arXiv:1603.09601v4 [cs.IT] 8 Feb 2017

IEEE TRANSACTIONS ON COMMUNICATIONS

Joint Millimeter-Wave
Resource Allocation

Fronthaul and OFDMA
In Ultra-Dense CRAN

Reuben George Steph&tudent Member, IEEEBnd Rui Zhand-ellow, IEEE

Abstract—Ultra-dense (UD) wireless networks and cloud radio
access networks (CRAN) are two promising network architec-
tures for the emerging fifth-generation (5G) wireless commu
nication systems. By jointly employing them, a new appealig
network solution is proposed in this paper, termed UD-CRAN.
In a UD-CRAN, millimeter-wave (mmWave) wireless fronthaul is
preferred for information exchange between the central praessor
and the distributed remote radio heads (RRHSs), due to its
lower cost and higher flexibility in deployment, compared to
fixed optical links. This motivates our study in this paper on
the downlink transmission in a mmWave fronthaul enabled,
orthogonal frequency division multiple access (OFDMA) basd
UD-CRAN. In particular, the fronthaul is shared among the
RRHs via time division multiple access (TDMA); while the
RRHs jointly transmit to the users on orthogonal frequency sib-
channels using OFDMA. The joint resource allocation over tle
TDMA-based mmWave fronthaul and OFDMA-based wireless
transmission is investigated to maximize the weighted sumate
of all users. Although the problem is non-convex, we propose
a Lagrange duality based solution, which can be efficiently
computed with good accuracy. To further reduce the complexy,
we also propose a greedy search based heuristic, which achés
close to optimal performance under practical setups. Findy,
we show the significant throughput gains of the proposed join
resource allocation approach compared to other benchmark
schemes by simulations.

Index Terms—Cloud radio access network, orthogonal fre-
guency division multiple access, resource allocation, uk-dense
network, millimeter-wave fronthaul.

|. INTRODUCTION

T

to, or even exceed the number of usei$, [2].} On the
other hand, a cloud radio access network (CRAN), where
the conventional BSs are replaced by low-power and low-
complexity remote radio heads (RRHs) that are coordinated
by a central processor (CP), provides a new cost-effectaxe w
to achieve network densificatiori][ In CRAN, joint signal
processing for a cluster of RRHs and their served users can
be performed at the CP, which leads to increased spectral
and energy efficiency, via centralized resource allocdtijn
[17]. In order to enable CRAN, a cluster of RRHs need
to communicate with their associated CP for information
exchanges via high-speed links called the fronthaul. ThElRR
can be either simple relay nodes without encoding/decoding
capability, or can be similar to the BSs in conventionaldaH
networks with baseband processing capability][ In this
paper, we focus on the downlink transmission in a CRAN,
where the CP forwards the user messages to the RRHs via the
fronthaul? while the RRHs decode, and then re-encode and
cooperatively transmit the information to the users.
Combining the idea of network densification with cen-
tralized joint processing leads to a powerful new network
architecture that can support wireless connectivity ofault
high throughput, termed UD-CRANL{]. Traditionally, the
fronthaul links in CRAN are provisioned using optical fibers
or high-speed Ethernet, with each RRH having a dedicaté&d lin
to the CP. However, in UD-CRAN, where the RRHSs are large
in number and may be at locations that are difficult to reach
by laying fibers or wires, providing such dedicated wireddin

HE EXPLOSION of wireless data traffic in recent year8€tween individual RRHs and the CP is not always feasible.
has led to a demand for a 1000-fold increase in th‘gms, to achieve practically scalable cost and complexity,

capacity of the future fifth-generation (5G) wireless commdmillimeter wave (mmWave) wireless fronthaul is desiralde f

nication networks J]. To achieve this end, increasing th

dJD-CRAN, as it is cost-effective, flexible and easier to agpl

number of cellular base stations (BSs) deployed to servec@mpared to wired fronthauls{], [21]. The availability of

given area, also known as network densification, is foresel@fgely unused bandwidth in the mmWave frequencies, espe-
to be necessaryl], [2]. In such ultra dense (UD) networks,c'a"y in the 70-80 GHz E-band, and commercial equipment

the number of BSs deployed in a given area can be compar

dpased on highly directional antennas for transmission and

reception in this band?[]]-[24] makes it possible to realize

©2017 IEEE. Personal use of this material is permitted® MMWave fronthaul in practice. However, even at mmWave

but  republication/redistribution  requires |IEEE  pernussi See
http://www.ieee.org/publicationstandards/publications/rights/index.htmi
for more information.

This work was supported in part by the National UniversitySifigapore
under Research Grant R-263-000-B46-112.

R. G. Stephen is with the NUS Graduate School for Integrafie&nces
and Engineering, and also with the Department of Electricadl Computer
Engineering, National University of Singapore (NUS), Sipgre 117456 (e-
mail: reubenstephen@u.nus.edu).

R. Zhang is with the Department of Electrical and Computegi®ering,
NUS, Singapore 117583, and also with the Institute for lofom Research,
Agency for Science, Technology and Research, Singapor&3238-mail:
elezhang@nus.edu.sg).

frequencies, the total bandwidth available for the frontttan

be much less compared to that of commercial fiber links. For
example, current generation fronthaul equipment opegatin

the mmWave E-band can support rates of a few gigabits per
second (Ghps) over bandwidths of around 250 MHz, while

1A UD network can also be defined solely in terms of the BS dgnsit
which can be up tal0 — 50 BSs/km? [3].

2When the RRHSs have encoding/decoding capability, the letsveen the
RRHs and CP are also referred to as “backhaul”, as in comraiticellular
networks. However, we use “fronthaul”, following the termaiogy for CRAN.
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fiber-based fronthaul can typically support rates of sdvera
hundreds of GbpsZ[]-[27]. This means that the capacity
constraints imposed by the mmWave fronthaul are much more
stringent than in the case of wired fronthauls. On the other
hand, the mmWave fronthaul allows a more flexible allocation
of resources such as bandwidth and time among the R
in their communications with the CP, compared to a wir
fronthaul, where the capacity of each link is in general fixed.cutral
Since the service provider knows the locations of the RRHgcessor ,
and provides fronthaul infrastructure, and due to the lyighl | wmwave:
directional antennas used in mmWave frequencies, line-of- fronthaul
sight (LoS) communication is possible between the CP and (IDNA)
each RRH. However, since the free-space path loss at mmWave- »  Wircless
frequencies is much more severe compared to traditional (OFDMA)
microwave communication at lower frequencies, directiona

transmission is necessary to compensate for the path less ov

large distances, and also provides the additional advardghg Fig. 1. Schematic of OFDMA-based UD-CRAN with
reduced interference. Thus, although LoS communication caamWave fronthaul.

ensure an almost error-free communication between the CP

and each RRH, the capacity of the mmWave LoS channel to

each RRH can be different based on its distance from the %Bstinations in the downlink communication. In convengion

