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Abstract—Ultra-dense (UD) wireless networks and cloud radio
access networks (CRAN) are two promising network architec-
tures for the emerging fifth-generation (5G) wireless commu-
nication systems. By jointly employing them, a new appealing
network solution is proposed in this paper, termed UD-CRAN.
In a UD-CRAN, millimeter-wave (mmWave) wireless fronthaul is
preferred for information exchange between the central processor
and the distributed remote radio heads (RRHs), due to its
lower cost and higher flexibility in deployment, compared to
fixed optical links. This motivates our study in this paper on
the downlink transmission in a mmWave fronthaul enabled,
orthogonal frequency division multiple access (OFDMA) based
UD-CRAN. In particular, the fronthaul is shared among the
RRHs via time division multiple access (TDMA); while the
RRHs jointly transmit to the users on orthogonal frequency sub-
channels using OFDMA. The joint resource allocation over the
TDMA-based mmWave fronthaul and OFDMA-based wireless
transmission is investigated to maximize the weighted sum rate
of all users. Although the problem is non-convex, we propose
a Lagrange duality based solution, which can be efficiently
computed with good accuracy. To further reduce the complexity,
we also propose a greedy search based heuristic, which achieves
close to optimal performance under practical setups. Finally,
we show the significant throughput gains of the proposed joint
resource allocation approach compared to other benchmark
schemes by simulations.

Index Terms—Cloud radio access network, orthogonal fre-
quency division multiple access, resource allocation, ultra-dense
network, millimeter-wave fronthaul.

I. I NTRODUCTION

T HE EXPLOSION of wireless data traffic in recent years
has led to a demand for a 1000-fold increase in the

capacity of the future fifth-generation (5G) wireless commu-
nication networks [1]. To achieve this end, increasing the
number of cellular base stations (BSs) deployed to serve a
given area, also known as network densification, is foreseen
to be necessary [1], [2]. In such ultra dense (UD) networks,
the number of BSs deployed in a given area can be comparable
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to, or even exceed the number of users [1], [2].1 On the
other hand, a cloud radio access network (CRAN), where
the conventional BSs are replaced by low-power and low-
complexity remote radio heads (RRHs) that are coordinated
by a central processor (CP), provides a new cost-effective way
to achieve network densification [1]. In CRAN, joint signal
processing for a cluster of RRHs and their served users can
be performed at the CP, which leads to increased spectral
and energy efficiency, via centralized resource allocation[4]–
[17]. In order to enable CRAN, a cluster of RRHs need
to communicate with their associated CP for information
exchanges via high-speed links called the fronthaul. The RRHs
can be either simple relay nodes without encoding/decoding
capability, or can be similar to the BSs in conventional cellular
networks with baseband processing capability [18]. In this
paper, we focus on the downlink transmission in a CRAN,
where the CP forwards the user messages to the RRHs via the
fronthaul,2 while the RRHs decode, and then re-encode and
cooperatively transmit the information to the users.

Combining the idea of network densification with cen-
tralized joint processing leads to a powerful new network
architecture that can support wireless connectivity of ultra
high throughput, termed UD-CRAN [19]. Traditionally, the
fronthaul links in CRAN are provisioned using optical fibers
or high-speed Ethernet, with each RRH having a dedicated link
to the CP. However, in UD-CRAN, where the RRHs are large
in number and may be at locations that are difficult to reach
by laying fibers or wires, providing such dedicated wired links
between individual RRHs and the CP is not always feasible.
Thus, to achieve practically scalable cost and complexity,a
millimeter wave (mmWave) wireless fronthaul is desirable for
UD-CRAN, as it is cost-effective, flexible and easier to deploy
compared to wired fronthauls [20], [21]. The availability of
largely unused bandwidth in the mmWave frequencies, espe-
cially in the 70–80 GHz E-band, and commercial equipment
based on highly directional antennas for transmission and
reception in this band [20]–[24] makes it possible to realize
a mmWave fronthaul in practice. However, even at mmWave
frequencies, the total bandwidth available for the fronthaul can
be much less compared to that of commercial fiber links. For
example, current generation fronthaul equipment operating in
the mmWave E-band can support rates of a few gigabits per
second (Gbps) over bandwidths of around 250 MHz, while

1A UD network can also be defined solely in terms of the BS density,
which can be up to40 − 50 BSs/km2 [3].

2When the RRHs have encoding/decoding capability, the linksbetween the
RRHs and CP are also referred to as “backhaul”, as in conventional cellular
networks. However, we use “fronthaul”, following the terminology for CRAN.
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fiber-based fronthaul can typically support rates of several
hundreds of Gbps [20]–[22]. This means that the capacity
constraints imposed by the mmWave fronthaul are much more
stringent than in the case of wired fronthauls. On the other
hand, the mmWave fronthaul allows a more flexible allocation
of resources such as bandwidth and time among the RRHs
in their communications with the CP, compared to a wired
fronthaul, where the capacity of each link is in general fixed.
Since the service provider knows the locations of the RRHs
and provides fronthaul infrastructure, and due to the highly
directional antennas used in mmWave frequencies, line-of-
sight (LoS) communication is possible between the CP and
each RRH. However, since the free-space path loss at mmWave
frequencies is much more severe compared to traditional
microwave communication at lower frequencies, directional
transmission is necessary to compensate for the path loss over
large distances, and also provides the additional advantage of
reduced interference. Thus, although LoS communication can
ensure an almost error-free communication between the CP
and each RRH, the capacity of the mmWave LoS channel to
each RRH can be different based on its distance from the CP,
which calls for its judicious use. Motivated by the practical
considerations listed above, we consider in this paper a time
division multiple access (TDMA)-based mmWave fronthaul,
where the CP transmits to multiple RRHs over their LoS
channels over orthogonal time slots. The average rate on the
fronthaul to each RRH is thus determined by the time allotted
for transmission by the CP to the RRH and the capacity of
the mmWave LoS link.

Most of the existing work on CRAN and coordinated
transmission by multiple BSs considers narrow-band trans-
mission shared by multiple users [4]–[16], [25]. However,
the orthogonal frequency division multiple access (OFDMA)
based multiuser transmission is more appealing for the high-
throughput demanding wireless networks such as 5G. For the
case with wired backhauls, BS coordination in an OFDMA-
based cellular network with backhaul constraints is studied
in [26], [27]. In these papers, each BS could share user
data with neighboring BSs on different sub-sets of sub-
channels (SCs), which are chosen heuristically, while no
centralized processing is considered. With centralized pro-
cessing, a joint power and fronthaul rate allocation problem
is studied for the uplink transmission in an OFDMA-based
CRAN in [17], where each RRH performs scalar quantization
on each SC and forwards the quantized data to the CP for
joint decoding. Unlike all the above mentioned prior work that
assume dedicated wired fronthaul/backhaul links that connect
the RRHs to each other or to the CP, we consider in this paper
a new setup of UD-CRAN with a mmWave fronthaul that is
shared among the RRHs for communicating with the CP. We
focus on the downlink transmission in UD-CRAN and study
the optimization for joint resource allocation over the TDMA-
based mmWave fronthaul and the OFDMA-based wireless
access to maximize the users’ weighted sum-throughput from
the CP.

In a broad sense, CRAN can also be viewed as a cooperative
relay network [28] where multiple relays (RRHs) coopera-
tively forward the signal from one source to one or more

SCs

RRH m

User k

n

Central
Processor

Wireless
access
(OFDMA)

UD-CRAN
cluster

mmWave
fronthaul
(TDMA)

Fig. 1: Schematic of OFDMA-based UD-CRAN with
mmWave fronthaul.

destinations in the downlink communication. In conventional
resource allocation problems considered earlier for such net-
works [29], [30], the destination receives multiple copies of
the signal both from the source and the relays to maximize
the received signal-to-noise ratio (SNR). In contrast, in this
paper, we consider a joint TDMA/OFDMA resource allocation
problem over both the mmWave fronthaul (the first hop) and
the wireless access links (the second hop), which is a new
and more general design problem not yet considered in the
literature.

