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Abstract—Coupling cyber and physical systems gives rise to
numerous engineering challenges and opportunities. An impor-

tant challenge is the contagion of failure from one system to an-
other, which can lead to large-scale cascading failures. However,
the self-healing ability emerges as a valuable opportunity where
the overlaying cyber network can cure failures in the underlying
physical network. To capture both self-healing and contagion,
this paper considers a graphical model representation of an
interdependent cyber-physical system, in which nodes represent
various cyber or physical functionalities, and edges capture the
interactions between the nodes. A message-passing algorithm is
proposed for this representation to study the dynamics of failure
propagation and healing. By conducting a density evolution
analysis for this algorithm, network reaction to initial disruptions
is investigated. It is proved that as the number of message-passing
iterations increases, the network reaches a steady-state condition
that would be either a complete healing or a complete collapse.
Then, a sufficient condition is derived to select the network
parameters to guarantee the complete healing of the system. The
result of the density evolution analysis is further employed to
jointly optimize the design of cyber and physical networks for
maximum resiliency. This analytical framework is then extended
to the cases where propagation of failures in the physical network
is faster than the healing responses of the cyber network. Such
scenarios are of interest in many real-life applications such as
smart grid. Finally, extensive numerical results are presented to
verify the analysis and investigate the impact of the network
parameters on the resiliency of the network.

Index Terms—Cyber-Physical Systems, Message Passing, Fac-
tor Graph, Cascading Failure, Density Evolution.

I. INTRODUCTION

A
Cyber-physical system (CPS) is a system of collaborating
computational elements controlling physical entities. The

future smart grid, intelligent transportation systems, distributed
robotics, and medical monitoring systems are all examples
of CPSs. The interconnected nature of such systems gives
rise to numerous engineering challenges and opportunities.
An important challenge is the contagion of failure from one
system to another in a coupled system. Such contagion may
lead to large-scale catastrophic failure triggered by a small
failure, such as the 2003 blackout in the Northeastern United
States [3]. Here, the self-healing ability emerges as a valuable
opportunity, where the overlaying cyber network can cure
failures in the underlying physical network. For example, after
detecting the failure in the power system, smart grid exploits
self-healing abilities such as control of the production and dis-
tribution of electricity to halt the damage instantaneously [4].

The material in this paper was presented in part at the 25th International
Conference on Computer Communication and Networks (ICCCN), and IEEE
Globecom Workshops (GC Wkshps), both in 2016, [1] and [2], respectively.

A. Behfarnia and A. Eslami are with the Department of Electrical Engi-
neering and Computer Science, Wichita State University, Wichita, KS, USA
(emails: axbehfarnia@shockers.wichita.edu, ali.eslami@wichita.edu).

In another example, the traffic control network that monitors
taxi transportation could avoid congestion by calculating the
fastest routes during a given time of the day [5].

The study of interdependent networks was sparked by the
seminal work of Buldyrev et al. [6], where a simple “one-to-
one" interdependence model was considered. Several authors
[7]–[32] then aimed to extend findings to more realistic
scenarios (a brief overview is provided in Section II). However,
self-healing, and its modeling and design advantages in cyber-
physical systems have been mostly overlooked in the literature.
Among the most important issues in the design of future CPSs
such as the smart grid are the following:

• Derive an analytically-tractable model that captures the
key features of real-life systems such as self-healing and
contagion,

• Develop a framework that enables studying multiple
layers of interconnected cyber and physical systems.

In this paper, we take a novel approach to address these
issues by applying ideas inspired by error correction coding to
model, analyze, and design cyber-physical systems. Our main
contributions can be summarized as follows:

• We propose a graphical model representation of CPSs,
where nodes represent network functionalities of the
cyber and physical nodes, and the edges represent the
connections within each network and between the two.

• We apply a message-passing algorithm to the CPS graph-
ical model, where messages represent the interactions
between the nodes, including contagion and healing. We
then borrow the concept of density evolution used in
performance analysis of codes on graphs such as repeat-
accumulate (RA) codes [33], low-density parity-check
(LDPC) codes [34], [35], and turbo codes [36], to study
the dynamics of failure propagation and healing in CPSs
after an initial disturbance. The result is a closed form
formula referred to as “density evolution equation".

• From the density evolution equation, we derive a suffi-
cient condition for choosing the network parameters to
guarantee complete healing of the system. This condition
provides us with simple yet critical design guidelines.

• Density evolution equation is then employed to set up
an optimization problem to do the following: (a) find the
most severe initial disruption that can be tolerated by the
system, given the network parameters, and (b) find the
optimal values of the network parameters for maximum
resilience against an initial disruption.

• We extend our analysis to study the behavior of a CPS
in the presence of time delays in cyber nodes’ response
to physical failures. Such delays, common in many real-
life systems, could be for a number of reasons, such
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as recovering data from the database, collecting data
from other physical nodes, gathering information from
neighboring cyber nodes, etc. We derive the density
evolution equation in the presence of such delays.

• We provide a steady state analysis showing that, as time
goes by, the network reaches a steady state condition
that would be either a complete healing or a complete
collapse.

• We provide extensive numerical results to verify the anal-
ysis and investigate the impact of the network parameters
on the resiliency of the network. The results confirm the
steady state behavior, and the largest tolerable disturbance
is obtained for many networks through solving the opti-
mization problem. It is also observed that to preserve the
healing ability of the system, the probability of failure
propagation among physical nodes should be kept small.
Another important observation clarifies that if the cyber
nodes’ delay takes more than a few time slots, the
probability of complete healing will significantly reduce.

The rest of the paper is organized as follows. Section II
provides a brief overview of the related work. Section III
provides a brief introduction to the use of message passing
and density evolution in graphical models, particularly factor
graphs. Section IV starts the analysis by applying a message-
passing algorithm to a simple self-healing one-to-one network
inspired by Buldyrev’s model. Then, Section V describes the
system model, notations, and message passing in the general
CPS. Section VI provides a density evolution analysis of
the proposed message-passing algorithm. This section also
includes a sufficient condition for the system to be healed,
optimizing network parameters for maximum resiliency, and
the effect of processing time delay in the network. Section
VII is devoted to extensive numerical results, and Section VIII
concludes the paper.

II. RELATED WORK

Several papers extended the findings of Buldyrev et al. [6]
by applying percolation theory while focusing on the size
of the remaining giant component after a cascading failure.
Authors in [7] studied the percolation of failures after an
attack in a one-to-one interdependent network model in which
mutually dependent nodes have the same number of neighbors.
Parshani et al. [14] studied the case where only a fraction
of the nodes in both networks depend on each other, that is,
some nodes in each network are not connected to the other
network. They proved that the reduction of coupling between
networks leads to a change from a first-order percolation
phase to a second-order percolation phase. Later, a systematic
strategy based on betweenness was introduced [17] to select
a minimum number of autonomous nodes that guarantees a
smooth transition. This reduces the fragility of the network
without losing functionality. Shao et al. [18] proposed an
interdependent model, taking into account the realistic sce-
narios at which a node in a network X might be supported by
more than one node in a network Y , and vice versa. In such
cases, a node will continue to work as long as at least one
of its supporting nodes is still working. Gao et al. [21] have

developed an analytical framework for studying the robustness
of tree-like n interdependent networks. They found that for
any n ≥ 2 (for Erdös-Rényi, random regular, and scale-free
graphs), cascading failure appears, and transition becomes a
first-order compared to a second-order transition. A “regular
allocation" algorithm was proposed in [16] to allocate the same
number of interlinks to each node. Authors proved that such
allocation is optimal for a network with an unknown topology,
and that employing bidirectional interlinks instead of unidi-
rectional ones leads to better robustness. In a different line of
work, several authors [19], [20] studied the influence of active
small clusters appearing after an attack on the whole network
performance. In particular, they obtained an upper bound for
the fraction of operating active small clusters after a cascading
failure. Shahrivar et al. [24] studied the resilience of random
interdependent networks through algebraic connectivity. They
obtained a threshold for r-robustness, which is the same as
that required for the graph to have a minimum degree r.