Whlchdca”f for Il'tst Jgd%ous use. Motzate_d ?ﬁ/ the pradt'iﬂesource allocation problems considered earlier for swth n
consigerations listed above, we consider in this paper & g, [29, [30Q], the destination receives multiple copies of

dl\élsmntr:n ulgglet accesi (IDMA)Iib?segRrr;mWave ILO’.““E‘“ e signal both from the source and the relays to maximize
where the ransmits 10 multipie S over Neir Loy o received signal-to-noise ratio (SNR). In contrast,his t

fchanrl;]eIT over ohrtgc;eg:r.]al rtllmedslots. -Thz Ea)ve:]agg rate”on er, we consider a joint TDMA/OFDMA resource allocation
frontt au t(.) eac by th 'Sépuf gerggﬁ >(ljtthe time a _Ct)tt oblem over both the mmWave fronthaul (the first hop) and
or trahsmission by the o the and the capacily fle wireless access links (the second hop), which is a new

the mmWave LoS link. . . .
o . nd more general design problem not yet considered in the
Most of the existing work on CRAN and coordinate iterature ¢ gn p y

transmission by multiple BSs considers narrow-band trans- . . . .
y P In particular, we consider a single cluster &f RRHs in

mission shared by multiple userg]f[16], [25]. However, )

the orthogonal frequency division multiple access (OFDM n OFDMA-rE)ased"Ut[r)]-CEQE W'tth orthotgonql S|Cs and h

based multiuser transmission is more appealing for the-hi users, where all the S and user terminals are eac
%wpped with a single antenna as shown in HigThe CP

tcf;r;)eu E\J/\?i?hu'tv\(/?fergagggll% ;\S Ir Se IZSS Zigggirrlfgtizlacihn a: nSS#E(I\)/er_lrst sends the users’ message bits to the RRHs via a mmWave
: ireless fronthaul shared among them using TDMA. On each

based cellular network with backhaul constraints is sulidi C. due to the limited wirel fronthaul ity | h
in [2€], [27]. In these papers, each BS could share user’ ue 1o the fimited wireless fronthaul capacity, in gaher

data with neighboring BSs on different sub-sets of syRnly a sub-set of the RRHs are scheduled to receive the mes-

channels (SCs), which are chosen heuristically, while r%geforone particular user from the CP, which then encaale th

centralized processing is considered. With centralizeat prmessage using OFDMA and cooperatively transmit it 1o the

cessing, a joint power and fronthaul rate allocation pmbleaSSIgned user. The joint transmission by the selected RRHs

is studied for the uplink transmission in an OFDMA-baseEIn each S.C Ieaqls to a higher coherent-combining (traqsmit
CRAN in [17], where each RRH performs scalar quantizatio eamforming) gain, anq hence helps increase the trangrms&
on each SC and forwards the quantized data to the CP Fg}e to the user assigned to the SC. However, this rate
- . . i . iImprovement must be supported by the fronthaul of all the
joint decoding. Unlike all the above mentioned prior worktth RRH ficioating in the ioint t . In additi

assume dedicated wired fronthaul/backhaul links that eohn '+ 1> Participating in the joint fransmission. in acddi |d)!ne

the RRHSs to each other or to the CP, we consider in this pa levable rate on each SC depends_ on the transmit power
a new setup of UD-CRAN with a mmWave fronthaul that i evgls a_lllocated by each of the transmlttllng RRHs, as well as
shared among the RRHs for communicating with the CP. eir wireless channels to the user assigned to the SC. This

focus on the downlink transmission in UD-CRAN and StUdtCl;]Segﬁ:ili foigabgfr\:v tjhoem'}'IrDel\jlzug;es:gor%?s\(;\?a\?g?rgr?;liﬂsasn d
the optimization for joint resource allocation over the TBM 9

based mmWave fronthaul and the OEDMA-based wireles PMA-based wireless transmission. The main results f thi
access to maximize the users’ weighted sum-throughput fréAPer are summarized as follows.

UD-CRAN \
cluster

the CP. o We study a joint resource allocation problem in UD-
In a broad sense, CRAN can also be viewed as a cooperative CRAN, including the fronthaul TDMA time allocation for
relay network P& where multiple relays (RRHSs) coopera- different RRHSs, the selected SCs and their transmit power

tively forward the signal from one source to one or more allocation for OFDMA transmission at different RRHs,



ACCEPTED PAPER 3

as well as the selected orthogonal SCs for each of thdistributed as”.

users to maximize their weighted sum rate (WSR) in the

downlink transmission. To the best of our knowledge, this Il. SYSTEM MODEL

work is the first that considers joint mmWave fronthaul We study the downlink transmission in a single UD-CRAN

and wireless access transmission optimization in a hybitlister consisiting of\/ single-antenna RRHs, anfd single-

TDMA/OFDMA network setup. This problem, howeverantenna users, as shown in Fig. Let M = {1,...,M}

is combinatorial and non-convex, and incurs an exponegienote the set of RRHs, and = {1,..., K} denote the

tial complexity of O ((KzM)N if a simple exhaustive set of users. We consider that the RRHs receive the users’

search of the optimal solution is conducted. Evidentlglata from the CP via mmWave communications by sharing a

this complexity is not practically affordable in a systen@iven spectrum of bandwidti” Hz centered at a frequency

with large values of\/ and/orN. of 73 GHz, using TDMA. The links between the CP and
« We thus propose a Lagrange duality based algorith@ach RRH are LoS, with a free-space path loss given by

which can achieve the optimal solution asymptoticall§9-7 + 24 log, (Dr,) dB [31], [37], where D,, in meters (m)
when the number of SCs is large, with a reduced cori$ the distance between the CP and the RRHWe further

plexity of O (NK2M). consider that all the RRHs encode their received data using
« We show that on each SC, the received SNR at the u$&rDMA and then cooperatively transmit to the users in the
under the optimal power allocation by the RRHs is gownlink. The wireless access transmission to the useestak
submodular set function of the set of selected RRHs ¢hace over a multipath channel of bandwidthMHz centered
that SC. Motivated by this result, we propose a greedy a frequency o2 GHz, which is equally divided intav or-
algorithm based suboptimal solution, with a reducelogonal frequency SCs following the Third Generation Part
complexity ofO (N K M?), which is shown to be able to nership Project (3GPP) Long Term Evolution-Advanced (LTE-

achieve close-to-optimal throughput performance und& standard £3). As the mmWave fronthaul and wireless
various practical setups by simulations. access transmissions are over different frequency bahds, t

. Finally, we compare the proposed solutions to oth&@nsmission between the CP and the RRHSs, and that between
benchmark schemes by simulations, which show that thé§e RRHs and the users, can take place simultaneously withou
can achieve significant throughput gains, thanks to tfterfering with each other.

new joint mmWave fronthaul and OFDMA transmission LetN = {1,..., N} denote the set of orthogonal SCs, and
optimization. let vy, indicate whether usek is assigned to S@, i.e.,
The rest of this paper is organized as follows. Section S if user k is assigned to S@
describes the system model of UD-CRAN with OFDMA- o 0 otherwise.

based wireless access and TDMA-based mmWave fronthaul.
.. . L - A T

The joint resource allocation problem for WSR maximizatioAlso definev,, £ [v1, -+ vkn] € {0,1}5*! as the
is presented in Sectidii and the proposed solutions are givetiSer association vector at SC According to OFDMA, each
in SectionlV. SectionV presents simulation results comparinC n € N is assigned to at most one user in downlink
the proposed solutions with other benchmark schemes irsterfi@nsmission, and thug,"v,, < 1, ¥n € N. Then, the set
of achievable sum rate. Finally, Sectiofi concludes the of SCs assigned to usér denoted byV; C N, is given by
paper. Ny = {n|uk7n = 1}, whereN; "N, =0, Vj #k, j,k e K.

