
ar
X

iv
:1

70
4.

00
78

1v
1

 [
cs

.N
I]

 3
 A

pr
 2

01
7

1

Resolution-Based Content Discovery in Network of

Caches: Is the Control Traffic an Issue?
Bita Azimdoost, Cedric Westphal, Senior Member, IEEE,

and Hamid R. Sadjadpour, Senior Member, IEEE,

Abstract—As networking attempts to cleanly separate the
control plane and forwarding plane abstractions, it also defines a
clear interface between these two layers. An underlying network
state is represented as a view to act upon in the control plane.
We are interested in studying some fundamental properties of
this interface, both in a general framework, and in the specific
case of content routing. We try to evaluate the traffic between
the two planes based on allowing a minimum level of acceptable
distortion in the network state representation in the control plane.

We apply our framework to content distribution, and see how
we can compute the overhead of maintaining the location of
content in the control plane. This is of importance to evaluate
resolution-based content discovery in content-oriented network
architectures: we identify scenarios where the cost of updating
the control plane for content routing overwhelms the benefit of
fetching the nearest copy. We also show how to minimize the cost
of this overhead when associating costs to peering traffic and to
internal traffic for network of caches.

I. INTRODUCTION

A communication network can be abstracted into two (log-

ical) layers, namely, a control plane carrying signaling and

administrative traffic, and a data forwarding plane carrying

the user data traffic. In many applications, for the network to

function properly, the control plane must have some knowl-

edge about the forwarding plane in order to create a view

of the underlying network. The underlying network will be

in an operating state which is reported by a protocol to

the control/management layer. For example, in a network of

caches, the data plane contains caches keeping the data traffic,

e.g. video or audio files, which are requested and used by the

users, and the information regarding the items kept in each

cache reported to the control layer forms the control traffic.

However, as the networks have grown in size and com-

plexity, as end nodes, content and virtual machines move

about, it will become more difficult for the control layer to

have an accurate view of the forwarding plane. Consider the

example of finding a service or a piece of content. Current

protocols attempt to resolve a content request to the nearest

copy of the object by using DNS or redirecting HTTP requests.

Further proposals suggest to share content location information

B. Azimdoost and H. R. Sadjadpour are with the Department of Electrical
Engineering, University of California, Santa Cruz, 1156 High Street, Santa
Cruz, CA 95064, USA (e-mail:{bazimdoost, hamid}@soe.ucsc.edu)

Bita Azimdoost was with Huawei Innovation Center, Santa Clara, CA
95050, USA, as an intern while working on this paper.

Cedric Westphal is with the Department of Computer Engineering, Univer-
sity of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064,
USA and Huawei Innovation Center, Santa Clara, CA 95050, USA (e-
mail:cedric.westphal@huawei.com)

in between content delivery networks (CDNs), or even to

build content routing within the architecture. In all cases, this

implicitly entails that the mechanism responsible to route to

the content has to be dynamically updated with the content

location. Meta-information from the forwarding plane needs to

be delivered to the control plane. This raises the question: how

much? In other words, depending on the size of the domain

being controlled, of the underlying state space, of the dynamics

of the evolution of the state in the forwarding plane, what

stream of data is required to keep the control plane up to

date?

We consider the issue of maintaining a consistent view

of the underlying state at the control layer, and develop an

abstracted mechanism, which can be applied to a wide range

of scenarios. We assume the underlying state as an evolving

random process, and calculate the rate that this process would

create to keep the representation of this state up-to-date in the

control plane. This provides a lower bound on the overhead

bandwidth required for the control plane to have an accurate

view of the forwarding plane1.

We then illustrate the power of our model by focusing on the

specific case of locating content in a resolution-based content-

oriented network. Enabling content routing has attracted a lot

of attention recently, and thus we are able to shed some light

on its feasibility. In this case, the underlying state depends

on the size and number of caches, on the request for content

process and on the caching policy. We apply our framework

to derive the bandwidth needed to accurately locate a specific

piece of content. We observe that there is a trade-off for

keeping an up-to-date view of the network at the cost of

significant bandwidth utilization, versus the gain achieved by

fetching the nearest copy of the content. We consider a simple

scenario to illustrate this trade-off.

Our contribution is as follows:

• We present a framework to quantify the minimal amount

of information required to keep a (logical) control plane

aware of the state of the forwarding plane. We believe

this framework to be useful in many distributed systems

contexts.

1There exists other overhead that we have not discussed in this work. We
believe that addressing all the overhead of data/control plane interface in one
paper may not be possible, since there might be several sources for them.
However, if one thinks of certain sources of overhead, like the overhead of
setting up a secure connection between the forward and control planes, then
the actual protocol overhead would be proportional to the information theoretic
overhead, at least if the rate of update is high enough. In which case we
provide a good idea of how the whole protocol overhead will trend.

http://arxiv.org/abs/1704.00781v1

2

• We apply our framework to the specific case of locating

content, and see how content location is affected by the

availability of caches, the caching policy and the content

popularity. We can thus apply our results to some of

the content-oriented architectures and observe that cached

copies would go ignored for a large swath of the content

set.

• We see how our framework allows to define some optimal

policies with respect to the contents that should be cached

for an operator-driven content distribution system. While

it is not surprising that very unpopular contents should

not be cached, we can actually compute a penalty for

doing so under our model.

We quickly note that our framework does not debate the

merit of centralized vs distributed, as the control layer we

consider could be either. For a routing example, our model

would provide a lower-bound estimate of the bandwidth for,

say OpenFlow to update a centralized SDN controller, or for a

BGP-like mechanism to update distributed routing instances.

Our results are theoretic in nature, and provide a lower

bound on the overhead. We hope they will provide a practical

guideline for protocol designers to optimize the protocols

which synchronize the network state and the control plane.

The rest of the paper is organized as follows. After going

over some related work in section II, we introduce our frame-

work to model the protocol overhead in section III, and then

study the content location in the network of caches in section

IV. The derived model is used to study a simple caching

network as well. We show the power of the model in the

protocol design by computing the cost of content routing in

Section V and suggesting a cache management policy. Finally,

section VI concludes the paper and describes some possible

future work.

II. RELATED WORK

As SDN makes the separation explicit between the control

and forwarding layers, it begs the question of how these layers

interact. This interaction has been pointed out as one of the

bottlenecks of OpenFlow [1], and several papers have been

trying to optimize the performance of the traffic going from

one layer to the other. For instance, [2] optimizes the controller

to support more traffic, while [3] or [4] attempt to make the

control layer more distributed and thus reduce the amount of

interaction between the switches and the control layer. There

has been no attempt to model the interaction between the

control and forwarding layers to our knowledge.

Studying the gap between the state of the system and the

view of the controller, [5] focuses on the relationship between

performance and state consistency, and [6] studies similar

relationship in multiple controller systems. This underlines the

need for the view at the control layer to be representing the

network state with as little distortion as possible.

The forwarding plane in a network usually consists of a

state machine which is changing because of different network

characteristics. The control plane needs to obtain adequate

information about the underlying states so that the network

can perform within a satisfactory range of distortion. The

first theoretical study of this information was conducted by

Gallager in [7]. This work utilizes the rate distortion theory

to calculate the bounds on the information required to show

some characteristics such as the start time and the length of

the messages.

The link states (validity of a link) and the geographic

location and velocity of each node in a mobile wireless

network are some examples of such state, which have been

studied in [8] and [9], respectively. An information-theoretic

framework to model the relationship between network infor-

mation and network performance, and the minimum quantity

of information required for a given network performance was

derived in [10].

One impetus to study the relationship between the control

layer and the network layer comes from the increased network

state complexity from trying to route directly to content.

Request-routing mechanisms have been in place for a while

[11] and proposals [12] have been suggested to share informa-

tion between different CDNs, in essence enabling the control

planes of two domains to interact (our framework applies to

this situation). And many architectures have been proposed

that are oriented around content [13]–[18] and some have

raised concerns about the scalability of properly identifying

the location of up to 1015 pieces of content [19]. Our model

presents a mathematical foundation to study the pros and cons

of such architectures.