In particular, we consider a single cluster ofM RRHs in
an OFDMA-based UD-CRAN withN orthogonal SCs and
K users, where all the RRHs and user terminals are each
equipped with a single antenna as shown in Fig.1. The CP
first sends the users’ message bits to the RRHs via a mmWave
wireless fronthaul shared among them using TDMA. On each
SC, due to the limited wireless fronthaul capacity, in general
only a sub-set of the RRHs are scheduled to receive the mes-
sage for one particular user from the CP, which then encode the
message using OFDMA and cooperatively transmit it to the
assigned user. The joint transmission by the selected RRHs
on each SC leads to a higher coherent-combining (transmit
beamforming) gain, and hence helps increase the transmission
rate to the user assigned to the SC. However, this rate
improvement must be supported by the fronthaul of all the
RRHs participating in the joint transmission. In addition,the
achievable rate on each SC depends on the transmit power
levels allocated by each of the transmitting RRHs, as well as
their wireless channels to the user assigned to the SC. This
thus calls for a new joint resource allocation and transmission
scheduling in both the TDMA-based mmWave fronthaul and
OFDMA-based wireless transmission. The main results of this
paper are summarized as follows.

• We study a joint resource allocation problem in UD-
CRAN, including the fronthaul TDMA time allocation for
different RRHs, the selected SCs and their transmit power
allocation for OFDMA transmission at different RRHs,
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as well as the selected orthogonal SCs for each of the
users to maximize their weighted sum rate (WSR) in the
downlink transmission. To the best of our knowledge, this
work is the first that considers joint mmWave fronthaul
and wireless access transmission optimization in a hybrid
TDMA/OFDMA network setup. This problem, however,
is combinatorial and non-convex, and incurs an exponen-
tial complexity ofO

(

(

K2M
)N

)

if a simple exhaustive
search of the optimal solution is conducted. Evidently,
this complexity is not practically affordable in a system
with large values ofM and/orN .

• We thus propose a Lagrange duality based algorithm,
which can achieve the optimal solution asymptotically
when the number of SCs is large, with a reduced com-
plexity of O

(

NK2M
)

.
• We show that on each SC, the received SNR at the user

under the optimal power allocation by the RRHs is a
submodular set function of the set of selected RRHs on
that SC. Motivated by this result, we propose a greedy
algorithm based suboptimal solution, with a reduced
complexity ofO

(

NKM2
)

, which is shown to be able to
achieve close-to-optimal throughput performance under
various practical setups by simulations.

• Finally, we compare the proposed solutions to other
benchmark schemes by simulations, which show that they
can achieve significant throughput gains, thanks to the
new joint mmWave fronthaul and OFDMA transmission
optimization.

The rest of this paper is organized as follows. SectionII
describes the system model of UD-CRAN with OFDMA-
based wireless access and TDMA-based mmWave fronthaul.
The joint resource allocation problem for WSR maximization
is presented in SectionIII and the proposed solutions are given
in SectionIV. SectionV presents simulation results comparing
the proposed solutions with other benchmark schemes in terms
of achievable sum rate. Finally, SectionVI concludes the
paper.

Notation: In this paper, scalars are denoted by lower-case
letters, e.g.,x, while vectors are denoted by bold-face lower-
case letters, e.g.,x. The set of real numbers, non-negative
real numbers and complex numbers are denoted byR, R+

andC, respectively. Similarly,Rx×1, Rx×1
+ andCx×1 denote

the corresponding spaces ofx-dimensional column vectors.
For x ∈ R, [x]+ , max{x, 0}. Also, ⌈x⌉ denotes the smallest
integer greater than or equal tox, and⌊x⌋ denotes the largest
integer less than or equal tox. For x ∈ C, |x| ≥ 0 denotes
the magnitude ofx and∠x ∈ [0, 2π) denotes its phase angle.
For a vectorx, xT denotes its transpose, and‖x‖ denotes its
Euclidean norm. Vectors with all elements equal to1 and 0
are denoted by1 and0, respectively. Forx,y ∈ RM×1, x �
y denotes component-wise inequalities, i.e.,xi ≥ yi ∀i =
1, . . . ,M . In addition,diag(x1 · · · xM ) denotes anM×M
diagonal matrix with diagonal elements given byx1, . . . , xM .
For a finite setS, |S| denotes its cardinality and2A denotes the
set of all subsets ofA. Finally,CN

(

0, σ2
)

denotes a circularly
symmetric complex Gaussian (CSCG) random variable with
mean0 and varianceσ2, and the symbol∼ is used to mean

“distributed as”.

II. SYSTEM MODEL

We study the downlink transmission in a single UD-CRAN
cluster consisiting ofM single-antenna RRHs, andK single-
antenna users, as shown in Fig.1. Let M = {1, . . . ,M}
denote the set of RRHs, andK = {1, . . . ,K} denote the
set of users. We consider that the RRHs receive the users’
data from the CP via mmWave communications by sharing a
given spectrum of bandwidthW Hz centered at a frequency
of 73 GHz, using TDMA. The links between the CP and
each RRH are LoS, with a free-space path loss given by
69.7+ 24 log10 (Dm) dB [31], [32], whereDm in meters (m)
is the distance between the CP and the RRHm. We further
consider that all the RRHs encode their received data using
OFDMA and then cooperatively transmit to the users in the
downlink. The wireless access transmission to the users takes
place over a multipath channel of bandwidthB MHz centered
at a frequency of2 GHz, which is equally divided intoN or-
thogonal frequency SCs following the Third Generation Part-
nership Project (3GPP) Long Term Evolution-Advanced (LTE-
A) standard [33]. As the mmWave fronthaul and wireless
access transmissions are over different frequency bands, the
transmission between the CP and the RRHs, and that between
the RRHs and the users, can take place simultaneously without
interfering with each other.

Let N = {1, . . . , N} denote the set of orthogonal SCs, and
let νk,n indicate whether userk is assigned to SCn, i.e.,

νk,n =

{

1 if user k is assigned to SCn

0 otherwise.

Also defineνn ,
[

ν1,n · · · νK,n

]T ∈ {0, 1}K×1 as the
user association vector at SCn. According to OFDMA, each
SC n ∈ N is assigned to at most one user in downlink
transmission, and thus,1Tνn ≤ 1, ∀n ∈ N . Then, the set
of SCs assigned to userk, denoted byNk ⊆ N , is given by
Nk =

{

n
∣

∣νk,n = 1
}

, whereNj ∩Nk = ∅, ∀j 6= k, j, k ∈ K.
Since the mmWave fronthaul capacity for each RRH is

practically limited, in general it can only receive the datafor
a selected sub-set of the users from the CP, and then forward
them to the selected users in the OFDMA-based downlink
transmission. As a result, each RRHm transmits only on the
corresponding sub-set of SCs that are assigned to the users
whose data are received from the CP. Let

αm,n =

{

1 if RRH m transmits data on SCn

0 otherwise.
(1)

Defineαn ,
[

α1,n · · · αM,n

]T ∈ {0, 1}M×1 as the RRH
selection vector at each SCn ∈ N . Then, the sub-set of RRHs
that transmit on SCn is given by

An =
{

m ∈ M
∣

∣αm,n = 1
}

, n ∈ N . (2)

Thus, the RRHs inAn cooperatively send the data to the user
k assigned to SCn, i.e., νk,n = 1. In the following two sub-
sections, we present the models for the wireless access and
mmWave fronthaul transmissions in detail, respectively. An
illustration for them is also given in Fig.1.
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A. Wireless Access via OFDMA