Notation In this paper, scalars are denoted by lower-caseSince the mmWave fronthaul capacity for each RRH is

letters, e.g., while vectors are denoted by bold-face lowePractically limited, in general it can only receive the déda
case letters, e.gz. The set of real numbers non-negativ@ selected sub-set of the users from the CP, and then forward

real numbers and complex numbers are denotedRbyR.. them tp the selected users in the OFDMA—based downlink
and C, respectively. SimilarlyR**", Rf_xl and C**! denote transmlssm_n. As a result, each RRHtransml_ts only on the

the corresponding spaces ofdimensional column vectors, COrresponding sub-set of SCs that are assigned to the users
Forz € R, [2]" 2 max{z,0}. Also, [z] denotes the smallest WN0S€ data are received from the CP. Let

integer greater than or equal 10 and |z | denotes the largest 1 if RRH m transmits data on S@
integer less than or equal ta Forz € C, |z| > 0 denotes @mn =00 otherwise. (1)
the magnitude of: and Zz € [0, 27) denotes its phase angle.

For a vectorz, =™ denotes its transpose, afid|| denotes its Definea,, £ [a1, - aMm}T € {0,1}M*! as the RRH
Euclidean norm. Vectors with all elements equallt@and0 selection vector at each SC< N. Then, the sub-set of RRHs
are denoted byt ando0, respectively. Fore, y € RM*!, & = that transmit on SG: is given by

y denotes component-wise inequalities, i®;,> vy; Vi =
1,...,M.Inadditiondiag(z; --- ) denotesads x M An={m e Mlamn =1}, neN. 2)
diagonal matrix with diagonal elements givenby,...,x,. Thus, the RRHs ind,, cooperatively send the data to the user
For a finite setS, |S| denotes its cardinality artt* denotes the & assigned to S@, i.e., v, = 1. In the following two sub-

set of all subsets ofl. Finally, CA/ (0,02) denotes a circularly sections, we present the models for the wireless access and
symmetric complex Gaussian (CSCG) random variable withmWave fronthaul transmissions in detail, respectivelg. A
mean0 and variances2, and the symbok is used to mean illustration for them is also given in FidL.
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A. Wireless Access via OFDMA Proof: Please refer to appendix. ]
Let Rk = |Bimn| €Mmn denote the complex wire- Lemma?2.1indicates that on each S& for all RRHs with

less access channel coefficient to the user K, from RRH @m,n = 1, i.€., transmitting withp,,, , > 0, the achievable rate
m € M, on SCn € N. We assume that the magnitude§Y their cooperative transmission,, (a,, pn), is a jointly
of all the channel coefficient$y, m »|'s are known at the concave function over thep,,, ,’s. This is a useful property
CP, e.g., using appropriate training methodg][ To achieve We will utilize later in solving our proposed resource alition
coherent signal combining from all RRHs.ity, at the receiver Problem.

of the userk assigned to S@, the signal transmitted by RRH

m € M on SCn € Nj, can be written as B. mmWave Eronthaul

T = Omony/Dmme ™", meM, n€Ny ()  The CP transmits the users’ data to each of the RRHs over
wheres;,., ~ CA’(0,1) is the information-bearing signal that® LoS mmWave wireless fronthaul channel via TDMA, for a

is assumed to be Gaussian, for ugeon SCn € A, and raction of time0 < ¢, <1 for RRH m subject to

Pm,n > 0 denotes the power allocated by RRE on SCn. M

If am,n = 0, then RRHm does not transmit signals to any Z tm < 1. (7
user on SCz, andz,, », = 0. In this casep,,_,, should also be m=1

equal to zero, without loss of gengrality. FroB), (it can be | et R., > 0 denote the maximum fronthaul rate in bps,
seen that if the CP conveys the optimal power allocafign.  achievable on the mmWave fronthaul link from the CP to RRH
to RRH m that cooperatively transmits on S€< N, i.€., ,;, Then, the average rate at which RRkican receive data
with o, = 1, then this RRH additionally needs to knowom the CP over the mmWave fronthaul channel,jsR,,..

only the phase’hy, ., Of its channel coefficient to usér o the other hand, the total rate at which RRHtransmits
for downlink transmission. Thus, the CP is assumed to hay®ine users over alN SCs is given by

knowledge of the magnitudes of all the channel coefficients,

while each RRH needs to know the phases of the channel N K
coefficients to the users assigned to it, for the correspandi Z Am,n Z VenTkn (Cn, P) (8)
SCs. n=1 k=1

Let by = [han - h,“M,n}T € CM*1 denote the wherery, (c,,p,) is defined in 6). At each RRHm, the
complex channel coefficient vector from tli¢ RRHs to the average rate over the mmWave fronthaul needs to be no
userk on SCn. Similarly, letx,, = [xl,n me}T € smaller than that over the wireless access, i.e.,

CM*1 denote the vector of transmitted signals by #feRRHs N K
to the userk on an € Ny, with ea(T:h coj\n;g?nent defined ; p > Zam,nzyk,nrk,n (on,pn) Yme M. (9)
in (3), and letp, = [p1n -+ pumn] € RY™ denote the ot 1

transmit power allocation vector on Sfor the M RRHs.
Then, the received signal at the ugeon SCn € N}, is given

by

It can be easily shown that the constraints T &nd Q) are
both satisfied by all the RRHs: € M if and only if

T M 1 N K
Yn = by +2, neN, (4) - <1 10
SRR B 3% - X SO N
where z ~ CN(0,02) is the additive white Gaussian m=1 n=1 k=1

noise (AWGN), ando is the receiver noise power, whichotice that with a given feasible power allocatigp}, . .
is assumed to be equal at all users. The SNR on each QG r.sc associatiof,, },,. »» and RRH selectiof e, },,c v

n € Ny is thus given by which jointly satisfy the constraint inl(), the corresponding
. 2 TDMA time allocationt,, on the mmWave fronthaul can be
Vion (Qn, Pr) = ‘ fin®n obtained for each RRHh using the relation,
7 o? 2 1 N K
M T _ _ _
1 tm = 5— Z Qm,n Z Vi nTkn (anapn) ) m e M. (11)
= ﬁ Z ’hk,m,n’ am,n\/pm,n . (5) Rm n=1 k=1

m=1

_ _ o In the next section, we formulate the joint mmWave fronthaul
The maximum achievable rate in bits per second (bps) on §gd OFDMA downlink resource allocation optimization prob-

n € N, for userk is given by lem for the UD-CRAN.
B
Tk (Qtn, Pn) = = 1o 1+ 70 (0, Dn ,RGN. 6
kan ( Pn) N gQ( Veon ( p )) e (6) I1l. PROBLEM FORMULATION