The cache management problem in the networks has been

studied in several contexts. [20] presents a centralized ap-

proximation algorithm to solve the cache placement problem

for minimizing the total data access cost in ad hoc net-

works. [21] proposes a replication algorithm that lets nodes

autonomously decide on caching the information, and [22]

determines whether/where to keep a copy of a content such

that the overall cost of content delivery is minimized and show

that such optimized content delivery significantly reduces the

cost of content distribution and improves quality of service.

Some cooperative cache management algorithms are de-

veloped in [23] which tries to maximize the traffic volume

served from cache and minimize the bandwidth cost in content

distribution networks. [24] proposes some online cache man-

agement algorithms for Information Centric Networks (ICNs)

where all the contents are available by caching in the network

instead of a server or original publisher. [25] investigates if

caching only in a subset of node(s) along the content delivery

path in ICNs can achieve better performance in terms of cache

and server hit rates. These works define a specific cost in the

network and try to determine the locations and the number

of copies of the contents in the network such that the defined

cost is minimized. Finally [26] and [27] analytically prove that

on-path content discovery has the same asymptotic capacity as

finding the nearest copy in these networks.

To the best of our knowledge, there is no work considering

the protocol overhead in such systems. In this work, we model

the protocol overhead, then use that model to compute a

general cost for data retrieval (including the protocol over-

head). We also investigate whether allowing more copies of

the contents cached in the network reduces the total cost. One

related work on this topic is [28] which proposes a content

3

caching scheme, in which the number of chunks (fragments)

to be cached in each storage is adjusted based on the popularity

of the content. In this work, each upstream node recommends

the number of chunks to be cached in the downstream node

according to the number of requests.

III. PROTOCOL OVERHEAD MODEL

In this section we turn our attention to the mechanism to

synchronize the view at the control layer with the underlying

network state, and introduce a framework to quantify the

minimal amount of required transferred information.

Assume that SX(t) describes the state of random process

X in a network at time t. In order to update the control

plane’s information about the states of X in the network, the

forwarding plane must send update packets regarding those

states to the control plane whenever some change occurs. Let

ŜX(t) denote the control plane’s perceived state of X at time

t. It is obvious that no change in ŜX will happen before SX

changes, and if SX changes, the control plane may or may not

be notified of that change. Therefore, there are some instances

of time where ŜX 6= SX .

In this paper, we consider, systems and applications in

which the state can have two values ′0′ and ′1′.2 For instance,

a link can be up or down; or a piece of content can be present

at a node, or not. Figure 1 illustrates the time diagram of state

changes of such binary random process which is the state of

the forwarding plane in the network being announced to the

control plane.

Let {Ym}∞m=1 and {Zm}∞m=1 denote the sequences of ′0′s
and ′1′s time durations of SX(t) respectively, and {Tm}∞m=1

denote the times of changes. We consider large distributed

systems, where the input is driven by a large population of

users (smaller systems offer no difficulty in tracking in the

control plane what is happening in the data plane). It is a

well known result that the aggregated process resulting from

a large population of uncoordinated users will converge to a

Poisson process (chapter 3.6 [29]), and therefore the events

in the future are independent of the events in the past and

depend only on the current state. Thus we assume with no

loss of generality that Ym is an independent and identically

distributed (i.i.d) sequence with probability density function

(pdf) fY (y) and mean θX , and Zm is another i.i.d. sequence

with pdf fZ(z) and mean τX . We also assume that any two

Ym and Zm are mutually independent.

SX and ŜX may differ in two cases resulting in two types

of distortion; first, when the state of X is changed from ′0′

2Note that this Boolean case is just an example to illustrate the method,
and can be generalized to other possible values. For instance, to measure the
congestion on a link, one could quantize the link congestion into bins (say
bins b1 to b10 for normalized link utilization between 0 to 0.1, 0.1 to 0.2,...,
0.9 to 1) and map the link utilization to a 0/1 variable such that bh = 1 if the
current link utilization is in ((h− 1)/10, h/10) and 0 otherwise. Obviously
using this quantization method the bh variables would not be independent and
only one of them can be ′1′ at each instant of time. As other way to solve
such problem, one can model the changes in the quantized levels as a binary
variable. Since the values of the congestion levels change smoothly and there
is not any kind of discontinuity in the congestion levels, one can expect going
one level up or down in case of any changes. Using this method, one needs
to have new distortion definitions. Due to the lack of space we leave it as
future work to study other state distributions, where other distortion functions
would apply.

Fig. 1. Time diagram of the state of binary random process X at time t
(SX(t)).

to ′1′ (change type I) but the control plane is not notified

(ŜX = 0, SX = 1); second, when the state of X is changed

from ′1′ to ′0′ (change type II) and the control plane still

has the old information about it (ŜX = 1, SX = 0). Let D1

and D2 denote the probability of the distortions corresponding

to changes type I and II, respectively. Here we calculate the

minimum rate at which the underlying plane has to update the

state of X so that the mentioned distortion probabilities are

less than some values ǫ1 for the first type, and ǫ2 for the second

type, respectively. ǫ1 and ǫ2 can be viewed as probability of

false negative and false positive alarms at the controller.

We make an additional assumption that the delay of the

network is much lower than the time duration of the changes in

the forwarding layer, and the control plane will be aware of the

announced state immediately3 (the alternative - that the state of

the system changes as fast or faster than the control plane can

be notified of these changes - is obviously unmanageable).

Thus, the above errors may occur just when the forwarding

plane does not send an update about a change.

The main result now can be stated as a Lemma (with the

proof in Appendix).

Lemma 1. If the ups and downs in the state of X follow some

distributions with means τX and θX , respectively, then the

minimum update rate RX(ǫ1, ǫ2) (number of update packets

per second) satisfying the mentioned distortion criterion is

given by

RX(ǫ1, ǫ2) ≥
1

τX+θX
(2−

ǫ1
θX
τX

θX
τX+θX

−ǫ2
−

ǫ2
τX
θX

τX
τX+θX

−ǫ1
) (1)

3The control packets sent from the data plane to the control plane are
very small in size comparing to the data packets. For example in case of
transferring video files, no state changes happen in the data plane unless a
video file is downloaded. Since the size of the video files are much larger
than the update packets (hundreds of megabytes comparing to a few bytes),
the download time and thus the duration of state changes is much lower than
the delay of the network for update packets. According to [13] the request
round-trip latency in Akamai and Cisco are in the order of a few 10ms, while
the download time for a 1GB movie using a very high speed internet of
100Mbps would take around 10s. This is a practical assumption as well: if
the delay in the network is longer than the duration of the changes, then a
message sent to update the controller would be carrying obsolete information
by the time it reaches the controller. Most practical systems are such that the
time to notify the control is sufficient for the controller to use the information
when it receives it. However, in any system, there is a chance that the actual
state changes while the notification of the previous state is still underway, and
there is always some distortion in the state representation at the control vs.
the actual state in the forwarding plane.

4

if ǫ2
1−ǫ2

< θX
τX

< 1−ǫ1
ǫ1

and ǫ2τX + ǫ1θX < τXθX
τX+θX

. Otherwise

the distortion criteria is satisfied with no update at all.

Lemma 1 shows the minimum update rate for state of a

single random variable X in the underlying plane so that

an accepted amount of distortion is satisfied. The total rate

and consequently the total protocol overhead for keeping

the control layer informed of the forwarding layer is the

combination of all the overheads needed for all the random

processes of the underlying layer, which may be independent

of each other or have some mutual impacts.

In the following section, we will use our model to formulate

the control traffic needed in the interaction between caches and

controller inside a sub-network.

The notations used here can be found in Tables I-II.

IV. CONTENT LOCATION IN CACHE NETWORKS

Information-centric networks [30] usually employ routing-

based [15] or resolution-based [14], [17], [31], [32] methods

for content discovery purposes. In the routing-based discovery

methods, like CCN, the required items are found exploring

some areas of the network opportunistically or using other so-

lutions like flooding. [33]–[35] have studied these methods and

proposed solutions to have the best performance. Resolution-

based methods, on the other hand, require the control layer

to know at least one location for each piece of data. PSIRP,

DONA, and NetInf (partly) are some models which use the

resolution-based methods. For instance, [17] attempts to set

up a route to a nearby copy by requesting the content from

a pub/sub mechanism. The pub/sub rendezvous point needs

to know the location of the content. This is highly dynamic,

as content can be cached, or expunged from the cache at any

time. NDN [16] also assumes that the routing plane is aware

of multiple locations for a piece of content4.

