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Abstract—We propose an uncoordinated medium access con-
trol (MAC) protocol, called all-to-all broadcast coded slotted
ALOHA (B-CSA) for reliable all-to-all broadcast with strict
latency constraints. In B-CSA, each user acts as both transmitter
and receiver in a half-duplex mode. The half-duplex mode gives
rise to adouble unequal error protection (DUEP) phenomenon: the
more a user repeats its packet, the higher the probability that this
packet is decoded by other users, but the lower the probability
for this user to decode packets from others. We analyze the
performance of B-CSA over the packet erasure channel for a
finite frame length. In particular, we provide a general analysis of
stopping sets for B-CSA and derive an analytical approximation
of the performance in the error floor (EF) region, which captures
the DUEP feature of B-CSA. Simulation results reveal that the
proposed approximation predicts very well the performanceof
B-CSA in the EF region.Finally, we consider the application of B-
CSA to vehicular communications and compare its performance
with that of carrier sense multiple access (CSMA), the current
MAC protocol in vehicular networks. The results show that B-
CSA is able to support a much larger number of users than
CSMA with the same reliability.

I. I NTRODUCTION

Random access protocols based on slotted ALOHA [1], [2]
are widely used in wireless communication systems in order
to support uncoordinated transmissions from a large number
of users. These protocols offer low latency in scenarios in
which each user is only intermittently transmitting. In slotted
ALOHA, time is divided into slots and users select a single slot
at random for transmission. If two packets are transmitted in
the same slot, the respective receiver observes acollision and
the colliding packets are considered lost, which significantly
limits the efficiency of slotted ALOHA.

In [3], it was suggested to repeat packets twice in randomly
selected slots, thus slightly increasing the probability of a
successful transmission. In [4], it was further suggested to
utilize successive interference cancellation (SIC), as explained
in the following. The system operates inframes, where each
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frame is a periodically occurring structure that consists of
a predefined number of slots. All users are assumed to be
frame-synchronized. Each user transmits multiple copies (two
or three) of its packet in a single frame, each copy in a different
slot. Each copy of a packet contains pointers to all other
copies of a packet. Once one copy is successfully received, the
positions of the other copies are obtained and their interference
in the respective slots is subtracted. Exploiting SIC in [4]
provides significant performance improvement with respectto
slotted ALOHA. SIC is also used in many other applications,
e.g., [5], [6] to combat the hidden terminal problem in wireless
networks, or in [7], where it is combined with network coding.

In [8], it was proposed to use different repetition factors
for different users. To that end, users choose their repetition
factor by drawing a random number according to a predefined
distribution. It was recognized in [8] that SIC for the described
protocol is similar to decoding of graph-based codes over
the binary erasure channel. Hence, the theory of codes on
graphs can be used to design good distributions. In [9], it
was shown that using the so-called soliton distribution allows
transmitting one packet in each slot when the frame length
goes to infinity, which can be seen as the “capacity” of the
protocol in [8]. Coding over packets was used in [10] in the
protocol termed coded slotted ALOHA (CSA) in order to
achieve high efficiency under transmit energy constraints.A
protocol without a fixed frame structure was proposed in [11].

The protocols in [4]–[7], [10], [11] are designed for unicast
transmission, i.e., when several users transmit to a common
receiver (several receivers are possible in [7]). In this paper, we
consider a scenario where users exchange messages between
each other, which is referred to as anall-to-all broadcast
scenario. This is a standard scenario used as a context for
distributed consensus algorithms [12]. However, we chiefly
draw our motivation from the emerging wireless scenario
of vehicular communications (VCs), in which cars exchange
safety messages. We propose a novel medium access control
(MAC) protocol based on CSA, which we call all-to-all
broadcast CSA (B-CSA). In particular, each user is equipped
with a half-duplex transceiver, so that a user cannot receive
packets in the slots it uses for transmission.1 The half-duplex
mode gives rise to a double unequal error protection (DUEP)
property: the more the user repeats its packet, the higher the
chance for this packet to be decoded by other users, but the
lower the number of available slots to receive in and, hence,
the lower the chance to decode packets of others.

1If full-duplex communication is possible, the analysis of the all-to-all
broadcast scenario is identical to that of the unicast scenario, since each
receiver operates undisturbed by its own transmissions.

http://arxiv.org/abs/1511.00418v2
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The proposed protocol provides a reliable access for a
large number of devices under strict latency constraints, thus
satisfying the needs of VCs and other applications of fu-
ture communications systems [13]–[15]. Since low latency is
crucial in such applications, we analyze the performance of
B-CSA in the finite frame length regime, which causes the
appearance of an error floor (EF) in the performance of B-
CSA. The EF is due to stopping sets, which are harmful graph
structures [16] that prevent iterative decoding. Stoppingsets
are extensively analyzed for graph-based codes. In particular,
stopping sets for a specific graph are well studied in [17], [18]
and references therein. CSA, on the other hand, is represented
by a random graph and can be seen as a code ensemble.
Stopping sets for code ensembles were analyzed in [16],
[19], however, the obtained results are intractable for code
lengths of interest and irregular codes. A similar approach
to [19] was applied to CSA in [20], where quite loose bounds
were obtained. In [21] we proposed a low complexity EF
approximation for CSA at low-to-moderate channel load based
on the heuristically determined “dominant” stopping sets,
which is very accurate in the EF region. Here, we extend the
analysis in [21] and propose a systematic way of determining
dominant stopping sets together with their probabilities.The
proposed analysis is able to capture the DUEP feature of B-
CSA. The analytical approximation shows good agreement
with the simulation results for low-to-moderate channel loads
and can be used to optimize the parameters of B-CSA.

Finally, we compare the performance of B-CSA with that
of carrier sense multiple access (CSMA), currently adoptedas
the MAC protocol for VCs over the packet erasure channel
(PEC). The use of the PEC is justified in that it provides a
simplified model of the fading channel [7], [22], [23], which
allows for a tractable analysis. Moreover, as we show in the
paper, the all-to-all broadcast communication with half-duplex
operation can be modeled as a PEC. More accurate channel
models were considered in [24], however, they do not allow for
a system optimization due to computational complexity. Our
analysis shows that B-CSA significantly outperforms CSMA
for channel loads of interest and that it is more robust to
channel erasures due to the inherent time diversity.