Let hk,m,n =
∣

∣hk,m,n

∣

∣ e∠hk,m,n denote the complex wire-
less access channel coefficient to the userk ∈ K, from RRH
m ∈ M, on SC n ∈ N . We assume that the magnitudes
of all the channel coefficients

∣

∣hk,m,n

∣

∣’s are known at the
CP, e.g., using appropriate training methods [34]. To achieve
coherent signal combining from all RRHs inAn at the receiver
of the userk assigned to SCn, the signal transmitted by RRH
m ∈ M on SCn ∈ Nk, can be written as

xm,n = αm,n
√
pm,ne

−∠hk,m,nsk,n, m ∈ M, n ∈ Nk (3)

wheresk,n ∼ CN (0, 1) is the information-bearing signal that
is assumed to be Gaussian, for userk on SCn ∈ Nk, and
pm,n ≥ 0 denotes the power allocated by RRHm on SCn.
If αm,n = 0, then RRHm does not transmit signals to any
user on SCn, andxm,n = 0. In this case,pm,n should also be
equal to zero, without loss of generality. From (3), it can be
seen that if the CP conveys the optimal power allocationpm,n

to RRH m that cooperatively transmits on SCn ∈ Nk, i.e.,
with αm,n = 1, then this RRH additionally needs to know
only the phase∠hk,m,n of its channel coefficient to userk
for downlink transmission. Thus, the CP is assumed to have
knowledge of the magnitudes of all the channel coefficients,
while each RRH needs to know the phases of the channel
coefficients to the users assigned to it, for the corresponding
SCs.

Let hk,n =
[

hk,1,n · · · hk,M,n

]T ∈ CM×1 denote the
complex channel coefficient vector from theM RRHs to the
userk on SCn. Similarly, let xn =

[

x1,n · · · xM,n

]T ∈
CM×1 denote the vector of transmitted signals by theM RRHs
to the userk on SCn ∈ Nk, with each component defined
in (3), and letpn =

[

p1,n · · · pM,n

]T ∈ R
M×1
+ denote the

transmit power allocation vector on SCn for the M RRHs.
Then, the received signal at the userk on SCn ∈ Nk is given
by

yn = hT

k,nxn + z, n ∈ Nk (4)

where z ∼ CN (0, σ2) is the additive white Gaussian
noise (AWGN), andσ2 is the receiver noise power, which
is assumed to be equal at all users. The SNR on each SC
n ∈ Nk is thus given by

γk,n (αn,pn) =

∣

∣

∣hT

k,nxn

∣

∣

∣

2

σ2

=
1

σ2





M
∑

m=1

∣

∣hk,m,n

∣

∣αm,n
√
pm,n





2

. (5)

The maximum achievable rate in bits per second (bps) on SC
n ∈ Nk for userk is given by

rk,n (αn,pn) =
B

N
log2

(

1 + γk,n (αn,pn)
)

, n ∈ Nk. (6)

Next, we present the following result on the concavity of the
function rk,n (αn,pn).

Lemma 2.1. With given RRH selectionαn, rk,n (αn,pn)
defined in(6) is jointly concave with respect to

{

pm,n

}

, ∀m
with αm,n = 1.

Proof: Please refer to appendixA.
Lemma2.1 indicates that on each SCn, for all RRHs with

αm,n = 1, i.e., transmitting withpm,n ≥ 0, the achievable rate
by their cooperative transmission,rk,n (αn,pn), is a jointly
concave function over theirpm,n’s. This is a useful property
we will utilize later in solving our proposed resource allocation
problem.

B. mmWave Fronthaul

The CP transmits the users’ data to each of the RRHs over
a LoS mmWave wireless fronthaul channel via TDMA, for a
fraction of time0 ≤ tm ≤ 1 for RRH m subject to

M
∑

m=1

tm ≤ 1. (7)

Let Rm > 0 denote the maximum fronthaul rate in bps,
achievable on the mmWave fronthaul link from the CP to RRH
m. Then, the average rate at which RRHm can receive data
from the CP over the mmWave fronthaul channel istmRm.
On the other hand, the total rate at which RRHm transmits
to the users over allN SCs is given by

N
∑

n=1

αm,n

K
∑

k=1

νk,nrk,n (αn,pn) (8)

whererk,n (αn,pn) is defined in (6). At each RRHm, the
average rate over the mmWave fronthaul needs to be no
smaller than that over the wireless access, i.e.,

tmRm ≥
N
∑

n=1

αm,n

K
∑

k=1

νk,nrk,n (αn,pn) ∀m ∈ M. (9)

It can be easily shown that the constraints in (7) and (9) are
both satisfied by all the RRHsm ∈ M if and only if

M
∑

m=1

1

Rm

N
∑

n=1

αm,n

K
∑

k=1

νk,nrk,n (αn,pn) ≤ 1. (10)

Notice that with a given feasible power allocation{p̄}n∈N ,
user-SC association{ν̄n}n∈N , and RRH selection{ᾱn}n∈N

which jointly satisfy the constraint in (10), the corresponding
TDMA time allocation t̄m on the mmWave fronthaul can be
obtained for each RRHm using the relation,

t̄m =
1

Rm

N
∑

n=1

ᾱm,n

K
∑

k=1

ν̄k,nrk,n (ᾱn, p̄n) , m ∈ M. (11)

In the next section, we formulate the joint mmWave fronthaul
and OFDMA downlink resource allocation optimization prob-
lem for the UD-CRAN.

III. PROBLEM FORMULATION

We aim to maximize the WSR of all users, by jointly opti-
mizing the user-SC associations{νn}n∈N , RRH-SC selections
{αn}n∈N , and power allocations of all RRHs at all SCs
{pn}n∈N , subject to the wireless fronthaul constraint (10),
and the total power constraint at each individual RRH denoted
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by P̄m, m ∈ M. Let ωk ≥ 0, k ∈ K, denote the rate weight
assigned to userk. Then, the problem is formulated as

maximize
{pn,αn,νn}n∈N

K
∑

k=1

ωk

N
∑

n=1

νk,nrk,n (αn,pn) (12)

subject to

(10)
N
∑

n=1

pm,n ≤ P̄m ∀m ∈ M (12a)

pm,n ≥ 0 ∀m ∈ M, ∀n ∈ N (12b)

αm,n ∈ {0, 1} ∀m ∈ M, ∀n ∈ N (12c)

1
Tνn ≤ 1 ∀n ∈ N (12d)

νk,n ∈ {0, 1} ∀k ∈ K, ∀n ∈ N . (12e)

Problem (12) is non-convex due to the integer constraints (12c)
and (12e), as well as the coupled variables in both the
objective function as well as the constraint (10). An exhaustive
search over all possible user-SC associations and RRH-SC
selections requiresO

(

(

2MK
)N

)

operations, which can be
prohibitive for large values ofM or N . Notice that even if
the user associationνn and the RRH selectionαn on each
SC n is given, the left-hand-side of constraint (10) is a non-
negative weighted sum of concave functionsrk,n (αn,pn)
according to Lemma2.1, and hence concave, which makes
the constraint (10) still non-convex. Thus, problem (12) is
non-convex even if the user-SC associations and the RRH-SC
selections are all fixed.

