a closed-form expression if the BS adopts one-bit or high-

(1,1,1). 16-QAM modulation with Gray mapping is adoptedesolution ADCs, otherwise we have to rely on numerical

to map the coded bits into system inpat! In this manner, integrations to accurately evaluai;,, . _

two information bits are first encoded into four codeword Figure 10 displays the per-user GMI under different ADC
SWe adoot Jak dol and he— 2GHz, with the OFDM symbol configurations, assuming perfect CSl at the BS. Unlike Fgur

e adopt Jai e’s model and assu Z, WI e symbo H H : H

interval being 71.4s and the users’ speed beifigkm/h. As a comparison, 9, he,re ea_Ch quallzer is matched Wlth thg correspondmg ADC

the authors of [17] assume a coherence interval as long & sybols.  configuration. It is clear that one-bit massive MIMO genlgral
19The per-user capacity is obtained through dividing the sapecity by has to tolerate large rate losses for target spectral eftigie

the number of users. _ . _ (TSE) above 2 bits/s/Hz. Four-bit massive MIMO, on the
HNoting that the optimal linear frequency-domain equalizeProposition her hand Vi inal | for TSE bel

4 is with respect to Gaussian distributed channel input$s inismatched ot _er and, only incurs marginal rate losses for elow

with 16-QAM modulation and is therefore suboptimal in thisuation. 7 bits/s/Hz.

Nevertheless, benefiting from the central-limit theorehg actual channel

inputs, FT%, may be approximately viewed as GaussianGagrows large. 12Similarly, the authors of [22] observed that the standard®Fprocess-

As a result, the performance loss due to this mismatch isategeto be ing (i.e., ignoring the quantizer) actually achieves godRBperformance for
marginal. 4-bit quantization and beyond.

B. Multi-user Scenario
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Comparison between the homogeneous-ADC architectureHereafter we denote bj¥; the set of indexes that make
and the mixed-ADC architecture is also conducted, taking = 1 while by N, the set of indexes that make = 0. For
K3 = 64 and K>, = 32, K, = 32 as an example. Note thatthe numeratof£[xx], with some manipulation we have

hardware costs of these two configurations are close. Figure IE[?J&]

10 reveals that these two configurations achieve nearly the

same performance for TSE below 6 bits/s/Hz and the mixed- = Y E[rFIW]g]

ADC architecture performs better for TSE above 6 bits/s/Hz. neN

A comprehensive comparison between the homogeneous-ADC = ) "E[yFIWix|+ Y E[sgn'(y,)F W] Fx],(43)

architecture and the mixed-ADC architecture is left foufet neEN; neNy

work due to space limitation. where the first term is contributed by the antennas connected

with high-resolution ADCs, and the second term comes from

VII. CONCLUSION the antennas connected with one-bit ADCs. In the following,

In this paper, we developed an analytical framework for thee need to evaluate them separate_ly. _ _
mixed-ADC architecture operating over frequency-selecti First let us look afi[y], FTW x]. With some manipulations
channels. Notably, the analytical framework is also agplie We have

to any other kind of ADC configuration. Extensive numeri- Ey  F'Wix] = ExICIFWix|+E[z FIWix]
cal studies demonstrate that the mixed-ADC architecture is " " @ Lot " "
able to achieve performance close to the ideal conventional = EX'A[WIX]

architecture, and thus we envision it as a promising opiion f = tr (ALWLE[&XT])

effective design of massive MIMO receivers. - &tr (ALWIL) = &wiaL, (44)