Next, we present the following result on the concavity of the

FUNCEON 7% 1, (o, P ). We aim to maximize the WSR of all users, by jointly opti-

mizing the user-SC associatiofi, }, . ~» RRH-SC selections
Lemma 2.1. With given RRH selectiomy,,, 7% n (s, Pn) {cn},cn» @and power allocations of all RRHs at all SCs
defined in(6) is jointly concave with respect t{me,n}, Vm  {Pn},cn Subject to the wireless fronthaul constraint),
with oy, = 1. and the total power constraint at each individual RRH deshote
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by P, m € M. Letw, >0, k € K, denote the rate weight problem (L2) is given by

assigned to usét. Then, the problem is formulated as

I P L({Vnaanvpn}ne/\[a/\nu')
N K

K N kak,nrk,n (anapn)

maximize Z Wk Z VknTkn (O, Pn) (12)

{pn-,an-,l’n}ng_/\/

k=1 n=1 N M
subject to — (Z Z
M

I
HM
lng

K
ZVk nTkn anapn) -1
=1

m

(10) Im=1

N N
> Pmn < Pm YmeM (12a) Z

Pmn >0 YmeM, VneN (12b)
Amn € {0,1} VYmeM, Vne N (12c) =

M
L (Uny @y Py A ) £ A+ > fin Py (13)

MZS

T n=1 m=1
1'v, <1 VneN (12d) \vhere
vkn €{0,1} VEeK, VneN. (12e) K
Ln (Vna Oy Pn, /\7 IJ/) = Zwkyk,nrk,n (anapn)
k=1
Problem (2) is non-convex due to the integer constrairitdq M Cmm K
and (128, as well as the coupled variables in both the 2> R > VenThn (O, Pr)
objective function as well as the constraihf). An exhaustive m= =1
search over all possible user-SC associations and RRH-SC i (14)
- HmPm,n

selections require$) ((2MK)N operations, which can be

prohibitive for large values of\/ or N. Notice that even if The Lagrange dual funct|on is thus given by
the user association,, and the RRH selectiomx,, on each

SCn is given, the left-hand-side of constrairit(f is a non-  g(\, p) = max L ({Vn,an,pn, Frears /\,,u)
negative weighted sum of concave functions, (a.,p,) proan ey 15
according to Lemma&.1, and hence concave, which makes (15)
the constraint 10) still non-convex. Thus, probleml®) is s.t. (1209—(129.
non-convex even if the user-SC associations and the RRH-$fe maximization problem inl§) can be decomposed infg

selections are all fixed. parallel sub-problems, where each sub-problem correspiond
a single SCn € N/, and all of them have the same structure
given by
max Ly, (Vna Qn, Pn, A, /J/) (16)
Pn0n,Vn
IV. PROPOSEDSOLUTIONS st. pn =0 (16a)
a, € {0, 1}Mx1 (16b)
1T, <1 (16¢)
A. Optimal Solution v, € {0,1}5x1 (16d)

where L,, (Vy,, @, Pn,y A, o) is defined in (4).

Although problem {2) is non-convex, it can be verified Now let the user association on Se fixed ags,, = . If
that strong duality holds when the number of S€gjoes to ,, = 0, no user is assigned to SC In this case, sincg > 0
infinity, as it satisfies the “time-sharing” conditions avem andp, > 0, the objective of problemiE), as given in {4)
in [35]. As N s typically large in practice, we propose tois maximized by settingp, = 0, irrespective of the RRH
apply the Lagrange duality method to solve probleif) (by selectiona,,. Thus, if no user is assigned to S$Gthe power
assuming zero duality gaplet A\ > 0 denote the dual variable allocation over all RRHs is zero, as expected. Otherwige, le
associated with constraini@, andyu,, > 0, m € M, denote k, € K be the user assigned to SCso thatyk =1 and
the dual varlabl$s for the constraints 2. Also defineu = Djm = 0 Vk # ky,. Using this in (4), sub- problem 16) on
[ -+ par] € RYE. Then, the (partial) Lagrangian ofeach SCn can be reduced to the following problem

M

R o LRCRTED
o | e, Ry ) Ve (GsPn) = D fomrn
m=1

3We emphasize that the optimality of the proposed Lagrangditdibased
solution is in the asymptotic sense, for sufficiently larfye However, as (17)
shown in SectiorV, the duality gap is negligible folV = 128, and hence
the proposed solution is close to optimal for practical galof V. s.t. (163) and G‘Gb)’
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which is non-convex due to the integer constrairit§f on i.e., M = 1, the power allocation in1(©9) become$
a,, and the coupled variables in the objective. However, for a +

given RRH selectiorx,,, problem (L7) can be written as 9
s |_B (. _A\__7 (23)
b= puNIn2 \"* R ‘hA 20

kn,m

)\ amn
max Wi, — L anapn Mmpmna
Pnz=0 1

m=

which has the same form as the well-known water-filling
(18) solution [3€], but in general with different water levels on
different SCsn € N, which are determined by the usky,
wherer;, . (&,,p,) is the rate on S@ under RRH selection assigned to SG:, throughw;, . Also notice that the water-
&, with userk, assigned to SG, as defined in@). Then, level on SCn can be negative it; < A/R; in this case, no
the optimal power allocatiop,, that solves problemi1@) is Power should be allocated to sc’
given by the following proposition. From Propositiont.1, it can be seen that the optimal power
- . . allocation is zero whenever a particular RRRHis not selected
Proposmo_n 4.1 Leta,, = dn_ be fixed. Then, for givehand on scy, ie., if Gmn = 0, it implies thatp,,, = 0, as
p., the optimal power allocatiop,, on SCn for problem(18)  expected. However, the opposite is not necessarily trae, i.
is given by if it turns out thatp,, , = 0 for some given RRH selection

) &y, it cannot be inferred that,, , = 0 in the optimal RRH

&mn by selection. This is due to the fact that the power allocafign
Drn = T 5 given by (L9 depends on the entire RRH selectiés, and
o2u2, [kan (dn)} even ifp,, , = 0, it cannot be known beforehand whether this
" particular RRH selection and power allocation is the oné¢ tha
. [ip (Gn) G . (6 — 1} (19) maximizes the objective in1(). Thus, Propositiort.1 only
Nin2™ Fnn o gives the optimal power allocation when the RRH selection
] is known, and whem/ > 1, an exhaustive search over all
Vm e M, whereF, . (an), G, (o) are defined as possible vectorsy,, € {0,1}™ is required to find the RRH
selection and corresponding power allocation that max@miz
N M the objective in {7). When M = 1, however, the RRH
Fiom(an) = wp = A Z R (20)  selection on each SC is implicitly decided by whether the
m=1 " ) optimal power allocation given by2p) is zero or not.
M By For given dual variables\ and u, problem (L6) can be
G, o (an) = —_— (21) solved optimally using Propositioh1as follows. First, fix the
' m=1 7" Hm user on SCn ask, € K. Then, for each of the? possible
RRH selections, compute the optimal power allocatjn
Proof: Please refer to appendix B using (19), and choose the optimal RRH selectian, for