IV. PROPOSEDSOLUTIONS

A. Optimal Solution

Although problem (12) is non-convex, it can be verified
that strong duality holds when the number of SCsN goes to
infinity, as it satisfies the “time-sharing” conditions as given
in [35]. As N is typically large in practice, we propose to
apply the Lagrange duality method to solve problem (12) by
assuming zero duality gap.3 Let λ ≥ 0 denote the dual variable
associated with constraint (10), andµm ≥ 0, m ∈ M, denote
the dual variables for the constraints in (12a). Also defineµ ,
[

µ1 · · · µM

]T ∈ R
M×1
+ . Then, the (partial) Lagrangian of

3We emphasize that the optimality of the proposed Lagrange duality based
solution is in the asymptotic sense, for sufficiently largeN . However, as
shown in SectionV, the duality gap is negligible forN = 128, and hence
the proposed solution is close to optimal for practical values ofN .

problem (12) is given by

L
(

{νn,αn,pn}n∈N , λ,µ
)

=
N
∑

n=1

K
∑

k=1

ωkνk,nrk,n (αn,pn)

− λ





N
∑

n=1

M
∑

m=1

αm,n

Rm

K
∑

k=1

νk,nrk,n (αn,pn)− 1





−
M
∑

m=1

µm





N
∑

n=1

pm,n − P̄m





=

N
∑

n=1

Ln (νn,αn,pn, λ,µ) + λ+

M
∑

m=1

µmP̄m, (13)

where

Ln (νn,αn,pn, λ,µ) ,

K
∑

k=1

ωkνk,nrk,n (αn,pn)

− λ

M
∑

m=1

αm,n

Rm

K
∑

k=1

νk,nrk,n (αn,pn)

−
M
∑

m=1

µmpm,n. (14)

The Lagrange dual function is thus given by

g(λ,µ) = max
{pn,αn,νn}n∈N

L
(

{νn,αn,pn, }n∈N , λ,µ
)

(15)

s.t. (12b)–(12e).

The maximization problem in (15) can be decomposed intoN
parallel sub-problems, where each sub-problem corresponds to
a single SCn ∈ N , and all of them have the same structure
given by

max
pn,αn,νn

Ln (νn,αn,pn, λ,µ) (16)

s.t. pn � 0 (16a)

αn ∈ {0, 1}M×1 (16b)

1
Tνn ≤ 1 (16c)

νn ∈ {0, 1}K×1 (16d)

whereLn (νn,αn,pn, λ,µ) is defined in (14).
Now let the user association on SCn be fixed asνn = ν̂n. If

ν̂n = 0, no user is assigned to SCn. In this case, sinceµ � 0

andpn � 0, the objective of problem (16), as given in (14)
is maximized by settingpn = 0, irrespective of the RRH
selectionαn. Thus, if no user is assigned to SCn, the power
allocation over all RRHs is zero, as expected. Otherwise, let
k̂n ∈ K be the user assigned to SCn so thatν̂k̂n,n

= 1 and

ν̂k,n = 0 ∀k 6= k̂n. Using this in (14), sub-problem (16) on
each SCn can be reduced to the following problem

max
pn,αn



ωk̂n
− λ

M
∑

m=1

αm,n

Rm



 rk̂n,n (αn,pn)−
M
∑

m=1

µmpm,n

(17)

s.t. (16a) and (16b),
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which is non-convex due to the integer constraints (16b) on
αn and the coupled variables in the objective. However, for a
given RRH selectioñαn, problem (17) can be written as

max
pn�0



ωk̂n
− λ

M
∑

m=1

α̃m,n

Rm



 rk̂n,n (α̃n,pn)−
M
∑

m=1

µmpm,n,

(18)

whererk̂n,n
(α̃n,pn) is the rate on SCn under RRH selection

α̃n, with userk̂n assigned to SCn, as defined in (6). Then,
the optimal power allocatioñpn that solves problem (18) is
given by the following proposition.

Proposition 4.1. Letαn = α̃n be fixed. Then, for givenλ and
µ, the optimal power allocatioñpn on SCn for problem(18)
is given by

p̃m,n =
α̃m,n

∣

∣

∣hk̂n,m,n

∣

∣

∣

2

σ2µ2
m

[

Gk̂n,n
(α̃n)

]2

·
[

B

N ln 2
Fk̂n,n (α̃n)Gk̂n,n

(α̃n)− 1

]+

(19)

∀m ∈ M, whereFk̂n,n
(αn), Gk̂n,n

(αn) are defined as

Fk̂n,n (αn) , ωk̂n
− λ

M
∑

m=1

αm,n

Rm
(20)

Gk̂n,n
(αn) ,

M
∑

m=1

αm,n

∣

∣

∣hk̂n,m,n

∣

∣

∣

2

σ2µm
. (21)

Proof: Please refer to appendixB.
Proposition4.1 shows that for given user associationk̂n

and RRH selectionα̃n on each SCn, the optimal power
allocation has a threshold structure, which allocates zeropower
to all RRHs on SCn if Fk̂n,n

(α̃n)Gk̂n,n (α̃n) ≤ (N ln 2)/B.
Notice thatFk̂n,n (αn) depends on the fronthaul ratesRm’s,
while Gk̂n,n

(αn) depends on the wireless access chan-

nel gains
∣

∣

∣hk̂n,n

∣

∣

∣’s. Otherwise, ifFk̂n,n
(α̃n)Gk̂n,n

(α̃n) >

(N ln 2)/B, the power allocation on each RRHm ∈ M, with

α̃m,n = 1, is proportional to the ratiõαm,n

∣

∣

∣
h
k̂n,m,n

∣

∣

∣

2

σ2µ2
m

, which

depends on the wireless access channel gain
∣

∣

∣
hk̂n,m,n

∣

∣

∣
on SCn

and the dual variableµm corresponding to the transmit power
constraint (12a) for RRH m. If α̃n = 0, i.e., no RRH is
selected, theñpn = 0. When there are no fronthaul constraints,
i.e., λ = 0, the optimal power allocation in (19) reduces to

p̃m,n =
α̃m,n

∣

∣

∣hk̂n,m,n

∣

∣

∣

2

σ2µ2
m

[

Gk̂n,n
(α̃n)

]2

[

Bωk̂n

N ln 2
Gk̂n,n

(α̃n)− 1

]+

.

(22)

For the special case when there is only one RRH in the cluster,

i.e., M = 1, the power allocation in (19) becomes4

p̃n =









B

µN ln 2

(

ωk̂n
− λ

R

)

− σ2

∣

∣

∣
hk̂n,n

∣

∣

∣

2









+

, (23)

which has the same form as the well-known water-filling
solution [36], but in general with different water levels on
different SCsn ∈ N , which are determined by the userk̂n
assigned to SCn, throughωk̂n

. Also notice that the water-
level on SCn can be negative ifωk̂n

≤ λ/R; in this case, no
power should be allocated to SCn.

From Proposition4.1, it can be seen that the optimal power
allocation is zero whenever a particular RRHm is not selected
on SC n, i.e., if α̃m,n = 0, it implies that p̃m,n = 0, as
expected. However, the opposite is not necessarily true, i.e.,
if it turns out thatp̃m,n = 0 for some given RRH selection
α̃n, it cannot be inferred that̃αm,n = 0 in the optimal RRH
selection. This is due to the fact that the power allocationp̃n

given by (19) depends on the entire RRH selectionα̃n, and
even if p̃m,n = 0, it cannot be known beforehand whether this
particular RRH selection and power allocation is the one that
maximizes the objective in (17). Thus, Proposition4.1 only
gives the optimal power allocation when the RRH selection
is known, and whenM > 1, an exhaustive search over all
possible vectorsαn ∈ {0, 1}M is required to find the RRH
selection and corresponding power allocation that maximizes
the objective in (17). When M = 1, however, the RRH
selection on each SC is implicitly decided by whether the
optimal power allocation given by (23) is zero or not.