In a cache network, the addition/removal of an item (pieces

of data which are requested and used by the users) to/from a

cache may affect the timings of the other items in that cache;

caching a piece of content somewhere may force another

content out of the cache, and the caching policy will thus

influence the network state (the existing items information), so

we need to consider this effect in our calculations. It is worth

noting that this framework may be used for CDNs as well,

since the basics are the same, the point is that the update traffic

for reporting the state of the caches in CDN would be very

close to zero, since there are not a large number of changes

in their states, unless the acceptable distortion is very low.

We assume from now on that the Least-Recently-Used (LRU)

replacement policy is used in the caches, as it is a common

policy and has been suggested in some ICN architectures [15].

However, based on [37], other policies can be handled in a

similar manner by generalizing the decoupling technique of

Che’s approximation [38].

The request process also impacts the cache state, and

we make the usual assumption that the items are requested

4The routing (in NDN in particular) could know only one route to the con-
tent publisher or to an origin server and find cached copies opportunistically
on the path to this server. But Fayazbakhsh et. al. [36] have demonstrated that
the performance of such an ICN architecture would bring little benefit over
that of strict edge caching.

according to a Zipf distribution with parameter α; meaning

that the popularity of an item i is αi =
i−α

∑
M
k=1

k−α
, where M

is the size of the content set.

In the following sections we first introduce our framework

to model the protocol overhead in section III. Then, in section

IV-A, we use our model to study the total data retrieval cost

including the control overhead and data downloading costs in a

network of caches, where the nodes update the control plane

of a domain (say, an AS) so as to route content to a copy

of the cache within this domain if it is available. We denote

the control plane function which locates the content for each

request as the Content Resolution System (CRS).

A. Cache-Controller Interaction

Assume that we partition the network into smaller sub-

networks each with its own control plane, such that all the

nodes in each one of them have similar request patterns. A

possible example of such partitioning are the Autonomous

Systems (ASs) in the Internet.

Whenever a client has a request for an item, it needs to

discover a location of that item, preferably within the AS,

and it downloads it from there. To do so, it asks a (logically)

centralized Content Resolution System (CRS) by sending a

Content Resolution Request (CRReq) or locates the content

by any other non-centralized locating protocol. The Content

Resolution Reply (CRRep) sent back to the client contains the

location of the item, then the client starts downloading from

the cache identified in CRRep.

If the network domain is equipped with a CRS, it is

supposed to have the knowledge of all the caches, meaning

that each cache sends its item states (local presence or absence

of each item) to the CRS whenever some state changes.

Depending on the caching policy, whenever a piece of con-

tent is being downloaded, either no cache, all the intermediate

caches on the path, or just the closest cache to the requester on

the download path stores it in its content store, independently

of the content state in the other caches, or refresh it if it already

contains it.

We consider an autonomous network containing N nodes

(terminals), each sending requests for items i = 1, ...,M with

sizes Bi according to a Poisson distributed process with rate

of γi. The total request rate for all the items from each node

is denoted by γ =
∑M

i=1 γi. Note that all the nodes in an AS

have the same request pattern, i.e. content locality is assumed

uniform in each AS5,, and that the total request rate of each

terminal is a fixed rate independent of the total number of

nodes and items while the total requests for all the nodes is a

function of N (namely Nγ). If different users have different

5This assumption is widely used in works using the mathematical modeling
for the networks [39]. This comes from the fact that 1) The requests coming
from a specific region are very likely to follow similar patterns, because the
users’ interest in one area are highly correlated and can be predicted by having
the information about just part of them [40]. For example, some certain news
title might be of special interest in a certain area, or some new TV series
might be very popular in a certain country. 2) each user in this paper can
actually be a hot spot or a base station, so a request generated from a node is
not coming from one specific user but a group of users. So since we assume
random users per station, then the assumption of uniform user locality is the
best fitted assumption.

5

request distributions, then less cached contents will be reused,

and thus there will be more changes in the cache states, and

consequently more update traffic will be needed. The uniform

content locality will give us the minimum required update rate.

Suppose that there are Nc caches in the system (Vc =
{v1, ..., vNc

}) each with size Lc that can keep (and serve) any

item i for some limited amount of time τi, which depends

on the cache replacement policy. Based on the the rate at

which each item i enters a cache and the time it stays there,

each cache may have item i with some probability ρi. For

simplicity, we assume that the probability distribution of the

contents in all the caches are similar to each other. We can

easily extend to the case of heterogeneous caches at the cost

of notation complexity. For instance, Theorem 1 below can be

stated as a sum over all Nc possible types of caches with Nc

different ρis for each type of cache, instead of a product by Nc

of identical terms. Our purpose is to describe the homogeneous

case, and let the reader adapt the heterogeneous case to suit

her/his specific needs.

In the following Theorem we want to compute the update

rate for this system. Let N̄c denote the number of caches where

each downloaded piece of content is stored in (and thus need

to send an update), either on the downloaded path, or off-path

(Caching policy and network topology are the two factors that

determine this number.). Thus, the rate of requests for item i
received by each cache is λi = γiNN̄c/Nc.

Parameter Definition

N Number of users

M Total number of items

Nc Number of content stores/caches

N̄c Number of caches storing the downloaded content

Lc Storage size per content store (bits)

Bi Average size of item i (bits)

αi Popularity of item i (Zipf)

γi Total request rate for item i per user

γ Total request rate per user

λi Total request rate for item i received per cache

λ Total request rate received per cache

TABLE I
Parameters of the network model

Theorem 1. The minimum total update rate for each item i
in the worst case is

Ri(ǫ1, ǫ2) ≥ Ncλi(1 − ρi)

{2−
ǫ1(1− ρi)

ρi(1− ρi − ǫ2)
−

ǫ2ρi
(1− ρi)(ρi − ǫ1)

} (2)

if ǫ1 < ρi < 1 − ǫ2 and ǫ1(1 − ρi) + ǫ2ρi < ρi(1 − ρi).
Otherwise no update is needed.

Proof: Let the random process X in the forwarding plane

denote the existence of item i in a cache vj at time t, which

is needed to be reported to the control plane (CRS). Let τij
denote the mean duration of time item i spends in any cache

vj , and θij denote the mean duration of time item i not being

in the cache vj .

In order to keep the CRS updated about the content states

in the network, all the nodes have to send update packets

regarding their changed items to CRS. All the assumptions

of section III are valid here. Thus, by replacing τX and

θX in equation (1) with τij and θij respectively, the result

(Rij = RX) shows the minimum rate at which each cache vj
has to send information about item i to the CRS.

It can be seen that at the steady-state, the probability that

cache vj contains item i will be ρij =
τij

θij+τij
. On the other

hand, the total rate of generating (or refreshing) copies of item

i at each cache vj , denoted by λij , equals to 1
θij

. Replacing the

values of
τij

τij+θij
and 1

θij
in Rij with ρij and λij respectively,

we obtain

Rij(ǫ1, ǫ2) ≥ λij(1− ρij)

{2−
ǫ1(1− ρij)

ρij(1− ρij − ǫ2)
−

ǫ2ρij
(1− ρij)(ρij − ǫ1)

} (3)

for ǫ1 < ρij < 1−ǫ2 and ǫ2ρij+ǫ1(1−ρij) < ρij(1−ρij).
It is worth noting that we are not assuming any specific

topology or caching policy here; the items may be cached on-

path or off-path; just one cache may keep the downloaded

content or a few caches may keep it. We are looking for

the minimum amount of update packets in the worst case,

which happens when each cache stores items independent of

the items in other caches. It is obvious that topologies like

a line of caches which result in strongly dependent caches

are not in the scope of this paper. Thus, the total update rate

for item i, is the sum of the update rates in all caches which

is Ri(ǫ1, ǫ2) =
∑Nc

j=1 Rij(ǫ1, ǫ2). Recalling the assumption

of (probabilistically) similar caches, we can drop the index

j and express the total update rate of item i in terms of the

probability of this item being in a cache. This yields the result

of equation (2) and the total update rate for all the items is

the summation of these rates.