Proposition4.1 shows that for given user associatién the userk, as the one that maximizes the objective of
and RRH selectionx,, on each SCn, the optimal power problem (7) with the corresponding power allocatigf,
allocation has a threshold structure, which allocatespeveer given by (L9). Then the optimal user associatiery on SC
toallRRHs on SGuif F}, | (&n) G}, ,, (&) < (N1In2)/B. n can be found by choosing the usker that maximizes the
Notice thatFj  (a,) depends on the fronthaul ratés,,’s, objective of problem6), with its corresponding optimal RRH
while G, (an) depends on the wireless access chaselection and power allocation computed before, and dédnote

nel gains‘h,;mn 's. Otherwise, ifF} . (&) Gj, , (6) > byNdn anhdﬁg. | broblem forl?) is given b
(N In2)/B, the power allocation on each RRH € M, with ow, the dual problem forl(?) is given by

h»
Ptamn | which A28 o 900 ) (29

depends on the wireless access channel g%m on SCn which is convex and can be solved efficiently, e.g., using the
and the dual variablg,, correspondlng 0 the transmit powete”'pso'd method §7] to find the optimal dual variables* and
constraint {29 for RRH m. If &, = 0, i.e.,, no RRH is u#*. Then, the optlmal solution to probleni§) is given by
selected, thep,, = 0. When there are no fronthaul constraints,”», &, P»), computed as outlined above at the optimal dual

i.e., A = 0, the optimal power allocation inLg) reduces to  variablesA* and p*. The algorithm for solving probleng)
can thus be summarized as given in Table

L Finding the optimal RRH selection and power allocation
Buwg, G (@) -1 for a given user association involves a search @Jérvalues,
Nln2 Fknnm " and incurs a complexity ab (2). Subsequently, finding the
optimal user association involves a search aifeusers, and
(22) has a complexity ofO(K). Each of theN problems (6)

Gm,n = 1, is proportional to the rativ,, ,

Qm n

kyn,m,n

o2, (G5, (@]

Pmn =

For the special case when there is only one RRH in the clusterbrop the subscripin since M = 1.
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TABLE [: Algorithm for problem 0.2) 2) f is submodularf and onIy if [ ]

F(SUli}) = f(S) = f(SU{ig}) - F(SU{i}).

1: Initialization: A > 0, > 0 . L
2: repeat VS CV, i#j,i,j €V\S. (27)
3: for eachn € A/ do .. . . .
4 for each user association, do In addition, f is supermodulaif — f is submodular, and
5: Find optimal RRH selectiowi,, that maximizes 17) by f is modularif it is both submodular and supermodular.
searching oveR™ possible RRH selections, with optimal powe]
allocationp, given by (L9) Condition @6) implies that a monotone set function is non-
6: end for o - . decreasing when elements are added to a set. For a submodular
7. Find optimal user associatiah, that maximizes 16) with B . . . . )
optimal RRH selectiona., and power allocationp,, computed | function, condition 27) implies that the incremental difference
o in Tab(;efl in its value when a new element is added to a smaller
. ena for H H H H H
9: Update dual variables and p using the ellipsoid method set, Is in general, hlgher_ than the CorreSpondmg dlﬁmen_c
10: until ellipsoid algorithm converges to desired accuracy when the same element is added to a larger set. According

to Definition 4.1, it is readily observed that the functions
—F;, . (An) andG; (A,,) in (20) and Q1) are monotone,
while 7; . (Ay) is not. Similarly, it is easy to see fron27)

that bothFy,  (A,) andG; , (A,) are modular, while the

following proposition shows thag; (A,,) is submodular.

can thus be solved incurring a complexity of (K2M).
Hence, the dual functiog(A, ) in (15 can be computed
for each given pair o and p with an overall complexity of Proposition 4.2. The functiony;, (A;,) in (25) is submod-
O (NK2M). The complexity of the ellipsoid method to findular. 7
the optimal dual variables depends only on the size of the ]

Proof: Please refer to appendix ]

initial ellipsoid and the maximum length of the sub-gradsen Using (5), the objective function of problen {) under the

over the intial ellipsoid { /). Thus, the overall complexity of optimal power allocation can be expressed as a set function
solving problem (2) is effectively given byO (NK2M). For P P P

. oM i
small cluster sizes withl/ < 5, this complexity is not very f(An) : 27— R given by

high, and problem 12) can be efficiently solved using the a B - +
algorithm in Tablel. In the next section we introduce a lower fAn) = NFI% (An)log, | 1+ h%nm (An)}

complexity greedy algorithm that still performs very wel i ~ +

practical setups. {7’% (A")} 28)
G(An)

B. Suboptimal Solution and problem 17) can be expressed as the following combina-

) ) torial problem
Optimally solving the sub-probleml{) on each SC for a

fixed user association requires an exhaustive search over al max f(An). (29)
possible RRH selections, which @ (2*/). To avoid this, we o " _

propose another way to solve problefii7) suboptimally in FOr maximizing a monotone, non-negative submodular func-
this sub-section, by using a greedy algorithm insteadt,Fir§on under a cardinality constraint, it is well known that
we observe that since g) gives the optimal power allocation@ greedy procedure with linear complexity can achieve an
for a given set4,, of RRHs that are selected to transmit o@bjective value at leastl — 1/e) of the optimal 9. For

SC n, substituting {9) in (5), the optimal SNR on SG for unconstrained maximization of a non-monotone, non-negati

a non-zero power allocation can be expressed in terrn$nof submodular fUnCtion, deterministic and randomized atgms
as providing reasonable worst-case guaranteés respectively,

are known {(]. However, unlike the optimal SNR;  (A,)
(A,)—1.  (25) in (25), the objective functiorf (A,,) of problem @9) cannot
be shown to be submodular; while neithgr . (A,) in (29
Thus,¥;, , (An) 2™ R in (25 is a set function that or f(A4,) in (28) are monotone or non-negative.
maps the set of all subsets of the set of RRM$§ to a Nevertheless, motivated by the submodularityf  (A»)
real number. The set functions;  (A,) : 2M 3 R and as shown by Propositiof.2, we propose a suboptimal greedy
G: (An) : 2M — R, are similarly expressed in termsalgorithm with quadratic complexity in the number of RRHs
of A, using R0) and @1). Next, we introduce the following M to solve problem Z9) approximately. We construct a
definitions pertaining to set functions. suboptimal setd,, for problem @9) using a greedy algorithm
as follows. At the start of an iteratiof let A, ; denote the
set of selected RRHs on S and f; denote the objective
value of problemZ9) given by @8). Initially, we assume that
1) f is monotonef and only if A,1 =0, andf; = 0. Then, at each iteration=1,..., M,
we first find an RRHj; € M\ A, ;, which is not currently
f(S)Sf(T) ¥V§SCTCV. (26)  selected, and when added to the current set of RRliJs,

B

= Wiz hen An) G

%cn-,n (-An)

En,n

Definition 4.1. Let V denote a finite set andl: 2V +— R be
a real-valued set function. Then
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gives the maximum value of the objective iB8 among all of the greedy algorithm and the exhaustive searchdgis

the currently un-selected RRHs, i.e., in practical scenarios. This can be understood as follows. T
. = first term in the objective of sub-probleri?) is the product
Ji _Zir/ig/f\rjﬁi F(AniU{E}). (30)  4f a weighting factor and the achievable rate on the SC.