A number of works [25]–[30] have been devoted to self-
healing single-layer networks. Several authors [26], [27] stud-
ied the concept of self-healing networks through distributed
communication protocols that set up new links to recover
the system connection. In particular, Quattrociocchi et al.
[27] evaluated the performance of redundant links in small-
world networks against link failures. Through small-world
topologies, they found that some long-range connections could
greatly increase the resiliency of the network. Liu et al. [28] in-
vestigated the effect of restoration time and resources to study
the cascading overload failure in homogeneous (e.g., Erdös-
Rényi) and heterogeneous (e.g., scale-free) networks. For an
SIS-type epidemic process, Drakoloulos et al. [29] achieved
a lower bound on the optimal expected extinction time. This
bound was obtained as a function of curing budget, maximum
degree of each node, and epidemic parameters. Besides, many
real-time technologies in realistic networks that support the
realization of self-healing methods have been developed. For
example, Li et al. [30] developed an optimization problem for
a protection strategy (e.g., switching transmission line) in a
critical infrastructure (e.g., power grids).

A few works [31], [32] have recently studied self-healing
multi-layer networks. Stippinger and KertÃl’sz [31] introduced
a healing strategy for an interdependent network based on the
formation of new links. By applying recovering links after
failures, they found that the increase in resiliency of an inter-
dependent network has power-law scaling with the probability
of healing. They also showed that it is possible to suppress
the cascading failure by keeping the healing probability above
a critical value. Majdandzic et al. [32] developed a phase
diagram for multi-layer networks to find an optimal repairing
strategy in damaged interacting systems.

Our work is concerned with the study of failure, the
evolution of failure, and the recovery process in a cyber-
physical network. The main differences between this paper
and the above literature are as follows: i) we apply, for the
first time, a message-passing analysis to study the dynamics
of failure propagation and healing in a cyber-physical sys-
tem, ii) we obtain a closed-form equation for the evolution
of failure in a self-healing interdependent network, iii) we
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develop a closed-form equation for the evolution of failure
in the presence of time delay for recovering nodes in a self-
healing interdependent network, and iv) we derive a sufficient
condition for a self-healing cyber-physical system that prevents
cascading failure in the network. In all the above, we exploit
techniques from coding theory to analyze network resiliency.

III. MESSAGE PASSING AND DENSITY EVOLUTION IN

GRAPHICAL MODELS

This section provides a background on message passing in
factor graphs, which is required to understand the analysis
in this paper. We start with a brief introduction to factor
graphs and their message passing. We then explain message
passing in the simple example of LDPC decoding, followed
by a description of density evolution as it is done in codes
on graphs. Finally, we present the similarities and differences
between codes on graphs and CPSs in their factor graphs,
message passing, and density evolution.

A. Factor Graphs

A factor graph could be defined as a bipartite graph that
expresses the factorization of a function. To explain this, let
g(x1, x2, ..., xn) be a function that could be factored into
product of several local functions, each having a subset of
all variables, {x1, x2, ..., xn}. So, we have

g(x1, x2, ..., xn) =
∏

k∈K

fk(Xk) (1)

where K is a discrete index set, Xk is a subset of
{x1, x2, ..., xn}, and fk(Xk) is a function with the ele-
ments of Xk as arguments. A factor node denotes a lo-
cal function fk, a variable node denotes each variable xk,
and an edge exists between variable node xk and factor
node fk if and only if xk is an argument of fk. Fig. 1
shows an example of a function, g(x1, x2, x3, x4, x5), on
a bipartite graph that can be obtained as the product of
f1(x1, x2)f2(x2)f3(x1, x3)f4(x2, x4)f5(x3, x5).

A popular message-passing algorithm on factor graphs is the
sum-product message-passing algorithm, also known as belief
propagation, which computes all marginals of the individual
variables of the function. Computation of a marginal function
begins with the leaves of a factor graph. Each leaf variable
node and leaf factor node send “belief” messages to their
parents. A variable node simply sends the product of all
received messages as its belief, while a factor node with parent
x calculates the product of all received messages from its
children, and then operates on the result with a sum over all its
variables except x,

∑

∼{x}, to send its belief. It is worth noting
that the role of parents and children nodes are temporary, and
it would be variant for different marginalized parameters.
To obtain a mathematical expression for the message-passing
algorithm, let n(y) denote a set of all neighbors of a node y,
µf→x(x) represents a message sent from a factor node, f , to
a variable node, x, and µx→f (x) shows the message sent from
node x to f . Then, as illustrated in Fig. III-A, the sum-product

f1 f2 f3 f4 f5

x1 x2 x3 x4 x5

Fig. 1: A factor graph for the product
f1(x1, x2)f2(x2)f3(x1, x3)f4(x2, x4)f5(x3, x5).

fx

k1

k2

z1

z2

µx→f (x)

µf→x(x)

µz1→f (z1)

µz2→f (z2)
µk2→x(x)

µk1→x(x)

Fig. 2: A part of factor graph, showing the update rules of
sum-product message-passing algorithm.

message-passing algorithm can be written as follows [37]:

µx→f (x) =
∏

k∈n(x)\{f}

µ k→x(x) (2)

µ f→x(x) =
∑

∼{x}

(

f(X)
∏

z∈n(f)\{x}

µ z→f (z)

)

. (3)

For example, g(x4) can be obtained as follows:

g(x4) = µf4→x4
(x4) (4)

where,

µf4→x4
(x4) =

∑

{x2}

f4(x2, x4) µx2→f4(x4) (5)

µx2→f4(x4) = µf2→x2
(x2) µf1→x2

(x2). (6)

B. Message Passing in Codes on Graphs

Message passing has been successfully employed in the
decoding of codes on graphs. Here we explain the message-
passing decoding of LDPC codes with a simple example.
Fig. 3 shows part of the Tanner graph of an LDPC code,
where the circles and squares represent, respectively, variable

nodes and check nodes. The variable nodes correspond to the
symbols received from the channel, i.e., channel outputs. In
this particular example, we assumed a binary erasure channel

(BEC) where the channel outputs are either received correctly
or are unknown. In a BEC, there is no bit flip from 0 to 1,
or vice versa. The functionality of a check node is to do a
check-sum on the values of its variable nodes and ensure that
they add up (in modulo 2) to zero.

The goal of the decoder is to determine the correct values
of the unknown bits after multiple rounds of message passing
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Fig. 3: One iteration of message passing in LDPC codes over
binary erasure channel.

between the variable and check nodes. As shown in Fig. 3,
there is one unknown bit (variable node) at the channel output.
At the beginning of each iteration, every variable node vj
sends its value to all of its neighboring check nodes, as shown
in Fig. 3 (a). Every check node ci then derives what it believes
about the value of each of its neighboring variable nodes, and
sends the information back to each of them as a message. To
derive this value for vj , ci uses the messages received from
all of its variable nodes, excluding vj . If one or more of these
messages are ǫ (erasure), then ci cannot be of help to vj at
this round and therefore sends an ǫ to vj . Otherwise, if all of
these messages are either 0 or 1, then ci takes their check-sum
and sends the result to vj as what it believes vj should be.
An example of messages sent from check nodes to variable
nodes is shown in Fig. 3(b). The last two steps are repeated
until the values of all variable nodes are derived, or a certain
number of iterations is reached.

