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Weighted Sum Rate Maximization in Full-Duplex
Multi-User Multi-Cell MIMO Networks

Paula Aquilina, Student Member, IEEE, Ali Cagatay Cirik, Member, IEEE,
and Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—In this paper we focus on a multi-user multi-cell
scenario with full-duplex (FD) base-stations (BSs) and half-
duplex (HD) downlink (DL) and uplink (UL) users, where all
nodes are equipped with multiple antennas. Our goal is to
design filters for weighted sum rate (WSR) maximization whilst
taking into consideration the effect of transmitter and receiver
distortion. Since WSR problems are non-convex we exploit
the relationship between rate and mean squared error (MSE)
in order to propose low complexity alternating optimization
algorithms which are guaranteed to converge. While the initial
design assumes perfect channel state information (CSI), we also
move beyond this assumption and consider WSR problems under
imperfect CSI. This is done using two types of error models; the
first is a norm-bounded error model, suitable for cases where the
CSI error is dominated by quantization issues, and the second is
a stochastic error model, suitable for errors that occur during the
channel estimation process itself. Results show that rates achieved
in FD mode are higher than those achieved by the baseline HD
schemes and demonstrate the robust performance of the proposed
imperfect CSI designs. Additionally we also extend our original
WSR problem to one which maximizes the total DL rate subject
to each UL user achieving a desired target rate. This latter design
can be used to overcome potential unfairness issues and ensure
that all UL users are equally served in every time slot.

Index Terms—Filter design, full-duplex, mean squared error,
MIMO, multi-cell, weighted sum rate maximization.

I. INTRODUCTION

THE demand for mobile wireless network resources is
constantly on the rise, pushing for new communication

technologies that are able to support unprecedented rates. One
such contender is full-duplex (FD) communication. Whilst
traditional half-duplex (HD) systems require separate time or
frequency resources for downlink (DL) and uplink (UL) com-
munication, FD considers simultaneous DL and UL transmis-
sion. The potential to significantly improve spectral efficiency
makes FD communication an attractive candidate solution to
the ever growing spectrum demand problem.

Even though the possible benefits of FD operation are easy
to foresee, there are implementation issues that may pose
significant challenges when trying to translate the theoretical
gains into practical ones. Self-interference (SI), where power
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from the DL transmission interferes with the UL received
signal at FD nodes has traditionally been considered a major
stumbling block. In fact FD communication was conven-
tionally believed to be infeasible due to the presence of
SI. However, in recent years, there have been a number of
breakthroughs in hardware design showing that SI can be
canceled up to acceptable levels [1]–[5] and demonstrating
the feasibility of FD nodes.

The promise of increased spectral efficiency, alongside with
the newfound ability to mitigate SI, has motivated a wide
range of research into FD communication and its possible
applications. For example, the use of FD operation in relays
[6], [7] and cognitive radio systems [8], [9] has proven to be
effective. Additionally FD operation, either at the base-station
(BS) only [10] or at both the users and the BS [11], has been
found to be particularly suited for small cell scenarios due
to the low transmit powers and small transmission distances
involved. Different to [6]–[11], which consider single-cell
systems, here we focus on a more practical multi-cell system
with FD BSs and HD users; the multi-cell aspect introduces
the additional challenge of co-channel-interference (CCI) from
nodes in other cells. A similar system has been considered
in [12] where the authors focus on user selection and power
allocation methods. A stochastic geometry approach for sys-
tem performance characterization of FD multi-cell systems
has been considered in [13]–[15]. In contrast to [12]–[15],
which assume all nodes are equipped with a single antenna,
we consider a multiple-input multiple-output (MIMO) system
and focus on beamformer design for weighted sum rate (WSR)
maximization.

As was hinted earlier, in this work we focus on a multi-cell
scenario where each BS serves multiple HD users; however
unlike traditional systems, the BSs operate in FD mode serving
all of their corresponding DL and UL users simultaneously.
The FD capability at the BSs and the inherent structure of the
network lead to a large amount of interference at the different
receivers. Fig. 1 provides a simple illustration of the network
under consideration, having G cells and one DL and one UL
user per cell. It can be seen that, apart from the usual standard
HD network interference components, for UL communication
BSs have additional SI and BS-to-BS interference, while DL
users have additional CCI from UL users both from the same
cell and from other cells.

Since our main focus is on small cell networks where
coverage distances are short and BSs and users have similar
transmission powers [16], we consider the case where none
of the interference components may be ignored; therefore
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Fig. 1: G-cell network with an FD BS, and one DL and one UL user per cell.
Solid lines represent desired links, while dashed ones represent interference
links.

the challenge is to manage all the interference while still
delivering good service to all users. This is in contrast to
prior studies which assume that CCI can be avoided via
scheduling [17], allocating different sub-carriers [18] or as-
suming channels between UL and DL users to be sufficiently
weak [19]. Additionally, we also take into consideration the
effect of transmitter and receiver distortion. These hardware
impairments are a natural consequence of non-ideal amplifiers,
oscillators, analog-to-digital converters (ADCs) and digital-to-
analog converters (DACs), and cannot be avoided in practice
[7], [9], [20].

Within this context, our aim is to investigate under what
conditions replacing HD BSs with FD ones may be beneficial
within a small cell scenario with multiple cells and multiple
legacy HD users. Since WSR problems are non-convex, we
map each of them to a weighted minimum mean squared error
(WMMSE) problem. This technique is less computationally
complex than gradient-based alternatives for WSR maximiza-
tion, is guaranteed to converge, and has been proven to work
for various types of HD networks [21]–[23]. The rate to MSE
relationship was also used for transceiver design in MIMO
interference channels with FD nodes throughout under the
perfect CSI assumption in [20]. Unlike [20], we consider HD
users and cater for multiple users per cell; additionally, we
cater for imperfect CSI under two different models. To the
best of our knowledge, the potential gains of FD operation in
a multi-cell multi-user MIMO system have not been reported
yet. Motivated by this, here we make an attempt to understand
the benefits and actual gains that can be achieved by the use
of FD-based transceivers in such systems.

With respect to the imperfect CSI aspect, we first consider
a norm-bounded error model, suitable for situations where
the CSI error is mainly due to quantization. Secondly we
consider a stochastic CSI error model, more suited to errors
occurring during the channel estimation process itself. Results
show that FD communication can indeed achieve higher rates
than the baseline HD scheme for intermediate to low distortion
levels and confirm the robust performance of the imperfect
CSI designs. Finally, we extend our original design to one
which maximizes the total DL rate subject to each UL user
achieving a pre-established target rate. This can be used in

situations where it is important that each UL user is equally
served in every time slot, which is not guaranteed with the
joint design.

The rest of the paper is organized as follows. Section II pro-
vides some preliminaries. In Section III we present the WSR
problem under perfect CSI. Sections IV and V tackle the norm-
bounded error and the stochastic error problems respectively.
Next in Section VI we consider the extension to a weighted
DL rate maximization problem subject to a minimum per UL
user target rate. Simulation results are presented in Section
VII. Section VIII provides an insight on the implementation
and complexity of the proposed algorithms, and finally Section
IX presents some concluding remarks.

Notation: |A|, cov(A), Tr(A) and (A)H indicate the
determinant, covariance, trace and Hermitian of A. diag(A)
represents a diagonal matrix containing the elements along
the diagonal of A. [A]m refers to the mth element along
the diagonal of A. vec(A) is a vector obtained by stacking
the columns of A. bAkck=1...K denotes a matrix obtained by
stacking A1, . . . ,AK . ⊗, ‖·‖ and ‖·‖F indicate the Kronecker
product, the Euclidean norm and the Frobenius norm.

II. PRELIMINARIES

A. System model

We consider a scenario having G cells, where each cell g
has one FD BS, Kd

g DL users requiring bd streams each and
Ku
g UL users requiring bu streams each. BSs are equipped

with MB FD antennas, DL users are equipped with Md HD
antennas and UL users are equipped with Mu HD antennas.
The maximum transmit power is given by PB at each BS and
PU at each of the UL users.

The signal received at user kdg , the kth DL user in cell
g, and at BS g are given by (1) and (2) respectively. Here,
Hkdg ,j

∈ CMd×MB represents the channel from BS j to DL
user kdg , Hkdg ,i

u
j
∈ CMd×Mu is the channel from UL user iuj to

DL user kdg , Hg,j ∈ CMB×MB is the channel from BS j to BS
g and Hg,iuj

∈ CMB×Mu is the channel from UL user iuj to BS
g. Vidj

∈ CMB×bd is the precoder for sidj , with sidj ∈ Cbd×1

being the data intended for the ith DL user in cell j, where
E[sidj sH

idj
] = I. Viuj

∈ CMu×bu is the precoder for siuj , with

siuj ∈ Cbu×1 being the data transmitted by the ith UL user in
cell j, where E[siuj sHiuj ] = I. Moreover, nkdg and ng represent
additive white Gaussian noise with zero mean and variance σ2

U

and σ2
B respectively. Finally, ciuj and cidj represent transmitter

distortion at UL users and at the BSs respectively, while ekdg
and eg represent receiver distortion at DL users and at the BSs
respectively.

Transmitter distortion models the effect of limited transmit-
ter dynamic range by approximating the combined effects of
additive power-amplifier noise, oscillator phase noise, and non-
linearities in the DAC and the power amplifier. This distortion
is statistically independent from the transmitted signal and can
be modeled as [7]

cidj ∼ CN
(
0, κB diag(Vidj

VH
idj

)
)

ciuj ∼ CN
(
0, κUdiag(Viuj

VH
iuj

)
)
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ykdg =
∑G

j=1
Hkdg ,j

∑Kd
j

i=1
(Vidj

sidj + cidj ) +
∑G

j=1

∑Ku
j

i=1
Hkdg ,i

u
j
(Viuj

siuj + ciuj ) + nkdg + ekdg (1)

yg =
∑G

j=1
Hg,j

∑Kd
j

i=1
(Vidj

sidj + cidj ) +
∑G

j=1

∑Ku
j

i=1
Hg,iuj

(Viuj
siuj + ciuj ) + ng + eg (2)

ỹg=
∑G

j=1
j 6=g

Hg,j

∑Kd
j

i=1
(Vidj

sidj + cidj ) +
∑G

j=1

∑Ku
j

i=1
Hg,iuj

(Viuj
siuj + ciuj ) + ng + eg + Hg,g

∑Kd
g

i=1
cidj + Θ

∑Kd
g

i=1
∆g,gVidj

sidj︸ ︷︷ ︸
extra residual SI for

imperfect CSI scenarios (3)

where κU , κB � 1.
Receiver distortion models the effect of limited receiver

dynamic range by capturing the combined effects of oscillator
phase noise, additive gain control noise, and non-linearities in
the ADC and gain-control. It is statistically independent from
the received signal itself and can be modeled as [7]

ekdg ∼ CN
(
0, βUdiag

(
cov(ykdg − ekdg )

))
eg ∼ CN

(
0, βBdiag

(
cov(yg − eg)

))
where βU , βB � 1.

Finally, since with perfect CSI Hg,g

∑Kd
g

i=1 Vidg
sidg is known

at BS g, this can be subtracted from yg resulting in (3) with
Θ = 0 [7]1,2. The parameter Θ is a binary term used to
differentiate between the perfect and imperfect CSI scenarios.
For the perfect CSI case Θ = 0, whilst for the imperfect CSI
case Θ = 1 leading to an extra residual SI term; further details
for the imperfect CSI case are provided in Section II-B.