As more RRHs are chosen to transmit on a given SC, the

Then, if RRH j; improves the current maximum objectiv, eignting factor decreases in linear steps, while the amee
value f;, we add it to the current set of selected RRHS..  j; the rate on each SC is only logarithmic. Intuitively, this

Thatis, if implies that selecting the first few RRHs correctly is crlicia
f(-An,i U {ji}) > fi (31) in maximizing the objective of problent{), for which even
. a greedy search may be sufficient, thus implying the good
holds, the set of selected RRHSs is updatedias 1 = AniU performance of the greedy algorithm. Thus, in practice, the
{j:}, and the current maximum objective value is updated f8int resource allocation probleni?) may be solved close
fior = fN(An,iU{ji})- (32) to optimally at an even lower cqmplexity aD(NK M?)

_ _ _ _ compared t@ (N K2M) for exhaustive search over the RRHs
This procedure is continued until no RRf{ can be found gn each SC.
which satisfies31), or there is no more remaining RRH to be
searched, i.es = M. If the algorithm stops at iteratioi) the
final suboptimal RRH selection is given by, = A,, ; and the
corresponding power allocation can be obtained fr&6).(An For the simulation setup, we consider a clusteAbRRHs
outline of the above algorithm is given in Takle From 30), and K users, both of which are distributed uniformly within

a circular area of radius00 m, and whose center is situated

TABLE II: Greedy algorithm for problem1(7) at a distance o km from the CP. The mmWave wireless
fronthaul of bandwidti? Hz and centered at a frequency of
73 GHz, is shared among the RRHs via TDMA. The channel

V. SIMULATION RESULTS

1. Initialization: lterationi = 1, set of selected RRHsA,, 1 = 0, from the CP to each RRH is LoS, with the path loss given
maximum objective valug; = 0 ' .

2: for eachi — {M dfl by 69.7 4+ 24logy, (Dy,) dB [31], [32). The CP is assumed

3:  Find the RRHj; € M\ A, ;, according to 80) to transmit at a fixed power of6 dBm [41] with an antenna

4: if j; satisfies condition31) then gain of27 dB [ ]

5: Update selected set ab, 41 = An,s U {ji} . ) .

6: Update maximum objective valug.; according to §2) The wireless access .channel is centered .at a frequency of

7. else 2 GHz and has a bandwidi = 20 MHz, following the 3GPP

8:

Stop and retrn RRH sed, = An,; and corresponding| | TE-A standard $3, and is divided intoN = 128 SCs using
power allocation given byl©) . .
end if OFDMA. The combined path loss and shadowing (large-scale
- end for fading) is modeled a88 + 30logy, (dk,n) + X in dB [41],
wheredy, ,, in meters is the distance between the RRHand
userk, and X in dB is the shadowing random variable, which
it can be seen that each iteratiorof the greedy a|gorithm follows a zero-mean Gaussian distribution with a standard
involves a search over the s#tl \ A,, ;, which has sizel — deviation of 6 dB. The multipath channel for the wireless
(i — 1), wherei < M. As there can be at mogt iterations, access is modeled using an exponential power delay profile
the greedy algorithm requireE?il M —i+1= M(M+ With [N/4] taps, and the small-scale fading on each tap is
1)/2 iterations in the worst case, which is 6f(1/2). Thus, assumed to follow the Rayleigh distribution. The maximum
using the greedy algorithm to solve problem7) on each fransmit power at each RRH is setBs = 24 dBm,m € M,
SC reduces the overall complexity of solving problet)(to and an antenna gain afdB is assumed, following the 3GPP
O (NKM?), LTE pico cell parameter specifications1]. The noise power
Notice that the greedy algorithm would recover the optim&Pectral density is-174 dBm/Hz with a noise figure of dB
solution to problem 17) in cases where the optimal RRHat all the receivers. For simplicity, we consider maximizat
selection consists of at most two RRHs. However, in gener8f, the sum rate in problemlp), i.e., the user rate weights
for given dual variables\ and p, it gives only a suboptimal wx =1, Vk € K, and the values are averaged oeandom
solution to problem7). This implies that convergence to thenetwork layouts an@0 channel realizations for each layout.
optimal dual variables* and u* cannot be guaranteed if theWe compare the performance of the following benchmark
greedy algorithm of Tablél is used in Table of the overall Schemes with the proposed solutions in Sectién
algorithm for problem 12) given in Tablel. In this case, if =« Benchmark scheme 1: Single RRH selectionin this
the power allocation obtained is not feasible, it can be made scheme, only one RRH is selected on each SC, and there

G w©

feasible by scaling each of the power constraints liag). is no coherent-combining gain due to joint transmission
Similarly, if the constraint in 10) is not satisfied, the RRHs by more than one RRHSs. This is achieved by solving
can be de-selected in increasing order of their contributio  problem (2) with the following additional constraints on
to the rate on each SC, untill@ is satisfied. However, the RRH selections,

in SectionV, it is shown through extensive simulations that

.
there is only a negligible difference between the perforcean Tap <1 VneN. (33)
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The sub-problem 1(7) on each SC is then solved by of users assigned to an RRH, the effective worst-case
searching for the best amoig RRHs that can maximize complexity of this scheme is given by (N Kyax)-

the objective in {7), under the optimal power allocationgoth benchmark schemes 1 and 2 require the knowledge of
given by @3). The optimal dual variabled* and u* for || the channel gains at the CP, where the optimization is
this new problem are found using the algorithm in Table performed, and thus, their overhead is same as that for the
as before. The overall complexity in this case is thysroposed schemes. On the other hand, for benchmark scheme
reduced toO (NK M). 3, each RRH needs to know only the channels to its own

« Benchmark scheme 2: Equal power allocationin this  associated users, and the optimization can be performed at
scheme the transmit power allocations at all the RRHS$;ch RRH.

are fixed asp,,., = Pn/N Vm € M,n € N. With

this power allocation, probleml1p) is solved for the 120
optimal RRH selectiong«,,} and the user associations
{vn}. The sub-problem(7) is solved by exhaustively
searching over the™ RRH selections. As the transmit
power allocations are fixed, the optimal dual variakfe