Beyond the scope of this paper, several important problems
need further investigation. First, for a given TSE, optiatian Where (a) follows from the independence ®fand z,,, the
of the bit-width and ratio of each kind of ADC adopted willrelationshipx = Fix, and the decompositio@,, = F'A,F.
further reduce the hardware cost and energy consumption ofNext, we turn toE[sgn(y,,)FTW] Fx]. To start with, we

the mixed-ADC architecture. Second, more efficient chanré@finey, = [yn1,...,yng|". Then it is obvious that

estimation algorithm and more effective ADC switch scheme Q

will further improve the performance of the mixed-ADC ar- ]E[sgnT (yn)FTWILFX] — ZE[SgnT (ynq)(FTWLFX)q]-
chitecture, especially in the multi-user scenario. Thampther a=1

line of work advocates the homogeneous-ADC architecture (45)

for energy-efficient design of massive MIMO, and therefore By noticing thaty,,, ~ €N(0, 1+&(C,,C} )4,), and moreover
reasonable and comprehensive comparison between the-mit8at (Cr.Cl,)qq = (FTA, AJF)qq = [ Xn?/Q, we obtain the
ADC architecture and the homogeneous-ADC architecturedistribution ofy,,, as

par'ucular_ly important, especially .wh(_an taking practusslpgs Ung ~ CN (07 1+ Esl\)\nl\Q/Q) _ (46)
such as time/frequency synchronization and channel eitima o ) _
into account. Further,y,, and(FTW Fx), are jointly circularly symmetric
complex Guassian, with their covariance being
APPENDIX Elyl,(F'W}Fx),] = (E[F'W]Fxy]])g

A. Proof of Proposition 2 SS(FTWLALF)qq
We first introduce a lemma, with which we are able to derive = &wiAY/Q. (47)

a closed-form expression df(w, d). The proof is similar as - )

those for [27, Lem. 1&2], and thus is omitted due to spac®S & result, exploiting (41) we arrive at

limitation. 2 EsWIAE

E[sgn'(y, ) FTWIFx] = /= . (48)
Lemma 1. For bivariate circularly-symmetric complex Gaus- T/ 1+ & Anl?/Q
sian vector Now, we are allowed to combine (43)-(44) and (48) to
2 obtainE[x'%], given as
(@)oo ) |
2 . 2 Esw X
o Exx = 3 eawian+ 3 /2 Wndn
we have ~ o VTV EA2/Q
2 UT neNy nelNg
Efsgn (u)us] = \ﬁ =, (41) . i 49
T 01 For the convenience of further investigation, we define
and [wi, ..., wi]" and rewrite (49) as
2 Sig] —
E[sgn(u;)sgn' (us)] = =[arcsin(fr) + j arcsin(fy)], (42) E[x'x] = w'g, (50)
@ Aot ¢t NOQX1 ic mi
where fg and 0; are the real and imaginary parts of theWhereg =gy €C is given by
correlation coefficientd = % respectively, andoio is 2 EsA,

T /1+ &M 2/Q

defined asry £ E[ujul).
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In order to evaluatE[ﬁ:ch], we define the correlation matrix Case 1n,m € Ny. In this caser, = y,, r'n = ym, and

betweenr,, andr,, asR.,, = E[r,r!,]. Then we have thus we have
E[iTi] = Z ZE[T%FTWLWan] Case 2:n,m € Ny. In this caser,, = sgn(y,) andr,, =
m;“‘;l sgn(y. ). Exploiting (42) we get
= > > (W, W,FE[r,r],|F) (Rum)pg = E[sgn(ynp)sgn (Ymq)]
m=1n=1 2 . . .
N N = ;[arcsm((@nm)pqﬁ) + jarcesin((Om ) pg.1)]-
= > Y tr(WLW,FR,,Fl). (52 (60)
m=1n=1

Case 3:n € Ny andm € Ny. In this caser,, =y, and

Noticing thatW,,,n € N are all diagonal matrices, to get ridrm — san(ym). Applying (41) we obtain

of the trace operation, we may define a diagonal madmjx,
as
2
_ i R, =E T mq)Ynp] = (Ynm —~ N
(Dym)gg = (FRumF 4y, (53)  (Rum)pg = E[sgn" (ymq)ynp] = (Yom)pg Yo
(61)
Case 4:n € Ng andm € N;. This case is similar to the
former one, and with some manipulations we find that

and based on which rewrifg[x'x] as

N N
B = 30 Wi Dumwa. (54)

m=1n=1 2

Rom)pg = Elsgn(ynp)yl ] = (Yom —— . (82
This further motivates us to rewrite it in a compact manner ( Jpa [s8(ynp )ymal = ( Jra T(Yon)pp (62)