Similar to prior work dealing with beamforming and in-
terference management, our proposed algorithms require CSI
knowledge in order to be implemented. While going into
the exact details is beyond the scope of this work, it is
important to highlight the fact that all relevant channels can
indeed be learned. Channels from users to BSs, from BSs to
users and between BSs can be estimated using standard 3GPP
LTE channel estimation protocols for HD systems. Channels
between the users can be learned via neighbour discovery
methods applicable to device-to-device (D2D) communication,
such as sounding reference signals (SRS) in 3GPP LTE. (See
for example [12], [24], [28] and references therein for further
details on channel estimation.)

B. Imperfect CSI considerations

Whilst perfect CSI formulations provide a useful baseline
to highlight the advantages of FD over HD, it is important
to recognise that the perfect CSI assumption is idealistic; in

1The SI channel can be estimated using pilot signals. For SI channel
estimation, the FD node transmitting the pilot signal is also the one receiving
it, this implies that the signal is received with high power. Having a strong
signal allows for accurate estimation of the SI channel Hg,g [24], which

implies that Hg,g
∑Kd

g

i=1 Vidg
sidg

can be considered as available at BS g

under the perfect CSI assumption. The effect of residual SI is then captured

in the term Hg,g
∑Kd

g

i=1 cidj
+ eg .

2Note that other literature like [7], [8], [20], [25] adopts a partial SI
cancellation method similar to the one used in this paper, while others
implement partial SI cancellation via the use of an attenuation factor [26].
However a completely different model may also be adopted where Hg,g is
used to represent the residual SI channel directly, see for example [27].

practice only an imperfect estimate will be available. Therefore
moving on from the original perfect CSI assumption we will
also consider the design of robust beamformers. The channels
are modeled as

Hkdg ,i
u
j

= Ĥkdg ,i
u
j

+ ∆kdg ,i
u
j

Hkdg ,j
= Ĥkdg ,j

+ ∆kdg ,j

Hg,iuj
= Ĥg,iuj

+ ∆g,iuj

Hg,j = Ĥg,j + ∆g,j (4)

where H indicates the perfect channel, Ĥ is the imperfect
channel and ∆ is the CSI error. Note that the significance of
the indices used to represent the channels and errors between
various nodes in (4) follow those outlined for (1) and (2).

For the imperfect CSI case only Ĥg,g

∑Kd
g

i=1 Vidg
sidg is

known at BS g. This can be subtracted from yg resulting in
(3) with Θ = 1, where there is an extra residual SI component
compared to the perfect CSI case.

The CSI error will be modeled in two different ways as
follows.

1) Norm-bounded error model: For the deterministic
norm-bounded error model, the Frobenius norm of the CSI
errors cannot exceed a pre-established upper bound, and the
CSI error is expressed as

{∆kdg ,i
u
j

: ||∆kdg ,i
u
j
||F ≤ εkdg ,iuj } ∀ k, g, i, j

{∆kdg ,j
: ||∆kdg ,j

||F ≤ εkdg ,j} ∀ k, g, j
{∆g,iuj

: ||∆g,iuj
||F ≤ εg,iuj } ∀ g, i, j

{∆g,j : ||∆g,j ||F ≤ εg,j} ∀ g, j (5)

where ε represents the upper limit on the Frobenius norm of
the error. This model considers the case where the imperfect
CSI is allowed to fall anywhere within an uncertainty region
around the perfect CSI value and is particularly suited to
situations where quantization errors dominate the imperfection
in the available CSI. It is well established in literature and has
been considered for beamformer design in a variety of systems,
for example MIMO relay networks [29], MIMO interference
broadcast channels [30], DL multi-user MIMO systems [31]
and point-to-point MIMO communication [32], [33].

2) Stochastic error model: For the stochastic error model
the CSI errors are assumed to be independent of the perfect
channel, H, and distributed as follows

∆kdg ,i
u
j
∼ CN (0, ηUUI)

∆kdg ,j
∼ CN (0, ηUBI)

∆g,iuj
∼ CN (0, ηBUI)
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Fkdg ≈
∑G

j=1

∑Kd
j

i=1
κBHkdg ,j

diag(Vidj
VH
idj

)HH
kdg ,j

+
∑G

j=1

∑Ku
j

i=1
κUHkdg ,i

u
j
diag(Viuj

VH
iuj

)HH
kdg ,i

u
j

+ βUσ
2
UI

+
∑G

j=1

∑Kd
j

i=1
βUdiag(Hkdg ,j

Vidj
VH
idj

HH
kdg ,j

) +
∑G

j=1

∑Ku
j

i=1
βUdiag(Hkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
) (7)

Ūkdg
=VH

kdg
HH
kdg ,g

[∑G

j=1

∑Kd
j

i=1
Hkdg ,j

Vidj
VH
idj

HH
kdg ,j

+
∑G

j=1

∑Ku
j

i=1
Hkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j

+ Fkdg + σ2
UI

]−1

(8)

Fg ≈
∑G

j=1

∑Kd
j

i=1
κBHg,jdiag(Vidj

VH
idj

)HH
g,j +

∑G

j=1

∑Ku
j

i=1
κUHg,iuj

diag(Viuj
VH
iuj

)HH
g,iuj

+ βBσ
2
BI

+
∑G

j=1

∑Kd
j

i=1
βBdiag(Hg,jVidj

VH
idj

HH
g,j) +

∑G

j=1

∑Ku
j

i=1
βBdiag(Hg,iuj

Viuj
VH
iuj

HH
g,iuj

) (10)

Ūkug
=VH

kug
HH
g,kug

[∑G

j=1
j 6=g

∑Kd
j

i=1
Hg,jVidj

VH
idj

HH
g,j +

∑G

j=1

∑Ku
j

i=1
Hg,iuj

Viuj
VH
iuj

HH
g,iuj

+ Fg + σ2
BI

]−1

(11)

∆g,j ∼ CN (0, ηBBI) (6)

where η represents the variance of the CSI error and the
subscripts B and U indicate the BS and user respectively. This
type of error model is suitable for cases where the channel
error is mainly due to estimation inaccuracies. The parameter
η can be assumed to be known a priori depending on the
channel dynamics and the channel estimation scheme applied.
It may be viewed either as a whole [34] or modeled as [35]

ηrt = τρ−νrt

where r, t ∈ {B,U}, ρ represents the signal-to-noise (SNR)
ratio of the corresponding link and the parameters τ and ν
are used to capture a variety of CSI acquisition scenarios for
τ > 0 and ν ≥ 0.

C. Relationship between achievable rate and MSE

Since our approach for WSR maximization is based on
minimizing the mean square error (MSE), we first need to
relate these two metrics. Such a relationship has already been
established for several HD systems in [21]–[23], where it is
shown that R = log2|Ē

−1|, with R representing the rate
and Ē representing the MSE matrix3. This equality holds
for independent input signals and noise, and for cases where
optimal MMSE receivers are used.

Starting with the rate expression for the kth DL user
in cell g, under Gaussian signaling, we have Rkdg =

log2|I + Φ−1
kdg

Hkdg ,g
Vkdg

VH
kdg

HH
kdg ,g
| where Φkdg

represents the
DL interference-plus-noise covariance matrix, expressed as

Φkdg
=
∑G

j=1

∑Kd
j

i=1
(i,j 6=k,g)

Hkdg ,j
Vidj

VH
idj

HH
kdg ,j

+ Fkdg

+
∑G

j=1

∑Ku
j

i=1
Hkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j

+ σ2
UI

3Note that [21] and [22] establish the rate to MSE relationship using base e
logarithms, while this paper and [23] establish it using base 2 logarithms. The
overall rate to MSE relationship is essentially the same, with the choice of
logarithm only affecting the corresponding unit for R. For base e logarithms
R is in nats/s/Hz, while for base 2 logarithms R is in bits/s/Hz. The resultant
WSR to WMMSE problem transformations are also similar, except for the
ln2 terms which do not appear when base e logarithms are applied.

with Fkdg , defined in (7), representing the combined contribu-
tion of the transmitter and receiver distortion. The approxima-
tion is obtained by omitting terms involving the multiplication
of κB , κU and βU with each other since their product is
negligibly small.

The DL MSE matrix is given by Ekdg
= E[(Ukdg

ykdg −
skdg )(Ukdg

ykdg − skdg )H ] where the expectation is taken with
respect to s and n under an independence assumption, and
Ukdg

∈ Cbd×Md is the receiver applied by the kth DL user in
cell g. Applying an MMSE receiver, Ūkdg

= arg min
U

Tr(Ekdg
)

given by (8), then the DL MSE matrix can be expressed
as Ēkdg

= (I + VH
kdg

HH
kdg ,g

Φ−1
kdg

Hkdg ,g
Vkdg

)−1. Finally using
an argument parallel to the one from [21]–[23], it can be
established that

Rkdg = log2

∣∣∣Ē−1
kdg

∣∣∣ . (9)

The rate achieved by the kth UL user in cell g, under Gaus-
sian signaling, can be expressed as Rkug = log2|I+Φ−1

kug
Hg,kug

Vkug
VH
kug

HH
g,kug
| where Φkug

represents the UL interference-
plus-noise covariance matrix, given by

Φkug
=
∑G

j=1
(j 6=g)

∑Kd
j

i=1
Hg,jVidj

VH
idj

HH
g,j + Fg

+
∑G

j=1

∑Ku
j

i=1
(i,j 6=k,g)

Hg,iuj
Viuj

VH
iuj

HH
g,iuj

+ σ2
BI

with Fg , defined in (10), representing the effect of transmitter
and receiver distortion.