The contributions are summarized in the following. (a) All-
to-all broadcast CSA is proposed; (b) The analysis of CSA
over the PEC in [21] is extended to the all-to-all broadcast
scenario; (c) A more accurate analysis of the performance of
CSA compared to [21] is presented, which includes a rigorous
analysis of the probability of stopping sets and a systematic
search of dominant stopping sets; (d) An analytical treatment
of the DUEP property for large frame lengths is presented; (e)
A comparison of B-CSA with CSMA for VCs over the PEC
is carried out.

II. SYSTEM MODEL

We consider a network ofm + 1 users, which exchange
messages between each other using half-duplex transceivers.
We assume that time is divided into frames, users are frame
synchronized,2 and each user transmits one packet per frame.

2The synchronization can be achieved by means of, e.g., Global Positioning
System (GPS), which provides an absolute time reference forall users.
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(a) Users’ transmissions in a B-CSA system. Rectangles represent transmitted
packets. The time slots in which userA cannot receive are shown with gray.
Erased packets due to the PEC are shown with hatched rectangles.
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(b) Original graphG̃. The dashed lines correspond to the packets erased
due to the PEC, i.e., the solid lines show the PEC induced graph G.
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(c) PEC induced graphG. The dashed lines show the nodes and the packets
erased due to broadcast, i.e., solid lines show the broadcast induced graph
G(r) for userA.

Fig. 1: System model.

Frames are divided inton slots, each slot matching the packet
length.

The transmission phase of the B-CSA protocol is identical
to that of unicast CSA [8], and is briefly described in the
following. Every user draws a random numberl based on a
predefined probability distribution, maps its message to a PHY
packet, and then repeats itl times in randomly and uniformly
selected slots within one frame, as shown in Fig. 1(a). Such a
user is called a degree-l user. Every packet contains pointers
to its copies, so that, once a packet is successfully decoded,
full information about the location of the copies is available.3

The main difference of the proposed B-CSA protocol com-
pared to unicast CSA is that every user is also a receiver.
Whenever a user does not transmit, it buffers the received
signal. Without loss of generality, we focus on the performance
of a single user, denoted byA, also referred to as the receiver.
U denotes the set of the otherm users, termedneighborsof
userA.

Since the frames are independent, it is sufficient to analyze
the system within one frame. The received signal buffered by

3The pointers can be efficiently represented by a seed for a random
generator to reduce the overhead, as suggested in [8]. We therefore ignore
the overhead in this paper.
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userA in slot i is

yi =
∑

j∈Ui

hi,jaj ,

whereaj is a packet of thej-th user inU , hi,j is the channel
coefficientbetween userj and the receiver, andUi ⊂ U is the
set of userA’s neighbors that transmit in thei-th slot.

The i-th slot is called asingletonslot if it contains only one
packet. If it contains packets from more that one user, we say
that a collision occurs in thei-th slot. Decoding proceeds as
follows. First, userA decodes the packets in singleton slots
and obtains the location of their copies. We assume decoding
is possible if the corresponding channel coefficient satisfies
|hi,j | > C, whereC is a threshold that depends on the physical
layer implementation. If|hi,j | ≤ C, we assume that the
packet is erased, i.e., it cannot be decoded and does not cause
any interference. The channel coefficients are assumed to be
independent across users and slots and identically distributed
such thatPr {|hi,j | ≤ C} = ǫ andPr {|hi,j | > C} = 1 − ǫ,
i.e., ǫ is the probability of a packet erasure. We refer to such a
channel as a PEC. Using data-aided methods [25], the channel
coefficients corresponding to the copies are then estimated.
After subtracting the interference caused by the identified
copies, decoding proceeds until no further singleton slotsare
found. We assume perfect interference cancellation, whichis
justified by physical layer simulation results in [4], [8]. We
remark that decoding is always performed in singleton slots,
such that the code rates of different users do not have to satisfy
the rate constraint for joint decoding [26].

The system can be represented by a bipartite graph and
can be analyzed using the theory of codes on graphs [8].
In the graph, each user corresponds to a variable node (VN)
and represents a repetition code, whereas slots correspondto
check nodes (CNs) and can be seen as single parity-check
codes. In the following, the terms “users” and “VNs” are used
interchangeably. A bipartite graph is defined byG = (V , C, E),
whereV , C, andE represent the sets of VNs, CNs, and edges
connecting them, respectively. The number of edges connected
to a node is called the node degree. An important parameter
in the graph is the VN degree distribution[8], [27], [28]

λ(x) =

q
∑

l=0

λlx
l, (1)

whereλl is the probability of a VN to have a degreel (i.e., the
probability that the user transmitsl copies of its packet) and
q is the maximum degree. We define a vector representation
of (1) asλ = [λ0, . . . , λq].4 Furthermore, we define the graph
profile as the vectorv(G) = [v0(G), v1(G), . . . , vq(G)], where
vl(G) is the number of degree-l VNs in G. The total number
of VNs in G is denoted byν(G) and the total number of CNs
is denoted byµ(G), i.e., ν(G) = m andµ(G) = n.

In this paper, we focus on the broadcast packet loss rate
(PLR), defined as the probability that a user inU is not

4In this paper, we consider only distributions with finiteq to avoid some
technical problems in the following. This condition is always satisfied for all
distributions of practical interest.

resolved by the receiver. Since all users are independent, the
PLR can be calculated as

p̄ =
w̄

m
, (2)

where w̄ is the average number of users that are not suc-
cessfully decoded by userA, termedunresolved users. Note
that the PLR gives the probability that a packet of a user is
not successfully received within a frame and does not refer
to the copies sent by the user. We define the channel load
as the ratio of contending users and the number of slots, i.e.,
g = (m+1)/n. It should be noted that, in the unicast scenario,
the channel load is calculated asg = m/n, since the receiver
is not contending.

III. I NDUCED DISTRIBUTION AND PACKET LOSSRATE

For transmission over a PEC, we showed in [21] that the
performance of unicast CSA can be accuratelyapproximated
based on aninduced distribution (ID)observed by the receiver.
The fact that users in B-CSA cannot receive in the slots they
use for transmission can also be modeled as packet erasures.
Therefore, its performance can also be analyzed by means of
the ID. In this section, we derive the ID in the general case of
B-CSA over the PEC. To this end, we first find the degree
distribution after the PEC and then the degree distribution
perceived by userA. Throughout the paper,l andd denote the
original and the induced degrees of a user inU , respectively,
andr denotes the degree of the receiver.