IE[?J;%] In summary, we enumeratR,,,, for different kinds of
D,;, Dy --- Dp; Wy (n,m) in the above. Combining them with (53), we are able to
Dy; Dsy --- Dno Wo obtain the matriXD and further evaluaté (w,, §) according
= [wiwl.,wii]]| . _ _ to (10). Now we conclude the proof.
N Div Doy Do N B. Proof of Corollary 1
= w'Dw. (55)

Whend = 1, we haveg = E;A*, where is defined as
We note that the block matri € CN@*NQ js a Hermitian X = [Af, ..., AL]. Meanwhile,R,,,,, = Y,,.,,, for anyn, m €
matrix and moreover each of its blocks isGadimensional N. As a result,

diagonal matrix. ;
Now, we are allowed to formulatA(w, §) as a generalized FR,,, F! = {IQ +E Ay, n=m, (63)
Rayleigh quotient ofw; that is, EsAnAL,, n#m,
wiggiw are all diagonal matrices, thus makiiy,,, exactly equal to
A(w,d) = Of.wiDw’ (56) FR,,,Ft, for anyn,m € N. Letting A 2 [Aq,..., Ay], we
N o ° ] haveD in this situation given as
Then, exploiting a similar argument as that adopted in [27,
Prop. 3], we may easily obtain the optimal linear frequency- D =1Ing + EATA. (64)

domain equalizew,,; and the corresponding(wopt,d), as
summarized by Proposition 2.

The evaluation of the matriD remains unaccomplished.
To this end, we first defin& ,.,,, 2 Ely,y! ], and it is easy D' =1Iyg— &AT (Ig + ESAAT)_1 A. (65)
to verify that

Then, exploiting Woodbury formula [35], we get its invensio
as follows

We notice thatIg + E;AAT)~!is in fact a diagonal matrix;
that is (Ig + E,AAT) ' =

I &,C,ClH | = N,
&sC,Cl | n#m € N. 1 0 0
. . . 1+& 25:1 p‘nl ‘2 o
Then, we introduce a series of matrio®s,,,,, n, m € Ny, of 0 - . 0

. . . . 1+£s Zﬁ;l ‘>\712‘2
which @,,,,, corresponds to the correlation coefficient matri i

betweeny,, andy.,,, with its (p, ¢)-th element given by : : . :
0 0 e 1

1+ 2N Mgl
(@) = it (58) ey
vV (Ynn)pp v/ (Ymm)aqg Further, it is easy to verify thaA A\* satisfies
Due to the mixed nature aof, the computation oR,,,,, for N N t
different (n, m) may follow different routes, and therefore in AN — Z P12, oo, Z Mnol?| (67)
the following, we need to evaluate them case by case. ot ot
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Then with all the above results and some further manipul@hen we immediately find out that it is the same as that we

tions, we arrive at

Q
& N | ngl?

= 14+ E N Pagl?
(68)

A(VV()pt ) 6)

1

_ TD—l _
Q&5 *T Qs
and now, it is straightforward to verify (16).

C. Proof of Corollary 2

WhenT = 1, we simply useh, to denote the channel

coefficient corresponding to the-th BS antenna. In this

obtained for frequency-flat SIMO channels in [27, Prop. 3],
and thus conclude the proof.