For given dual variablesλ and µ, problem (16) can be
solved optimally using Proposition4.1as follows. First, fix the
user on SCn as k̂n ∈ K. Then, for each of the2M possible
RRH selections, compute the optimal power allocationp̃n

using (19), and choose the optimal RRH selection̂αn for
the user k̂n as the one that maximizes the objective of
problem (17) with the corresponding power allocation̂pn

given by (19). Then the optimal user association̄νn on SC
n can be found by choosing the userk̄n that maximizes the
objective of problem (16), with its corresponding optimal RRH
selection and power allocation computed before, and denoted
by ᾱn and p̄n.

Now, the dual problem for (12) is given by

min
λ≥0,µ�0

g(λ,µ), (24)

which is convex and can be solved efficiently, e.g., using the
ellipsoid method [37] to find the optimal dual variablesλ⋆ and
µ⋆. Then, the optimal solution to problem (16) is given by
(ν̄n, ᾱn, p̄n), computed as outlined above at the optimal dual
variablesλ⋆ andµ⋆. The algorithm for solving problem (12)
can thus be summarized as given in TableI.

Finding the optimal RRH selection and power allocation
for a given user association involves a search over2M values,
and incurs a complexity ofO

(

2M
)

. Subsequently, finding the
optimal user association involves a search overK users, and
has a complexity ofO(K). Each of theN problems (16)

4Drop the subscriptm sinceM = 1.
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TABLE I: Algorithm for problem (12)

1: Initialization: λ ≥ 0, µ � 0

2: repeat
3: for eachn ∈ N do
4: for each user association̂νn do
5: Find optimal RRH selection̂αn that maximizes (17) by

searching over2M possible RRH selections, with optimal power
allocation p̂n given by (19)

6: end for
7: Find optimal user association̄νn that maximizes (16) with

optimal RRH selectionᾱn and power allocationp̄n computed
in Table I

8: end for
9: Update dual variablesλ andµ using the ellipsoid method

10: until ellipsoid algorithm converges to desired accuracy

can thus be solved incurring a complexity ofO
(

K2M
)

.
Hence, the dual functiong(λ,µ) in (15) can be computed
for each given pair ofλ andµ with an overall complexity of
O
(

NK2M
)

. The complexity of the ellipsoid method to find
the optimal dual variables depends only on the size of the
initial ellipsoid and the maximum length of the sub-gradients
over the intial ellipsoid [37]. Thus, the overall complexity of
solving problem (12) is effectively given byO

(

NK2M
)

. For
small cluster sizes withM ≤ 5, this complexity is not very
high, and problem (12) can be efficiently solved using the
algorithm in TableI. In the next section we introduce a lower
complexity greedy algorithm that still performs very well in
practical setups.

B. Suboptimal Solution

Optimally solving the sub-problem (17) on each SC for a
fixed user association requires an exhaustive search over all
possible RRH selections, which isO

(

2M
)

. To avoid this, we
propose another way to solve problem (17) suboptimally in
this sub-section, by using a greedy algorithm instead. First,
we observe that since (19) gives the optimal power allocation
for a given setAn of RRHs that are selected to transmit on
SC n, substituting (19) in (5), the optimal SNR on SCn for
a non-zero power allocation can be expressed in terms ofAn,
as

γ̃k̂n,n
(An) =

B

N ln 2
Fk̂n,n (An)Gk̂n,n

(An)− 1. (25)

Thus, γ̃k̂n,n
(An) : 2M 7→ R in (25) is a set function that

maps the set of all subsets of the set of RRHsM to a
real number. The set functionsFk̂n,n

(An) : 2M 7→ R and
Gk̂n,n

(An) : 2M 7→ R+ are similarly expressed in terms
of An using (20) and (21). Next, we introduce the following
definitions pertaining to set functions.

Definition 4.1. Let V denote a finite set andf : 2V 7→ R be
a real-valued set function. Then

1) f is monotoneif and only if

f (S) ≤ f (T ) ∀S ⊆ T ⊆ V . (26)

2) f is submodularif and only if [38]

f
(

S ∪ {i}
)

− f (S) ≥ f
(

S ∪ {i, j}
)

− f
(

S ∪ {j}
)

,

∀S ⊆ V , i 6= j, i, j ∈ V \ S. (27)

In addition,f is supermodularif −f is submodular, and
f is modularif it is both submodular and supermodular.

Condition (26) implies that a monotone set function is non-
decreasing when elements are added to a set. For a submodular
function, condition (27) implies that the incremental difference
in its value when a new element is added to a smaller
set, is in general, higher than the corresponding difference
when the same element is added to a larger set. According
to Definition 4.1, it is readily observed that the functions
−Fk̂n,n

(An) andGk̂n,n (An) in (20) and (21) are monotone,
while γ̃k̂n,n

(An) is not. Similarly, it is easy to see from (27)
that bothFk̂n,n

(An) andGk̂n,n
(An) are modular, while the

following proposition shows that̃γk̂n,n
(An) is submodular.

Proposition 4.2. The functionγ̃k̂n,n
(An) in (25) is submod-

ular.

Proof: Please refer to appendixC.
Using (25), the objective function of problem (17) under the

optimal power allocation can be expressed as a set function
f̃ (An) : 2

M 7→ R given by

f̃ (An) ,
B

N
Fk̂n

(An) log2

(

1 +
[

γ̃k̂n,n
(An)

]+
)

−

[

γ̃k̂n
(An)

]+

G (An)
, (28)

and problem (17) can be expressed as the following combina-
torial problem

max
An⊆M

f̃ (An) . (29)

For maximizing a monotone, non-negative submodular func-
tion under a cardinality constraint, it is well known that
a greedy procedure with linear complexity can achieve an
objective value at least(1 − 1/e) of the optimal [39]. For
unconstrained maximization of a non-monotone, non-negative
submodular function, deterministic and randomized algorithms
providing reasonable worst-case guarantees1/2 respectively,
are known [40]. However, unlike the optimal SNR̃γk̂n,n

(An)

in (25), the objective functioñf (An) of problem (29) cannot
be shown to be submodular; while neitherγ̃k̂n,n

(An) in (25)
or f̃ (An) in (28) are monotone or non-negative.

Nevertheless, motivated by the submodularity ofγ̃k̂n,n
(An)

as shown by Proposition4.2, we propose a suboptimal greedy
algorithm with quadratic complexity in the number of RRHs
M to solve problem (29) approximately. We construct a
suboptimal setǍn for problem (29) using a greedy algorithm
as follows. At the start of an iterationi, let An,i denote the
set of selected RRHs on SCn and f̃i denote the objective
value of problem (29) given by (28). Initially, we assume that
An,1 = ∅, and f̃1 = 0. Then, at each iterationi = 1, . . . ,M ,
we first find an RRHji ∈ M \ An,i, which is not currently
selected, and when added to the current set of RRHsAn,i,
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gives the maximum value of the objective in (28) among all
the currently un-selected RRHs, i.e.,

ji = argmax
ℓ∈M\An,i

f̃
(

An,i ∪ {ℓ}
)

. (30)

Then, if RRH ji improves the current maximum objective
value f̃i, we add it to the current set of selected RRHsAn,i.
That is, if

f̃
(

An,i ∪ {ji}
)

> f̃i (31)

holds, the set of selected RRHs is updated asAn,i+1 = An,i∪
{ji}, and the current maximum objective value is updated as

f̃i+1 = f̃
(

An,i ∪ {ji}
)

. (32)

This procedure is continued until no RRHji can be found
which satisfies (31), or there is no more remaining RRH to be
searched, i.e.,i = M . If the algorithm stops at iterationi, the
final suboptimal RRH selection is given by̌An = An,i and the
corresponding power allocation can be obtained from (19). An
outline of the above algorithm is given in TableII . From (30),

TABLE II: Greedy algorithm for problem (17)

1: Initialization: Iteration i = 1, set of selected RRHsAn,1 = ∅,
maximum objective valuẽf1 = 0