A. Induced Distribution

For B-CSA over the PEC, three different graphs can be
defined. The first one is theoriginal graph, denoted byG̃,
that contains the edges̃E = {ei,j : 1 ≤ i ≤ n, ∀j ∈ Ui}.
We call its degree distribution theoriginal distribution (the
one used by the users for transmission) and denote it byλ̃(x).
The original graph corresponds to that of unicast CSA [8] and
its distribution is in the hands of the system designer.

The PEC induced graph, denoted byG, includes only the
edgesei,j ∈ Ẽ , for which |hi,j | > C. In other words,G is
obtained fromG̃ by removing the edges corresponding to the
erased packets.Since all elements ofG are contained iñG, we
call G a subgraph ofG̃ and writeG ⊂ G̃ [29, Ch. 1.4].The
VN degree distribution of the PEC induced graph is called the
PEC ID and is denoted byλ(x). The graphG is what a base
station in unicast CSA would observe after the PEC. However,
only part of this graph is available to userA due to the half-
duplex operation. Assuming that userA selects degreer, we
denote its available subgraph byG(r) and call it abroadcast
induced graph. G(r) can be obtained fromG by removing
the r CNs corresponding to the slots where userA transmits
and their adjacent edges. We call the degree distribution of
this graph thebroadcast IDand denote it byλ(r)(x). The
number of check nodes in the broadcast induced graph,n(r) =
µ(G(r)) = n − r, is called theinduced frame length. For the
example in Fig. 1(a),̃G, G, andG(r) are shown in Figs. 1(b)
and 1(c).

We now derive the PEC ID. Let a user from the setU
repeat its packetl times. Each copy of this packet is erased
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with probability ǫ. Hence, its degree in graphG is k ≤ l
with probability

(

l

k

)

ǫl−k(1− ǫ)k. Averaging over the original
distribution λ̃(x) leads to the PEC ID

λ(x) =

q
∑

l=0

λ̃l

l
∑

k=0

(

l

k

)

ǫl−k(1− ǫ)kxk,

which can be written in the standard form (1), where

λl =

q
∑

k=l

(

k

l

)

ǫk−l(1− ǫ)lλ̃k. (3)

Note thatλl is the fraction of users of degreel after the PEC.
Assuming that userA selects degreer, another user that has

degreel after the PEC is perceived by userA as a degree-d
user if its non-erased transmissions take place inl − d slots
that are also selected by userA, which occurs with probability
(

n−r

d

)(

r

l−d

)

/
(

n

l

)

. Given the constraint0 ≤ l − d ≤ r, the
broadcast IDλ(r)(x) observed by userA can be written as

λ(r)(x) =

q
∑

d=0

λ
(r)
d xd,

where

λ
(r)
d =

min{q,r+d}
∑

l=d

(

n−r
d

)(

r
l−d

)

(

n

l

) λl (4)

is the fraction of users of degreed as observed by userA if
it selects degreer. Clearly, the broadcast ID depends onn,
as opposed to the original and the PEC IDs. The IDs in [21,
eq. (5)] and [30, eq. (3)] are a special case of (4) whenr = 0
andǫ = 0, respectively.

Example 1. For the original distribution

λ̃(x) = 0.5x2 + 0.5x4, (5)

the PEC ID forǫ = 0.01 is

λ(x) = 0.00005+0.0099x+0.49x2+0.019x3+0.48x4. (6)

The broadcast IDs depend onn. For n = 100, the broadcast
IDs are

λ(2)(x) = 0.0004 + 0.03x+ 0.47x2 + 0.06x3 + 0.44x4, (7)

λ(4)(x) = 0.001 + 0.05x+ 0.46x2 + 0.09x3 + 0.41x4. (8)

for a receiver degree 2 and 4, respectively. △

The coefficient in front ofλl in (4) can be written as

(n− r)!(n − l)!

n!(n− r − d)!

r!l!

d!(r − l+ d)!(l − d)!
∝ nd−l,

i.e., it tends to zero asn → ∞ if l > d. Since l ≥ d, it
can be shown that for any finiter, λ(r)

d = λd for all r andd
whenn → ∞, i.e.,λ(r)(x) ≈ λ(x). This means that the effect
of the broadcast nature of communications is negligible if the
number of slots is large enough. However, when the number of
slots is small, which is the case in delay critical applications,
the difference between the PEC ID and the broadcast ID is
significant, especially ifr is large.

B. Packet Loss Rate

Let p(r)d denote the probability that a user with degreed in
the broadcast induced graphG(r) is not resolved by a receiver
of degreer. We refer top(r)d as the degree-d PLR. It can be
calculated as

p
(r)
d =

w̄
(r)
d

m̄
(r)
d

=
w̄

(r)
d

mλ
(r)
d

, (9)

where m̄
(r)
d and w̄

(r)
d are the average number of total and

unresolved users of degreed in G(r), respectively. Ford = 0,
p
(r)
0 = 1 and w̄(r)

0 = mλ
(r)
0 . For other degrees, we show how

w̄
(r)
d can be approximated based on the broadcast ID in the

next section. The probability that a degree-r receiver cannot
resolve a user is called the average PLR and can be obtained
by averaging (9) over the broadcast ID as

p(r) =

q
∑

d=0

λ
(r)
d p

(r)
d . (10)

The probability that the original degree-l user is not resolved
by a degree-r receiver can be obtained as

p̃
(r)
l =

l
∑

k=0

(

l

k

)

ǫl−k(1 − ǫ)k
k
∑

d=max{k−r,0}

(

n−r
d

)(

r
k−d

)

(

n

k

) p
(r)
d , (11)

by reversing the operations in (3)–(4). Finally, the broadcast
PLR in (2) is obtained as

p̄ =

q
∑

r=0

λ̃rp
(r). (12)

From the equations above it is clear that the performance
of a B-CSA system depends on both the receiver and the
transmitter degrees. We call this property DUEP and formalize
it in the following lemmas.

Lemma 1. For a given original distributionλ̃(x) and anyn,
p̃
(r̂)
l ≥ p̃

(r)
l if r̂ > r.