C. Density Evolution in Codes on Graphs

For the message-passing decoding of codes on graphs
on general memoryless channels, messages between variable
nodes and check nodes are often defined as log-likelihood
ratios (LLRs) of probabilities that a given bit is “1” or “0”.
Since LLRs are often continuous variables, the probability of
a message for a specific value of LLR can be described by
a probability density function (pdf). Tracking the evolution
of this pdf in a message-passing decoder is called density

evolution (DE) and can reveal the performance of the decoder.
While DE is typically used for channels like binary additive
white gaussian noise channel (BIAWGNC) with continuous
LLRs, this term can also be employed to study the evolution
of erasures in BEC channels where LLRs are discrete. In this
case, DE keeps track of the density of erasure messages (ǫ) to
analyze the performance of the decoding algorithm. For this,
let pi denote the probability of ǫ message from a variable node
to a check node, and let qi denote the probability of ǫ from
a check node to a variable node, both in the i-th iteration
of message passing in Fig. 3. The probability of ǫ message
on the (i+1)-th iteration of message passing from a variable
node with degree d, say vj , to a check node, say ct, can be
written as pi+1 = pi q

d−1
i under the independence assumption

[34]. This equation is actually obtained using eq. (2). The
term qd−1

i accounts for all received messages to vj except
ct (to avoid positive feedback) which is going to receive a

message
∏

k∈n(x)\{f} µ k→x(x). It was proved in [34] that the
decoding algorithm is successful if the inequality pi+1 < pi
holds for every i ≥ 0.

The recursive equation above is referred to as “density
evolution equation", and was obtained for message passing in
LDPC codes over a BEC. Similar equations can be derived for
message-passing algorithm over other channels and for other
types of codes on graphs (see [33], [35], [36]). In this paper,
we apply the density evolution analysis to the factor graph of
CPSs, and derive the density evolution equation for them.

D. Codes on Graphs vs. Cyber-Physical Systems

There are a few similarities and differences between codes
on graphs and cyber-physical systems in the structure of their
factor graphs and properties of messages. In codes, factor
nodes check/correct variable nodes; in CPSs, cyber nodes can
heal physical nodes. Similar to the codes, there are two types
of nodes in a CPS, and their interactions can be captured
through messages exchanged between them. However, some
differences between the two applications can be recognized as
follows.

1) In codes on graphs, unknown (damaged) variable nodes
cannot affect the functionality of the check nodes. In
other words, failure cannot propagate from variable nodes
to check nodes. On the other hand, in cyber-physical
systems, failure of the physical components could cause
a failure in the cyber network, and vice versa [6].

2) Factor nodes in a CPS factor graph may assume a more
complicated functionality than in codes on graphs. Also,
the delivery of the messages in a CPS may not be guar-
anteed. These result in a different message structure and,
probably, a more complicated density evolution equation.

3) The Tanner graph of a code is a bipartite graph in
which every edge connects a check node to a variable
node. In other words, there are no edges connecting the
variable nodes or check nodes. In a CPS, however, both of
the cyber and physical systems are connected networks.
Hence, a physical (cyber) node can directly affect the
operation of other physical (cyber) nodes.

In this paper, we show how message passing can be applied
to CPSs despite these differences. The first two differences
can be addressed by appropriately defining the messages,
and physical and cyber node functions, while accounting for
imperfect message passing. This will be presented in Sections
V and VI. The last difference can be addressed using a rather
standard approach, i.e., by adding virtual check nodes to the
CPS factor graph. This will be presented in details in the proof
of Theorem 2 in Section VI. To provide intuition into our
approach, we start by considering a slightly modified version
of Buldyrev et al.’s “one-to-one" network [6]. We will then
extend our analysis to more general cases of CPSs and include
cyber-node time delays.

IV. MESSAGE PASSING OVER A SELF-HEALING

ONE-TO-ONE MODEL

Buldyrev et al. [6] introduced a simple “one-to-one" model
that yields important insight into studying interdependent
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networks. In this model, it is assumed that two networks, say
A and B, have the same number of nodes, N. The state (failed
or alive) of a node in network A directly depends on the state
of the

corresponding node in network B. Fig. 4 shows such a
one-to-one model of a cyber-physical network. There will
be an initial attack on the physical network failing each
physical node with a probability ǫ. Failures then propagate,
not through the physical network but from the physical nodes
to the cyber nodes and then through the cyber network. A
cyber node with only failed cyber neighbors will fail, hence
failing its underlying physical node. As time passes and failure
propagates between the two networks after several iterations,
a catastrophic cascade of failures may occur.

In the model of Buldyrev et al., if a physical node fails,
then the corresponding cyber node will also be lost, and there
is no healing capability for either physical or cyber nodes. We
slightly modify this model to consider a healing ability for
cyber nodes. We assume that a cyber node that is not isolated
from the cyber network can heal its failed physical node. That
is, a cyber node with at least one healthy cyber neighbor still
has access to the cyber network’s data and can heal its physical
node.

We capture the propagation of failure and healing between
the nodes as defection (D) and healing (H) messages ex-
changed between them, and apply message-passing analysis
tools to study the evolution of the cascade in this interde-
pendent network. We may look at this evolution within one
(any) iteration, and see how the failure probability changes
for physical nodes. If this probability increases at the end of
the iteration, then a cascade will occur, and if it decreases at
the end the iteration, then the network will heal completely.
Let us consider the first iteration after the initial attack. Each
physical node is failed at the beginning with probability ǫ. Let
y denote the probability of a D message from a physical node
to its cyber neighbor. Thus,

y = ǫ. (7)

A cyber node with a failed physical node sends D messages
to all its cyber neighbors reporting that it has lost its physical
connection. Denote the probability of this event by w. Since
each cyber node is connected to only one physical node,

w = y = ǫ. (8)

A cyber node with only failed cyber neighbors sends a D
message to its physical node; otherwise, it sends an H message
healing the physical node. If we denote the probability of the
former (sending a D message to the physical node) by u, then

u = ρ(w) = ρ(ǫ),where ρ(z) =
∑

i≥1

ρiz
i (9)

is the degree distribution of the cyber nodes, and
∑

i≥1 ρi =
1. Here, ρi is the fraction of cyber nodes with i cyber
neighbors. Let us denote the probability of a physical node

Physical node Cyber node 

w
w

y

u

Fig. 4: Illustration of “One-to-one" interdependent model.

failure by x:

x = Pr

{

Receiving a D message from the cyber node

}

(10)

Also, assume that xl represents the l-th iteration of message
passing. Now, we are at the end of the first iteration and x1

can be written as:

x1 = u = ρ(ǫ). (11)

Note that for 0 ≤ ǫ < 1,

x1 = ρ(ǫ) =
∑

i≥1

ρiǫ
i <

∑

i≥1

ρiǫ = ǫ. (12)

Therefore, at the end of the first iteration, the probability of
failure for a physical node decreases. The same analysis as
above can be carried out for any iteration l. If we denote the
physical node failures at the beginning of iterations l and l+1
by xl and xl+1, respectively, then

xl+1 < xl, (13)

which means that our simple (and somewhat intuitive) healing
rule for the Buldyrev et al. network will always lead to its
complete healing. This of course will not be the case for
more complicated network models with complex contagion
and healing rules. However, the message-passing approach
used in this section can be generalized to develop a framework
for studying such cases. The rest of this paper is dedicated to
this task. Section V sets up the network model and formulates
the message-passing problem for the general case. Section VI
then generalizes the technique used here by applying a density

evolution analysis to study the dynamics of the cascade in the
network.