100

corresponding to the constraint iid) can be found by ;’52 8 * 2,“;10“5‘;%?;2‘;“;‘;

a simple bisection search over the intergal< A < =) O Proposed, suboptimal

max,,cr Rm. However, the worst-case complexity of o 60 e penonmark scheme 1

this scheme is stilD (NK2M). g — & - Benchmark scheme 3
. Benchmark scheme 3: Conventional OFDMA In this 2 40 S S e B 4

scheme, we consider a conventional OFDMA-based sy?— o

tem, where each RRhh is pre-assigned a fixed set of
SCs denoted bys,, C N, where|S,,| = |[N/M]. It is
assumed that each user is associated to its nearest RRH. |4
Thus, each RRHn € M transmits to the set of users o 20 20 m 20 100 120
K., C K associated to it over the set of SGs,, and Fronthaul bandwidth W (MHz)
only one RRH transmits on each SC. As conventional .
OFDMA systems are typically assumed to have infinitg'd- 2: Sum _rate (Mbps) vs. fronthaul bandwid#i (MHz)
fronthaul capacity, in order to illustrate the effect of dor system withM =6, K = 8, B = 20 MHz and V = 128.
shared fronthaul, we assume that the CP transmits to each
RRH for an equal amount of time over the TDMA-based Fig. 2 plots the sum rate achievable by the various schemes
mmWave fronthaul, i.e.,, = 1/M, Vm € M. Then, against the mmWave fronthaul bandwiditi. The dual up-
the fronthaul time-sharing constraint ihQ) is decoupled per bound given by the optimal value of the dual function
into individual constraints at each RRH, given by g (A*,u*) is also shown for comparison. From Fig, it
1 1 can be observed that the sum rate achieved by the proposed
yo Z Z Vi Tk (Pmon) < e Ym € M, optimal solution is nearly equal to the dual upper boundsthu
™ P ESm kEKm validating its optimality for largeV. Moreover, the proposed
(34) suboptimal solution of lower complexity introduced in Sec-
tion IV-B is observed to perform almost as well as the optimal
solution that requires an exhaustive search to find the @btim
B |hk |2p RRH selection. This can be attributed to the submodulafity o
T (Pmn) = v logy | 14+ —"—"" | (35) the SNRoneach SC under the optimal power allocation, which
g implies that selecting the best few RRHs is most important
o in achieving the major part of the coherent-combining gain
Note thatp,,, = 0 Vn ¢ Sn,Vm € M. The joint on each SC, and finding the optimal RRH selection may not
resource allocation probleniZ) is then decoupled into always be necessary, as explained in Sectié. Thus, in
M parallel joint power allocation and user associatiogactical deployments with a moderate number of RRHSs, a
problems, one at each RRH. The optimal solution to thigose to optimal solution can be obtained at a much lower
problem for each RRH can be found using the algor'th%mplexity of O (NKMQ).
in Table I. Since the RRH-SC selections are already when the fronthaul bandwidti?’ is small, benchmark
fixed, the optimization is only over the power allocationcheme 1 that selects only the best RRH on each SC combined
and the user-SC association at each RRH. The optimgin optimal power allocation, performs almost as well as
power allocation is given by2(), and the user on eachie gptimal solution. In this case, the system is primarily
SC can be found by searching over tfi€,,| possible |initeq by the fronthaul, and only one or very few RRHSs
users associated with each RRH Thus, in this case, can pe supported by the fronthaul on each SC. However,
M problems must be solved in parallel, each with g6 hroposed solution outperforms benchmark scheme 2 that
worst-case complexity given by (L%J |’Cm|)- Thus, if optimally selects RRHs under equal power allocation on all
Kmax = maxmenm |Kpn| denotes the maximum numberSCs at all values of¥/, showing the importance of optimal

20(®

where
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power allocation. At higher values &%, almost all the RRHs 10 Dual upper bound
are selected on all the SCs, providing a coherent-combining 1gol| * Proposed, optimal @
gain on each SC, which is not achieved by the single RRH O Proposed, suboptimal
F| < Benchmark scheme 1 Q .

selection. However, the single RRH selection can still fitev o Benchmark scheme 2
a diversity gain, since the best RRH is selected on each SC. 80| | —& - Benchmark scheme 3
Also notice that the performance of benchmark scheme 2 |
remains constant fdi’ larger thar80 MHz, which is expected <
since benchmark scheme 1 selects only one RRH on eagh *°[
SC, and increasin§l/ does not help in achieving a coherent-g 50
combining gain on any SC. On the other hand, even with equal
power allocation, the performance of benchmark scheme 2
increases slightly with increasindy’, since in this case, more 30
and more RRHs can be selected on each SC. 20

10%=
120 1 2 3 4 5 6 7 8

Dual upper bound -
% Proposed, optimal Number of RRHs M

| O Proposed, suboptimal H .
1001 Benchmark scheme 1 Fig. 4: Sum rate (Mbps) vs. number of RRHA$ for system

—x— Benchmark scheme 2 with W = 100 MHz, K = 4, B = 20 MHz and N = 128.

—& - Benchmark scheme 3 @ &/
&R Y %

o]
o

single RRH selection.
In summary, Figs2—4 show the sum-rate gains achieved by
4 the proposed solutions compared to other benchmark schemes
_a In particular, the sum rate achieved by the proposed salsitio
is more than double of that of the conventional OFDMA with

[o2]
o

Sum rate (Mbps)
5

5 X . .
20 1 equal time allocation on the fronthaul, showing the advgata
- of joint dynamic resource allocation over the mmWave fron-
ot ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ thaul and wireless access achieved by the proposed ceattali
1 2 3 4 5 6 7 8 9 10 .
Number of users K SChedu“ng-

Fig. 3: Sum rate (Mbps) vs. number of usdksfor system
with W = 50 MHz, M = 5, B = 20 MHz and N = 128. VI. CONCLUSION

In this paper, we have studied the downlink transmission

Fig. 3 shows the variation of the sum rate with the numbén a new OFDMA-based UD-CRAN enabled by the mmWave
of users,K. Here, the fronthaul bandwidti/ = 50 MHz, fronthaul. Specifically, we considered a system where tlee us
and the number of RRH&7 = 5, are fixed. The performanceassigned on any frequency SC can potentially be served by
comparison of the various schemes is observed to be camsisteultiple RRHs, subject to the fronthaul rate constraint. We
with that in Fig. 2, except for the case of low values offormulated a joint fronthaul time allocation, RRH-SC s¢iec
K, where benchmark scheme 2 with equal power allocatiemd power allocation, and user-SC association problem to
performs slightly better than benchmark scheme 1 that tselemaximize the WSR of users. Although the problem is com-
only the best RRH on each SC. This implies that when thnatorial and non-convex in general, we proposed efficient
number of users is small compared to the number of RRH®lutions based on the Lagrange duality technique and greed
i.e., the network is dense in the RRHs, achieving a coheresgarch.
combining gain even with equal power allocation can be bette Through numerical simulations, we have shown that both
than selecting only the best RRH on each SC. the proposed solutions achieve the optimal throughput per-