Proof: We prove the lemma by contradiction. Assume that
the opposite holds, i.e.,̃p(r̂)l < p̃

(r)
l if r̂ > r. This implies that

a degree-r receiver can improve its performance by ignoring
(r̂ − r) randomly selected slots, which cannot be true, as
ignoring the slot information is the worst possible way to use
the slot. This leads to a contradiction.

Lemma 1 describes the DUEP from the receiver perspective.
The DUEP from the transmitter perspective is discussed in
Lemma 2 in the following section.

IV. F INITE FRAME LENGTH ANALYSIS

From (9)–(12) it follows that the degree-d PLR p
(r)
d is

sufficient to describe all performance metrics for B-CSA.p
(r)
d

only depends on the distributionλ(r)(x) and the induced frame
lengthn(r) seen by the receiver. The nature of these parameters
is immaterial for the performance analysis. The receiver can
be a user in a broadcast scenario that sees the broadcast ID
λ(r)(x). Alternatively, it can be thought of as a receiver in a
unicast scenario in which the contending users useλ(r)(x) as
the original distribution with the frame lengthn(r). Therefore,



Preprint, September 27, 2018. 5

for the sake of simplicity, in this section we consider a unicast
scenario, we omit superscript(r) and analyzepd in (9) for
frame lengthn and an arbitrary distributionλ(x) used to
generate graphG.

For n → ∞, the typical performance of CSA exhibits a
threshold behavior, i.e., all users are successfully resolved if
the channel load is below a certain threshold value, which
can be obtained via density evolution (DE) [8]. The threshold,
denoted byg∗(λ), depends only on the degree distribution
λ(x). We use the analysis in [8] to describe the DUEP from
the transmitter perspective in the following lemma.

Lemma 2. For a given distributionλ(x), any load0 < g ≤ 1,
and sufficiently largen, p

d̂
< pd if d̂ > d.

Proof: We denote the degree-d PLR at theρ-th decoding
iteration,ρ ≥ 1, as a function ofn by pd(n, ρ). According to
the analysis in [8], [31],

lim
n→∞

pd(n, ρ) = (ξρ)
d (13)

for any finited, whereξρ is the probability of not removing an
edge at theρ-th decoding iteration. This probability is obtained
recursively as [8, Sec. III]

ξρ = 1− exp (−gλ′(ξρ−1)), (14)

where the prime denotes the derivative andξ0 = 1. (13) asserts
that for anyθ > 0 there exists ann such that

(ξρ)
d − θ ≤ pd(n, ρ) ≤ (ξρ)

d + θ. (15)

It is easy to show from (14) thatξρ < 1 for 0 < g ≤ 1 and any
ρ ≥ 1. Hence,(ξρ)d̂ < (ξρ)

d and we can always findθ > 0

such that(ξρ)d̂+ θ < (ξρ)
d− θ. Thus, according to (15) there

exists ann such thatp
d̂
< pd at any iteration.

Remark 1. In practice, it is sufficient thatn ≫ q to guarantee
p
d̂
< pd if d̂ > d.

Lemma 2 states that users that transmits more have a higher
probability of being decoded by the receiver for sufficiently
large frame lengths. The finite frame length regime gives
rise to an EF in the PLR performance of CSA. This EF is
due to stopping sets in the graphG. In this section, we first
define stopping sets and analyze their contribution to the PLR.
We then identify the stopping sets that contribute the most
to the EF and propose an analytical approximation to the
performance in the EF region.

A. Stopping Sets and Their Contribution to Packet Loss Rate

Since erased packets are accounted for in the ID, the only
source of errors in the considered model is represented by the
harmful structures in the graphG. For example, when two
degree-2 users transmit in the same slots (see Fig. 2(a)), the
receiver is not able to resolve them. Such harmful structures
are commonly referred to asstopping sets[16].

Definition 1. A connected bipartite graphS is a stopping set
if all CNs in S have a degree larger than one.

We say that a stopping setS has profilev(S) and contains
ν(S) VNs andµ(S) CNs. For example, for the stopping set

(a) Stopping setS.

1 2 3 4 5 6

(b) GraphG.

Fig. 2: Number of stopping setsS in graphG.

in Fig. 2(a), the graph profile isv(S) = [0, 0, 2, 0, . . . , 0],
where the number of zeros in the end depends onq, ν(S) =
2, and µ(S) = 2. Stopping sets are referred to as “loops”
in [24]. However, stopping sets do not necessarily form a loop
if degree-1 users are present. To analyze stopping sets, we
define a VN-induced graph as follows.

Definition 2. A graph consisting of a subset of VNs of a graph
G and all their neighbors is called a VN-induced graph.

Since the graphG and its profilev(G) are random, the
average number of unresolved degree-d users in (9) can be
expressed using stopping sets as

w̄d = EG

{

∑

S∈A

vd(S)ŵ(S,G)

}

, (16)

where A is the set of all possible stopping sets for given
n and m, vd(S) is the number of degree-d VNs in S, and
Ex { · } denotes the expectation over the random variablex.
ŵ(S,G) in (16) is the number of VN-induced graphs in
a graph realizationG which are both: i) isomorphic with
S [32, Ch. 16.9]; ii) not a subgraph of a VN-induced graph
isomorphic with another stopping set inA. With a slight abuse
of notation, we refer tôw(S,G) as the number of stopping sets
S in a graphG. The following example explains the definition
of ŵ(S,G).

Example 2. Consider the stopping setS in Fig. 2(a) and
the graphG in Fig. 2(b). There are three VN-induced graphs
in G isomorphic with S, namely, the graphs induced by
VNs {1, 2}, {4, 5}, and {5, 6}. However, the two latter ones
are subgraphs of another VN-induced graph isomorphic with
a larger stopping set induced by the VNs{4, 5, 6}. Hence
ŵ(S,G) = 1.

The averaging in (16) can be done in two steps as

w̄d = Ev(G)

{

∑

S∈A

vd(S)w(S,G)

}

, (17)

where

w(S,G) = EĜ:v(Ĝ)=v(G)

{

ŵ(S, Ĝ)
}

is the average number of stopping setsS in graphs with a
particular profilev(G).