The UL MSE matrix is given by Ekug
= E[(Ukug

ỹkug −
skug )(Ukug

ỹkug − skug )H ] where the expectation is taken with
respect to s and n under an independence assumption, and
Ukug

∈ Cbu×MB is the receiver applied by BS g to obtain the
information transmitted by the kth UL in its cell. Applying
an MMSE receiver, Ūkug

= arg min
U

Tr(Ekug
) given by (11),

then the UL MSE matrix can then be expressed as Ēkug
=

I+Hg,kug
Vkug

Φ−1
kug

VH
kug

HH
g,kug

. Next using an argument similar
to the one from [21]–[23], we can establish that

Rkug = log2

∣∣∣Ē−1
kug

∣∣∣ . (12)
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Tr
(
Wkdg

Ekdg

)
= Tr

(
Bkdg

(Ukdg
Hkdg ,g

Vkdg
− I)(Ukdg

Hkdg ,g
Vkdg

− I)HBH
kdg

)
+ (σ2

U + βUσ
2
U )Tr

(
Bkdg

Ukdg
UH
kdg

BH
kdg

)
+

G∑
j=1

Ku
j∑

i=1

Tr
(
Bkdg

Ukdg
Hkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
UH
kdg

BH
kdg

)
+

G∑
j=1

Kd
j∑

i=1

(i,j 6=k,g)

Tr
(
Bkdg

Ukdg
Hkdg ,j

Vidj
VH
idj

HH
kdg ,j

UH
kdg

BH
kdg

)

+

G∑
j=1

Kd
j∑

i=1

Tr
(
κBBkdg

Ukdg
Hkdg ,j

diag(Vidj
VH
idj

) HH
kdg ,j

UH
kdg

BH
kdg

)
+

G∑
j=1

Ku
j∑

i=1

Tr
(
κUBkdg

Ukdg
Hkdg ,i

u
j

diag(Viuj
VH
iuj

)HH
kdg ,i

u
j
UH
kdg

BH
kdg

)

+

G∑
j=1

Kd
j∑

i=1

Tr
(
βUBkdg

Ukdg
diag(Hkdg ,j

Vidj
VH
idj

HH
kdg ,j

)UH
kdg

BH
kdg

)
+

G∑
j=1

Ku
j∑

i=1

Tr
(
βUBkdg

Ukdg
diag(Hkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j

)UH
kdg

BH
kdg

)
(15)

Tr
(
Wkug

Ekug

)
= Tr

(
Bkug

(Ukug
Hg,kug

Vkug
− I)(Ukug

Hg,kug
Vkug

− I)BH
kug

)
+ (σ2

B + βBσ
2
B)Tr

(
Bkug

Ukug
UH
kug

BH
kug

)
+

G∑
j=1

Ku
j∑

i=1

(i,j 6=k,g)

Tr
(
Bkug

Ukug
Hg,iuj

Viuj
VH
iuj

HH
g,iuj

UH
kug

BH
kug

)
+

G∑
j=1

(j 6=g)

Kd
j∑

i=1

Tr
(
Bkug

Ukug
Hg,jVidj

VH
idj

HH
g,jU

H
kug

BH
kug

)

+

G∑
j=1

Kd
j∑

i=1

Tr
(
κBBkug

Ukug
Hg,jdiag(Vidj

VH
idj

)HH
g,jU

H
kug

BH
kug

)
+

G∑
j=1

Ku
j∑

i=1

Tr
(
κUBkug

Ukug
Hg,iuj

diag(Viuj
VH
iuj

)HH
g,iuj

UH
kug

BH
kug

)

+

G∑
j=1

Kd
j∑

i=1

Tr
(
βBBkug

Ukug
diag(Hg,jVidj

VH
idj

HH
g,j)U

H
kug

BH
kug

)
+

G∑
j=1

Ku
j∑

i=1

Tr
(
βBBkug

Ukug
diag(Hg,iuj

Viuj
VH
iuj

HH
g,iuj

)UH
kug

BH
kug

)

+ Θ

Kd
j∑

i=1

Tr
(
Bkug

Ukug
∆g,gVidg

VH
idg

∆H
g,gU

H
kug

BH
kug

)
(16)

III. WEIGHTED SUM RATE MAXIMIZATION

Starting with the perfect CSI case, we want to find the
optimal precoders that maximize the WSR subject to transmit
power constraints, i.e.

max
V

∑G

g=1

∑Kd
g

k=1
αkdgRkdg +

∑G

g=1

∑Ku
g

k=1
αkugRkug

s.t. Tr(Vkug
VH
kug

) ≤ PU ∀ k, g∑Kd
g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g (13)

where αkdg and αkug ∀ k, g denote pre-defined weights. Using a
method parallel to that of [21]–[23] we can establish an equiv-
alence between the WSR problem (13) and a corresponding
WMMSE one as in Theorem 1.

Theorem 1. The WSR problem in (13) is equivalent to the
WMMSE problem in (14), such that the global optimal solution
for the precoders of the two problems are identical.

min
U,W,V

G∑
g=1

Kd
g∑

k=1

[
Tr(Wkdg

Ekdg
)− αkdg log2

∣∣∣∣∣ ln2

αkdg
Wkdg

∣∣∣∣∣− αkdg
ln2

bd

]

+

G∑
g=1

Ku
g∑

k=1

[
Tr(Wkug

Ekug
)− αkug log2

∣∣∣∣∣ ln2

αkug
Wkug

∣∣∣∣∣− αkug
ln2

bu

]
s.t. Tr(Vkug

VH
kug

) ≤ PU ∀ k, g∑Kd
g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g (14)

Proof. First we define the metrics Tr(Wkdg
Ekdg

) and
Tr(Wkug

Ekug
) used in (14) as in (15) and (16). Here Bkdg

comes from the decomposition of Wkdg
as Wkdg

= BH
kdg

Bkdg

and Bkug
comes from the decomposition of Wkug

as Wkug
=

BH
kug

Bkug .
Considering (14), it can be seen that the optimal U are

the standard MMSE receivers Ūkdg
and Ūkug

in (8) and (11)
respectively. Next, fixing U and V and checking the first order
optimality conditions for W, we obtain the optimal weights
as

W̄kdg
=
αkdg
ln2

Ē
−1
kdg

and W̄kug =
αkug
ln2

Ē
−1
kug

. (17)

Substituting for optimal U and W in (14), we have the
following problem

min
V

∑G

g=1

∑Kd
g

k=1
−αkdg log2

∣∣∣Ē−1
kdg

∣∣∣+
∑G

g=1

∑Ku
g

k=1
−αkug log2

∣∣∣Ē−1
kug

∣∣∣
s.t. Tr(Vkug

VH
kug

) ≤ PU ∀ k, g∑Kd
g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g

which considering (9) and (12) is the same as the original one
in (13).

Since (14) is not jointly convex in U, V and W but
separately convex for each of the variables, we apply an
alternating minimization approach to solve the problem as
outlined in Algorithm 1. Having closed form expressions for
U and W, we need to focus on obtaining V. Fixing U and
W, (14) can be expressed as

min
V

∑G

g=1

∑Kd
g

k=1
Tr(Wkdg

Ekdg
) +

∑G

g=1

∑Ku
g

k=1
Tr(Wkug

Ekug
)

s.t. Tr(Vkug
VH
kug

) ≤ PU ∀ k, g
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L =

G∑
g=1

Kd
g∑

k=1

Tr(Wkdg
Ekdg

) +

G∑
g=1

Ku
g∑

k=1

Tr(Wkug
Ekug

) +

G∑
g=1

Ku
g∑

k=1

λkug

[
Tr(Vkug

VH
kug

)− PU
]

+
∑G

g=1
µg
[∑Kd

g

k=1
Tr(Vkdg

VH
kdg

)− PB
]
(19)

Xg =

G∑
j=1

Kd
j∑

i=1

HH
idj ,g

UH
idj

Widj
Uidj

Hidj ,g
+

G∑
j=1

Kd
j∑

i=1

κBSdiag(HH
idj ,g

UH
idj

Widj
Uidj

Hidj ,g
) +

G∑
j=1

Kd
j∑

i=1

βusH
H
idj ,g

diag(UH
idj

Widj
Uidj

)Hidj ,g

+

G∑
j=1
j 6=g

Ku
j∑

i=1

HH
j,gU

H
iuj

Wiuj
Uiuj

Hj,g +

G∑
j=1

Ku
j∑

i=1

κBSdiag(HH
j,gU

H
iuj

Wiuj
Uiuj

Hj,g) +

G∑
j=1

Ku
j∑

i=1

βBSHH
j,gdiag(UH

iuj
Wiuj

Uiuj
)Hj,g (21)

Xkug
=

G∑
j=1

Kd
j∑

i=1

HH
idj ,k

u
g
UH
idj

Widj
Uidj

Hidj ,k
u
g

+

G∑
j=1

Kd
j∑

i=1

κusdiag(HH
idj ,k

u
g
UH
idj

Widj
Uidj

Hidj ,k
u
g

)+

G∑
j=1

Kd
j∑

i=1

βusH
H
idj ,k

u
g

diag(UH
idj

Widj
Uidj

)Hidj ,k
u
g

+

G∑
j=1

Ku
j∑

i=1

HH
j,kug

UH
iuj

Wiuj
Uiuj

Hj,kug
+

G∑
j=1

Ku
j∑

i=1

κusdiag(HH
j,kug

UH
iuj

Wiuj
Uiuj

Hj,kug
) +

G∑
j=1

Ku
j∑

i=1

βBSHH
j,kug

diag(UH
iuj

Wiuj
Uiuj

)Hj,kug
(22)

∑Kd
g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g . (18)

The Lagrange dual objective function of (18) is given by (19)
where λkug and µg are the Lagrange multipliers associated with
the transmit power constraints. Setting ∂L/∂V∗kdg

= 0 and
∂L/∂V∗kug = 0 we obtain the closed form solutions for the
optimal precoders as

V̄kdg
= [Xg + µgI]−1HH

kdg ,g
UH
kdg

Wkdg

V̄kug
= [Xkug

+ λkug I]−1HH
g,kug

UH
kug

Wkug
(20)

where Xg and Xkug
are defined in (21) and (22). The Lagrange

multipliers µg and λkug should be either zero, or positive
numbers that satisfy

Tr
(
Vkug (λkug )VH

kug
(λkug )

)
= PU∑Kd

g

k=1
Tr
(
Vkdg

(µg)V
H
kdg

(µg)
)

= PB . (23)

The equalities in (23) can alternatively be expressed as∑Mu

m=1

[Gkug
]m

([Λkug
]m + λkug )2

= PU∑MB

m=1

[Gg]m
([Dg]m + µg)2

= PB

where Λkug
comes from the decompo-

sition Xkug
= Ckug

Λkug
CH
kug

, Gkug
=

CH
kug

HH
g,kug

UH
kug

Wkug
WH

kug
Ukug

Hg,kug
Ckug

, Dg comes
from the decomposition Xg = QgDgQ

H
g and

Gg =
∑Kd

g

k=1 QH
g HH

kdg ,g
UH
kdg

Wkdg
WH

kdg
Ukdg

Hkdg ,g
Qg . These

can respectively be solved for λkug and µg using linear search
techniques, such as the bisection method [22].

Therefore to solve (14), we can follow the process in
Algorithm 1, where in Step 2 we use (8) and (11) to calculate
the receivers as Ukdg

= Ūkdg
and Ukug

= Ūkug
. The weights

in Step 3 are calculated as Wkdg
= W̄kdg

and Wkug
= W̄kug

using (17). Finally (20) is used to calculate Vkdg
= V̄kdg

and
Vkug

= V̄kug
in Step 4.

Remark 1. The alternating minimization process used to solve
the WMMSE problem decreases the cost function monotoni-
cally at each step of the iterations. Since the cost function is
lower bounded, then the algorithm is guaranteed to converge.
Additionally, using an argument parallel to the one in [22]-
Appendix C, convergence to a stationary point of the original
WSR problem can also be proven.

Algorithm 1: Alternating optimization process to solve
WMMSE problems

1 Initialize Vkdg
and Vkug

∀ k, g.
2 Calculate Ukdg

and Ukug
∀ k, g.

3 Calculate Wkdg
and Wkug

∀ k, g.
4 Compute Vkdg

and Vkug
∀ k, g.