V. PROBLEM FORMULATION AND MODELING

This section presents a graphical model for studying mes-
sage passing in cyber-physical systems. First, we explain our
network model for both physical and cyber networks. Then,
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we describe our models for the initial disturbance, healing, and
contagion within each network and between the two networks.
Finally, we explain how our modeling framework can be
applied, in an abstract level, to a network of autonomous cars
as an example of cyber-physical systems.

A. Network Model

For our analysis, we consider random networks with given
degree distributions as models of cyber and physical networks.
This enables us to model random networks with arbitrary
degree distributions such as scale-free networks with a power
law degree distribution [38], and Erdős-Rényi random graphs
with a Bernoulli degree distribution [39]. We define cyber
(physical) degree of a node as the number of nodes in the
cyber (physical) network connected to the node. In a similar
fashion to codes on graphs, we use polynomials to represent
the degree distributions of the networks:

ρ(z) =
∑

i≥1

ρiz
i, and λ(z) =

∑

i≥1

λiz
i (14)

denote the degree distributions of the cyber and physical
networks, respectively, where ρi is the fraction of cyber nodes
with cyber degree i, and λi is the fraction of physical nodes
with physical degree i.

To capture the interconnections between the two networks,
two more polynomials are needed: one for the physical degree
distribution of cyber nodes, and one for the cyber degree
distribution of physical nodes. However, in order to simplify
the presentation of results, we assume that each cyber node
controls a physical nodes, while each physical node is con-
nected to one cyber node. The analysis for the general case of
degree distributions could be carried out along the same lines
as the analysis in this paper.

B. Initial Disturbance, Contagion, and Healing

Here, we explain our models for the initial disturbance,
contagion within each system and between the two, and
healing of the physical system by the cyber system. Our
methodology, however, could be extended to a wide range of
models.

• Initial disturbance: We assume that each physical node
initially fails with a small probability ǫ, where ǫ ≪ 1,
independently from other nodes. In this paper, we only
consider initial disturbance for the physical network. The
analysis for the case of a cyber attack could be conducted
in a similar fashion.

• Contagion within physical network: After being defected,
a physical node may defect each of its neighbors with
probability p. This probabilistic model is commonly used
in the literature for a range of applications [40].

• Healing of physical nodes: A cyber node heals a physical
node if that physical node is its only defected physical
neighbor. An example of this could be a control center
that has all measurements but one from the power grid, so
it must derive the phase or voltage value for the remaining
component.

Physical nodeCyber node

y

u

w

px

Fig. 5: Example of messages exchanged in cyber-physical
system.

• Contagion from physical to cyber system: A cyber
node with no functioning physical neighbor will go out
of service. An example could be an internet server that
looses its power supply in a power outage.

• Contagion within cyber system: If all cyber neighbors
of a cyber node are out of service, then the cyber node
itself will go out of service. An example could be an
internet server whose neighboring servers have all been
disconnected from the network.

C. Message Passing in Cyber-Physical Systems

In our model, the interactions between nodes are represented
by messages. Accordingly, all sorts of contagions and the
healing process scenarios explained above could be interpreted
in a message-passing framework as follows:

1) Defection (D) message:

• A defected physical node sends a defection message D
to its cyber neighbors with the probability of y. It also
sends a message D to each of its physical neighbors
with probability p.

• A defected cyber node sends a D-message to its cyber
and physical neighbors with the probability of w.

• A functioning cyber node that cannot heal a physical
node sends a D-message to that node with the proba-
bility of w.

2) Healing (H) message: A cyber node that is able to heal a
physical node sends a healing message H to that node.

Defining the messages as above, shown in Fig. 5, addresses
the first two differences listed in Section III between codes
on graphs and CPSs. Note that these messages are introduced
to capture the interactions in the CPS, while they may not
be actually exchanged between the nodes in the underlying
networks. On the other hand, it is also possible that the mes-
sages do not arrive at the destinations due to imperfections of
lines/channels in a real CPS. To address this point, we consider
“missing probabilities" for the messages. The probability of
missing messages exchanged within the physical network,
within the cyber network, and between the physical and cyber
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networks is represented by Pmp, Pmc, and Pmi, respectively.
The value of these parameters may vary between 0 and 1
according to the underlying application.

D. Autonomous Cars

Recent advances in signal processing, communications, net-
work monitoring, and control systems pave the way to the next
generation of vehicles, such as autonomous cars. Autonomous
cars have attracted investments from many companies such as
Wayco (formerly known as the Google self-driving car), mo-
tivated by improved pollution control, ease of use, and safety.
A self-driving car requires five basic functions in order to
drive autonomously: localization, perception, planning, vehicle
control, and system management [41], [42]. The localization
function finds the estimated position of the vehicle based
on GPS, and the perception function obtains the information
of the surrounding environment using car sensors. Through
this gathered information, the planning function provides the
maneuvers of the self-driving car. The vehicle control function
applies commands of the planning function by accelerating,
braking, and steering the car. Finally, the system management
function provides the supervision of self-driving cars. While
the first four functions operate the physical aspects of the
driverless car, the system management function forms a new
network layer, called the vehicular cloud, which maintains
smooth traffic flow on roads through effective communication
and distributed processing [43]. Hence, a CPS could be defined
with the vehicular cloud as the cyber network and autonomous
cars as the physical network. The message-passing framework
introduced earlier in this section could then be applied to study
the operation of this CPS as follows:

• Initial disturbance: Each autonomous car could fail due
to any abnormality in the vehicle operation, from an
engine problem to an unexpected speed or direction, as
shown in Fig. 6.

• Contagion within physical network: Failure in an au-
tonomous car could cause problems for neighboring cars.
The failure could be healed by the supervising cyber
nodes or it could result in cascading failure in the network
[44].

• Healing of physical nodes: Supervisors in the cyber
network have access to essential data and services, from
typical autonomous car measurements in the region to
routes to service centers. The cyber node could use these
services to help the autonomous car by the following:
i) reporting a command to the planning function of the
autonomous car in order to update the vehicle control or
sending it to the nearest service center, or ii) providing
an alarm to the passengers of the car to take appropriate
action against the failure.

• Contagion from physical to cyber system: If some
physical nodes send the wrong measurements of their
status on roads, then the supervising cyber node may
improperly perceive the situation.

• Contagion within cyber system: False information in a
cyber node would lead to sending wrong information to
other cyber nodes.

Fig. 6: Illustration of autonomous cars’ message- passing to
avoid congestion and failure propagation.

VI. DENSITY EVOLUTION ANALYSIS OF

CYBER-PHYSICAL SYSTEMS

In order to study the impact of an initial disruption, we keep
track of D and H messages by employing density evolution.
Recall the example of Fig. 3 where variable and check nodes
exchanged messages with values 0, 1, or ǫ in consecutive
iterations. Density evolution tracks the density of D messages
(e.g., ǫ) as the number of iterations grows. This density is
defined as the fraction of D messages among all messages
exchanged between the variable nodes and check nodes at each
iteration. The message-passing algorithm of Section III is able
to fix all damaged variable nodes, if and only if the density of
D messages converges to 0 as the number of iterations grows.
Employing the concept of density evolution used in codes on
graphs, we obtain a DE equation for CPSs.