From the definition of a stopping set it follows that, for
a given profilev(G), the number of stopping sets can be
expressed as

w(S,G) = α(S,G)β(S)γ(S)δ(S,G), (18)
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(a) (b) (c)

Fig. 3: Isomorphic graphs for a stopping set in (a).

where

α(S,G) =

q
∏

d=1

(

vd(G)

vd(S)

)

(19)

is the number of ways to select VNs needed to createS in a
graph with profilev(G) and

β(S) =

(

n

µ(S)

)

(20)

is the number of ways to selectµ(S) CNs out ofn CNs.γ(S)
in (18) is the probability of the selected VNs to be connected
to the selected CNs so thatS is created.γ(S) can be written
as the ratio of the number of stopping setsS that the selected
VNs can create over the total number of graphs they can create,
i.e.,

γ(S) =
c(S)

∏q

d=1

(

n
d

)vd(S)
, (21)

where c(S) is the number of graphs isomorphic withS
that the selected VNs can create. Unfortunately, deriving a
closed-form expression for this constant does not seem to
be straightforward. However, it can be found numerically
according to its definition, as demonstrated in the following
example.

Example 3. To findc(S), we need to enumerate all combina-
tions of connecting the VNs inS to the CNs inS so that the
resulting graph is isomorphic withS. Consider stopping set
S in Fig. 3(a). The only two graphs that are isomorphic with
S are shown in Figs. 3(b) and 3(c). Hence,c(S) = 3. To find
c(S), all graphs with a given profilev(S) need to be generated
and their isomorphism withS tested [32, Ch. 16.9]. △

δ(S,G) in (18) is the probability that the otherm − ν(S)
VNs are connected to CNs in such a way that another stopping
setŜ ⊃ S is not created (see Fig. 2).It does not have a closed-
form expression in general and we resort to an upper bound.
By settingδ(S,G) = 1 in (18), substituting the result into (17)
and bringing the expectation inside the summation, we obtain
the upper bound given by

w̄d ≤
∑

S∈A

vd(S)α(S)β(S)γ(S), (22)

where α(S) = Ev(G) {α(S,G)}, which can be expressed
as [21]

α(S) =
m!

(m− ν(S))!

q
∏

d=1

λ
vd(S)
d

vd(S)!
. (23)

The upperbound in (22) can be seen as a union bound, in
which the occurrences of stopping sets are no longer exclusive
events.

We now show that the bound in (22) is tight for largen.
δ(S,G) in (18) can be lower-bounded by the probability that
none of these VNs is connected to the selected CNs. For a

user of degreed, the probability of not being connected to the

selected CNs is
(n−µ(S)

d )
(nd)

for n ≥ d + µ(S), which together

with the expression for the binomial coefficient gives

δ(S,G) ≥

q
∏

d=1

(

d−1
∏

k=0

n− µ(S) − k

n− k

)(vd(G)−vd(S))+

, (24)

wherex+ = max (0, x) andn ≥ q+µ(S) (since the inequality
n ≥ d + µ(S) has to hold for anyd). A looser lower bound
can be obtained additionally assuming that all these VNs have
degreeq,

δ(S,G) ≥

(

q−1
∏

k=0

n− µ(S) − k

n− k

)(m−ν(S))+

≥

q−1
∏

k=0

(

n− µ(S)− q + 1

n− q + 1

)(m−ν(S))+

=

(

1−
µ(S)

n− q + 1

)q(m−ν(S))+

≥

(

1−
µ(S)

n− q + 1

)qm

≥ exp

(

−
qµ(S)m

n− q + 1− µ(S)

)

, (25)

where the last step follows from the inequalitylog(x) ≥ 1−
1/x for x > 0. From (25) it follows that, for largen (n ≫
q+µ(S)) and low channel loads (n ≫ qµ(S)m), δ(S,G) ≈ 1,
which shows that (22) is tight for largen.

Example 4. For the distributionλ(x) = x (slotted ALOHA),
i.e., all VNs have degree 1,all factors in (18) can be easily
calculated and the exact expression for(17) can be obtained.
Since all VNs have degree 1, the profile ofG is deterministic
with v(G) = [0, m], and the expectation in(17) is trivial.
Furthermore, all stopping sets have one CN withs, 2 ≤ s ≤
m, VNs connected to it. Such a stopping set, denoted bySs,
has parameters

v(Ss) = [0, s], µ(Ss) = 1, α(Ss,G) =

(

m

s

)

,

β(Ss) =

(

n

1

)

, γ(Ss) = φs, δ(Ss,G) = (1− φ)m−s,

whereφ = 1/n. We remark that the expression forδ(Ss,G)
coincides with the bound in(24) since the VNs ousideSs

cannot be connected toSs without creating a larger stopping
set andc(Ss) = 1 for any s.

Since only degree-1 VNs are present in the graph,̄w1

(see(17)) can be calculated exactly as

w̄1 =

m
∑

s=2

s

(

m

s

)(

n

1

)

φs(1− φ)m−s. (26)

Finally, by using the properties of the binomial distribution,
we can obtain the exact expression for the PLR in(10) as

p = p1 =
w̄1

m
=

n

m

m
∑

s=2

s

(

m

s

)

φs(1− φ)m−s

= g−1(mφ−mφ(1 − φ)m−1) = 1− (1− φ)ng−1, (27)
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TABLE I: Parameters of minimal stopping sets withµ(S) ≤ 4.

v(S) µ(S) c(S)

[0, 2, 0, 0, 0] 1 1
[0, 0, 2, 0, 0] 2 1
[0, 2, 1, 0, 0] 2 2
[0, 0, 0, 2, 0] 3 1
[0, 1, 1, 1, 0] 3 3
[0, 0, 3, 0, 0] 3 6
[0, 0, 2, 1, 0] 3 6
[0, 3, 0, 1, 0] 3 6
[0, 2, 2, 0, 0] 3 12
[0, 0, 0, 0, 2] 4 1
[0, 1, 0, 1, 1] 4 4
[0, 0, 2, 0, 1] 4 6
[0, 0, 1, 2, 0] 4 12
[0, 0, 1, 1, 1] 4 12
[0, 0, 0, 3, 0] 4 24