5 Repeat from Step 2 until convergence or for a fixed number
of iterates.

IV. ROBUST DESIGN WITH NORM-BOUNDED ERROR
MODEL

We now want to solve the WSR problem from the prior
section with additional considerations for norm-bounded CSI
errors, i.e.

max
V

min
∆

∑G

g=1

∑Kd
g

k=1
αkdgRkdg +

∑G

g=1

∑Ku
g

k=1
αkugRkug

s.t. Tr(Vkug
VH
kug

) ≤ PU ∀ k, g∑Kd
g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g

{∆kdg ,i
u
j

: ||∆kdg ,i
u
j
||F ≤ εkdg ,iuj } ∀ k, g, i, j

{∆kdg ,j
: ||∆kdg ,j

||F ≤ εkdg ,j} ∀ k, g, j
{∆g,iuj

: ||∆g,iuj
||F ≤ εg,iuj } ∀ g, i, j

{∆g,j : ||∆g,j ||F ≤ εg,j} ∀ g, j . (24)

Similar to [30], [31] and references therein, we apply
an iterative approach to solve our non-convex optimization
problem. Such an approach involves solving a convex sub-
problem at each iteration step and has been proven to converge.
Having already established an equivalence between (13) and
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(14) for the perfect CSI case, it can easily bee seen how the
cost function of (24) can be mapped to

max
V

min
∆

max
U,W

G∑
g=1

Kd
g∑

k=1

[
−Tr(Wkdg

Ekdg
) + αkdg log2

∣∣∣∣∣ ln2

αkdg
Wkdg

∣∣∣∣∣+
αkdg
ln2

bd

]

+

G∑
g=1

Ku
g∑

k=1

[
−Tr(Wkug

Ekug
) + αkug log2

∣∣∣∣∣ ln2

αkug
Wkug

∣∣∣∣∣+
αkug
ln2

bu

]
.

(25)

Applying the max-min inequality, which states that for any
function f(w, z) then min

w
max
z

f(w, z) ≥ max
z

min
w
f(w, z),

rather than using the cost function in (25) we can instead focus
on solving the following problem

max
V,U,W

min
∆

G∑
g=1

Kd
g∑

k=1

[
−Tr(Wkdg

Ekdg
) + αkdg log2

∣∣∣∣∣ ln2

αkdg
Wkdg

∣∣∣∣∣+
αkdg
ln2

bd

]

+

G∑
g=1

Ku
g∑

k=1

[
−Tr(Wkug

Ekug
) + αkug log2

∣∣∣∣∣ ln2

αkug
Wkug

∣∣∣∣∣+
αkug
ln2

bu

]
s.t. Tr(Vkug

VH
kug

) ≤ PU ∀ k, g∑Kd
g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g

{∆kdg ,i
u
j

: ||∆kdg ,i
u
j
||F ≤ εkdg ,iuj } ∀ k, g, i, j

{∆kdg ,j
: ||∆kdg ,j

||F ≤ εkdg ,j} ∀ k, g, j
{∆g,iuj

: ||∆g,iuj
||F ≤ εg,iuj } ∀ g, i, j

{∆g,j : ||∆g,j ||F ≤ εg,j} ∀ g, j . (26)

Note that the cost function in (26) is not equivalent to the
original one in (25). However the ensuing formulation is still
a valid one; firstly the new cost function is a lower bound
on (25) i.e. the resultant rate is surely achievable. Secondly
the formulation in (26) ensures that none of the optimization
variables depend on perfect CSI, which is the ultimate aim of
a robust beamforming approach.

Theorem 2. The optimization problem in (26) is equivalent
to the reformulation in (27) such that the optimal U, V and
W = BHB for the two problems are identical.

max
V,U,B,m,λ

G∑
g=1

Kd
g∑

k=1

[
−

G∑
j=1

Ku
j∑

i=1

m1,kgij −
G∑
j=1

m2,kgj

−(σ2
U+βUσ

2
U )||Bkdg

Ukdg
||2F + αkdg log2

∣∣∣∣∣ ln2

αkdg
BH
kdg

Bkdg

∣∣∣∣∣+αkdg
ln2

bd

]

+

G∑
g=1

[
−

G∑
j=1

Ku
j∑

i=1

m3,gij −
G∑
j=1

m4,gj+

Ku
g∑

k=1

(
−(σ2

B+βBσ
2
B)||Bkug

Ukug
||2F +αkug log2

∣∣∣∣∣ ln2

αkug
BH
kug

Bkug

∣∣∣∣∣+αkug
ln2

bu

)]
s.t. Tr(Vkug

VH
kug

) ≤ PU ∀ k, g∑Kd
g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g m1,kgij − λ1,kgij ωH1,kgij 0
ω1,kgij I −εkdg ,iuj Ω1,kgij

0 −εkdg ,iuj ΩH
1,kgij

λ1,kgij I

 � 0 ∀ k, g, i, j

 m2,kgj − λ2,kgj ωH2,kgj 0
ω2,kgj I −εkdg ,jΩ2,kgj

0 −εkdg ,jΩ
H
2,kgj λ2,kgjI

 � 0 ∀ k, g, j

 m3,gij − λ3,gij ωH3,gij 0
ω3,gij I −εg,iuj Ω3,gij

0 −εg,iuj ΩH
3,gij λ3,gij I

 � 0 ∀ g, i, j

 m4,gj − λ4,gj ωH4,gj 0
ω4,gj I −εg,jΩ4,gj

0 −εg,jΩH
4,gj λ4,gjI

 � 0 ∀ g, j

λ1,kgij ≥ 0, λ2,kgj ≥ 0, λ3,gij ≥ 0, λ4,gj ≥ 0 ∀ k, g, i, j
(27)

In (27), m and λ represent additional scalar variables intro-
duced during the reformulation, and the ω and Ω terms are
defined as follows.

ω1kg,ij=


vec(Bkdg

Ukdg
Ĥkdg ,i

u
j
Viuj

)

(κU )
1
2

⌊(
(SnViuj

)T ⊗ (Bkdg
Ukdg

)
)
vec(Ĥkdg ,i

u
j

)
⌋
n=1...Mu

(βU )
1
2 b
(
VT
iuj
⊗
(
(UH

kdg
BH
kdg

)TSn
))

vec(Ĥkdg ,i
u
j

)cn=1...Md



ω2,kgj =



⌊
vec(Bkdg

Ukdg
Ĥkdg ,j

Vidj
− δk,gi,j Bkdg

)
⌋
i=1...Kd

j⌊
(κB)

1
2

⌊(
(SnVidj

)T ⊗ vec(Bkdg
Ukdg

)
)
vec(Ĥkdg ,j

)
⌋
n=1...MB

⌋
i=1...Kd

j⌊
(βU )

1
2

⌊(
VT
idj
⊗
(
(UH

kdg
BH
kdg

)TSn
))

vec(Ĥkdg ,j
)
⌋
n=1...Md

⌋
i=1...Kd

j



ω3,gij =



⌊
vec(Bkug

Ukug
Ĥg,iuj

Viuj
− δk,gi,j Bkdg

)
⌋
k=1...Ku

g⌊
(κU )

1
2

⌊(
(SnViuj

)T ⊗ (Bkug
Ukug

)
)
vec(Ĥg,iuj

)
⌋
n=1...Mu

⌋
k=1...Ku

g⌊
(βB)

1
2

⌊(
VT
iuj
⊗
(
(UH

kug
BH
kug

)TSn
))

vec(Ĥg,iuj
)
⌋
n=1...MB

⌋
k=1...Ku

g



ω4,gj =



⌊
ϑgjvec(Bkug

Ukug
Ĥg,jVidj

)
⌋

k=1...Ku
g

i=1...Kd
j⌊

(κB)
1
2

⌊(
(SnVidj

)T ⊗ (Bkug
Ukug

)
)
vec(Ĥg,j)

⌋
n=1...MB

⌋
k=1...Ku

g

i=1...Kd
j⌊

(βB)
1
2

⌊(
VT
idj
⊗
(
(UH

kug
BH
kug

)TSn
))

vec(Ĥg,j)
⌋
n=1...MB

⌋
k=1...Ku

g

i=1...Kd
j



Ω1kg,ij =


(
VT
iuj
⊗Bkdg

Ukdg

)
(κU )

1
2

⌊
(SnViuj

)T ⊗ (Bkdg
Ukdg

)
⌋
n=1...Mu

(βU )
1
2

⌊
VT
iuj
⊗
(
(UH

kdg
BH
kdg

)TSn
)⌋
n=1...Md



Ω2,kgj =



⌊(
VT
idj
⊗Bkdg

Ukdg

)⌋
i=1...Kd

j⌊
(κB)

1
2

⌊
(SnVidj

)T ⊗ vec(Bkdg
Ukdg

)
⌋
n=1...MB

⌋
i=1...Kd

j⌊
(βU )

1
2

⌊
VT
idj
⊗
(
(UH

kdg
BH
kdg

)TSn
)⌋
n=1...Md

⌋
i=1...Kd

j



Ω3,gij =


b
(
VT
iuj
⊗Bkug

Ukug

)
ck=1...Ku

g⌊
(κU )

1
2 b(SnViuj

)T ⊗ (Bkug
Ukug

)cn=1...Mu

⌋
k=1...Ku

g⌊
(βB)

1
2

⌊
VT
iuj
⊗
(
(UH

kug
BH
kug

)TSn
)⌋
n=1...MB

⌋
k=1...Ku

g



Ω4,gj =



⌊(
VT
idj
⊗Bkug

Ukug

)⌋
k=1...Ku

g

i=1...Kd
j⌊

(κB)
1
2

⌊
(SnVidj

)T ⊗ (Bkug
Ukug

)
⌋
n=1...MB

⌋
k=1...Ku

g

i=1...Kd
j⌊

(βB)
1
2

⌊
VT
idj
⊗
(
(UH

kug
BH
kug

)TSn
)⌋
n=1...MB

⌋
k=1...Ku

g

i=1...Kd
j


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where Sn is a selection matrix consisting of all zeros except
for the nth element along the diagonal which is equal to 1,

δk,gi,j =

{
1 if (k, g) = (i, j)
0 otherwise and ϑgj =

{
0 if g = j
1 otherwise .

Proof. The problem formulation in (27) is based on finding an
equivalent form for the inner minimization of (26). Note that
Tr(Wkdg

Ekdg
) and Tr(Wkug

Ekug
) are given by (15) and (16)

where Θ = 1 since we are dealing with imperfect CSI. Also
the CSI error, ∆, appears in these terms when we replace H
with Ĥ + ∆ from (4). Next it can be noticed that the problem
is separable over each occurrence of the different types of
CSI error [30], i.e. we can separate the problem over ∆kdg ,i

u
j

,
∆kdg ,j

, ∆g,iuj
and ∆g,j , and focus on one of them at a time to

obtain a more useful formulation.
Starting with ∆kdg ,i

u
j

, this will only appear in terms contain-
ing Hkdg ,i

u
j

, since Hkdg ,i
u
j

= Ĥkdg ,i
u
j

+ ∆kdg ,i
u
j

. Therefore from
the overall cost function of (26), from the perspective of each
∆kdg ,i

u
j

, we are only concerned with

T1,kgij = Tr
(
Bkdg

Ukdg
Hkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
UH
kdg

BH
kdg

)
+ Tr

(
κUBkdg

Ukdg
Hkdg ,i

u
j

diag(Viuj
VH
iuj

)HH
kdg ,i

u
j
UH
kdg

BH
kdg

)
+ Tr

(
βUBkdg

Ukdg
diag(Hkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
)UH

kdg
BH
kdg

)
= Tr

(
Bkdg

Ukdg
Hkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
UH
kdg

BH
kdg

)
+

Mu∑
n=1

Tr
(
κUBkdg

Ukdg
Hkdg ,i

u
j

SnViuj
VH
iuj

Sn
HHH

kdg ,i
u
j
UH
kdg

BH
kdg

)
+

Md∑
n=1

Tr
(
βUBkdg

Ukdg
SnHkdg ,i

u
j
Viuj

VH
iuj

HH
kdg ,i

u
j
Sn

HUH
kdg

BH
kdg

)
.