Theorem 1. The density evolution equation for the system

defined in Section V can be obtained as follows:

x0 = ǫ,

xl = f(xl−1), (15)

where

f(xl−1) = A×B +A× [1−B]× Pmi, (16)

and

A = xl−1 +
(

1− xl−1

)(

1− λ(1− pxl−1)
)(

1− Pmp

)

,

B = 1−

{[

(

1− xl−1 −
(

1− xl−1

)(

1− λ(1 − pxl−1)
)

(

1− Pmp

)

)(

1− Pmi

)

]a−1

×

[

1− ρ

(

([

1− Pmi

]

[

xl−1 +
(

1− xl−1

)(

1− λ(1 − pxl−1)
)(

1− Pmp

)])a

(

1− Pmc

)

)

]}

,

and a is the number of physical nodes under each cyber node.

The system heals if and only if xl → 0 as l → ∞.
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The proof for this theorem as well as others is presented
in the appendix. The above formulas were obtained with the
assumption of independence between messages in the network.
In the following theorem, we utilize the LDPC code analysis
[35] to show the existence of such an independence between
messages in a CPS.

Theorem 2. For the cyber-physical system described in Sec-

tion V, if the number of nodes is sufficiently large, then the

incoming messages to each cyber or physical node can be

considered as independent messages.

A. Steady-State Behavior of Cyber-Physical Systems

We now study the steady-state behavior of the cyber-
physical system against a failure for the defined message-
passing rules. After a failure occurs in the network, defection
messages appear in the network. It is expected that if the
number of message-passing iterations increases, the density
of defection messages through density evolution analysis ap-
proaches to 0 or 1, which means that the system reaches a
steady-state condition that would be either complete healing
or complete collapse. We prove this claim in the following
theorem and confirm it via simulations in Section VII.

Theorem 3. For the cyber-physical system defined in Section

V, if the message-passing iterations increase, then the system

will reach a steady-state condition, which is a complete-

healing state or a complete-failure state.

B. Sufficient Condition for Healing

Once the recursive equation of density evolution is derived
for a given set of contagion and healing rules, it can be utilized
in many ways to gain useful insights into the network design.
The following theorem, for example, employs equation (15),
with the assumption of no missing messages (Pmi = Pmc =
Pmp = 0), to obtain a sufficient condition for the system to
heal completely.

Theorem 4. The cyber-physical system described in Section

V with degree distribution pair (λ, ρ), and parameters a and

p heals if

x0 <
1

(

a− 1
)(

1 + pλ′(1)
)2 (17)

Theorem 4 provides some interesting intuitions. First, note
that

λ′(1) =
∑

i≥1

iλi × xi−1|x=1 =
∑

i≥1

iλi, (18)

is the average degree of the physical nodes. Theorem 4
indicates the necessity of a low average degree for the physical
nodes for achieving a resilient system. This is because in
our model, physical nodes with higher degrees can damage
more nodes. Second, this theorem suggests that the number of
physical nodes under each cyber node, a, should be kept small.
This increases the chance of healing physical nodes since a
cyber node needs to have all but one measurements to heal a
physical node. Finally, the theorem implies that smaller values
of p are desirable, which is expected.

C. Optimizing for Resiliency

We now study design implications of the density evolution
analysis of the previous section. Based on the analysis done in
Theorem 4, with the given network parameters λ, ρ, a, and p,
one could evaluate the upper bound on xl−1. Here, we refer to
this value as ǫs. Also, one could employ the recursive equation
of (15) to find the most severe disruption that can be tolerated
by the network. To this end, we formulate an optimization
problem with respect to network constraints. The solution to
this problem would be the values of network parameters that
achieve maximum resiliency against initial disturbances. We
represent the maximum initial disturbance by ǫmax. To obtain
ǫmax given a and p, an optimization problem can be set up
as follows:

argmax
{ρi,λi,ǫ}

f(xl−1, λi, ρi)

subject to xl = f(xl−1, λi, ρi),
∑

i≥2

λi = 1,

∑

i≥2

ρi = 1,

0 ≤ λi ≤ 1,

0 ≤ ρi ≤ 1.

(19)

Sometimes, for simplicity of analysis, we assume that ρ(x) =
xM for some M ≥ 2. We numerically solve this optimization
problem for two scenarios. In the first case, we fix the network
parameters and find ǫmax. In the second case, we run the
program to reveal λis that give us the largest ǫmax. We will
comprehensively discuss these results in Section VII.

Nevertheless, it is worth noting that the application of our
proposed message-passing framework is not limited to the
particular setting explained in Section V. This framework
could be applied to any set of contagion models, healing
rules, and network structures for which a density evolution
analysis could be carried out. Also, this analysis holds for
delay-free CPSs where cyber nodes respond immediately to
failures in the physical network. However, in practical cases,
cyber nodes may need a while to process the messages, collect
the information, and take action. The crucial role of this time
delay in the healing process will be investigated in the next
section.

D. Analysis of Message Passing with Time Delays in Cyber

Nodes

We now develop the above analysis by considering pro-
cessing time delay in a CPS. To this end, we employ the
definition of time slots. Previously, we have assumed that
each iteration of message passing can be completely done
in one time slot. However, if a failure occurs for a physical
node, then the corresponding cyber node usually needs a few
time slots to respond to the D message. This delay would be
for a number of reasons, such as recovering data from the
database, collecting data from other physical nodes, gathering
information from neighboring cyber nodes, etc. Therefore,
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one iteration would need a few time slots in order to be
accomplished. Cyber nodes usually react against a failure in a
few time slots. In what follows, we derive the density evolution
equation assuming that each cyber node needs two time slots to
respond to a failure. For the purpose of simplicity and without
loss of generality, we assume that messages are delivered at
the destination nodes (i.e., Pmi = Pmc = Pmp = 0). For
brevity, we skip most details of the definitions and give the
final equations that describe the messages at each time slot.

Theorem 5. For the cyber-physical system defined in section V

with a cyber-node processing delay of two time slots, a density

evolution equation for the l-th iteration can be obtained as

xl(t+ 3) = f(xl−1(t)),

f(xl−1(t)) = A×B + C ×
[

1−B
]

, (20)

where A, B, and C are given as

A =

{

λ

[

1− p

(

λ
(

1− pxl−1(t)
)

×
(

xl−1(t)− 1
)

+ 1

)]

}

×

{

λ
(

1− pxl−1(t)
)

×
(

xl−1(t)− 1
)

}

+ 1,

B = 1−

{

λ
(

1− pxl−1(t)
)

×
(

xl−1(t)− 1
)

}(a−1)

×

{

1− ρ
(

xa
l−1(t)

)

}

,

C = 1− λ
(

1− p A
)

.

The system heals if and only if xl(t + 3) → 0 as l → ∞ (or

equivalently, t → ∞).

Extending the DE analysis to cyber node delays of more
than two time slots can be done along the same lines as above.
In the next section, through numerical results, we will fully
study the impact of different processing time delays on a self-
healing cyber-physical network.

VII. SIMULATION RESULTS

To make more concrete sense of the above analysis, we
have numerically simulated the message passing over cyber-
physical networks. First, we simulate the network without
considering processing-time delay to find the role of each
network parameter. Here, we referred to this simulation as
scenario I. Next, we will investigate the performance of the
self-healing method in the presence of a processing-time delay.
This simulation creates scenario II. Finally, we will compare
both scenarios to provide clear criteria for choosing network
parameters for the desired resiliency of a CPS.