[0, 0, 0, 2, 1] 4 12
[0, 2, 1, 0, 1] 4 12
[0, 2, 0, 2, 0] 4 24
[0, 1, 2, 1, 0] 4 24
[0, 1, 2, 1, 0] 4 24
[0, 1, 2, 0, 1] 4 24
[0, 1, 1, 2, 0] 4 48
[0, 0, 3, 1, 0] 4 24
[0, 0, 3, 0, 1] 4 24
[0, 0, 4, 0, 0] 4 72
[0, 0, 3, 1, 0] 4 144
[0, 0, 2, 2, 0] 4 48
[0, 0, 2, 2, 0] 4 48
[0, 4, 0, 0, 1] 4 24
[0, 3, 1, 1, 0] 4 72
[0, 2, 3, 0, 0] 4 144

which corresponds to the well known expression for the PLR
of framed slotted ALOHA [33, eq. (3)].5 △

B. Dominant Stopping Sets and Error Floor Approximation

Identifying all stopping sets and calculating the correspond-
ing γ(S) in a systematic way for an arbitraryn is not
possible in general. We therefore determine stopping sets that
contribute the most to the PLR for low channel loads, i.e., in
the EF region. It is clear that, for low channel loads (n ≫ m),
stopping sets with a small number of nodes are more likely
to occur. We therefore focus on stopping sets with few CNs.
Furthermore, to reduce the number of considered stopping sets,
we defineminimal stopping sets as follows.

Definition 3. A minimal stopping set is a stopping set that
does not contain a nonempty stopping set of smaller size.

It can be seen from (20) and (21) that for low channel loads
(more precisely, when

∑

d dvd(S) ≪ n), each edge inS gives
a factor n−1 in γ and each CN gives a factorn in β(S).
Assume now two stopping setsS and Ŝ such thatS ⊂ Ŝ. To
obtainS from Ŝ, more edges than CNs need to be removed
from Ŝ since each CN in̂S is connected to at least two edges.
Hence, the contribution of a non-minimal stopping setŜ to
the PLR is smaller than that ofS for low channel loads. We
therefore only consider minimal stopping sets in our analysis.
Simulation results in Section V justify restricting to minimal
stopping sets.

We run an exhaustive search of minimal stopping sets with
µ(S) up to five. Forµ(S) ≤ 4, there are 31 minimal stopping
sets with the corresponding parameters given in Table I. For
µ(S) = 5, there are 111 minimal stopping sets (not included
in this paper). We remark that the complexity of findingc(S)
depends on the size of a stopping set [32, Ch. 16.9]. Therefore,
we restrict the analysis toµ(S) ≤ 4. The most dominant
stopping sets presented in [21] are a subset of the stopping
sets in Table I. Considering more stopping sets can improve
the PLR approximation for moderate channel loads.

Constraining the set of the considered stopping sets in (22)
to minimal stopping sets withµ(S) ≤ 4 and combining it

5Eq. (3) in [33] gives the number successfully transmitting users.

with (9) gives the following approximation of the degree-d
PLR in the EF region

pd ≈
1

mλd

∑

S∈A31

vd(S)α(S)β(S)γ(S), (28)

whereA31 is the set of 31 minimal stopping sets in Table I
with α(S), β(S), and γ(S) given in (23), (20), and (21),
respectively. Since the considered stopping sets include VNs
of degrees up to four, the approximation in (28) can only be
used ford ∈ {1, . . . , 4}. If the PLR for larger degrees needs
to be estimated, the set of considered stopping sets should be
extended.

We remark that, in practice, distributions with large fractions
of low-degree VNs are most commonly considered since they
achieve high thresholds. For instance, the soliton distribu-
tion [9], for which g∗(λ) = 1, hasλ2 = 0.5 andλ3 = 0.17
(andλ0 = λ1 = 0). Moreover, IDs for B-CSA and/or the PEC
haverelatively high fractions of users of low degrees due to
packet erasures. We therefore conclude that the approximation
in (28) is accurate for estimating the average performance of
most CSA systems of practical interest. This is supported by
extensive numerical simulations, some of which are presented
in the next section.

V. NUMERICAL RESULTS

In this section, we first present different aspects of the B-
CSA performance for the distributions in Example 1. We then
show how the proposed EF approximation can be used for the
optimization of the original distribution.

A. Induced Distribution and Packet Loss Rate

In Fig. 4, we show the simulated PLRsp(r)d and p̃(r)l (solid
lines) for the system described in Example 1. Fig. 4(a) shows
the PLR for users of different induced degrees and illustrates
the DUEP property. Lines with circles showp(2)d for the
distribution in (7) and lines with diamonds showp(4)d for the
distribution in (8) andd = 1, . . . , 4. It can be seen that for
a given distribution, the larger the transmitter degreed, the
better the performance, as Lemma 2 states.

Fig. 4(b) shows the simulated PLR̃p(r)l for the original
transmitter degreel. As it can be seen from the figure, for
a given l, the receiver with a smaller degreer has better
performance in accordance with Lemma 1. On the other hand,
for a givenr, the transmitter with a smaller degreel has worse
performance. The rationale behind the DUEP is that the chance
of a user to be resolved by other users increases if the user
transmits more, but at the same time the chance to resolve
other users decreases.

We remark that the curves for̃p(r)l in Fig. 4(b) can be alter-
natively obtained from the solid curves in Fig. 4(a) via (11).
The resulting curves would then appear exactly on top of the
simulation results in Fig. 4(b), which confirms the correctness
of (11) and the derived IDs.
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Fig. 4: PLR performance of B-CSA for the scenario in Example 1
(n = 100). Solid curves show simulation results and dashed curves
show analytical EF approximations. Circles and diamonds show the
PLR for r = 2 andr = 4, respectively.

B. Error Floor Approximation

Fig. 4 also shows the proposed analytical EF approxi-
mation (28) (dashed lines). Fig. 4(a) shows (28) for the
distribution in (7),r = 2 andd = 1, 2, 3, 4, whereas Fig. 4(b)
shows (11) used together with the approximation (28) for
l = 2, 4 and r = 2, 4. The analytical EF approximations
demonstrate good agreement with the simulation results for
low to moderate channel loads. This justifies the approxima-
tion in (28) and the use of minimal stopping sets. It can also be
seen that the approximations ford = 1, 2 are more accurate
than those ford = 3, 4 since the stopping sets in Table I
contain mostly users of low degrees.