Using Tr(XXH) = ‖vec(X)‖2, vec(XYZ) = (ZT ⊗
X)vec(Y) and introducing slack variable m1,kgij , this can
be expressed as

T1,kgij = ‖ω1,kgij + Ω1,kgijvec(∆kdg ,i
u
j
)‖2 ≤ m1,kgij . (28)

Thus, the inner minimization in (26) from the perspective of
each occurrence of ∆kdg ,i

u
j

is given by

max
m
−m1,kgij

s.t. ‖ω1,kgij + Ω1,kgijvec(∆kdg ,i
u
j
)‖2 ≤ m1,kgij

∀{∆kdg ,i
u
j

: ||vec(∆kdg ,i
u
j
)|| ≤ εkdg ,iuj } . (29)

Next, representing the inequality in (28) as

−
(
ω1,kgij+Ω1,kgijvec(∆kdg ,i

u
j
)
)H

I
(
ω1,kgij+Ω1,kgijvec(∆kdg ,i

u
j
)
)

+m1,kgij ≥ 0

we can apply the Schur Complement Lemma, to formulate the
constraints of (29) as[
m1,kgij ωH1,kgij
ω1,kgij I

]
+

[
0 vec(∆kdg ,i

u
j
)HΩH

1,kgij

Ω1,kgijvec(∆kdg ,i
u
j
) 0

]
� 0.

Additionally, applying Lemma 1 from Appendix A with ξ =
εkdg ,iuj , B = [0 ΩH

1,kgij
], C = [−1 0], D = vec(∆kdg ,i

u
j
) and

A =

[
m1,kgij ωH1,kgij
ω1,kgij I

]

this can be further represented as

λ1,kgij ≥0,

m1,kgij − λ1,kgij ωH1,kgij 0

ω1,kgij I −εkdg ,iuj Ω1,kgij

0 −εkdg ,iuj ΩH
1,kgij

λ1,kgijI

�0.

(30)

Using the same separation of variables principle for ∆kdg ,j
,

∆g,iuj
and ∆g,j , for each of these CSI error terms we only

need to focus on specific parts of the cost function given by
(31), (32) and (33) respectively.

T2,kgj =

Kd
j∑

i=1

[
Tr
(
κBBkdg

Ukdg
Hkdg ,j

diag(Vidj
VH
idj

)HH
kdg ,j

UH
kdg

BH
kdg

)
+Tr

(
Bkdg

(Ukdg
Hkdg ,j

Vidj
−δk,gi,j I)(Ukdg

Hkdg ,j
Vidj
−δk,gi,j I)HBH

kdg

)
+Tr

(
βUBkdg

Ukdg
diag(Hkdg ,j

Vidj
VH
idj

HH
kdg ,j

)UH
kdg

BH
kdg

)]
(31)

T3,gij =

Ku
g∑

k=1

[
Tr
(
κUBkug

Ukug
Hg,iuj

diag(Viuj
VH
iuj

)HH
g,iuj

UH
kug

BH
kug

)
+Tr

(
Bkug

(Ukug
Hg,iuj

Viuj
−δk,gi,j I)(Ukug

Hg,iuj
Viuj
−δk,gi,j I)BH

kug

)
+Tr

(
βBBkug

Ukug
diag(Hg,iuj

Viuj
VH
iuj

HH
g,iuj

)UH
kug

BH
kug

)]
(32)

T4,gj =

Ku
g∑

k=1

Kd
j∑

i=1

[
ϑgjTr

(
Bkug

Ukug
Hg,jVidj

VH
idj

HH
g,jU

H
kug

BH
kug

)
+(1− ϑgj )

(
Bkug

Ukug
∆g,jVidj

VH
idj

∆H
g,jU

H
kug

BH
kug

)
+Tr

(
κBBkug

Ukug
Hg,jdiag(Vidj

VH
idj

)HH
g,jU

H
kug

BH
kug

)
+Tr

(
βBBkug

Ukug
diag(Hg,jVidj

VH
idj

HH
g,j)U

H
kug

BH
kug

)]
(33)

Following a process similar to the one outlined for ∆kdg ,i
u
j

we can introduce additional slack variables such that

T2,kgj = ‖ω2,kgj + Ω2,kgjvec(∆kdg ,j
)‖2 ≤ m2,kgj

T3,gij = ‖ω3,gij + Ω3,gijvec(∆g,iuj
)‖2 ≤ m3,gij

T4,gj = ‖ω4,gj + Ω4,gjvec(∆g,j)‖2 ≤ m4,gj .

The introduction of these slack variables allows us to formulate
the corresponding constraints in the form of (30). Additional
details are not provided here since the process required for
each of ∆kdg ,j

, ∆g,iuj
and ∆g,j follows the one already outlined

for ∆kdg ,i
u
j

. After going through this procedure, we can express
the original cost function from (26) as a summation of the
slack variables and some additional terms in order to obtain
the final problem formulation in (27).

Since problem (27) is not jointly convex in U, V and B
we apply the alternating optimization approach in Algorithm
1 to solve it [30]4 . In Step 2, to compute U we fix V and
B and solve the resulting semi-definite programming (SDP)
problem. In Step 3 instead of finding W, we now want to find

4Note that some additional minor reformulations are required when solving
for U and B. In particular, we introduce slack variables to handle terms of
the form ‖BU‖2F in a manner similar to the process applied in (28).
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ES
kdg

= Ukdg

G∑
j=1

Kd
j∑

i=1

Ĥkdg ,j
Vidj

VH
idj

Ĥ
H

kdg ,j
UH
kdg

+ Ukdg

G∑
j=1

Ku
j∑

i=1

Ĥkdg ,i
u
j
Viuj

VH
iuj

Ĥ
H

kdg ,i
u
j
UH
kdg
−Ukdg

Ĥkdg ,g
Vkdg

−VH
kdg

Ĥ
H

kdg ,g
UH
kdg

+ (σ2
U + fkdg )Ukdg

UH
kdg

+ Ukdg
F̂kdgUH

kdg
+ I (35)

ES
kug

= Ukug

G∑
j=1
j 6=g

Kd
j∑

i=1

Ĥg,jVidj
VH
idj

Ĥ
H

g,jU
H
kug

+ Ukug

G∑
j=1

Ku
j∑

i=1

Ĥg,iuj
Viuj

VH
iuj

Ĥ
H

g,iuj
UH
kug
−Ukug

Ĥg,kug
Vkug

−VH
kug

Ĥ
H

g,kug
UH
kug

+ (σ2
B + fg)Ukug UH

kug
+ Ukug F̂gU

H
kug

+ I (36)

Ū
S
kdg

= VH
kdg

Ĥ
H

kdg ,g

[∑G

j=1

∑Kd
j

i=1
Ĥkdg ,j

Vidj
VH
idj

Ĥ
H

kdg ,j
+
∑G

j=1

∑Ku
j

i=1
Ĥkdg ,i

u
j
Viuj

VH
iuj

Ĥ
H

kdg ,i
u
j

+ F̂kdg + (σ2
U + fkdg )I

]−1

(37)

Ū
S
kug

= VH
kug

Ĥ
H

g,kug

[∑G

j=1
j 6=g

∑Kd
j

i=1
Ĥg,jVidj

VH
idj

Ĥ
H

g,j +
∑G

j=1

∑Ku
j

i=1
Ĥg,iuj

Viuj
VH
iuj

Ĥ
H

g,iuj
+ F̂g + (σ2

B + fg)I

]−1

(38)

B where W = BHB. Therefore, after replacing terms of the
form α log2| (ln2/α) BHB| with 2α log2| (ln2/α)

1
2 B|, we

fix V and U and solve the resulting determinant maximization
(MAX-DET) problem [36]. Finally, in Step 4 to compute V,
we fix U and B and solve the resulting SDP problem. All
problems may be solved using standard convex optimization
solvers. Note that analogous to the algorithm from [30], the
alternating maximization approach applied here to solve (26)
converges. This follows because each step of the iterations
leads to a monotonic increase of the objective function;
since the objective function is upper bounded, convergence
is guaranteed.

V. ROBUST DESIGN WITH STOCHASTIC ERROR MODEL

For the stochastic CSI error model, all nodes have access to
Ĥ instead of H. Therefore instead of focusing on the actual
achievable DL and UL rates, we consider their lower bounds
RSkdg

and RSkug , where channel estimation errors are treated as
noise [37].

Starting with the DL, under Gaussian signaling, RSkdg =

log2|I + Φ̂
−1

kdg
Ĥkdg ,g

Vkdg
VH
kdg

Ĥ
H

kdg ,g
| where Φ̂kdg

is defined as

Φ̂kdg
=
∑G

j=1

∑Kd
j

i=1
(i,j 6=k,g)

Ĥkdg ,j
Vidj

VH
idj

Ĥ
H

kdg ,j
+ F̂kdg

+
∑G

j=1

∑Ku
j

i=1
Ĥkdg ,i

u
j
Viuj

VH
iuj

Ĥ
H

kdg ,i
u
j

+ (σ2
U + fkdg )I .

Here F̂kdg is defined similarly to (7) but has all instances of
Ĥ replaced by H. Additionally, fkdg reflects the effect of the
stochastic imperfect CSI and is given by

fkdg ≈ ηUB(1 + κB + βU )
∑G

j=1

∑Kd
j

i=1
Tr
(
Vidj

VH
idj

)
+ ηUU (1 + κU + βU )

∑G

j=1

∑Ku
j

i=1
Tr
(
Viuj

VH
iuj

)
.

For the UL, assuming Gaussian signaling, we have RSkug =

log2|I + Φ̂
−1

kug
Ĥg,kug

Vkug
VH
kug

Ĥ
H

g,kug
|, where Φ̂kug

is given by

Φ̂kug
=
∑G

j=1
(j 6=g)

∑Kd
j

i=1
Ĥg,jVidj

VH
idj

Ĥ
H

g,j + F̂g

+
∑G

j=1

∑Ku
j

i=1
(i,j 6=k,g)

Ĥg,iuj
Viuj

VH
iuj

Ĥ
H

g,iuj
+ (σ2

B + fg)I .

Here F̂g is defined parallel to (10) with Ĥ replaced by H and
fg is equivalent to

fg ≈ ηBB(1 + κB + βB)
∑G

j=1

∑Kd
j

i=1
Tr
(
Vidj

VH
idj

)
+ ηBU (1 + κU + βB)

∑G

j=1

∑Ku
j

i=1
Tr
(
Viuj

VH
iuj

)
.