A. Numerical Results for Scenario I

This section provides a number of evaluations for the self-
healing method without considering a processing-time delay.
To begin with, Fig. VII-A shows the fraction of physical node
failures for different numbers of iterations, l. As can be seen, if
l → ∞, then the function goes to a step function. This implies
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Fig. 7: Probability of failure for physical nodes in different
iterations w.r.t the initial disturbance, with network
parameters a = 5, p = 0.2,λ(z) = z2 and ρ(z) = z3.

two steady-state conditions, which would be either a complete
healing or a complete failure scenario in the network. These
steady-state conditions confirm Theorem 3 in Section VI.

Fig. VII-A shows the fraction of physical nodes failure in
a steady-state condition, x∞, after an initial disturbance, for
two popular network models: Erdös-Rényi (ER) networks and
scale-free (SF) networks. For this simulation, we assumed that:
i) both networks have the same average degree, which is equal
to 1.4, and ii) both networks have the same minimum and
maximum degrees (kmin and kmax) that can be obtained via
kmax = kminN

( 1

γ−1
) [45] in which kmin = 1, N = 100,

and γ = 2.8 (for SF networks). Based on these assumptions,
we ran the simulations and found that SF networks have
more tolerance against an initial perturbation in comparison
to ER networks, as shown in Fig. VII-A. The reason could
be that, given the same average degree, most nodes in a SF
network have a lower degree than the nodes in an ER network.
Therefore, given that the initial failures are selected randomly
and unbiased, such nodes are less likely to be among the
hubs in a SF network. This means less number of high-degree
failed nodes, hence, less chance of failure propagation in the
network. This finding confirms the results of Schneider et al.
[17] stating that high-betweenness nodes should be planned as
autonomous nodes, in order to have the best resiliency in an
interdependent network.

In order to study the impact of missing messages on
the resiliency of a self-healing interdependent network, we
simulated our findings for a CPS with different values of
Pmi, Pmp, and Pmc, and the following network parameters:
a = 4, p = 0.1, and λ(z) = ρ(z) = 0.5 z + 0.4 z2 + 0.1 z3.
The results are shown in Fig. 9. As can be seen in Fig. 9(a),
without missing messages between the two networks (i.e.,
Pmi = 0), the system is able to tolerate up to 55% initial
loss of physical nodes. However, if Pmi gradually increases,
then the opportunity of receiving H messages at physical
nodes from cyber nodes continually decreases. Accordingly,
the resiliency of the network is drastically reduced. This trend
continues until the system completely loses its ability to heal a
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Fig. 8: Steady-state fraction of physical failed nodes against
an initial disturbance for Erdös - Rėnyi (ER) and Scale-Free
(SF) networks. The average degree of networks is 1.4 with the
min. degree of 1 and max. degree of 13, and γ = 2.8.

failure (Pmi > 0.4 for the assumed network). Fig. 9(b) shows
that the increase in missing messages in the physical network
(i.e., Pmp) improves the probability of healing in the system.
However, this result is not surprising because a larger number
of missing failure messages in the physical network means a
smaller chance of failure propagation in this network. In our
simulations, we also noted that changes in Pmc, the probability
of a missing message within the cyber network, do not affect
the network resiliency significantly, since the cyber nodes in
our model mainly rely on information from their own physical
nodes for their operation.

Fig. 10(a) indicates the number of iterations needed for the
network to reach a steady-state condition. As can be seen in
Fig. 10(a), the steady-state conditions would change from a
complete healing (collapse) to a complete collapse (healing)
for a threshold value of initial disturbance (ǫ), in this case
ǫ = 0.23. This threshold would be varied for different sets
of network parameters. The more we move away from the
threshold, the less iterations are needed for the network to
reach its stable state. This is due to the limited capability
of cyber nodes in healing the physical nodes. For example,
for small disturbance such as ǫ = 0.05, cyber nodes need
only a few iterations to heal the network because almost
all physical nodes are healthy. For larger disturbances, the
chance of complete healing drops rapidly. Fig. 10(b) shows the
threshold that can be tolerated for a set of different physical
degree distributions in the network, while a and p are fixed.
Also, we assume that enough message-passing iterations have
already been done for the network to reach the steady state.
As can be seen, the lower physical degree distributions have
a higher resiliency against failure.

In order to find the maximum threshold and network pa-
rameters achieving this threshold, we numerically solve the
optimization problem of (19). The problem is solved for two
cases: (a) a, λ(·), ρ(·), and p are kept fixed and the maximum
tolerated initial disturbance, ǫmax, is found, and (b) a, p, and
ρ(·) are fixed while λis are obtained for the ǫmax. Results for
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Fig. 9: Influence of missing messages on probability of nodes’
failure in CPS with following parameters: a = 4, p =
0.1, and λ(z) = ρ(z) = 0.5 z + 0.4 z2 + 0.1 z3: (a) impact
of missing messages between physical network and cyber
network, Pmi, and (b) effect of missing messages in physical
network, Pmp.

the first and the second cases are shown in Table I and II,
respectively, where the corresponding value of ǫs, the value
of the upper bound in (17), is also listed for each set of
network parameters. The following observations can be made
from Table I:

• The results in Table I.A indicate that increasing a reduces
the values of ǫs and ǫmax. In fact, a large a increases the
chance of receiving D messages by a cyber node from
its physical neighbors. This reduces the resiliency of the
system.

• The results in Table I.B confirm that reducing p leads to
less vulnerability of physical nodes from their physical
neighbors.

• Table I.C shows that a less-connected physical network
results in larger values of ǫs and ǫmax and, hence, higher
resiliency.
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Fig. 10: For network parameters a = 5, p = 0.2 and ρ(z) =
z3: (a) demonstrates the number of iterations needed for a
network to be completely healed or failed for λ(z) = z3 and
(b) shows the probability of failure for physical nodes with
different λ(z) against an initial disturbance.

In the second case, we consider a physical degree distribu-
tion of minimum degree two and maximum degree five:

λ(z) = λ2 z
2 + λ3 z

3 + λ4 z
4 + λ5 z

5. (21)

The outcomes for this case are shown in Table II. As can be
seen, we consistently obtain λ2 = 1, while λ3 = 0, λ4 = 0,
and λ5 = 0. This is not surprising, because physical nodes
with more physical neighbors help spread the failures. In fact,
when solving the optimization equation (19) for scenarios with
other limitations on λ(z), we found that the degree of the
physical nodes should be kept as small as possible.