Parameter Definition

τi Average time item i stays in a cache

θi Average time a cache does not have item i

ρi Probability of item i being in a cache

ǫ1,2 Distortion thresholds

Rij(ǫ1, ǫ2) Minimum rate at which each cache vj

must send update state of item i to CRS so

the defined distortion criteria is satisfied

Ri(ǫ1, ǫ2) Minimum total update rate for item i that

satisfies the defined distortion criteria

R(ǫ1, ǫ2) Minimum total update rate that

satisfies the defined distortion criteria

TABLE II
Parameters used in cache-controller interaction

B. Model Evaluation and Simulation Results

To figure out how the calculated rates perform in practice

and evaluate our model, we simulate an LRU cache with

capacity Lc = 20 items. We use the MovieLens dataset

[41], which contains 100, 000 ratings together with their time

6

stamps collected for M = 1, 682 movies from 943 users

during a seven-month period. We took the ratings as a proxy

for content requests, assuming that the users who reviewed

the movie have requested them shortly prior to the review.

In these simulations we first estimate the item availability in

the cache ρi (by dividing the total time that item is in the

cache by the total simulation time), then using the estimated

ρi and according to equations (17) and (18), we calculate the

update rate in case of a change. Then we run the simulation

for 100, 000 requests. In this simulation we update the CRS

according to the calculated rates, which can be interpreted as

the chances of update, whenever a change occurs in the cache.

Then we measure the total time that the CRS information

does not match the actual cache state for each item, and

calculate the average generated distortion during 10 rounds

of simulation. The top figures in Figure 2 illustrate the results

for the case where ǫ1 = ǫ2 = 0.01.

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.005

0.01

0.015

Item ID

D
is

to
rt

io
n

I

D
1

ε
1

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.005

0.01

0.015

0.02

0.025

0.03

Item ID

D
is

to
rt

io
n

II

D
2

ε
2

0 2 4 6 8 10
x 10

4

0

0.2

0.4

0.6

0.8

1

1.2x 10
−4

Item ID

D
is

to
rt

io
n

I

D
1

ε
1

0 2 4 6 8 10
x 10

4

0

1

2

3

4

5

6x 10
−4

Item ID

D
is

to
rt

io
n

II

D
2

ε
2

Fig. 2. Measured distortion type I (D1) and II (D2) top) for MovieLens

dataset (100K requests for M = 1, 682 movies), with ǫ1 = ǫ2 = 0.01 as

accepted distortions, and bottom) for synthetic dataset (10M Poisson requests
for M = 100K Zipf distributed movies with skew factor α = 0.7), with

ǫ1 = ǫ2 = 10−4 as accepted distortions.

Since, according to [14] and [42], the number of data objects

is very large, and is becoming larger, we repeated similar

evaluation with a relatively large synthetic dataset, containing

10 million Poisson requests for contents picked from a catalog

of 100K movies, according to a Zipf distribution with skew

parameter α = 0.7. Bottom figures in Figure 2 show the

results for the synthetic dataset allowing ǫ1 = ǫ2 = 10−4

distortion accepted (larger number of contents leads to lower

cache availability, thus we allowed lower distortion here).

It must be noted here that we are estimating ρi based on the

past cache states, so it is not the exact ρi.Thus the generated

distortion may exceed the tolerable values for some items,

while they are in the safe zone for the others. It is observed that

for a large portion of the items the distortion type I satisfies

the distortion criteria. Distortion type II, however, does not

satisfy the distortion criteria for more items. The reason is

that the calculated update rates are strongly dependent on the

availability of the items in the cache and any small error in

the estimation of ρi may lead to some extra distortions. Since

the ρi’s are mostly very small, not updating just one type II

change may cause an error which remain in the system for a

long time, and thus creating a large distortion.

Figure 3 illustrates the number of needed updates per

generated request for each item i in the network Ri

Ncλi
= Ri

Nγi

when the caches does not contain it with a known probability

(1 − ρi). The only variable parameters in this graph are ǫ1
and ǫ2. The higher distortion we tolerate, the less update

announcements for each item i we need to handle. Moreover,

the number of items which need some updates is decreasing

when higher distortions are accepted. As can be seen the

update rate starts from zero for those items which are in

the cache with high probability. Status of these items are

permanently set to ′1′ in CRS, and no update is needed. At

the other end of the graph, for the items which are almost

surely not in the cache, The presence probability is close to

zero (ρi = 0 and thus 1 − ρi = 1)), and the status of those

items can be permanently set to ′0′ in the control plane, thus

the caches don’t need to send any more information regarding

those items to the control plane. Therefore, again no update

is needed.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Probability that item i is not in cache (1−ρ
i
)

U
pd

at
e

ra
te

 fo
r

ite
m

 i
pe

r
re

qu
es

t p
er

 c
ac

he

(R
i(ε

1,ε
2)/

λ i N
c)

ε
1
=ε

2
=10−3

ε
1
=ε

2
=10−2.5

ε
1
=ε

2
=10−2

ε
1
=ε

2
=10−1.5

ε
1
=ε

2
=10−1

Fig. 3. Number of needed updates for item i sent from all caches to CRS per

generated request for that item versus 1− ρi for different distortion criteria.

The probability ρi is strongly dependent on the cache re-

placement policy. We consider LRU as the cache replacement

method used in the network. Clearly, in LRU caches (similarly

in other policies like FIFO, LFU, etc.) ρi is just a function of

7

the probability of item i coming to the cache (αi), and the

cache capacity (Lc). Figure 4 shows the changes of the total

update rate (scaled by 1
λNc

) versus the cache storage size,

in a network of LRU caches, such that the distortion criteria

defined by (ǫ1, ǫ2) is satisfied. In this simulation M = 103.

Note that each change in a cache consists of one item entering

into and one other item being expunged from the cache,

therefore if no distortion is tolerable, this rate will be 2 updates

per change per cache.

10
−2

10
00

0.5

1

1.5

2

ε
1
=ε

2
=0.05

T
ot

al
 u

pd
at

e
ra

te

pe
r

re
qu

es
t p

er
 c

ac
he

(R

(ε
1,ε

2)/
λ

N
c)

10
−2

10
0

ε
1
=ε

2
=0.01

Normalized storage size (L
c
/M)

10
−2

10
0

ε
1
=ε

2
=0

α=0

α=0.7

α=1.1

α=1.7

Fig. 4. Total cache-CRS update rate (Updates per generated request per
cache) for different cache storage capacities and different acceptable distor-

tions. Content set contains M = 1, 000 contents.

It can be observed that for very small storage sizes and

small popularity index, almost each incoming item changes the

status of the cache and triggers an update. When the storage

size is still very small, the caches do not provide enough

space for storing the items and reusing them when needed,

so increasing the size will increase the update rate. At some

point, the items will move down and up in the cache before

going out, so increasing the storage size more than that will

reduce the need to update. However, if the popularity index is

large, then increasing cache size from the very small sizes will

decrease the need to update since there are just a few most

popular items which are being requested.

Moreover, as it is expected, when more distortion is toler-

able, the CRS needs fewer change notifications. However, if

the cache size is too big, or the popularity exponent is too

high, fewer changes will occur, but almost all the changes are

needed to be announced to the CRS. On the other hand, for

small cache sizes accepting a little distortion will significantly

decrease the update rate.

V. APPLICATION TO COST ANALYSIS

In this section we use Theorem 1 to study trade-offs in-

volved in updating the content control layer. More specifically,

we try to calculate the bounds on the total cost (required

bandwidth for download + CRS update) and look at the trade-

offs between the cost, the size of the information chunks, the

number of caches, and the size of caches.

A. Network Model

Figure 5 illustrates the network model studied in this

section. This model consists of entities in three substrates:

users are located in first layer; a network of caches with the

CRS on the second level; external resources (caches in other

networks, Internet, etc.) on the third.