Therefore for the stochastic CSI error model, the WSR
problem we want to solve is

max
V

∑G

g=1

∑Kd
g

k=1
αkdgR

S
kdg

+
∑G

g=1

∑Ku
g

k=1
αkugR

S
kug

s.t. Tr(Vkug
VH
kug

) ≤ PU ∀ k, g∑Kd
g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g . (34)

Similar to the perfect CSI case, we will solve this problem
by transforming it into a WMMSE one. To obtain the MSE
matrices, we start with Ekdg

= E[(Ukdg
ykdg − skdg )(Ukdg

ykdg −
skdg )H ] and Ekug

= E[(Ukug
yg − skug )(Ukug

yg − skug )H ] and
replace H with Ĥ + ∆ from (4). Taking the expectation over
s, n and ∆ under an independence assumption, we obtain ES

kdg

in (35) for the DL and ES
kug

in (36) for the UL.
The optimal MMSE receivers can be obtained by solving

Ū
S
kdg

= arg min
U

Tr(ES
kdg

) and Ū
S
kug

= arg min
U

Tr(ES
kug

),
resulting in (37) and (38) respectively. Applying these MMSE
receivers, the MSE matrices in (35) and (36) can respectively
be expressed as Ē

S
kdg

= (I + VH
kdg

Ĥ
H

kdg ,g
Φ̂
−1

kdg
Ĥkdg ,g

Vkdg
)−1

and Ē
S
kug

= (I + Ĥg,kug
Vkug

Φ̂
−1

kug
VH
kug

Ĥ
H

g,kug
)−1. Similar to the
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XS
g =X̂g+ηUB(1+κB+βU )

∑G

j=1

∑Kd
j

i=1
Tr
(
Uidj

UH
idj

Widj

)
+ηBB(1+κB+βB)

∑G

j=1

∑Ku
j

i=1
Tr
(
Uidj

UH
iuj

Wiuj

)
(43)

XS
kug

=X̂kug
+ηUU (1+κU+βU )

∑G

j=1

∑Kd
j

i=1
Tr
(
Uidj

UH
idj

Widj

)
+ηBU (1+κU+βB)

∑G

j=1

∑Ku
j

i=1
Tr
(
Uidj

UH
iuj

Wiuj

)
(44)

perfect CSI case, using an argument parallel to the one from
[21]–[23], we obtain

RSkdg = log2

∣∣∣(ĒS
kdg

)−1
∣∣∣ and RSkug = log2

∣∣∣(ĒS
kug

)−1
∣∣∣ . (39)

This rate to MSE relationship allows us to establish the
following theorem.

Theorem 3. The stochastic CSI error WSR problem in (34)
is equivalent to the WMMSE problem in (40), such that the
global optimal solution for the precoders of the two problems
are identical.

min
U,W,V

G∑
g=1

Kd
g∑

k=1

[
Tr(Wkdg

ES
kdg

)− αkdg log2

∣∣∣∣∣ ln2

αkdg
Wkdg

∣∣∣∣∣− αkdg
ln2

bd

]

+
G∑
g=1

Ku
g∑

k=1

[
Tr(Wkug

ES
kug

)− αkug log2

∣∣∣∣∣ ln2

αkug
Wkug

∣∣∣∣∣− αkug
ln2

bu

]
s.t. Tr(Vkug VH

kug
) ≤ PU ∀ k, g∑Kd

g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g (40)

Proof. The proof for this theorem is analogous to the perfect
CSI argument used in the proof of Theorem 1 and the method
in [21]–[23]; therefore to avoid repetition we have omitted it.
Note that for the stochastic CSI error problem, the optimal W
are

W̄
S
kdg

=
αkdg
ln2

(Ē
S
kdg

)−1 and W̄
S
kug

=
αkug
ln2

(Ē
S
kug

)−1 . (41)

Since (40) is not jointly convex in V, U and W the
alternating optimization approach from Algorithm 1 is used
to solve it. For Step 2 we use (37) and (38) to calculate the
optimal receivers as Ukdg

= Ū
S
kdg

and Ukug
= Ū

S
kug

. In Step 3

the weights are calculated as Wkdg
= W̄

S
kdg

and Wkug
= W̄

S
kug

using (41). The optimal precoders can be obtained similar
to the perfect CSI case by using the Lagrangian method.
Therefore in Step 4 we calculate Vkdg

= V̄
S
kdg

and Vkug
= V̄

S
kug

as

V̄
S
kdg

= [XS
g + µSg I]−1Ĥ

H

kdg ,g
UH
kdg

Wkdg

V̄
S
kug

= [XS
kug

+ λSkug I]−1Ĥ
H

g,kug
UH
kug

Wkug
(42)

where XS
gd and XS

kug
are defined in (43) and (44), and µSg

and λSkug are the Lagrange multipliers. Here X̂g and X̂kug
are

defined similar to Xg and Xkug from (21) and (22) respectively
but with H replaced by Ĥ.

Note that the convergence considerations in Remark 1
are also applicable to the alternating minimization approach
applied to solve the stochastic CSI error problem (40).

VI. EXTENSION TO WEIGHTED DL RATE MAXIMIZATION
SUBJECT TO A PER UL USER TARGET RATE

In addition to the total rate maximization design we also
consider sum DL rate maximization subject to each UL user
achieving a target rate of RUL. The motivation behind this
design is due to the fact that even if FD outperforms HD, this
does not guarantee that all UL users are served evenly in every
time slot. In some instances a UL user may achieve a lower
rate in order to reduce the amount of interference present in
the system. Therefore, we consider the following problem

max
V

∑G

g=1

∑Kd
g

k=1
αkdgRkdg

s.t. Rkug ≥ RUL ∀ k, g
Tr(Vkug

VH
kug

) ≤ PU ∀ k, g∑Kd
g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g . (45)

Theorem 4. The WSR problem in (45) is equivalent to
the WMMSE problem in (46), such that the global optimal
solutions for the precoders of the two problems are identical.

min
U,W,V

G∑
g=1

Kd
g∑

k=1

[
Tr(Wkdg

Ekdg
)− αkdg log2

∣∣∣∣∣ ln2

αkdg
Wkdg

∣∣∣∣∣− αkdg
ln2

bd

]

s.t.

[
Tr(Wkug

Ekug
)− log2

∣∣∣ln2 Wkug

∣∣∣− bu
ln2

]
≤ −RUL ∀ k, g

Tr(Vkug
VH
kug

) ≤ PU ∀ k, g∑Kd
g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g (46)

Proof. Firstly it can be seen that the optimal U for (46) are
the standard MMSE receivers Ūkdg

and Ūkug
in (8) and (11)

respectively. Secondly, fixing U and V and checking the first
order optimality conditions for the weights we obtain their
optimal values as

W̄
c
kdg

=
αkdg
ln2

Ē
−1
kdg

and W̄
c
kug

=
1

ln2
Ē
−1
kug

. (47)

Substituting for optimal U and W in (46) results in

min
V

∑G

g=1

∑Kd
g

k=1
−αkdg log2

∣∣∣Ē−1
kdg

∣∣∣
s.t. − log2

∣∣∣Ē−1
kug

∣∣∣ ≤ −RUL ∀ k, g
Tr(Vkug

VH
kug

) ≤ PU ∀ k, g∑Kd
g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g (48)

which considering (9) and (12) is the same as (45).

Since (46) is not jointly convex in U, V and W but
is separately convex in each variable, it can be solved via
alternating minimization. Having already obtained closed form
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Tr(W
kd
g
E

kd
g

) = ‖φ
kd
g
‖2 = Tr(Wku

g
Eku

g
) = ‖φku

g
‖2 =∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(I⊗B
kd
g
U

kd
g
H

kd
g,g

)vec(V
kd
g

)− vec(B
kd
g

)

b(I⊗B
kd
g
U

kd
g
H

kd
g,j

)vec(V
idj

)c∀ j=1...G,i=1...Kd
j ,(i,j 6=k,g)

b(I⊗B
kd
g
U

kd
g
H

kd
g,iuj

)vec(Viuj
)c∀ j=1...G,i=1...Ku

j

κ
1
2
B
b
(
I⊗

(
diag(HH

kd
g,j

UH
kd
g
BH

kd
g
B

kd
g
U

kd
g
H

kd
g,j

)
) 1
2

)
vec(V

idj
)c∀ j=1...G

i=1...Kd
j

κ
1
2
U
b
(
I⊗

(
diag(HH

kd
g,iuj

UH
kd
g
BH

kd
g
B

kd
g
U

kd
g
H

kd
g,iuj

)
) 1
2

)
vec(Viuj

)c∀ j=1...G
i=1...Ku

j

β
1
2
U
b
(
I⊗

[(
diag(UH

kd
g
BH

kd
g
B

kd
g
U

kd
g

)
) 1
2 H

kd
g,j

])
vec(V

idj
)c∀ j=1...G

i=1...Kd
j

β
1
2
U
b
(
I⊗

[(
diag(UH

kd
g
BH

kd
g
B

kd
g
U

kd
g

)
) 1
2 H

kd
g,iuj

])
vec(Viuj

)c∀ j=1...G
i=1...Ku

j
(σ2

U + βUσ
2
U )

1
2 Tr(B

kd
g
U

kd
g
UH

kd
g
BH

kd
g

)
1
2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2 ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(I⊗Bku
g
Uku

g
Hg,ku

g
)vec(Vku

g
)− vec(Bku

g
)

b(I⊗Bku
g
Uku

g
Hg,j)vec(V

idj
)c∀ j=1...G,i=1...Kd

g ,(j 6=g)

b(I⊗Bku
g
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(50) (51)

expressions for optimal U and W, we focus on obtaining V.
For fixed U and W, we can express (46) as

min
V

∑G

g=1

∑Kd
g

k=1
Tr(Wkdg

Ekdg
)

s.t. Tr(Wkug
Ekug

) ≤ Ψkug
∀ k, g

Tr(Vkug
VH
kug

) ≤ PU ∀ k, g∑Kd
g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g (49)

where Ψkug
= −RUL + log2|ln2 Wkug

|+ bu/ln2.
Next using Tr(AAH) = ‖vec(A)‖2 and vec(ABC) =

(CT ⊗ A)vec(B) we can rewrite Tr(Wkdg
Ekdg

) and
Tr(Wkug

Ekug
) as ‖φkdg‖

2 in (50) and ‖φkug ‖
2 in (51) respec-

tively. This reformulation allows us to introduce slack variable
t, such that ‖φkdg‖

2 ≤ tkdg , and cast (49) as the following
problem

min
V,t

∑G

g=1

∑Kd
g

k=1
tkdg

s.t. ‖φkdg‖
2 ≤ tkdg ∀ k, g

‖φkug ‖
2 ≤ Ψkug

∀ k, g

Tr(Vkug
VH
kug

) ≤ PU ∀ k, g∑Kd
g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g (52)

which after additional minor reformulations can be trans-
formed into a second-order cone programming (SOCP) prob-
lem and then solved using standard convex optimization
solvers.

Therefore to solve (46) we apply the alternating optimiza-
tion process from Algorithm1. The optimal weights in Step
2 are calculated as Ukdg

= Ūkdg
and Ukug

= Ūkug
using (8)

and (11). In Step 3, the optimal weights Wkdg
= W̄

c
kdg

and
Wkug

= W̄
c
kug

are found using (47). In Step 4 the optimal
precoders Vkdg

and Vkug
are found by solving (52).

Proposition 1. The alternating optimization process applied
to solve (46) produces a convergent monotonically decreasing
objective value sequence.

Proof. See Appendix B.

As a final remark, we would like to point out that it
also possible to consider this problem under imperfect CSI,
using the two models described in Section II-B. This will be
considered as part of our future work.