Fig. 5 shows the dependency of the EF on the frame length
for the distributions in (5) and (6), which correspond toǫ = 0
and ǫ = 0.01, respectively, in the unicast scenario.6 It can be
observed that without channel erasures (green curve), the EF
decays exponentially withn. When erasures are present (red
curve), the performance first decays exponentially for small n
and then approaches the value predicted by DE (black dot) as
n grows. Forn / 103, the finite frame length is the main cause
of the EF, whereas forn ' 103 the PEC is the dominant factor
causing the EF. In this case, increasingn does not improve the
performance. Markers show simulation results, which agree
well with the analytical approximation.

Finally, in Fig. 6 we show how the proposed EF approxi-
mation compares with the DE results for largen. The solid
lines show the PLRlimn→∞ pd(n,∞) obtained via DE (13)
for the distribution in (6) andd = 1, . . . , 4 in the unicast
scenario. The proposed EF approximation (28) forn = 107 is
shown with dashed lines and agrees well with the DE curves.
The lower the degree, the larger the range of channel loads for
which the agreement is good. We remark that in all considered

6For large values ofn, we use the built-in approximation in the Matlab
function nchoosek for the calculation of binomial coefficients.
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Fig. 5: PLR performance of unicast CSA versusn for the distri-
butions in (5)–(6) andg = 0.5. Solid lines show the analytical
approximation (28) with (11) and markers show simulation results.
The PLR value2 · 10−4 predicted by DE is shown with a black dot.
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Fig. 6: PLR performance of unicast CSA with the distribution in (6)
andn = 107. Solid lines show the PLR predicted by DE and dashed
lines show the proposed EF approximation.

examples, the proposed analytical EF approximation always
underestimates the PLR. This can be improved by including
more stopping sets in (28).

C. Distribution Optimization for All-to-All Broadcast Coded
Slotted ALOHA

In this subsection, we concentrate on the broadcast scenario
and discuss the optimization of the degree distribution forfinite
frame lengths using the proposed EF approximation. To this
end, we constrain the original distribution to have the form
λ̃(x) = λ̃2x

2 + λ̃3x
3 + λ̃4x

4 + λ̃8x
8. Such distributions have

a good performance in the unicast scenario [8] and are typical
for low-density parity-check codes [34, p. 397].

Ideally, we would like to minimize the PLR around the
values ofg at which the PLR curve switches from the waterfall
region to the EF region. However, analytical tools to predict
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the PLR at such channel loads are missing. The proposed
EF approximation (28) is accurate only for low to moderate
channel loads. If the EF approximation is the only optimization
objective, the optimal distribution is always̃λ(x) = x8.
However, such a distribution hasg∗(λ) = 0.54, hence, bad
performance at channel loads of interest. Here, we use a linear
combination of the broadcast PLR in (12) and the threshold as
the optimization objective, which corresponds to scalarization
of a multidimensional objective function [35, Ch. 4.7].

For notational convenience, we write the broadcast PLR
in (12) asp̄(λ̃) to highlight that it depends on the distribution
λ̃ and formulate the following optimization problem

minimize
λ̃

− g∗(λ̃) + ηp̄(λ̃)

subject to λ̃i ≥ 0 i = 2, 3, 4, 8,

λ̃i = 0 otherwise,

λ̃2 + λ̃3 + λ̃4 + λ̃8 = 1,

whereη is a weighting coefficient. We numerically solve this
optimization problem7 by using the EF approximation (28)
to calculatep̄(λ̃) for different values ofη and obtain the EF
vs. threshold tradeoff shown in Fig. 7(a). The corresponding
optimal distributions are shown in Fig. 7(b). As it can be seen
from Fig. 7(a), the optimal distributions aroundg∗ = 0.85
provide relatively high threshold for relatively low EF values
(≈ 10−5). We pick the distribution

λ̃(x) = 0.86x3 + 0.14x8 (29)

and use it in the next section when we compare B-CSA
with CSMA. We remark that the choice ofg∗ for selecting
the distribution depends on the required reliability. Since
global optimality of the results in Fig. 7 is not guaranteed,
better distributions can potentially be obtained. However, the
presented distributions are the best known distributions that
provide the EF vs. threshold tradeoff.

The results in Fig. 7 are obtained forn = 500, g = 0.5, and
ǫ = 0. We remark that the distribution in (29) is close to the
one presented in [21] for the unicast scenario. Furthermore, we
observed that the optimization problem is not very sensitive
to the choice of parametersg, n, andǫ.

VI. B ROADCAST CODED SLOTTED ALOHA IN

VEHICULAR NETWORKS

In this section, we evaluate the performance of B-CSA in
a vehicular network and compare it with the currently used
CSMA protocol. The physical layer parameters used here
are taken from [37] and are given in Table II. We consider
transmission of cooperative awareness message (CAM) [38]
packets that are sent periodically everytframe seconds. We
set the frame duration equal totframe and we assume that the
network does not change during this period. We assume that
all packets have lengthtpack, which depends on the packet size
dpack, transmission raterdata, and the length of the preamble
added to every packettpream, i.e., tpack = tpream+ dpack/rdata.

7We solve the optimization problem by means of the Nelder-Mead simplex
algorithm [36]. Global optimality is therefore not guaranteed.
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Fig. 7: Distribution optimization forn = 500, g = 0.5, andǫ = 0.

TABLE II: The PHY parameters. The values in the upper part are
taken from [37]; the values in the lower part are derived.

Parameter Variable Value Units

Data rate rdata 6 Mbps
PHY preamble tpream 40 µs
CSMA slot duration tcsma 13 µs
AIFS time taifs 58 µs

Frame duration tframe 100 ms
Guard interval tguard 5 µs
Packet size dpack 200 400 byte
Packet length tpack 312 576 µs
Slot duration tslot 317 581 µs
Number of slots n 315 172

In addition, the slot durationtslot = tpack + tguard, where
tguard accounts for timing inaccuracy. The number of slots is
determined asn = ⌊tframe/tslot⌋. The inclusion of a guard
interval, tguard, reduces the number of slots in a frame and
thus worsens the performance of B-CSA.