Fig. 5. Network Model.

We need to define the relative costs of the different actions.

We assume that the state update process for item i has a per

bit cost of ξupi for sending data from the cache to CRS, and

per bit cost of ξextupi > ξupi for sending data from one CRS to

another one. On the other hand, the requested piece of content

i may be downloaded from a cache inside the network with

some per bit cost ξinti , or it may be downloaded from an

external server with some other cost ξexti > ξinti . These costs

may be a function of the number of hops in the network. Note

that the exact costs for each cache are determined based on the

network topology, and may not be the same for all the caches.

In this paper we use the average cost over all the caches 6.

B. Total Cost in Cache-Controller Interaction

Lemma 2. The length of each update packet for content i is

li ≥ logNc − log
λi(1− ρi)∑M

i=1 λk(1− ρk)
+ 1 (4)

Proof: Each update packet contains the ID of the cache

issuing the query, the ID of the updated item and its new

state. There are Nc caches in the network, hence, logNc bits

are needed to represent the cache. Item i is updated with

probability βi =
λi(1−ρi)∑

M
i=1

λk(1−ρk)
, which results in a code length

of at least − log βi bits. Thus, the length of each update packet

is li ≥ logNc − log βi + 1.

Lemma 3. The total update cost in the defined network is

ϕup =
M∑

i=1

Ri(ǫ1, ǫ2)liξ
up
i . (5)

where Ri(ǫ1, ǫ2) is the minimum rate at which the update

state of item i must be reported to CRS so that a distortion

criteria defined by (ǫ1, ǫ2) is satisfied.

Proof: Each cache sends update packets at rate Ri(ǫ1, ǫ2)
to provide its CRS with the state of item i in its local content

store. Each update packet contains li bits, and there is a per

bit cost of ξupi for the update packets. Therefore, the cost

6The other option for defining the distortion and correspondingly cost is the
worst case, which will map to the maximum update cost. There are many few
caches that may undergo some maximum number of changes and need some
maximum update transfers, thus, this is clearly not illustrating the performance
of a cache network correctly. We have decided to work with the average
method, which is very common in the literature (References [8]–[10]) and we
believe it can represent the performance of the entire network better in our
specific application and many others.

8

for updating information about item i in the sub-network is

ϕup
i = Ri(ǫ1, ǫ2)liξ

up
i , and the total update cost is ϕup =∑M

i=1 Ri(ǫ1, ǫ2)liξ
up
i .

Lemma 4. The total download cost in the defined network is

ϕdl =

M∑

i=1

NγiBi((Pi − ρi)ξ
int
i + (1− Pi)ξ

ext
i) (6)

if ǫ1 < ρi < 1 − ǫ2 and ǫ1(1 − ρi) + ǫ2ρi < ρi(1 − ρi).
Otherwise no update is needed.

Proof: The requested piece of content i may be down-

loaded from the local cache with cost 0 (with probability ρi
of being in this cache), from another cache inside the same

network with some per bit cost ξinti (with a probability we

denote by Pi − ρi, where Pi is the probability that content i
is within the AS’s domain), or it must be downloaded from

an external server with some other cost ξexti (with probability

(1 − Pi)). Obviously, ρi ≤ Pi ≤ 1. Thus, the download cost

for item i with size Bi bits for each user in the sub-network

is

ϕdl
ij = γiBi((Pi − ρi)ξ

int
i + (1− Pi)ξ

ext
i), (7)

The total download cost for item i is ϕdl
i = Nϕdl

ij , and the

total download cost for all the items is the summation of ϕdl
i ’s

over all the contents.

Theorem 2. The total cost in the defined network including

update and download costs is

ϕ =
M∑

i=1

NγiBi((Pi − ρi)ξ
int
i + (1− Pi)ξ

ext
i)

+
M∑

i=1

Ri(ǫ1, ǫ2)liξ
up
i . (8)

Proof: Adding Lemmas 3 and 4 proves the Theorem.

It can be seen that the total cost is strongly dependent on

where each query is served from, and consequently on the

probability of each item being internally served (Pi). This

probability depends on the probability of that item being in

an internal cache, which is in turn a function of the caching

criteria and the replacement policy. Lemma 5 presents some

bounds on Pi based upon the allowed distortion. The proof

can be found in appendix.

Lemma 5. The probability that each content i is internally

served is bounded by

[1− (1− ρi + ǫ1)
Nc]+ ≤ Pi ≤ 1− (1− ρi)

Nc . (9)

where [x]+ = max(x, 0),

Note that the above Pi may take any value in the calculated

bounds depending on the value of ρi. For example if ρi < ǫ1
then D1i = ρi, and Pi = 0, which is the lowest value of this

bound. On the other hand, if ρi > 1 − ǫ2 then D1i = 0, and

Pi = 1− (1−ρi)
Nc , which is the highest value in this bound.

All the other values of ρi will lead to Pi between those two

boundaries.

These two extreme cases of Pi result in some bounds on the

download cost. Let ϕdl
L and ϕdl

H denote the lower and upper

bounds of the download cost corresponding to the upper and

lower bounds of Pi, respectively, and ϕL and ϕH denote the

lower and upper bounds of the total cost. Note that for small

values of the tolerable distortion ǫ1 the upper and lower limits

of Pi and correspondingly the bounds of download cost are

very close to each other.

Figure 6 the left plot illustrates the changes of update and

download costs in a network with a content set of a total of

1 million contents, when the size of each cache is limited to

Lc = 100 contents. The length of the data packets is assumed

to be 100KB in average, while the update packets are li bytes

each. Note that increasing the data (or update) packet lengths

will increase the download (or update) cost linearly.

Here we assume that whenever an item is downloaded,

it is stored in N̄c = logNc caches, which have to report

the changes to the controller7. If these caches are selected

randomly, the total update rate would be N̄c times the rate

of update of each cache resulting in max ϕup. On the other

side, if they are completely dependent, for example if all the

caches on the download path keep it, then just one update

may be enough, resulting in min ϕup. So depending on the

caching policy, the update cost will be something between min

and max ϕup.

The request rate received by each cache is inversely pro-

portional to the number of caches (the request rate per user is

assumed to be fixed and independent of Nc), and the update

packet length increases logarithmically with the number of

caches. The total update rate per cache is almost linearly de-

creasing with Nc, hence the minimum of the total update rate,

or the total update rate if just one cache keeps the downloaded

item, will almost be stable when Nc varies (changes are in the

order of logNc). The maximum total update rate will linearly

change with the number of copies N̄c per download. Thus,

increasing the number of caches in the network increases

the update cost by a factor of at least logNc and at most

N̄c logNc.

Increasing Nc, however, increases the probability of an item

being served internally and thus decreases the download cost.

Nevertheless, as it can be observed, the rate of decrease is so

low that it can be assumed as stable.

In the right plot of figure 6, we fix the number of caches in

the AS (NC = 10) and study the effects of cache storage size

on the update and total cost. Increasing the cache size, simply

increases the probability of an item being served internally

and decreases the download cost. Again similar to the left

plot, the rate of changes in the download cost is very low. As

expected, on the other side, the update cost shows an increase

when increasing the storage size. Looking at each cache, very

small cache size leads to very large durations where that item

is not in that cache and consequently, the update rate would be

low. Increasing the storage size will increase the probability of

that item being in the cache, and thus increases the update rate.

If we let more cache storage, this increase reaches its highest

value for a certain value of cache size, and for larger values

of cache beyond a threshold, the item is in the cache most of

7This happens in largely used network models like binary tree or grid
topology, when all the caches on the download path store the content.

9

the time. Therefore, we need less updates and increasing the

cache size will increase the duration of the item being in the

cache leading to fewer update messages. Since the total cost

mostly depends on the download cost, by increasing the cache

size, this value reaches its minimum value.

It is worth noting here that the cost of download from

another AS has been assumed 5 times bigger than the cost

of download from inside the AS, which in turn is assumed

to be the same as the update cost per bit. Figure 7 shows the

impact of the external and internal costs on the total download

cost. Higher external costs result in higher total download

costs, as it is expected, and show more decrease rate when the

number of caches increases. Thus, if the external download

cost comparing to the internal download cost is very high,

having more caches may make sense, although, the total cost

decrease rate is still very low.