2: for eachi = 1, . . . ,M do
3: Find the RRHji ∈ M \An,i, according to (30)
4: if ji satisfies condition (31) then
5: Update selected set asAn,i+1 = An,i ∪ {ji}
6: Update maximum objective valuẽfi+1 according to (32)
7: else
8: Stop and return RRH seťAn = An,i and corresponding

power allocation given by (19)
9: end if

10: end for

it can be seen that each iterationi of the greedy algorithm
involves a search over the setM\An,i, which has sizeM −
(i− 1), wherei ≤ M . As there can be at mostM iterations,
the greedy algorithm requires

∑M
i=1 M − i + 1 = M(M +

1)/2 iterations in the worst case, which is ofO
(

M2
)

. Thus,
using the greedy algorithm to solve problem (17) on each
SC reduces the overall complexity of solving problem (12) to
O
(

NKM2
)

.
Notice that the greedy algorithm would recover the optimal

solution to problem (17) in cases where the optimal RRH
selection consists of at most two RRHs. However, in general,
for given dual variablesλ andµ, it gives only a suboptimal
solution to problem (17). This implies that convergence to the
optimal dual variablesλ⋆ andµ⋆ cannot be guaranteed if the
greedy algorithm of TableII is used in TableI of the overall
algorithm for problem (12) given in TableI. In this case, if
the power allocation obtained is not feasible, it can be made
feasible by scaling each of the power constraints in (12a).
Similarly, if the constraint in (10) is not satisfied, the RRHs
can be de-selected in increasing order of their contribution
to the rate on each SC, until (10) is satisfied. However,
in SectionV, it is shown through extensive simulations that
there is only a negligible difference between the performance

of the greedy algorithm and the exhaustive search forαn’s
in practical scenarios. This can be understood as follows. The
first term in the objective of sub-problem (17) is the product
of a weighting factor and the achievable rate on the SC.
As more RRHs are chosen to transmit on a given SC, the
weighting factor decreases in linear steps, while the increase
in the rate on each SC is only logarithmic. Intuitively, this
implies that selecting the first few RRHs correctly is crucial
in maximizing the objective of problem (17), for which even
a greedy search may be sufficient, thus implying the good
performance of the greedy algorithm. Thus, in practice, the
joint resource allocation problem (12) may be solved close
to optimally at an even lower complexity ofO(NKM2)
compared toO

(

NK2M
)

for exhaustive search over the RRHs
on each SC.

V. SIMULATION RESULTS

For the simulation setup, we consider a cluster ofM RRHs
andK users, both of which are distributed uniformly within
a circular area of radius500 m, and whose center is situated
at a distance of2 km from the CP. The mmWave wireless
fronthaul of bandwidthW Hz and centered at a frequency of
73 GHz, is shared among the RRHs via TDMA. The channel
from the CP to each RRH is LoS, with the path loss given
by 69.7 + 24 log10 (Dm) dB [31], [32]. The CP is assumed
to transmit at a fixed power of46 dBm [41] with an antenna
gain of 27 dB [31].

The wireless access channel is centered at a frequency of
2 GHz and has a bandwidthB = 20 MHz, following the 3GPP
LTE-A standard [33], and is divided intoN = 128 SCs using
OFDMA. The combined path loss and shadowing (large-scale
fading) is modeled as38 + 30 log10

(

dk,m
)

+ X in dB [41],
wheredk,m in meters is the distance between the RRHm and
userk, andX in dB is the shadowing random variable, which
follows a zero-mean Gaussian distribution with a standard
deviation of 6 dB. The multipath channel for the wireless
access is modeled using an exponential power delay profile
with ⌈N/4⌉ taps, and the small-scale fading on each tap is
assumed to follow the Rayleigh distribution. The maximum
transmit power at each RRH is set asP̄m = 24 dBm,m ∈ M,
and an antenna gain of2 dB is assumed, following the 3GPP
LTE pico cell parameter specifications [41]. The noise power
spectral density is−174 dBm/Hz with a noise figure of7 dB
at all the receivers. For simplicity, we consider maximization
of the sum rate in problem (12), i.e., the user rate weights
ωk = 1, ∀k ∈ K, and the values are averaged over5 random
network layouts and20 channel realizations for each layout.
We compare the performance of the following benchmark
schemes with the proposed solutions in SectionIV.

• Benchmark scheme 1: Single RRH selection. In this
scheme, only one RRH is selected on each SC, and there
is no coherent-combining gain due to joint transmission
by more than one RRHs. This is achieved by solving
problem (12) with the following additional constraints on
the RRH selections,

1
Tαn ≤ 1 ∀n ∈ N . (33)
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The sub-problem (17) on each SC is then solved by
searching for the best amongM RRHs that can maximize
the objective in (17), under the optimal power allocation
given by (23). The optimal dual variablesλ⋆ andµ⋆ for
this new problem are found using the algorithm in TableI,
as before. The overall complexity in this case is thus
reduced toO (NKM).

• Benchmark scheme 2: Equal power allocation. In this
scheme the transmit power allocations at all the RRHs
are fixed aspm,n = P̄m/N ∀m ∈ M, n ∈ N . With
this power allocation, problem (12) is solved for the
optimal RRH selections{αn} and the user associations
{νn}. The sub-problem (17) is solved by exhaustively
searching over the2M RRH selections. As the transmit
power allocations are fixed, the optimal dual variableλ⋆

corresponding to the constraint in (10) can be found by
a simple bisection search over the interval0 ≤ λ ≤
maxm∈M Rm. However, the worst-case complexity of
this scheme is stillO

(

NK2M
)

.
• Benchmark scheme 3: Conventional OFDMA. In this

scheme, we consider a conventional OFDMA-based sys-
tem, where each RRHm is pre-assigned a fixed set of
SCs denoted bySm ⊆ N , where|Sm| = ⌊N/M⌋. It is
assumed that each user is associated to its nearest RRH.
Thus, each RRHm ∈ M transmits to the set of users
Km ⊆ K associated to it over the set of SCsSm, and
only one RRH transmits on each SC. As conventional
OFDMA systems are typically assumed to have infinite
fronthaul capacity, in order to illustrate the effect of a
shared fronthaul, we assume that the CP transmits to each
RRH for an equal amount of time over the TDMA-based
mmWave fronthaul, i.e.,tm = 1/M, ∀m ∈ M. Then,
the fronthaul time-sharing constraint in (10) is decoupled
into individual constraints at each RRH, given by

1

Rm

∑

n∈Sm

∑

k∈Km

νk,nrk,n
(

pm,n

)

≤ 1

M
, ∀m ∈ M,

(34)

where

rk,n
(

pm,n

)

=
B

N
log2



1 +

∣

∣hk,m,n

∣

∣

2
pm,n

σ2



 . (35)

Note that pm,n = 0 ∀n /∈ Sm, ∀m ∈ M. The joint
resource allocation problem (12) is then decoupled into
M parallel joint power allocation and user association
problems, one at each RRH. The optimal solution to this
problem for each RRH can be found using the algorithm
in Table I. Since the RRH-SC selections are already
fixed, the optimization is only over the power allocation
and the user-SC association at each RRH. The optimal
power allocation is given by (23), and the user on each
SC can be found by searching over the|Km| possible
users associated with each RRHm. Thus, in this case,
M problems must be solved in parallel, each with a
worst-case complexity given byO

(

⌊ N
M ⌋ |Km|

)

. Thus, if

Kmax = maxm∈M |Km| denotes the maximum number

of users assigned to an RRH, the effective worst-case
complexity of this scheme is given byO (NKmax).