VII. SIMULATION RESULTS

Our simulations follow the 3GPP LTE [16] specifications
for multi-cell pico scenarios outlined in Table I. Channel
gains between BSs and users, and between the users and
the BSs themselves, are modeled as Hr,t =

√
%H̃r,t, where

r represents the receiver, t represents the transmitter, H̃r,t

has elements distributed as CN (0, 1) and % = 10−PL/10

with PL being the pathloss calculated according to Table
I, depending on r and t. The SI channel, Hg,g , is modeled
as CN

(√
KH/(1 +KH)H̄g,g, (1/(1+KH))IMB

⊗ IMB

)
[1]

where KH is the Rician factor and H̄g,g is a deterministic
matrix5.

Throughout the simulations we fix αkdg = αkug = 1 ∀ k, g
and Kd

g = Ku
g = K ∀ g. We also set κB = κU = κ,

βB = βU = β and κ = β. Parameters κ and β jointly
reflect the amount of transmitter and receiver distortion and,
more importantly, κ on its own reflects the amount of residual
SI at the FD BS as can be seen from (3). The larger the
value, the larger both distortion and residual SI. Additionally
for all algorithms we consider random precoder initialization
and average the rate results in a Monte Carlo fashion over a
number of randomly generated scenario realizations.

A. Perfect CSI results

Fig. 2 provides a comparison of the sum rates achieved
by the FD beamformer design from Section III versus HD
operation. For HD we consider the case where the BSs serve

5Without loss of generality, we set KH = 1 and H̄g,g to be a matrix of
all ones similar to [9], [20].

TABLE I: Parameter settings for simulations [16]

Parameter Setting
Cell radius 40m
Bandwidth 10MHz
Thermal noise density 174dBm/Hz
Noise figure BS: 13dB, user: 9dB
Max. transmit power PB = 24dBm, PU = 23dBm
Min. distance DBS,BS−min = 40m

DBS,user−min = 10m
BS to BS pathloss LOS if D < 2/3: 98.4 + 20log10(D)
(in dB, D in km) LOS if D ≥ 2/3: 101.9 + 40log10(D)

NLOS: 101.9 + 40log10(D)
BS to user pathloss LOS: 103.8 + 20.9log10(D)
(in dB, D in km) NLOS: 145.4 + 37.5log10(D)
User to user pathloss if D ≤ 50m: 98.45 + 20log10(D)
(in dB, D in km) if D > 50m: 175.78 + 40log10(D)
Shadowing standard deviation between BS & users, LOS: 3, NLOS: 4
(in dB) between cells: 6
LOS probability 0.5−min(0.5, 5 exp(−0.156/D))
(D in km) + min(0.5, 5 exp(−D/0.003))
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Fig. 2: Total sum rates achieved for scenario with G = 2, K = 1, bd =
bu = 1, MB = 4 and Md =Mu = 2.
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Fig. 3: Total sum rates achieved for scenario with G = 2, K = 1, bd =
bu = 1, MB = 4, Md =Mu = 4 and DBS,BS = 100m.

their corresponding DL and UL users separately in alternate
channel uses, with the aim in each case being to maximize
either the DL rate or the UL rate accordingly. As can be seen
from Fig. 2 for κ = β = −50dB both HD and FD systems
obtain similar rates, however FD outperforms HD for values
of κ = β < −50dB. The amount of gain achieved varies with
the κ = β value and this is mainly due to the fact that the
higher the transmitter distortion, κ, the more residual SI there
is. This residual SI is a limiting factor for the UL rate which
contributes a smaller portion of the total rate for larger κ. Such
an effect can be seen more clearly in Fig. 3 which plots DL
and UL rates separately.

From both Fig. 2 and Fig. 3, it can be noticed that as the
value of κ = β decreases the gain of FD over HD starts to
increase significantly. In particular for Fig. 2 at κ = β =
−120dB there is a gain of 1.92 for DBS,BS = 200m and a
gain of 1.85 for DBS,BS = 40m. For FD the rate drop between
achievable rates at DBS,BS = 200m and at DBS,BS = 40m
is larger than the rate drop experienced by HD. This is due
to the fact that when the BSs operate in FD there are more
interference links than for HD, thus the negative impact of
closer proximity between the cells affects FD more than HD.

The impact of inter-cell CCI on FD can be understood more
clearly from Fig. 4, where we plot sum rate against the distance
between BSs. As DBS,BS increases, inter-cell CCI decreases,
thus the total achievable rate increases. An interesting effect
can be noticed by looking at the separate FD DL and UL

40 60 80 100 120 140 160 180 200 220 240
10

15

20

25

30

35

40

45

50

55

DBS,BS in m

S
um

 r
at

e 
in

 b
its

/s
/H

z

 

 

Total
DL
UL

FD

HD

Fig. 4: Total sum rates achieved for scenario with G = 2, K = 1, bd =
bu = 1, MB = 4, Md =Mu = 2 and κ = β = −90dB.
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Fig. 5: Total sum rates achieved for scenario with G = 2, K = 1, bd =
bu = 1, MB = 4, Md =Mu = 2 and DBS,BS = 100m.

rate results in the range of 40m to 80m. The UL rate within
this range remains approximately the same, however the DL
rate has a significant increase. DL users experience inter-
cell CCI from both BSs and UL users in other cells, thus
a small increase in the distance between BSs contributes to
a significant decrease in inter-cell CCI, allowing DL users to
achieve higher rates. For this DBS,BS range, the BS to BS
channel is very strong; implying that it is not advantageous
in terms of the overall achievable rate to promote UL rate
gain, hence the very small change in UL rate between 40m
and 80m. A DBS,BS of around 100m or more is sufficient to
overcome this issue, leading to a considerable increase in UL
rate at 100m.

Having seen the effect of inter-cell CCI, next we investigate
the effect of intra-cell CCI. In order to do so, we have devised
two scenarios that fix the location of the BSs and the users, as
shown in Fig. 6. For both scenarios A and B, the BSs are 100m
apart and the distance between different cell DL and UL users
is approximately 100m (100.50m for Scenario A and 100.32m
for Scenario B), implying that the effect of inter-cell CCI is the
same. However, the distance between same cell DL and UL
users is only 10m for Scenario A and a much larger 56.49m
for Scenario B. Fig. 5 provides some simulation results. As
can be seen, scenario B achieves higher rates throughout; this
is expected since Scenario B represents the lower interference
case. Considering Scenario A and looking at the separate DL
and UL rates it can be noticed that for example at κ = β =
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−50dB the DL rate is around 27.5bits/s/Hz and the UL rate
is nearly zero. For κ = β = −50dB the SI component is very
high; this makes UL communication very difficult, thus DL
communication is given priority. However as SI decreases, the
UL rate starts to increase. This increase in UL rate in the high
SI region comes at the expense of a slight decrease in the DL
rate, due to the higher intra-cell CCI component. For scenario
B, same cell UL and DL users are much further apart, thus
the effect of intra-cell CCI is considerably reduced and this
UL/DL rate trade-off does not occur.

B. Imperfect CSI results

After establishing the gains of FD systems over HD ones,
our next goal is to show how the FD imperfect CSI designs
fare. Starting with the norm-bounded error design from Section
IV we set εkdg ,iuj = εkdg ,j = εg,iuj = εg,j = ε ∀ k, g, i, j
and obtain the results in Fig. 7. Note that channel strengths
generated using the 3GPP LTE model from [16] are in the
order of −30dB or lower, which is why for ε = −30dB
achievable rates are close to zero. This also highlights why
in the range of ε = −30dB to ε = −35dB, there is only
a small difference in the rates achieved for different κ = β
values. Within this region the CSI error is considerably large,
varying from being of the same order of magnitude as the
strongest channels at −30dB to a third at −35dB; with CSI
errors being so large, the error is more of a limiting factor
on rate performance than transmitter and receiver distortion.
The converse is true for lower ε regions. As the norm of the
CSI error starts to decrease, the curves achieved for different
κ = β values become more distinct, indicating that distortion
effects are more of a rate limiting factor than the CSI error.
Naturally the curve for the lowest κ = β settles at the highest
rate value which is expected since this corresponds to the least
amount of distortion and residual SI.

For the stochastic CSI error model, in Fig. 8 we plot the
achievable rate for varying values of τ and ν, where τ =
0 corresponds to perfect CSI for any ν. The robust design
from Section V is compared with a naive version obtained by
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Fig. 6: Scenarios with same inter-cell CCI. Black circles represent the BSs,
blue squares are UL users and red triangles are DL users.
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Fig. 7: Total sum rates achieved for different norm-bounded errors for scenario
with G = 2, K = 1, bd = bu = 1, MB = 4, Md = Mu = 2 and
DBS,BS = 100m.
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Fig. 8: Total sum rates achieved for different stochastic errors for scenario with
G = 2,K = 1, bd = bu = 1,MB = 4,Md =Mu = 4,DBS,BS = 100m
and κ = β = −90dB.

setting ηBB = ηBU = ηUB = ηUU = 0 in order to eliminate
any robustness considerations. For fixed ν, rate decreases as
τ increases; this is expected since larger τ values correspond
to larger CSI errors. Additionally it can be noticed that the
lower the ν the sharper is the rate decrease for varying τ , and
the larger is the gain between the rate achieved by the robust
beamformer versus the naive one. For ν = 1, there is only a
small difference between the performance of the robust and
the naive designs, and the rate decrease for varying τ is also
small. This behaviour is a reflection of the fact that previous
studies with a similar error model show that ν = 1 corresponds
to perfect CSI from a degrees of freedom (DoF) perspective
[35], [38].

Looking at both Fig. 7 and Fig. 8, it can be noticed that for
both types of error the FD results deteriorate more than the
HD ones for the same decrease in CSI quality. When using
FD BSs there are more channel links between the various
nodes than for the corresponding HD systems. Having an
increased amount of links with imperfect knowledge results in
a sharper rate decrease, thereby stressing the added importance
of channel estimation and robust beamformer design for FD
systems.

C. Results for target UL rate problem

For the problem from Section VI, which considers weighted
DL rate maximization subject to a per UL user target rate, we
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have the results in Table II. This table provides a comparison
between the DL rates achieved by the constraint design and the
corresponding HD system which maximizes the total DL rate.
Values written in the form (a)∗b% indicate that the problem
is not always feasible for the considered target rate RUL.
Here b% represents the percentage of scenarios for which the
problem was found to be feasible and a represents the average
rate achieved over these feasible scenarios. UL rate results are
not included, since provided that the chosen target is feasible
a total UL rate of GKRUL is achievable.

The gains of FD DL rate over HD DL rate range from 1.89
to 1.98 in Table II. On the other hand for the joint problem
in Fig. 3, which considers the same system with DBS,BS =
100m, there is a gain of 1.83 at κ = β = −100dB and 1.40 at
κ = β = −70dB. Such a difference is mainly due to the fact
that for FD κ and β are not only related to distortion but also
to residual SI which makes UL communication more difficult.
Constricting both FD and HD to achieve the same target UL
rate removes the latter factor, thereby leading to higher gains
over HD for the constraint problem as opposed to the joint
one.