B. Numerical Results for Scenario II

In Section VI-D, we have analytically obtained the influence
of processing-time delay on the probability of failure in the
CPS. Now, we numerically evaluate those results in the same
line of scenario I. We begin with a processing-delay of three

TABLE I: ǫs and ǫmax for different network parameters and
severity of initial disturbance

Table I.A: ǫs and ǫmax for variation of a
p a λ(z) ρ(z) ǫs ǫmax

0.8
3

z2 z3
0.0740 0.1002

5 0.0369 0.0482
8 0.0211 0.0271

Table I.B: ǫs and ǫmax for variation of p
p a λ(z) ρ(z) ǫs ǫmax

0.4
4 z2 z3

0.1028 0.1621
0.6 0.0688 0.0973
0.8 0.0493 0.0650

Table I.C: ǫs and ǫmax for variation of λ(x)
p a λ(z) ρ(z) ǫs ǫmax

0.5 3
z2

z3
0.1250 0.1933

z5 0.0408 0.0525
z8 0.0200 0.0250

TABLE II: ǫs and ǫmax for different degree coefficients of
physical nodes.

p a ρ(z) λ(z) ǫs ǫmax

0.5 4 z3

λ2 = 1

0.05334 0.07245
λ3 = 0
λ4 = 0
λ5 = 0

0.2 3 z2

λ2 = 1

0.19531 0.35424
λ3 = 0
λ4 = 0
λ5 = 0

time slots. Hence, each iteration can be accomplished in four
time slots. Fig. 11(a) shows the number of time slots needed
for the network to reach a steady-state condition. As can be
seen, jagged lines occur as a result of the processing-time
delay. Considering this delay, a cyber node needs k time slots
(here, k = 3) to respond to the failure. During this time
interval, the failure propagates in the physical network and
could constantly increase the probability of failure for physical
nodes. After the k-th time slot, however, the network would
experience three cases for the probability of failure, depending
on the ability of cyber nodes to heal their associated physical
nodes:

• Region I: The healing ability of cyber nodes is diminish-
ing due to the large number of failures in the network;
hence, the probability of physical failures only increases.

• Region II: Cyber nodes are still able to heal their physical
nodes, but this is not enough to stop the propagation of
failure and change the overall trend. That is, the number
of failures at the end of the iteration is still higher than
that of the beginning of the iteration.

• Region III: The healing ability of cyber nodes outweighs
the propagation of failure, leading to complete healing of
the network after a few iterations.



12

0 20 40 60 80 100 120

F
ra

c
ti

o
n

 o
f 

P
h

y
s
ic

a
l 

N
o

d
e
 F

a
il

u
re

s
 (

x
l)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ReR��� �

ReR��� ��

ReR��� ���

(a)

Initial Disturbance (ǫ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
∞

0

0.2

0.4

0.6

0.8

1

� � 0.1

� � 0.15

� � 0.2

� � 0.3

(b)

Fig. 11: (a) The probability of failure for physical nodes in
presence of processing-time delay. Processing delay = 3 time
slots, and network parameters are a = 5, p = 0.2, λ(z) = z2,
and ρ(z) = z3. (b) Impact of p on steady-state behavior of
network.

The probability that each physical node gets affected by
the failure of its physical neighbors, p, is decisive to the
resiliency of a CPS. One example of this parameter in power
systems could be revealed in protective relays. The mission
of protective relays is to sense a fault and initiate a trip,
disconnection or order. Therefore, good relays result in lower
probability of failure in a network. The performance of relays,
in a very abstract sense, can be mapped to p. The influence of
p becomes more crucial, when there is a processing-time delay
for cyber nodes. Fig. 11(b) shows the steady-state behavior of
the network for different values of p, when the processing-time
slot is three (k = 3). As can be seen, the higher value of p

dramatically increases the vulnerability of the network against
an initial disturbance. For instance, for p = 0.3, network
resiliency is almost non-existent against any initial disturbance
in the physical network.

C. Comparison of Results for Scenario I and II

Now, we compare scenarios I and II to understand the effect
of delay on the performance of cyber-physical systems. First,
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Fig. 12: Comparison between non-delayed systems and de-
layed systems for network parameters a = 5, p =
0.15, λ(z) = z2, and ρ(z) = z3: (a) effect of time slot
processing delay on systems, and (b) impact of time slot (TS)
delays on maximum tolerated threshold in network.

consider Fig. 12(a), which shows the direct impact of delay
on maximum resiliency of a network. Delayed systems need
considerably more time slots to be healed in comparison to
non-delayed systems. This can be observed for ǫ = 0.1. In
addition, at ǫ = 0.3, the non-delayed system can be cured
after nine time slots. However, the delayed system completely
collapses. The reason is that the failure propagates throughout
the physical network during the three time slot delay interval.
Fig. 12(b) displays the steady-state behavior for delayed and
non-delayed systems w.r.t. the size of the initial disturbance.
A comparison of resiliency thresholds effectively demonstrates
the essential need for a quick response from cyber nodes.

VIII. CONCLUSION

We introduced a graphical model representation of cyber-
physical systems and applied message passing to investigate
the resiliency of inter-dependent CPSs. We provided a density
evolution analysis to study the behavior of a system in the
presence of both self-healing and propagation of failures. Our
analysis resulted in a sufficient condition on choosing the
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network parameters for the system to completely heal after an
initial disturbance. Then, we studied the steady-state behavior
of cyber-physical networks after an initial disturbance, proving
that the network reaches one of the two conditions, either
a complete healing or a complete failure. To improve the
network robustness, we set up an optimization problem to
calculate network parameters for highest network resiliency
against physical node disruptions, where we found the most
severe attack that can be tolerated by the network, given a set
of parameters. Finally, we studied self-healing cyber-physical
networks where the response of cyber nodes to failures in the
physical network is delayed. Our findings revealed the crucial
importance of low processing-time delay for increasing the
probability of healing in the network.

IX. APPENDIX

A. Proof of Theorem I

Proof. After a disturbance has occurred, D messages will be
generated by the failed nodes. Since in our model each node is
disturbed by a probability ǫ, the initial density of D’s, denoted
by x0, is ǫ. Assume that we are at the beginning of the l-
th iteration and find xl in terms of xl−1. In order to obtain
the recursive equation during the l − 1-th iteration, we need
to define y, u, and w rigorously. To this end, we suppose
that exchanged messages are independent of each other. The
next theorem shows that this assumption holds if the number
of nodes is sufficiently large in the network. According to
the definition of failure messages from a physical node to a
cyber node, and the probability of missing messages, y can be
written as (22). Also, the failure message from a cyber node to
a physical node, u, can be derived as (23). Finally, the failure

message between cyber nodes, w, is defined as

w = Pr

{

Cyber node receives message of failure of all

of its physical nodes

}

⇒ w =
(

y
(

1− Pmi

)

)a

. (25)

At the l-th iteration, xl can be defined as (24). We can
eliminate w by substituting (25) into (23) and obtaining u

as a function of y. Substituting (22) into (23) and then (24)
yields (15).

B. Proof of Theorem II

Proof. Let us divide all messages in a CPS into two parts:
(a) messages between two networks, or inter-messages, and
(b) messages within networks, or intra-messages. The edges
and nodes for the inter-messages create the form of bipartite
graphs. Richardson and Urbanke [35] showed that if the length
of the smallest cycle in this bipartite graph is greater than
2l, or in other words, if the neighborhood of length 2l for
every node is cycle-free, then, up to the lth iteration, the
incoming messages to each check node or variable node are
independent from each other. The authors then proved in
Appendix A of [35] that, for any given l, such a cycle-free
structure is achieved for sufficiently large number of nodes.
The same exact proof applies to the bipartite graph connecting
the cyber and physical networks as the number of nodes grows
very large, thereby guaranteeing the independence of inter-
messages.