Another important result shown by figures 6 and 7 is that

having big data packets, the download cost is always much

higher than the update cost, which is reasonable. In other

words, having the resolution-based content discovery when the

data packets are large, will add just negligible cost to update

the controller. In the following we study the affect of chunk-

based caching to obtain some insight on the reasonable size

of chunks, such that the update cost remains negligible.

10
0

10
510

6

10
8

10
10

Number of caches (N
c
)

T
ot

al
 u

pd
at

e
an

d
do

w
nl

oa
d

co
st

s

N̄c

min φup

max φup

φdl
L

φdl
H

α=0.7

M=106

N=105

ε
1
=ε

2
=1e−4

ξup=ξint=0.2ξext

B=105

L
c
=100B

 =log N
c

10
0

10
1

10
2

10
310

4

10
6

10
8

10
10

Cache size (L
c
)

T
ot

al
 u

pd
at

e
an

d
do

w
nl

oa
d

co
st

s

N̄c

φup

φdl
H

φdl
L

ξint=ξup=0.2ξext

B=105

N
c
=10

 =1

α=0.7

M=105

N=104

ε
1
=ε

2
=1e−4

Fig. 6. Total update cost (minimum and maximum of ϕup) and total download

cost (lower and upper bounds, ϕdl
L

and ϕdl
H

, left) vs. the number of caches

(Nc), when each item is B = 105 units long, the storage size per cache is

fixed (Lc = 100 items), and each downloaded item is stored in N̄c = logNc

caches, and right) vs. the cache size (Lc), when each item is B = 105 units
long, the number of caches is fixed (Nc = 10), and each downloaded item is

stored in N̄c = 1 cache.

The top plot in figure 8 shows the total cost versus the

number of caches, when the LRU cache replacement policy is

used and the total storage of the cache sublayer is limited to

half of the total number of items. The parameters are set as

follows: M = 10, 000, ǫ1,2 = 1e − 4, Bi = 100K, ξinti =
1, ξexti = 5, ξupi = 1, and α = 0.7. Since the lower and upper

bounds of the total cost are very close to each other, we just

plot the upper limit here. In the bottom plot of this figure, the

total cost is plotted versus the size of each cache. It can be

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of caches (N
c
)

T
ot

al
 d

ow
nl

oa
d

co
st

(u
pp

er
 (

φdl H
)

&
 lo

w
er

 b
ou

nd
s

(φ
dl L

))

φdl
H

: ξint=0.5ξext

φdl
L

: ξint=0.5ξext

φdl
H

: ξint=0.2ξext

φdl
L

: ξint=0.2ξext

φdl
H

: ξint=0.1ξext

φdl
L

: ξint=0.1ξext

Fig. 7. Total download cost (lower and upper bounds, ϕdl
L and ϕdl

H) vs. the
number of caches (Nc), for different download cost values, when each item

is B = 105 units long, and the storage size per cache is fixed (Lc = 100
items).

observed that with a fixed total storage size, concentrating all

the caches in one node and increasing the size of it will lead

to better overall performance (least cost). Note that in these

figures the total cost value shown is just a relative value, and

not the exact one.

10
0

10
1

10
20.8

1

1.2

Size of caches (L
c
)

T
ot

al
 C

os
t (

φ)

10
0

10
1

10
2

10
3

1

1.5

2

2.5

Number of caches (N
c
)

Fig. 8. Total cost (ϕ),when the total storage size (NcLc) is fixed and equal

to half of the catalog size, vs. top) the size of caches (Lc), and bottom) the
number of caches (Nc).

C. Optimized Cache Management

In previous section, the total cost in the described cache

network was derived and the impacts of the number or size of

the content stores on this cost was studied. We now turn our

attention to minimizing the total cost for given Nc and Lc.

Under a Zipf popularity distribution, many rare items will

not be requested again while they are in the cache under the

LRU policy. We can rewrite the total cost if the caches only

keep the items with popularity from 1 up to i∗.

ϕ =

i∗∑

i=1

NγiBi((Pi − ρi)ξ
int
i + (1− Pi)ξ

ext
i)

+

M∑

i=i∗+1

NγiBiξ
ext
i +

i∗∑

i=1

Ri(ǫ1, ǫ2)liξ
up
i (10)

Now just i∗ different pieces of content may be stored in each

cache. This changes the probability of an item i = 1, ..., i∗

being in a cache (ρi), which in turn changes Pi and Ri.

Figures 9 demonstrates the total cost versus the caching

popularity threshold i∗, for different number and size of

content stores, and acceptable distortions.

10

If just a very small number of items (small i∗) are kept

inside cache layer, then the download cost for those which are

not allowed to be inside caches will be the dominant factor

in the total cost and will increase it. On the other hand, if

a lot of popularity classes are allowed to be kept internally,

then the update rate is increased and also the probability of

the most popular items being served internally decreases, so

the total cost will increase. There is some optimum caching

popularity threshold where the total cost is minimized. This

optimum threshold is a function of the number and size of

the stores, distortion criteria, per bit cost of downloads and

updates.

The benefit of the optimized solution also varies depending

on the mentioned parameters. For example according to figure

9, the optimized solution can have 17% reduction in cost in

case when Nc = 50, Lc = 10, ǫ1 = ǫ2 = 1e − 4, while this

cost reduction is just 7% when Nc is five times smaller.

1

1.1

1.2

1

1.1

1.2

1

1.1

1.2

 T
ot

al
 c

os
t (

φ)

10
1

10
2

10
3

10
41

1.1

1.2

X

X

X

X

N
c
=50, L

c
=10, ε

1
=ε

2
=1e−4

N
c
=50, L

c
=10, ε

1
=ε

2
=1e−2

Number of most popular items
allowed to be stored inside

*

N
c
=10, L

c
=10, ε

1
=ε

2
=1e−4

N
c
=10, L

c
=50, ε

1
=ε

2
=1e−4

Fig. 9. Total cost when just i∗ most popular items are allowed to be stored
inside caches (N = 103,M = 104, B = 105, α = 0.7).

To find the optimal i∗, assume that all the items have the

same size (Bi = B) and the per bit costs is fixed for all

popularity classes (ξinti = ξint, ξexti = ξext, ξupi = ξup). We

can rearrange equation (10).

ϕ = ϕ1 − ϕ2 + ϕ3 (11)

where ϕ1 = BNγξext is the total cost if no cache exists

and all the requests are served externally; ϕ2 = BNγ(ξext −

ξint)
∑i∗

i=1 αiPi + BNγξint
∑i∗

i=1 αiρi corresponds to the

benefit of caching (cost reduction due to caching); and ϕ3 =

ξup
∑i∗

i=1 Ri(ǫ1, ǫ2)li is the caching overhead cost due to the

updates. The last term is the cost we pay because of caching

(updates). We need to calculate the value of i∗ such that the

cost of caching is dominated by its advantage; i.e. we need to

maximize ϕ2 − ϕ3.

This can be done using numerical methods which will lead

to a unique i∗ for each network setup (fixed parameters).

However, the network characteristics and the request pattern

are changing over time, so it seems that it is better to have

a mechanism to dynamically optimize the cost by selecting

the caching threshold (i∗) according to the varying network

features.

In such a mechanism, the CRS can keep track of requests

and have an estimation of their popularity. For those requests

which are served locally the CRS can have an idea of the

popularity based on the updates that receives from all the

caches; i.e. the longer an item stays in a cache, the more

popular it is. It can also take into account the local popularity

of the items. The CRS can then dynamically search for the

caching threshold which minimizes the total cost by solving

equation (11). Once the CRS determines which items to keep

internally, it will set/reset a flag in each CRRep so that the

local cache knows to store or not to store the requested piece

of content.

VI. CONCLUSION AND FUTURE WORK

We formulated a distortion-based protocol overhead model.

