Abstract:
Recently, a short reference differential chaos shift keying system (SR-DCSK) has been proposed to overcome the dominant drawbacks related to low data rate and energy effi...Show MoreMetadata
Abstract:
Recently, a short reference differential chaos shift keying system (SR-DCSK) has been proposed to overcome the dominant drawbacks related to low data rate and energy efficiency fondness of conventional DCSK systems. The fact that terminals on a network have a limited battery capacity and are in desperate need to high energy efficiency transmission schemes compels us to tackle these crucial challenges. In this paper, we propose an SR-DCSK system that performs simultaneous wireless information and power transfer (SWIPT). This promising design exploits the saved time gained from the fact that reference signal duration of SR-DCSK scheme occupies less than half of the bit duration to transmit a signal. The aim of this system is to allow receivers to perform without being equipped with any external power supply. Furthermore, at the receiver side, an RF-to-dc conversion is first performed, followed by data recovery without the need to any channel estimator. Closed-form expressions of multiple-input single-output SR-DCSK SWIPT system, such as ergodic rate, harvesting time, energy shortage, and data outage as well as exact and approximate bit error rate probabilities are derived under Rayleigh fading channel and are validated via simulation. Our results show that the proposed solution saves energy without sacrificing the non-coherent fashion of the system or reducing the rate compared to conventional DCSK, while keeping the design simple.
Published in: IEEE Transactions on Communications ( Volume: 65, Issue: 1, January 2017)