Fig. 4 shows the variation of the sum rate with the numbdormance, and significantly outperform the other benchmark
of RRHSs, M. Here, the fronthaul bandwidti’ = 100 MHz schemes considered, under a practical UD-CRAN setup with
and the number of user® = 4 are fixed. Again, the trends mmWave based wireless fronthaul. In particular, our pro-
are similar to Figs.2 and 3. Observe that whe/ = 1, posed solutions for the OFDMA-based UD-CRAN can achieve
both the proposed schemes and benchmark schemes 1 thnoughput gains of more than 150% over a conventional LTE-
3 are equivalent. AsM is increased, the performance ofA network where each user is associated with a single RRH/BS
the conventional OFDMA with benchmark scheme 3 remaimsmd the mmWave fronthaul bandwidth is equally divided
more or less the same, since both an equal time allocat@mong the RRHs. Thus, the proposed OFDMA-based UD-
on the fronthaul and an equal division of SCs on the accaS8RAN with mmWave fronthaul is a cost-effective and scalable
are performed, which cannot exploit the diversity offergd barchitecture for future 5G networks, and when combined with
larger M. Also, similar to Fig.3, as M becomes much larger our proposed resource allocation algorithms, it can pmvid
than K, the performance of benchmark scheme 2 with equsignificant throughput gains, especially over the currérL
power allocation approaches that of benchmark scheme 1 witmetworks.
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APPENDIXA
PROOF OFLEMMA 2.1

Without loss of generality, assume,, = 1, andp,, , >

11

a concave and non-decreasing function, and hence, is also

jointly concave inp,, [47]. The proof of Lemma2.1 is thus
completed.

0, Ym € M, since otherwise we could equivalently define

Trn (0, Pr) Dy excluding the RRHs for whichk,, ,, = 0 or
DPm,n = 0 from the summation ing). Consider the function

2

M
fe)=|(> vom| ., p=o0 (36)
m=1

The second order partial derivatives ffp) are given by

2f(p) _ 1 S
3piapj - 2\/1ij 2 7é Js ] € M (37)
fp) _ 1 1 - :

B = o W 2 /Dm e M. (38)

Using 37) and @8), the Hessian matrix of (p) can be written

)

(39)

3

p M2

M

1 (s

Vif(p) =5 |wu’ — | D Vim | diag (p1 :
m=1

whereu £ [1/,/p1 1/,/pM}T. Then, for any vector

v € RM*L we have

vV f(p)v

3

)
(40)

.
1/4 Mx1
p]\é} € RY™,

1 7.\’ - T4 -3
o (COR PO IO

Now define the vectora £ [p}/‘l

:
g on/pyl] € RM*L. Then,

using @0) and the Cauchy-Schwarz inequali(szb)2 <
llal/® ||b]|%, it can be verified thatTV2f(p)v < 0, Yo €
RM>1 which implies that the matriXV2f(p) is negative
semidefinite {2]. Hencef(p) is jointly concave inp. Setting
a, = 1 in (5), the SNR on SG: € N, can be written as

and b 2 [vl/p3/4

M |hkmn|2 v
Yen (n) = | Do | 5 Pmn
m=1
—f (diag( |hk;2’n|2 |hfc,o_1v§n|2 )pn)

(41)

wheref(p,,) is defined in 86). Sincef(p,,) is jointly concave
in p,,, and from @1), v, (pr) is the composition off (p.,)
with a linear transformation op,,, it follows that -~ ,, (p,)
is also jointly concave inp,,. Now, the logarithm function
is concave and its extended value extension on the real
is non-decreasing. Thusy ,, (p,) = £ log, (14 Yk,n (Pr))
is the composition of the concave function , (p,) with

APPENDIXB
PROOF OFPROPOSITION4.1

Consider the following two cases based on whether the
factor Fy, (&) defined in @O) is either greater than zero,
or less than or equal to zero, respectively.

A. Case 1:F},  (G,) <0

In this case, since; (&, pr) is jointly concave inp,,
according to Lemma.1, it follows that the objective of prob-
lem (18) is jointly convex inp,. Thus, problem18) is non-
convex under this condition. However, sirvqg“n (G D) >
0, u = 0, andp,, > 0, it implies that for any non-zero power
allocationp,, # 0, the objective of problemi@) is strictly
negative, while the objective is zero fgr, = 0. Thus, the

70ptimal power allocation for problenil®) in this case is to
allot zero power on all RRHs, i.ea, = 0.

B. Case 2:F}, , (&,) >0

In this case, the objective of problerdj is jointly concave
in p,, asr; ., (&, py) is jointly concave inp, according
to Lemma2.1 Thus problem 18) is convex, which implies
that there exists a uniqug, > 0 that attains the maximum
of the objective in {8). Taking the derivative of the objective
in (18) with respect to the power allocation variablg,,, for
each RRHi € M, and setting it equal to zero gives

(42)

Note that ¢2) must be satisfied by each of the optimal power
gllocationsgam on RRH: € M. The received SNR at the user
k,, corresponding to this optimal power allocatipp is given

by

A ~ ~
’nyn,n = ’nyn,n (anapn)

M
S
o2 kn,m,n

m=1

line

Qm n

V/ Pm,n

(43)
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Then, using 43) in (42), re-arranging and squaring, thewhich after rearrangement gives

optimal power allocation can be written as 1B
2 F(AU{z‘})G(AU{i}):F(A)G(A)+ﬁF(A)
M . g g
~ B Qm, n Ven,n 2
- . ' ns A Alh;
Pin =\ N2 | ¥k AZI Ron (1+-y )2 -2 GA) - 2' 1|%. (50)
m= ffmn i 14l
a ln 2 Thus, the incremental difference in the value of the product
ST an;-,n CieM. (44) F(A) G (A) when RRH: is added toA is given by
o £
Hi F(AU{i}) G (AU{i}) — F(A) G (A)
Substituting the value gf; ,, from (44) for eachi € M in (43), |h-|2 A\ \ |h-|2
the optimal SNR at the user must satisfy the relation = GQ—ZMF (A) — RlG (A) — R (51)
2
B Mo 5. Similarly, the incremental difference when the same RRHl
Viwn = | o5 | Wi A Z };”" fn___ added to a larger setl U {j} can be obtained by replacing
n m=1 "™ (1 + %n_n) the setA with AU {j} and the setd U {i} with AU {3, j}
, ' in (51), which gives
MG (M 45) F(AU{i,j}) G (AU {4, j}) —-F(AU{j}) G (AU}
m=1 U2Nm |h | A A A |hi|2 52
FAUGY) - 5 GAUEY - 5 (62

Since all the quantities in4) are non-negative, taking square = (A u{i})G (AU {z}) —F(A)G(A)

roots on both sides and re-arranging using the definitiafs ( 9 2

and Q1) yields [ Al A ] (53)
UQuiRj GQMjRi

~1/2 B . A N
T [1 FVhn = Fina b (@) G (@) | =0 b 4G ) @ (AU () = FA) G (A), (54)
46
o _ (46) where 63) follows by rearranging¥2) and using $1), and the
The above implies that eithe, | =0 or last inequality $4) follows since the term in the parentheses
B in (53 is non-negative. ThusF (A) G (A) satisfies condi-

Yo = meg o (an) Gy (6) — 1. (47) tion (27), and is hence submodular, which implies thdtA)
- 02 no

) in (25 is submodular. This completes the proof of Proposi-
If %, =0, then from {¢4), it follows thatp, = 0. Thus, {jon 4.2

for a non-zero power allocation, we requifg , > 0, which
from (47), translates to the condition, '
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