Some simple content distribution networks were then consid-

ered as examples to show how this framework can be used, and

based on this model the overhead of keeping the control plane

informed about the states of the contents in these networks was

calculated. It was confirmed that with big data packets, or in

large un-chunked data transfer scenarios, the cost of updating

the control layer is much lower than the cost of data download,

so resolution-based content discovery can be a good solution.

We also studied the total cost of data retrieval and observed

that with limited cache storage sizes, allowing all the items

to have the opportunity to be stored inside the sub-network’s

caches is not always the most efficient way of using the

caching feature.

For the case with a central resolution system in each sub-

network and with LRU cache replacement policy, an algorithm

has been proposed that can dynamically determine which items

not to be cached inside the AS at any time such that the total

cost of data retrieval is minimized.

In this work, our overhead model focuses on systems with

Boolean states. Our future work involves systems with other

state distributions. In addition, we have assumed uniform

distribution of caches in the studied example. This assumption

means that the probability of an item being in all the caches are

the same. Future study can consider some structure like tree or

power-law for the caches inside each sub-network, and using

the described framework, investigate how this assumption

changes the results.

APPENDIX

Proof of Lemma 1

Proof: The distortion criteria is defined as

D1 = Pr(SX = 1, ŜX = 0) ≤ ǫ1

D2 = Pr(SX = 0, ŜX = 1) ≤ ǫ2 (12)

It can be seen that Pr(SX = 1) = τX
τX+θX

, and Pr(SX =

0) = θX
τX+θX

. There are three cases where the distortion criteria

is satisfied even when the controller has no information about

the underlying plane.

1) If the monitoring state is ’down’ with high probability

(Pr(SX = 1) ≤ ǫ1), then having the controller assume

that it is always ’down’ (keeping ŜX constantly equal to
′0′) will satisfy the distortion criteria (D1 = Pr(SX =
1) ≤ ǫ1 and D2 = 0 < ǫ2).

2) If the monitoring state is ’up’ with high probability

(Pr(SX = 0) ≤ ǫ2), then setting the controller to

assume it is always ’up’ (keeping ŜX constantly equal

11

to ′1′) will satisfy the distortion criteria (D1 = 0 < ǫ1
and D2 = Pr(SX = 0) ≤ ǫ2).

3) If the monitoring variable can take both ’up’ and

’down’ states with high enough probabilities such that

1 − ǫ1
Pr(SX=1) ≤ ǫ2

Pr(SX=0) , then we pick a value ρ0
between 1− ǫ1

Pr(SX=1) and ǫ2
Pr(SX=0) , and assign ′1′ to

ŜX with probability ρ0 independent of the value of SX .

Therefore, since D1 = Pr(SX = 1)Pr(ŜX = 0) =
Pr(SX = 1)(1 − ρ0) ≤ ǫ1, and D2 = Pr(SX =
0)Pr(ŜX = 1) = ρ0Pr(SX = 0) ≤ ǫ2, the distortion

criteria is satisfied.

Thus in the following, we concentrate on the cases where

Pr(SX = 1) > ǫ1, Pr(SX = 0) > ǫ2, and 1 − ǫ1
Pr(SX=1) >

ǫ2
Pr(SX=0) .

Note that we assume that ǫ1 + ǫ2 ≤ 1, then ǫ2
1−ǫ2

≤ 1−ǫ1
ǫ1

,

and the first two regions can be summarized in the region

where ǫ2
1−ǫ2

≤ θX
τX

≤ 1−ǫ1
ǫ1

. The third region is also mapped

to the region where ǫ2τX + ǫ1θX < τXθX
τX+θX

.

Let U1
X(ǫ1) (and U2

X(ǫ2)) denote the needed update rate

per change type I (and II), or in other words the ratio of times

that type I (and II) changes have to be reported to the control

plane so that the distortion criteria is satisfied. As can be seen

in figure 1, each ’up’ period Zm starts at time T2m−1 and ends

at time T2m. The false negative alarm is generated during the

mth ’up’ period (Zm) if a type I change in the state of X
at time T2m−1 is not announced to the control plane while

the previous state (’0’) was correctly perceived by the control

plane; we show this event by W 1
m, and its probability is given

by

Pr(W 1
m) = (1− U1

X(ǫ1))Pr(ŜX = 0|SX = 0)

= (1 − U1
X(ǫ1))(1− Pr(ŜX = 1|SX = 0))

= (1− U1
X(ǫ1))(1 −

Pr(SX=0,ŜX=1)
Pr(SX=0)

= (1− U1
X(ǫ1))(1 −D2

τX+θX
θX

) (13)

In this case, ŜX = 0 during the time where SX = 1. So

assuming that the mth such change is perceived wrong by

the control plane, Zm is the time interval where the control

plane has the type I wrong information about the state of X .

Let Nw be the number of times SX undergoes type I changes

during a time interval [0, w]. The probability of type I error,

and consequently type I distortion can be calculated as the

ratio of total time of type I error over w when w → ∞.

D1 = E[
1

w

Nw∑

m=1

1[W 1
m]Zm]

=
1

w
E[1[W 1

m]Zm]E[Nw]

=
τX

τX + θX
Pr(W 1

m)

=
τX

τX + θX
(1− U1

X(ǫ1))(1−D2
τX + θX

θX
) (14)

Similarly, a false positive alarm is generated when a type II

change is not announced while the previous perceived state

(’1’) was correct, and assuming that this is the mth such

change, Ym+1 is the time interval that the control plane has

type II wrong information about X ; let W 2
m denote this event.

Thus,

Pr(W 2
m) = (1− U2

X(ǫ2))Pr(ŜX = 1|SX = 1)

= (1 − U2
X(ǫ2))

Pr(SX=1)−Pr(SX=1,ŜX=0)
Pr(SX=1)

= (1 − U2
X(ǫ2))(1 −D1

τX+θX
τX

) (15)

and

D2 = E[
1

w

Nw∑

m=1

1[W 2
m]Zm]

=
1

w
E[1[W 2

m]Ym+1]E[Nw]

=
θX

τX + θX
Pr(W 2

m)

=
θX

τX + θX
(1− U2

X(ǫ2))(1 −D1
τX + θX

τX
) (16)

To satisfy the distortion criteria we need D1 ≤ ǫ1 and D2 ≤
ǫ2. The update rates per changes type I and II, U1

X(ǫ1) and

U2
X(ǫ2), then can be written as

U1
X(ǫ1) = 1−

D1
θX
τX

θX
τX+θX

−D2

≥ 1−
ǫ1

θX
τX

θX
τX+θX

−ǫ2
(17)

U2
X(ǫ2) = 1−

D2
τX
θX

τX
τX+θX

−D1
≥ 1−

ǫ2
τX
θX

τX
τX+θX

−ǫ1
(18)

It can easily be verified that using the lower bounds obtained

in equations (17) and (18) for update rates per each change

type will result in distortions D1 = ǫ1 and D2 = ǫ2, and thus

they are the minimum values needed.

Therefore, the total number of updates announced to the

control plane divided by the total number of changes is given

by

UX(ǫ1, ǫ2) = U1
X(ǫ1) + U2

X(ǫ2) (19)

Note that the total rate of type I changes, which is equal to the

rate of type II changes in average is given by 1
τX+θX

changes

per second, thus total number of updates per second is given

by

RX(ǫ1, ǫ2) =
UX(ǫ1, ǫ2)

τX + θX
(20)

Combining equations (17-20) proves the Lemma.

Proof of Lemma 5

Proof: Recall that Vc is the set of caches, ρi denotes

the probability that a specific cache contains item i. Let Sij

represent the state of an item i at a node j, which is 1 if

cache j contains item i, and 0 otherwise, and let Ŝij denote

the corresponding state perceived by the CRS. A request from

a user is not served internally (by a cache in second layer)

either if no cache contains it:

Pr(∀ j ∈ Vc : Sij = 0) = (1− ρi)
Nc , (21)

or if there are some caches containing it but the CRS is not

aware of that:

12

Pr(∃ j ∈ Vc : Sij = 1 & Ŝij = 0)

=

Nc∑

k=1

∑

1≤j1<..<jk≤Nc

Pr(
i/∈Vc−{j1,...,jk} &

[Ŝijl
=0, Sijl

=1]k
l=1

)

=

Nc∑

k=1

∑

1≤j1<..<jk≤Nc

(1 − ρi)
Nc−kΠk

l=1Pr(
Ŝijl

=0

Sijl
=1)

=

Nc∑

k=1

(Nc

k)(1 − ρi)
Nc−kDk

1i

= (1 − ρi +D1i)
Nc − (1 − ρi)

Nc (22)

where D1i ≥ 0 is the probability that i exists in cache j
and the CRS does not know about it.