Both benchmark schemes 1 and 2 require the knowledge of
all the channel gains at the CP, where the optimization is
performed, and thus, their overhead is same as that for the
proposed schemes. On the other hand, for benchmark scheme
3, each RRH needs to know only the channels to its own
associated users, and the optimization can be performed at
each RRH.
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Fig. 2: Sum rate (Mbps) vs. fronthaul bandwidthW (MHz)
for system withM = 6, K = 8, B = 20 MHz andN = 128.

Fig. 2 plots the sum rate achievable by the various schemes
against the mmWave fronthaul bandwidthW . The dual up-
per bound given by the optimal value of the dual function
g (λ⋆,µ⋆) is also shown for comparison. From Fig.2, it
can be observed that the sum rate achieved by the proposed
optimal solution is nearly equal to the dual upper bound, thus
validating its optimality for largeN . Moreover, the proposed
suboptimal solution of lower complexity introduced in Sec-
tion IV-B is observed to perform almost as well as the optimal
solution that requires an exhaustive search to find the optimal
RRH selection. This can be attributed to the submodularity of
the SNR on each SC under the optimal power allocation, which
implies that selecting the best few RRHs is most important
in achieving the major part of the coherent-combining gain
on each SC, and finding the optimal RRH selection may not
always be necessary, as explained in SectionIV-B. Thus, in
practical deployments with a moderate number of RRHs, a
close to optimal solution can be obtained at a much lower
complexity ofO

(

NKM2
)

.
When the fronthaul bandwidthW is small, benchmark

scheme 1 that selects only the best RRH on each SC combined
with optimal power allocation, performs almost as well as
the optimal solution. In this case, the system is primarily
limited by the fronthaul, and only one or very few RRHs
can be supported by the fronthaul on each SC. However,
the proposed solution outperforms benchmark scheme 2 that
optimally selects RRHs under equal power allocation on all
SCs at all values ofW , showing the importance of optimal
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power allocation. At higher values ofW , almost all the RRHs
are selected on all the SCs, providing a coherent-combining
gain on each SC, which is not achieved by the single RRH
selection. However, the single RRH selection can still provide
a diversity gain, since the best RRH is selected on each SC.
Also notice that the performance of benchmark scheme 1
remains constant forW larger than30 MHz, which is expected
since benchmark scheme 1 selects only one RRH on each
SC, and increasingW does not help in achieving a coherent-
combining gain on any SC. On the other hand, even with equal
power allocation, the performance of benchmark scheme 2
increases slightly with increasingW , since in this case, more
and more RRHs can be selected on each SC.
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Fig. 3: Sum rate (Mbps) vs. number of usersK for system
with W = 50 MHz, M = 5, B = 20 MHz andN = 128.

Fig. 3 shows the variation of the sum rate with the number
of users,K. Here, the fronthaul bandwidthW = 50 MHz,
and the number of RRHsM = 5, are fixed. The performance
comparison of the various schemes is observed to be consistent
with that in Fig. 2, except for the case of low values of
K, where benchmark scheme 2 with equal power allocation
performs slightly better than benchmark scheme 1 that selects
only the best RRH on each SC. This implies that when the
number of users is small compared to the number of RRHs,
i.e., the network is dense in the RRHs, achieving a coherent-
combining gain even with equal power allocation can be better
than selecting only the best RRH on each SC.

Fig. 4 shows the variation of the sum rate with the number
of RRHs,M . Here, the fronthaul bandwidthW = 100 MHz
and the number of usersK = 4 are fixed. Again, the trends
are similar to Figs.2 and 3. Observe that whenM = 1,
both the proposed schemes and benchmark schemes 1 and
3 are equivalent. AsM is increased, the performance of
the conventional OFDMA with benchmark scheme 3 remains
more or less the same, since both an equal time allocation
on the fronthaul and an equal division of SCs on the access
are performed, which cannot exploit the diversity offered by
largerM . Also, similar to Fig.3, asM becomes much larger
thanK, the performance of benchmark scheme 2 with equal
power allocation approaches that of benchmark scheme 1 with
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Fig. 4: Sum rate (Mbps) vs. number of RRHsM for system
with W = 100 MHz, K = 4, B = 20 MHz andN = 128.

single RRH selection.
In summary, Figs.2–4 show the sum-rate gains achieved by

the proposed solutions compared to other benchmark schemes.
In particular, the sum rate achieved by the proposed solutions
is more than double of that of the conventional OFDMA with
equal time allocation on the fronthaul, showing the advantage
of joint dynamic resource allocation over the mmWave fron-
thaul and wireless access achieved by the proposed centralized
scheduling.

VI. CONCLUSION

In this paper, we have studied the downlink transmission
in a new OFDMA-based UD-CRAN enabled by the mmWave
fronthaul. Specifically, we considered a system where the user
assigned on any frequency SC can potentially be served by
multiple RRHs, subject to the fronthaul rate constraint. We
formulated a joint fronthaul time allocation, RRH-SC selection
and power allocation, and user-SC association problem to
maximize the WSR of users. Although the problem is com-
binatorial and non-convex in general, we proposed efficient
solutions based on the Lagrange duality technique and greedy
search.

Through numerical simulations, we have shown that both
the proposed solutions achieve the optimal throughput per-
formance, and significantly outperform the other benchmark
schemes considered, under a practical UD-CRAN setup with
mmWave based wireless fronthaul. In particular, our pro-
posed solutions for the OFDMA-based UD-CRAN can achieve
throughput gains of more than 150% over a conventional LTE-
A network where each user is associated with a single RRH/BS
and the mmWave fronthaul bandwidth is equally divided
among the RRHs. Thus, the proposed OFDMA-based UD-
CRAN with mmWave fronthaul is a cost-effective and scalable
architecture for future 5G networks, and when combined with
our proposed resource allocation algorithms, it can provide
significant throughput gains, especially over the current LTE-
A networks.
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APPENDIX A
PROOF OFLEMMA 2.1

Without loss of generality, assumeαn = 1, and pm,n >
0, ∀m ∈ M, since otherwise we could equivalently define
rk,n (αn,pn) by excluding the RRHs for whichαm,n = 0 or
pm,n = 0 from the summation in (6). Consider the function

f(p) =





M
∑

m=1

√
pm





2

, p ≻ 0. (36)

The second order partial derivatives off(p) are given by

∂2f(p)
∂p

i
∂p

j

=
1

2
√
pipj

i 6= j, i, j ∈ M (37)

∂2f(p)
∂p2

i

=
1

2pi
− 1

2p
3/2
i





M
∑

m=1

√
pm



 i ∈ M. (38)

Using (37) and (38), the Hessian matrix off(p) can be written
as

∇2f(p) =
1

2






uuT −





M
∑

m=1

√
pm



 diag
(

p
− 3

2

1 · · · p
− 3

2

M

)






,

(39)

whereu ,
[

1/
√
p1 · · · 1/

√
pM

]T

. Then, for any vector
v ∈ RM×1, we have

vT∇2f(p)v

=
1

2







(

uTv
)2

−





M
∑

m=1

√
pm



vTdiag
(

p
− 3

2

1 · · · p
− 3

2

M

)

v






.