D. Proof of Corollary 3
Letting & tend to zero, we have

- 2
)
T

To simplify the invertible block matrixD, we need to
examine each of its blocks. First let us look at an arbitrary

(75)

situation, the circulant matriC,, reduces to a scaled identitynondiagonal block, i.e D, with n # m € N. From (57),

matrix h,Io and the diagonal matriA,, turns out to be
A, = FC,Ft = hnIg. As a resultg, in (11) becomes

_ 2

If we let v € CV*! collect the coefficients beforky, i.e.,

- 2
S + O - ~hEe T | (70)

(71)

gn = h;klas

(V)n = hyEs

then we have
g=v®lg,

where® denotes right Kronecker product.

we observe thatime 0 Y, = Og, for anyn # m, and

on the other handjme__,o Y, = I. As a resultR,,,, for

n # m always approaches a zero matrix no matter which case
it falls into, and consequentl¥'R,,,,F tends to be a zero
matrix as well, since the unitary transformati@hdoes not
change the Frobenius norm of a matrix. In summary,

lim D,,, =0qg, Yn#meN. (76)
Es—0

For the diagonal blocks, if € Ny, we haveR.,.,, = Y,
and from (63) it is obvious thadime, 0 F'R,,,F = I. In
other word, we havéime_ .0 D, = Ig, for anyn € Ny. If
n € Ny, on the other hand, from (57) and (58) we obtain
limg, 0 ®,, = Ig. Then, applying (60) it is straightfor-

As for the matrixD, with patient examination we find outward to verify thatlime_ o R,, = Ig. Again, we have

that each of its blockd),,,,,, is also a scaled identity matrix,

for anyn, m € N. Then lettingE € CV*V collect the scaling
factors beford, we have

D =E®Ip, (72)
in which E is given as (with proof omitted)E),,,,, =

1+ 6, - |hnl?Es, if n=m,

ffim s {5n5m +0n0m wrED
5O - /7“'%'38#1)] +
)+

NN 2 : (hihwn)REs
OnOm, 77{aurcsm(\/“In'zgsﬂ\/lhm285+1
)] , ifn#£m.
(73)

(hphm)i€s
Comparingr* andE* with [27, Equ. (13) (14)], we notice that

jarcsin
J (\/\hn|2es+1\/|hm|2es+1

limg, 0 Dpy = I, for anyn € Ny. In summary,

lim D = INQ.

Es—0 (77)

With all the above results, we have

—
Q
=

1 & -2 )
n=1

they are virtually the same except for some little differemc Where (a) is obtained by applying the algebraic limit theore

due to the different scaling parameterssgfi(x).

since the limits ofg/&; and D~ exist, and (b) comes from

We proceed by evaluating(w,p, 8) in this situation; that the fact that the inverse of a nonsingular matrix is a cormtirsu

is

A(Wopt7 5) QE

vely)(Eely)'(velg)

ng‘(uf 1) E eIy (velg)
1
Q&

WE )@ (15I010)

(74)

function of the elements of the matrix, i.éime_ oD~ =

(limg_ o D)~! [36]. Noting thatlog(1 + 2/(1 — z)) = o +

o(z), asxz — 0, we immediately have (18).

E. Proof of Corollary 4

Whenéd = 0 and as€; grows without bound, we have

2Q A%
T [ Anll”

gn

B iy (79)



For_expositional concision, we denote thg norr_nalizat_ioh,of
by A, £ X/ A, and accordingly defind £ (X4, ..., AL .
Theng//€; in this situation approaches

[ e =T (80)
which is independent of;.
On the other hand, a5 tends to infinity we have
A, Al
lim ©,,, = QF = _—m_F (81)
€400 [Anll [ Aml

which is independent of; as well. Since wheid = 0 and as

&s — o0, Dy, is given by the combination of (53), (60) and

(81), we conclude thatme, ;o Dy, €Xists for anyn, m € N.
If we defineD £ lime, ... D, thenD also exists and is
independent of;. As a result, we have

lim A(Wopt, d)
Es—ro0
T
1 . g _1 g
= =1 = | D =
@efi“oo(m) (ws—)
T
@ 1/ g . —1 . g
2 g (am ) (i o) (i )
t -1
® 1/ g : g
2 g am ) (mp) (m )
= 2D (82)
T

where (@) is obtained by applying the algebraic limit theore

since bothlime, . g/v/E andlime__,, D~! exist, and (b)
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