A. Carrier Sense Multiple Access

CSMA is used as MAC protocol for vehicular net-
works [37]. We analyze the following system model that can
be compared with B-CSA. We consider a network withm+1
users indexed byj = 1, . . . ,m+1, where every user is within
all other users transmission range, i.e., no collision occurs
due to the hidden terminal problem.m can be thought of as
the instantaneous number of neighbors for a given user. We
assume that a user can always sense other users transmissions.
Collisions are assumed to be destructive. If no collision occurs,
each user may not able to decode a packet with probability
ǫ due to noise-induced errors. We say that such a packet
is erased. Note that the backoff protocol is not affected by
channel erasures and partial collisions are not possible.
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The set of users is denoted byV and time is denoted byt.
At the beginning of the contention (t = 0), every user selects a
real random numberτj ∈ [0, tframe), which represents the time
when thej-th user attempts to transmit its first packet invoking
the CSMA procedure from [39, Fig. 2(a)]. The contention
window size is selected to be 511 [30].taifs is the sensing
period during which the users sense the channel to determine
whether it is busy of not, where AIFS stands for arbitration
interframe space. tcsma is the duration of a backoff slot. The
values of these parameters are specified in [37] (see Table II
for the values used in simulations).

To overcome the effect of packet erasures, each user
attemptsκ transmissions of each packet. At time instant
τj+(k−1)tframe/κ+(i−1)tframe, thej-th user makes thek-th
attempt,k = 1, . . . , κ, to transmit itsi-th packet,i = 1, 2, . . . .
If by the timeτj + itframe none of the copies of thei-th packet
is transmitted, the packet is dropped. Forκ = 1, the described
protocol is considered in [30].

The channel load is defined as the ratio of the number
of users,m + 1, and tframe (expressed in slots) to match
the definition of the channel load for B-CSA, i.e.,g =
(m + 1)/(tframe/tslot) = (m + 1)/n. The PLR for userj is
defined as

pj = 1−

Eτ1,...,τm

{

∑

i∈V
i6=j

ηi,j

}

m
,

where ηi,j ∈ {0, 1, 2} is the number of packets of user
i successfully received by userj over the time interval
[t0, t0 + tframe). To estimate the performance, we introduce
a time offsett0 = 2tframe in order to remove the transient in
the beginning of the contention. As the performance does not
depend on the particular user, without loss of generality, we
select userj = 1.

The performance of CSMA for different values ofǫ, κ,
and the frame lengths in Table II is shown in Fig. 8. We
can observe that the performance of CSMA degrades asn
increases due to the increase of sensing overhead. Furthermore,
for a givenn, increasingκ reduces the achievable throughput
but improves the performance at low channel loads. The PLR
curves approach the valueǫκ for g = 0, hence, the number
of repetitions can be predicted based onǫ and the required
reliability.

B. Carrier Sense Multiple Access vs. All-to-all Broadcast
Coded Slotted ALOHA

Even though the reliability requirements are not specified
in [37] and depend on the particular application, for the sake
of comparison we assume that the broadcast PLR of interest
is in the range10−2 − 10−3. From Fig. 8 it follows that for
CSMA, κ = 2 provides good performance for the PEC with
ǫ ≤ 10−2. For B-CSA we select the distribution in (29).

The broadcast PLR of the two protocols is shown in Fig. 9
for n = 172 andn = 315 (see Table II). Simulation results
for B-CSA and CSMA are shown with solid and dashed lines,
respectively. The dash-dotted lines show the broadcast PLR
obtained using the approximation (28). The figure shows that
the protocols react differently to the increase of the frame
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Fig. 8: PLR performance for CSMA over the PEC. Solid and dashed
lines correspond toǫ = 0 and ǫ = 0.01, respectively. Circles and
diamonds show the PLR forn = 172 andn = 315, respectively.
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Fig. 9: PLR comparison of optimized CSMA and B-CSA systems
for different values ofn and ǫ. Solid and the dashed lines show the
performance of B-CSA and CSMA, respectively. The dash-dotted
lines show the analytical PLR approximation obtained using(28).

length: The CSMA performance degrades whenn increases
whereas the performance of B-CSA improves asn grows
large. This gives an extra degree of freedom when designing
a B-CSA system, as increasing the bandwidth will decrease
the packet length and, hence, increase the number of slots.
Moreover, B-CSA is robust to packet erasures for any channel
load as opposed to CSMA, which suffers significantly at low
channel loads. We also point out that standard CSMA with
κ = 1 fails in providing the required level of reliability over
the PEC withǫ = 0.01 (see Fig. 8).

It can also be seen from Fig. 9 that B-CSA significantly
outperforms CSMA for medium to high channel loads. For
example, forǫ = 0, B-CSA achieves a PLR of10−3 at channel
loads g = 0.68 and g = 0.73 for n = 172 and n = 315,
respectively. CSMA achieves the same reliability atg = 0.36
andg = 0.32 for n = 172 andn = 315, respectively, i.e., B-
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CSA can support approximately twice as many users as CSMA
for this reliability. When erasures are present, the gains are
even larger. Forǫ = 0, CSMA yields better PLR than B-CSA
for low channel loads only (g / 0.3). Moreover, CSMA shows
better performance for heavily loaded networks (g > 0.84).
However, in this case both protocols provide a poor reliability
(PLR of around0.4), which is unacceptable in VCs.

We remark that the high user mobility prohibits the use of
acknowledgements in VCs, and thereby methods for mitigating
the hidden terminal problem. Thus, the performance of CSMA
will be severely affected by the hidden terminal problem in
a real vehicular network. On the other hand, the problem of
hidden terminals does not exist in B-CSA since collisions are
used for decoding and no sensing is required.

VII. C ONCLUSION AND DISCUSSION

In this paper, we proposed a novel uncoordinated MAC
protocol for a message exchange in the all-to-all broadcastsce-
nario.Furthermore, we analyzed its performance over the PEC
for finite frame length and proposed an accurate analytical
approximation of the PLR performance in the EF region. The
proposed analytical approximation can be used to optimize the
degree distribution for CSA in the finite frame length regime.
The analysis shows that B-CSA is robust to packet erasures
and is able to support a much higher number of users that can
communicate reliably than the state-of-the-art MAC protocol
currently used for VCs.

In order to guarantee high reliability over the PEC, the
physical (PHY) layer and the MAC protocol of a commu-
nication system should offer a certain level of time diversity.
For protocols that do not exploit collisions, such as CSMA,
increasing time diversity leads to channel congestion at low
channel loads. Hence, exploiting collisions is inevitablefor
systems that require high reliability for high channel loads over
the PEC. B-CSA is an elegant way of utilizing collisions. The
obtained gains come at the expense of increased computation
complexity that a system designer should be ready to pay if
they wants to satisfy the stringent requirements of VCs.
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