(40)

Now define the vectorsa ,

[

p
1/4
1 · · · p

1/4
M

]T

∈ R
M×1
+ ,

and b ,

[

v1/p
3/4
1 · · · vM/p

3/4
M

]T

∈ RM×1. Then,

using (40) and the Cauchy-Schwarz inequality
(

aTb
)2 ≤

‖a‖2 ‖b‖2, it can be verified thatvT∇2f(p)v ≤ 0, ∀v ∈
RM×1, which implies that the matrix∇2f(p) is negative
semidefinite [42]. Hencef(p) is jointly concave inp. Setting
αn = 1 in (5), the SNR on SCn ∈ Nk can be written as

γk,n (pn) =







M
∑

m=1





∣

∣hk,m,n

∣

∣

2

σ2
pm,n





1/2






2

= f

(

diag
(

|hk,1,n|2
σ2 · · · |hk,M,n|2

σ2

)

pn

)

(41)

wheref(pn) is defined in (36). Sincef(pn) is jointly concave
in pn, and from (41), γk,n (pn) is the composition off (pn)
with a linear transformation ofpn, it follows that γk,n (pn)
is also jointly concave inpn. Now, the logarithm function
is concave and its extended value extension on the real line
is non-decreasing. Thus,rk,n (pn) =

B
N log2

(

1 + γk,n (pn)
)

is the composition of the concave functionγk,n (pn) with

a concave and non-decreasing function, and hence, is also
jointly concave inpn [42]. The proof of Lemma2.1 is thus
completed.

APPENDIX B
PROOF OFPROPOSITION4.1

Consider the following two cases based on whether the
factor Fk̂n,n

(α̃n) defined in (20) is either greater than zero,
or less than or equal to zero, respectively.

A. Case 1:Fk̂n,n
(α̃n) ≤ 0

In this case, sincerk̂n,n
(α̃n,pn) is jointly concave inpn

according to Lemma2.1, it follows that the objective of prob-
lem (18) is jointly convex inpn. Thus, problem (18) is non-
convex under this condition. However, sincerk̂n,n (α̃n,pn) ≥
0, µ � 0, andpn � 0, it implies that for any non-zero power
allocationpn 6= 0, the objective of problem (18) is strictly
negative, while the objective is zero forpn = 0. Thus, the
optimal power allocation for problem (18) in this case is to
allot zero power on all RRHs, i.e.̃pn = 0.

B. Case 2:Fk̂n,n
(α̃n) > 0

In this case, the objective of problem (18) is jointly concave
in pn, as rk̂n,n (α̃n,pn) is jointly concave inpn according
to Lemma2.1. Thus problem (18) is convex, which implies
that there exists a uniquẽpn � 0 that attains the maximum
of the objective in (18). Taking the derivative of the objective
in (18) with respect to the power allocation variablepi,n, for
each RRHi ∈ M, and setting it equal to zero gives

B

N ln 2



ωk̂n
− λ

M
∑

m=1

α̃m,n

Rm





·













1
σ

(

∑M
m=1

∣

∣

∣hk̂n,m,n

∣

∣

∣ α̃m,n
√
pm,n

)

1 + 1
σ2

(

∑M
m=1

∣

∣

∣hk̂n,m,n

∣

∣

∣ α̃m,n
√
pm,n

)2













·

∣

∣

∣hk̂n,i,n

∣

∣

∣ α̃i,n

σ
p
−1/2
i,n − µi = 0. (42)

Note that (42) must be satisfied by each of the optimal power
allocationsp̃i,n on RRHi ∈ M. The received SNR at the user
k̂n corresponding to this optimal power allocationp̃n is given
by

γ̃k̂n,n
, γk̂n,n

(α̃n, p̃n)

=
1

σ2





M
∑

m=1

∣

∣

∣
hk̂n,m,n

∣

∣

∣
α̃m,n

√

p̃m,n





2

. (43)
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Then, using (43) in (42), re-arranging and squaring, the
optimal power allocation can be written as

p̃i,n =







B

N ln 2



ωk̂n
− λ

M
∑

m=1

α̃m,n

Rm











2

γ̃k̂n,n
(

1 + γ̃k̂n,n

)2

·
α̃i,n

∣

∣

∣hk̂n,i,n

∣

∣

∣

2

σ2µ2
i

, i ∈ M. (44)

Substituting the value of̃pi,n from (44) for eachi ∈ M in (43),
the optimal SNR at the user must satisfy the relation

γ̃k̂n,n
=







B

N ln 2



ωk̂n
− λ

M
∑

m=1

α̃m,n

Rm











2

γ̃k̂n,n
(

1 + γ̃k̂n,n

)2

·









M
∑

m=1

α̃m,n

∣

∣

∣hk̂n,m,n

∣

∣

∣

2

σ2µm









2

. (45)

Since all the quantities in (45) are non-negative, taking square
roots on both sides and re-arranging using the definitions (20)
and (21) yields

γ̃
1/2

k̂n,n

[

1 + γ̃k̂n,n
− B

N ln 2
Fk̂n,n

(α̃n)Gk̂n,n (α̃n)

]

= 0.

(46)

The above implies that either̃γk̂n,n
= 0 or

γ̃k̂n,n
=

B

N ln 2
Fk̂n,n (α̃n)Gk̂n,n (α̃n)− 1. (47)

If γ̃k̂n,n
= 0, then from (44), it follows that p̃n = 0. Thus,

for a non-zero power allocation, we requireγ̃k̂n,n
> 0 , which

from (47), translates to the condition,

B

N ln 2
Fk̂n,n

(α̃n)Gk̂n,n
(α̃n)− 1 > 0. (48)

In Case 1,Fk̂n,n
(α̃n) ≤ 0, and hence condition (48) cannot

be satisfied, sinceGk̂n,n
(α̃n) ≥ 0. Sincep̃n = 0 in Case 1,

condition (48) subsumes Case 1. Finally, using (47) in (44),
along with the definitions (20) and (21) and the condition (48),
the optimal power allocation that solves problem (18) is
obtained as given in (19). The proof of Proposition4.1 is thus
completed.

APPENDIX C
PROOF OFPROPOSITION4.2

For convenience, we drop the user and SC subscriptsk̂n and
n in this proof. Notice that in order to show submodularity of
γ̃(A), it suffices to show that the product of the set functions
F (A)G(A) is submodular. Now, if RRHi is added to the set
A, this product becomes

F
(

A ∪ {i}
)

G
(

A ∪ {i}
)

=



ω −
∑

m∈A

λ

Rm
− λ

Ri









∑

m∈A

|hm|2
σ2µm

+
|hi|2
σ2µi



 , (49)

which after rearrangement gives

F
(

A∪ {i}
)

G
(

A ∪ {i}
)

= F (A)G (A) +
|hi|2
σ2µi

F (A)

− λ

Ri
G (A)− λ |hi|2

σ2µiRi
. (50)

Thus, the incremental difference in the value of the product
F (A)G (A) when RRHi is added toA is given by

F
(

A ∪ {i}
)

G
(

A ∪ {i}
)

− F (A)G (A)

=
|hi|2
σ2µi

F (A)− λ

Ri
G (A)− λ |hi|2

σ2µiRi
. (51)

Similarly, the incremental difference when the same RRHi is
added to a larger setA ∪ {j} can be obtained by replacing
the setA with A ∪ {j} and the setA ∪ {i} with A ∪ {i, j}
in (51), which gives

F
(

A∪ {i, j}
)

G
(

A∪ {i, j}
)

− F
(

A ∪ {j}
)

G
(

A ∪ {j}
)

=
|hi|2
σ2µi

F
(

A ∪ {j}
)

− λ

Ri
G
(

A ∪ {j}
)

− λ |hi|2
σ2µiRi

(52)

= F
(

A ∪ {i}
)

G
(

A ∪ {i}
)

− F (A)G (A)

−





λ |hi|2
σ2µiRj

+
λ
∣

∣hj

∣

∣

2

σ2µjRi



 (53)

≤ F
(

A ∪ {i}
)

G
(

A ∪ {i}
)

− F (A)G (A) , (54)

where (53) follows by rearranging (52) and using (51), and the
last inequality (54) follows since the term in the parentheses
in (53) is non-negative. Thus,F (A)G (A) satisfies condi-
tion (27), and is hence submodular, which implies thatγ̃ (A)
in (25) is submodular. This completes the proof of Proposi-
tion 4.2.
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