Thus the probability that a request is served externally is

1− Pi which equals

(1− ρi)
Nc + [(1− ρi +D1i)

Nc − (1 − ρi)
Nc]

= (1− ρi +D1i)
Nc (23)

where under the independent cache assumption, the state of

an item in a cache is independent of the state in another cache.

The probability D1i ≥ 0 is always less than the probability

of i being in cache j (D1i ≤ ρi), and if the state updates are

done at rate greater than Ri(ǫ1, ǫ2), it will also be less than

ǫ1.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM CCR, vol. 38, no. 2, Mar. 2008.

[2] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” Hot-ICE,
vol. 12, pp. 1–6, 2012.

[3] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” ACM SIGCOMM CCR, vol. 41, no. 4, Aug. 2011.

[4] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with difane,” ACM SIGCOMM CCR, vol. 41, no. 4, Aug.
2010.

[5] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized?: state distribution trade-offs in software defined
networks,” in ACM HotSDN, Aug. 2012.

[6] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in soft-
ware defined networks,” in IEEE CNSM, 2013, pp. 18–25.

[7] R. Gallager, “Basic limits on protocol information in data communi-
cation networks,” IEEE Transactions on Information Theory, vol. 22,
no. 4, pp. 385–398, 1976.

[8] D. Wang and A. Abouzeid, “Link State Routing Overhead in Mobile Ad
Hoc Networks: A Rate-Distortion Formulation,” in IEEE INFOCOM,
Apr. 2008, pp. 1337–1345.

[9] ——, “On the cost of knowledge of mobility in dynamic networks: An
information-theoretic approach,” IEEE Transactions on Mobile Comput-

ing, vol. 11, no. 6, pp. 995–1006, Jun. 2012.

[10] J. Hong and V. O. Li, “Impact of information on network performance-
an information-theoretic perspective,” in IEEE GLOBECOM, 2009, pp.
1–6.

[11] A. Barbir, B. Cain, R. Nair, and O. Spatscheck, “Known content network
(CN) request-routing mechanisms,” IETF RFC 3568, Network Working
Group, Jul. 2003.

[12] L. Peterson and B. Davie, “Framework for CDN interconnection,” IETF
CDNi working group, draft-ietf-cdni-framework-02, Dec. 2012.

[13] M. Gritter and D. R. Cheriton, “An architecture for content routing
support in the internet.” in USITS, vol. 1, 2001, pp. 4–4.

[14] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” in ACM SIGCOMM CCR, vol. 37, no. 4, 2007, pp. 181–
192.

[15] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in ACM CoNEXT,
2009, pp. 1–12.

[16] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K.
Smetters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos et al.,
“Named data networking (ndn) project.” Citeseer, 2010.

[17] D. Trossen, G. Parisis, K. Visala, B. Gajic, J. Riihijarvi, P. Flegkas,
P. Sarolahti, P. Jokela, X. Vasilakos, C. Tsilopoulos, and S. Ari-
anfar, “Pursuit conceptual architecture: Principles, patterns and sub-
components descriptions,” Tech. Rep., May 2011.

[18] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
IEEE Communications Magazine, no. 7, pp. 26–36, Jul.

[19] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and
J. Wilcox, “Information-centric networking: seeing the forest for the
trees,” in ACM HotNets-X, Nov. 2011.

[20] B. Tang, H. Gupta, and S. R. Das, “Benefit-based data caching in ad
hoc networks,” IEEE transactions on Mobile Computing, vol. 7, no. 3,
pp. 289–304, 2008.

[21] S. Bhattacharkee, K. Calvert, and E. Zegura, “Self-organizing wide-area
network caches,” in IEEE INFOCOM, 1998.

[22] B. Azimdoost, G. Farhadi, N. Abani, and A. Ito, “Optimal in-network
cache allocation and content placement,” in IEEE INFOCOM WKSHPS,
2015, pp. 263–268.

[23] S. Borst, V. Gupta, and A. Walid, “Distributed Caching Algorithms for
Content Distribution Networks,” in IEEE INFOCOM, Mar. 2010.

[24] V. Sourlas, P. Flegkas, L. Gkatzikis, and L. Tassiulas, “Autonomic cache
management in Information-Centric Networks,” in IEEE NOMS, Apr.
2012.

[25] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache ”less for more” in
information-centric networks,” in International Conference on Research
in Networking. Springer, 2012, pp. 27–40.

[26] B. Azimdoost, C. Westphal, and H. R. Sadjadpour, “On the throughput
capacity of information-centric networks,” in IEEE ITC25, 2013, pp.
1–9.

[27] ——, “Fundamental limits on throughput capacity in information-centric
networks,” IEEE Transactions on Communications, vol. 64, no. 12, pp.
5037–5049, 2016.

[28] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “Wave:
Popularity-based and collaborative in-network caching for content-
oriented networks,” in IEEE INFOCOM WKSHPS, 2012, pp. 316–321.

[29] R. Durrett, Probability: theory and examples. Cambridge university
press, 2010.

[30] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-
los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of
information-centric networking research,” IEEE Communications Sur-
veys & Tutorials, vol. 16, no. 2, pp. 1024–1049, 2014.

[31] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and
H. Karl, “Network of information (netinf)–an information-centric net-
working architecture,” Computer Communications, vol. 36, no. 7, pp.
721–735, 2013.

[32] M. D’Ambrosio, C. Dannewitz, H. Karl, and V. Vercellone, “Mdht: a
hierarchical name resolution service for information-centric networks,”
in ACM SIGCOMM ICN, 2011, pp. 7–12.

[33] L. Wang, S. Bayhan, J. Ott, J. Kangasharju, A. Sathiaseelan, and
J. Crowcroft, “Pro-diluvian: Understanding scoped-flooding for content
discovery in information-centric networking,” in ACM ICN, 2015, pp.
9–18.

[34] M. Lee, J. Song, K. Cho, S. Pack, J. Kangasharju, Y. Choi et al., “Con-
tent discovery for information-centric networking,” Computer Networks,
vol. 83, pp. 1–14, 2015.

[35] C. Anastasiades, A. Uruqi, and T. Braun, “Content discovery in oppor-
tunistic content-centric networks,” in IEEE LCN WKSHPS, 2012, pp.
1044–1052.

[36] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the
gain: Incrementally deployable icn,” in ACM SIGCOMM CCR, vol. 43,
no. 4, 2013, pp. 147–158.

[37] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in IEEE INFOCOM, Apr.
2014, pp. 2040–2048.

[38] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE Journal on Selected

Areas in Communications, vol. 20, no. 7, pp. 1305–1314, 2002.

13

[39] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
zipf-like distributions: Evidence and implications,” in IEEE INFOCOM,
vol. 1, 1999, pp. 126–134.

[40] E. Baştuğ, M. Bennis, E. Zeydan, M. A. Kader, I. A. Karatepe, A. S.
Er, and M. Debbah, “Big data meets telcos: A proactive caching
perspective,” Journal of Communications and Networks, vol. 17, no. 6,
pp. 549–557, 2015.

[41] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Transactions on Interactive Intelligent Systems (TiiS),
vol. 5, no. 4, p. 19, 2016.

[42] J. Bankoski, IEEE ICNC’17 Panel on Future Video Distribution, 2017.

	I Introduction
	II Related Work
	III Protocol Overhead Model
	IV Content Location in Cache Networks
	IV-A Cache-Controller Interaction
	IV-B Model Evaluation and Simulation Results

	V Application to Cost Analysis
	V-A Network Model
	V-B Total Cost in Cache-Controller Interaction
	V-C Optimized Cache Management

	VI Conclusion and Future Work
	Appendix
	References