There are no intra-messages in the message passing in codes
on graphs as the Tanner graph is bipartite. The existence of
intra-messages in CPSs is a direct consequence of the third
difference listed in Section III between the codes and CPSs.

y = Pr

{

(

Physical node itself has failed

)

⋃

(

Node has not failed
⋂

At least one of its

physical neighbors has failed
⋂

Failed message from the neighbor has not missed

)

}

⇒ y = xl−1 +
(

1− xl−1

)(

1− λ(1 − pxl−1)
)(

1− Pmp

)

. (22)

u = Pr

{

Cyber node received the failure of at least one of its physical nodes
⋂

Cyber node has access to at least one healthy cyber node
}

,

⇒ u = 1−

(

(

1− y
)(

1− Pmi

)

)a−1(

1− ρ
(

w (1− Pmc)
)

)

. (23)

xl = Pr

{

(

Physical node fails
⋂

Its cyber node sends D message

)

⋃

(

Physical node fails
⋂

H message from its cyber node is missed

)

}

⇒ xl = y × u + y × (1− u)Pmi (24)
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Fig. 13: Example of bipartite graph with virtual check nodes:
(a) variable nodes, (b) virtual check node inserted between
every two variable nodes, and (c) variable nodes and virtual
check nodes forming a bipartite graph.

(a) (b) (c)

Physical node Cyber node

Fig. 14: Illustration of cyber-physical system graph in proof
of Theorem 3: (a) simple CPS, (b) CPS with one cyber and
n physical nodes, and (c) CPS with two cyber nodes and n

physical nodes.

To obtain the independence between intra-messages, we first
map each node (physical or cyber) to a variable node as shown
in Fig. 13(a). Without loss of generality, we add a virtual
check node between every two connected variable nodes as
shown in Fig. 13(b). This virtual check node acts as a relay
for the messages and does not have any impact on the message
passing. The resulting graph can now be simply considered as
a bipartite graph as shown in Fig. 13(c). As seen in the figure,
the degree distribution of variable nodes remains the same
while the degree distribution of virtual check nodes always
equals to x2. Obtaining such a bipartite graph enables us to
apply the same logic of inter-messages using [35] for the
intra-messages of a network. That is, if the number of nodes
in a network (either physical or cyber) with a given degree
distribution is sufficiently large, then the network satisfies the
cycle-free condition as stated above, which guarantees the
independence of intra-messages.

C. Proof of Theorem III

Proof. We first show that the theorem holds for a simple
network. We then extend the theorem truth to more general
networks. To begin with, consider a network with one cyber
node and two physical nodes, as shown in Fig. 14(a). If µ1

denotes the probability of failure for a physical node, then one

of the following probabilities may occur:
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(
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2

)
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1

(

1− µ1

)0
Case III : 2 nodes failure.

For cases I and III, the system is in a steady-state condition.
In case I, none of the nodes is affected by the failure and
the network is healthy. In case III, two nodes are lost due to
failure. As we assumed (like LDPC codes), if more than one
physical node is lost, then the corresponding cyber node cannot
heal them. Hence, the physical nodes remain failed and in turn
cause the cyber node to fail. Therefore, the network goes into
complete-collapse. In case II, however, the system would be
in a transient condition, which means that the network has
neither completely healed nor completely failed. This occurs
when a cyber node heals the failed node, but the failed node
already propagates the failure to one of its neighbors. Hence,
there is a failed node in the next state. After the l-th iteration,
the probability of the network to be in a transient condition is

(

2

1

)

µ1

(

1− µ1

)

(

(1− p)(α−1) p
)l

, (26)

where p represents the probability of failure propagation
between physical nodes, and α shows the number of neighbors
for the failed node. For simplicity, we have assumed that all
nodes have the same number of neighbors. As the l grows, the
probability of a network to be in a transient condition goes to
zero. So, the system reaches a steady-state healing condition
(case I + no failure propagation during message passing in
case II) or a steady-state collapsed condition (case III + at
least two failed nodes due to failure propagation in case II).

The assumption of two physical nodes can be extended to n

physical nodes, as shown in Fig. 14(b). In the same fashion as
above, the probability of transient condition in such networks
after the l-th iteration would be

(

n

1

)

µ1

(

1− µ1

)(n−1)
(

(1− p)(α−1) p
)l

. (27)

As l → ∞, the probability of transient condition goes to zero.

We then increase one cyber node to m cyber nodes by
defining clusters. A cluster includes a cyber node and its
supporting physical nodes. Fig. 14(c) shows two clusters
(m = 2). By employing the above conclusion, the probability
of one cluster with k physical nodes being in a transient
condition is

(

k

1

)

µ2

(

1− µ2

)(k−1)
(

(1− p)(α−1) p
)l

, (28)

where µ2 is the probability of failure for a physical node in one
cluster. Hence, for v out of m clusters with one failed physical
node, the probability of a transient condition in entire network
after the l-th iteration would be
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(

k1

1

)

µ2

(

1− µ2

)(k−1)
(

(1 − p)(α−1) p
)l

, × . . .×

(

kv

1

)

µ2

(

1− µ2

)(kv−1)
(

(1− p)(α−1) p
)l

, (29)

where ki represents the number of nodes in the i-th cluster.
As the number of iterations grows, the transient condition
gradually vanishes. In other words, if during one of these
iterations all nodes becomes healthy, then the network become
healthy. Also, if two nodes in one cluster fails during the
iterations, then the failures gradually permeate among the
nodes in the cluster and then all nodes in the network.
Therefore, a cyber-physical system with m cyber nodes and n

physical nodes reaches a steady-state condition.

D. Proof of Theorem IV

Proof. By taking the Taylor series from the right side of (15)
at xl−1 = 0, we obtain

xl =
(

a− 1
)(

1 + pλ′(1)
)2

x2
l−1 − 0.5

(

a− 1
)(

1 + pλ′(1)
)

×

[

(

a− 2
)(

1 + pλ′(1)
)

+ 2p
(

2λ′(1) + pλ′′(1)
)

]

x3
l−1

+ O(x4
l−1). (30)

For xl to be less than xl−1, it is enough to show that xl−1 is
larger than the first term on the right side of (30). That is,

(

a− 1
)(

1 + pλ′(1)
)2

x2
l−1 < xl−1. (31)

Inequality (31) holds for every l if it holds for l = 1.
Substituting l = 1 in (31) leads to (17).

E. Proof of Theorem V

Proof. Let x(t), y(t), u(t) and w(t) denote the messages in
the t-th time slot (see Fig. 5). If the probability of failure at
the beginning of the t-th time slot is ǫ, then we have x(t) = ǫ.
In the next time slot, according to the model described in
Sections V-B and V-C, we have

y(t+ 1) = x(t) +
[

1− x(t)
] [

1− λ
(

1− px(t)
)]

,

u(t+ 1) = 1−
[

1− y(t)
](a−1)[

1− ρ
(

w(t)
)]

,

w(t + 1) =
(

y(t)
)a

, x(t+ 1) = y(t+ 1), (32)

where y(t) = x(t), and w(t) =
(

x(t)
)a

= ǫ a. Similarly, in
the (t+ 2)-th time slot, we obtain

y(t+ 2) = x(t+ 1) +
[

1− x(t + 1)
]

×
[

1− λ
(

1− px(t+ 1)
)]

,

u(t+ 2) = 1−
[

1− y(t+ 1)
](a−1)[

1− ρ
(

w(t + 1)
)]

,

w(t+ 2) =
(

y(t+ 1)
)a

, x(t+ 2) = y(t+ 2). (33)

After two time slots for processing the data in a cyber node,
the probability of failure of a physical node can be calculated
as

xl(t+ 3) = y(t+ 2) u(t+ 2) +
[

1− λ
(

1− px(t+ 2)
)][

1− u(t+ 2)
]

. (34)

If we substitute equation (32) into (33) and then the result into
(34), in the same line of proof Theorem I, equation (20) will
be obtained.
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