With respect to the feasibility of the chosen target rate, RUL,
it can be noticed that for a fixed RUL the lower the distortion
the more likely is the problem always feasible. For example at
DBS,BS = 100m and a target rate of RUL = 2.5, feasibility
goes from 12% at κ = β = −70dB to 100% at κ = β =
−90dB. Such behaviour is expected because the higher the
distortion, the stronger the SI and the more difficult it is to
communicate in the UL. For the lowest distortion value of
κ = β = −100dB, RUL of up to around 8 is generally always
feasible for DBS,BS = 100m, this decreases to RUL of up
to around 5.5 for DBS,BS = 40m. Naturally for DBS,BS =
100m higher RUL can be achieved than for DBS,BS = 40, due
to the stronger interference present in the latter scenario. This
trend can also be seen by comparing the DBS,BS = 100m and
DBS,BS = 40m results across Table II.

TABLE II: Sum DL rates achieved in bits/s/Hz for scenario with G = 2,
K = 1, bu = bd = 1, MB = 4 and Md =Mu = 4.

DBS,BS = 40m
κ = β FD HD
(in dB) RUL = 0.5 RUL = 1.5 RUL = 2.5
−100 32.01 31.96 31.87 16.67
−90 31.81 31.66 31.60 16.66

−80 31.60 31.50 (31.44)∗92% 16.66

−70 (31.38)∗99% (31.02)∗48% (30.48)∗7% 16.64

DBS,BS = 100m
κ = β FD HD
(in dB) RUL = 0.5 RUL = 1.5 RUL = 2.5
−100 33.68 33.62 33.57 17.00
−90 33.50 33.42 33.40 16.98

−80 33.38 33.34 (33.29)∗98% 16.98

−70 33.23 (32.94)∗64% (33.28)∗12% 16.96

D. Convergence results

Finally, Fig. 9 illustrates the convergence behaviour of the
proposed algorithms. For each algorithm we plot a randomly
selected instance. In each case we set κ = β = −90dB and

run for 30 iterations. For the perfect CSI problem we consider
the system setup from Fig. 3. For the norm-bounded error
problem we simulate the system from Fig. 7 with ε = −45dB.
For the stochastic CSI error problem we consider the system
from Fig. 8 with ν = 0.85 and τ = 0.5. For the constraint
problem from Section VI we simulate the system in Table II
at DBS,BS = 100m with RUL = 1.5. As can be seen all
algorithms converge monotonically within a few steps.
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Fig. 9: Convergence behaviour of the proposed algorithms.

VIII. IMPLEMENTATION AND COMPLEXITY ANALYSIS

In order to simplify analysis, throughout this section we fix
MB = Md = Mu = M , Kd = Ku = K and bd = bu = b.

A. Implementation

All proposed algorithms can be implemented in a central-
ized manner, where a central processing site (CPS) collects
all the required CSI, computes the required variables and then
distributes them to the respective nodes. For this implementa-
tion a total of M2G2(K2 + 2K+ 1) CSI elements need to be
made available at the CPS to implement the algorithm. The
CPS must then distribute the calculated precoders, resulting in
2GKMb matrix elements for all of Vkdg

and Vkug
.

Additionally the closed-form solution algorithms from Sec-
tions III and V may also be applied in a distributed manner.
Similar to the implementations in [20], [22] and references
therein, this requires all nodes to have knowledge of the chan-
nels directly linked to them, i.e. local CSI, and also assumes all
receiving nodes can provide additional feedback information
to transmitting nodes. Each receiving node locally estimates
its interference-plus-noise covariance matrix, Φ. This metric
is related to the MSE matrix which, when using an MMSE
receiver, is given by Ēkdg

= (I+VH
kdg

HH
kdg ,g

Φ−1
kdg

Hkdg ,g
Vkdg

)−1

for the DL and Ēkug
= (I + VH

kug
HH
g,kug

Φ−1
kug

Hg,kug
Vkug

)−1 for
the UL. Therefore Φ can be used to calculate U and W,
which can then be made available to the transmitting nodes to
calculate V. Thus for a distributed implementation each node
requires local CSI knowledge, resulting in a total of 2GKM2

elements across all users. Additionally 2GK(Mb + b2) el-
ements per iteration need to be fedback to the transmitting
nodes to account for all of U and W.
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B. Complexity analysis

Starting with the closed-form solutions, we evaluate the
order of the number of flops required to calculate the opti-
mization variables using [39] which provides the number of
flops required to perform standard mathematical operations.
Taking (8) as an example, computing all receivers, U, requires
O
(
4G2K2(6M3 + 2Mb2)

)
flops for multiplications inside

the inverse if Φ is unavailable or O
(
2GK(4M3 + 2Mb2)

)
flops if Φ is available, O(2GKM3) flops for the inverse
and O(8GKM2b) flops for multiplying the inverse with the
rest of the outside terms. To compute the weights, W, we
need to calculate the MSE matrix. The interference-plus-
noise covariance matrix, Φ, is already available since it
was previously used in the calculation of U, therefore we
only need O(2GKM3) flops to calculate its inverse and
O
(
2GK(4M3 + 2M2b + 2Mb2)

)
flops for multiplication.

Taking (20) as an example, the calculation of each precoder,
V, requires O

(
4G2K2(6M3 + 2M2b + 2Mb2)

)
flops for

multiplications inside the inverse to compute X, O(2GKM3)
flops for the inverse and O

(
2GK(4M2b + 2Mb2)

)
flops for

multiplying the inverse with the rest of the outside terms.
For the norm-bounded error model we solve a number

of SDP problems, the complexity of which is given by
O(n2

∑I
i m

2
i ) [40]. Here, n represents the total size of the

variables being solved for and I is the total number of
constraints, with each constraint i being of dimension mi. In
our case the complexity can be expressed asO

(
(x1+x2)2(z1+

z2)
)
, where x2 = 2G2(K2 + 2K + 1) and z2 = G2K2(1 +

M2+b2+2Mb2)2+2G2K(1+M2+Kb2+2KMb2)2+G2(1+
M2 +K2b2 +2MK2b2)2 +G2(K2 +2K+1)2. When solving
for V, x1 = 2GKMb and z1 = (GK + K)(Mb)2. When
solving for U, x1 = 2GKMb and z1 = 0. When solving for
B we have a MAX-DET problem. This is of higher complexity
than SDP, however using the SDP complexity as a lower bound
we have x1 = 2GKb2 and z1 = 0.

In Section VI we solve an SOCP problem to obtain V. The
complexity of solving a general SOCP problem is given by
O(n2

∑I
i mi) [40], where the significance of the terms is the

same as for the SDP complexity expression. Applying this to
our problem we have O

(
(2GKMb+GK)2(GKMb+KMb+

8G2K2Mb3 + 4G2K2M2b2 + 2)
)
.

IX. CONCLUSION

In this work we have addressed filter design for WSR
maximization in multi-user multi-cell MIMO networks with
FD BSs and HD users, taking into consideration CCI and
transmitter and receiver distortion. Since WSR problems are
non-convex, we have transformed them into WMMSE prob-
lems and proposed alternating optimization algorithms that
are guaranteed to converge. Using the perfect CSI design as
a starting point, we also consider robust beamformer design
under two types of CSI error, namely norm-bounded error and
stochastic CSI error. Simulation results for small cell scenarios
show that replacing standard HD BSs with FD ones within this
context can indeed increase achievable sum rate for low to
intermediate distortion levels, and also confirm the robustness
of the imperfect CSI designs. Additionally we also propose

a DL rate maximization problem subject to each UL user
achieving a desired target rate, which can be used in cases
where it is important for each UL user to be equally served
in every time slot.

APPENDIX A
USEFUL LEMMA

Lemma 1. [41] Let A, B and C be given matrices, with
A = AH . Then, the relation

A � BHDC + CHDHB ∀ D : ‖D‖ ≤ ξ

is valid if, and only if, there exists λ ≥ 0 such that[
A− λCHC −ξBH

−ξB λI

]
� 0 .

APPENDIX B
PROOF OF PROPOSTION 1

Defining the following parameters

Ckug (U,W,V) = Tr(Wkug
Ekug

)− log2|ln2 Wkug
| − bu

ln2
Ckdg (U,W,V) = Tr(Wkdg

Ekdg
)

− αkdg log2

∣∣∣∣∣ ln2

αkdg
Wkdg

∣∣∣∣∣− αkdg
ln2

bd

we can express (46) as

min
U,W,V

∑G

g=1

∑Kd
g

k=1
Ckdg (U,W,V)

s.t. Ckug (U,W,V) ≤ −RUL ∀ k, g
Tr(Vkug

VH
kug

) ≤ PU ∀ k, g∑Kd
g

k=1
Tr(Vkdg

VH
kdg

) ≤ PB ∀ g . (53)

Assume that for (53) we have feasible solution
{U(i),W(i),V(i)} at the end of the (i)th iterate and
feasible solution {U(i+1),W(i+1),V(i+1)} at the end of
the (i+ 1)th iterate. At the beginning of the (i+ 1)th iterate,
to perform Step 2 of Algorithm 1, we fix the weights and
precoders to W(i) and V(i) in order to obtain the updated
receivers U(i + 1). Since the updated receivers are MMSE
ones, they are unique optimizers, therefore

Ckdg
(
U(i+ 1),W(i),V(i)

)
≤ Ckdg

(
U(i),W(i),V(i)

)
∀ k, g

(54)

Ckug
(
U(i+ 1),W(i),V(i)

)
≤ Ckug

(
U(i),W(i),V(i)

)
(a)

≤ −RUL ∀ k, g (55)

where (a) follows since {U(i),W(i),V(i)} is feasible.
Next in Step 3, we fix the receivers and precoders to U(i+1)

and V(i) in order to obtain the new weights W(i + 1). The
weights are updated using (47), which are unique optimizers,
therefore
Ckdg

(
U(i+ 1),W(i+ 1),V(i)

)
≤ Ckdg

(
U(i+ 1),W(i),V(i)

)
(b)

≤ Ckdg
(
U(i),W(i),V(i)

)
∀ k, g
(56)
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Ckug
(
U(i+ 1),W(i+ 1),V(i)

)
≤ Ckug

(
U(i+ 1),W(i),V(i)

)
(c)

≤ Ckug
(
U(i),W(i),V(i)

)
≤ −RUL ∀ k, g

where (b) follows from (54) and (c) follows from (55).
At this stage we have intermediate solution {U(i +

1),W(i + 1),V(i)} which is a feasible point, and the value
of the cost function is given by∑G

g=1

∑Kd
g

k=1
Ckdg

(
U(i+ 1),W(i+ 1),V(i)

)
(d)

≤
∑G

g=1

∑Kd
g

k=1
Ckdg

(
U(i),W(i),V(i)

)
where (d) follows from (56). Next, in Step 4, we fix the
receivers and weights to U(i + 1) and W(i + 1) and solve
(53) to obtain the new precoders V(i + 1). Since with
{U(i + 1),W(i + 1),V(i)} the problem is known to be
feasible, it follows that∑G

g=1

∑Kd
g

k=1
Ckdg

(
U(i+ 1),W(i+ 1),V(i+ 1)

)
≤
∑G

g=1

∑Kd
g

k=1
Ckdg

(
U(i+ 1),W(i+ 1),V(i)

)
.

As can be seen from the above process, the alternating opti-
mization method applied to solve (46) produces a convergent
monotonically decreasing objective value sequence, proving
Proposition 1.
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